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Abstract

Robust and fast motion estimation and mapping is a key prerequisite
for autonomous operation of mobile robots. The goal of performing this
task solely on a stereo pair of video cameras is highly demanding and bears
conflicting objectives: on one hand, the motion has to be tracked fast and
reliably, on the other hand, high-level functions like navigation and obstacle
avoidance depend crucially on a complete and accurate environment repre-
sentation. In this work, we propose a two-layer approach for visual odometry
and SLAM with stereo cameras that runs in real-time and combines feature-
based matching with semi-dense direct image alignment. Our method initial-
izes semi-dense depth estimation, which is computationally expensive, from
motion that is tracked by a fast but robust keypoint-based method. Experi-
ments on public benchmark and proprietary datasets show that our approach
is faster than state-of-the-art methods without losing accuracy and yields
comparable map building capabilities. Moreover, our approach is shown to
handle large inter-frame motion and illumination changes much more ro-
bustly than its direct counterparts.
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1. Introduction

A key feature of nearly all mobile robots is a reliable, robust, and fast state
estimation that is essential for most high-level operations like autonomous
navigation or exploration. Many mobile robots rely on cameras since they are
inexpensive and lightweight and can be used for a variety of tasks including
visual obstacle detection, 3D scene reconstruction, visual odometry, and even
visual simultaneous localization and mapping (SLAM).

Visual odometry (VO) means estimating the egomotion solely from im-
ages captured by a monocular or stereo camera system. There are a large
variety of VO methods that can be classified into feature-based and direct
methods. SLAM broadens this task by also requiring to compute a represen-
tation of the robot’s surrounding referred to as map. Most VO and SLAM
methods are feature-based and work by detecting keypoints and matching
them between frames. In contrast, direct methods estimate the camera mo-
tion by minimizing the photometric error over all pixels. Since this mini-
mization consists of aggregating the matching cost over all image pixels, it is
computationally more demanding than determining the reprojection error of
sparse set of feature points. Hence, direct methods are often computationally
more demanding, yet more accurate, than their feature-based counterparts.
In this work, we propose a novel approach that combines direct image align-
ment with sparse feature matching for stereo cameras. By combining both
paradigms, we are able to process images with high frame rate and to also
track large inter-frame motion while maintaining the accuracy and quality
of a direct method. Due to the distinctiveness of the tracked features, our
method performs well on datasets with low frame rates, which is often a
problem for direct methods as they need sufficient image overlap.

We extend monocular LSD-SLAM [1] to work with a stereo setup and
restrict semi-dense matching to key frames for achieving a higher frame rate.
In order to estimate the motion between key frames, we employ a feature-
based VO method and use the estimated motion as initialization for the
direct image alignment. Thus, we restrict the search space for direct image
alignment and gain real-time performance. This paper builds upon our recent
work [2] where we introduced a VO algorithm deploying both feature-based
and semi-direct matching techniques. Here, we expand this approach to a
fully-fledged SLAM system.
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Figure 1: Semi-dense 3D reconstruction of KITTI 00: Top left: Camera image. Bottom:
Semi-dense 3D reconstruction with colored camera trajectory (key frames blue, feature-
based tracked frames pink). Top right: Bird’s eye view of the complete reconstructed
scene.

2. Related Work

Visual odometry (VO) and visual SLAM are both vivid areas of research
and have seen rapid progress in the past years. Currently, feature-based and
direct approaches present two of the dominant paradigms.

2.1. Feature-based Methods

The general pipeline for feature-based methods can be summarized as
follows: Image features are detected and either matched between frames
or tracked over time. Based on these feature correspondences, the relative
motion between two frames is computed. To compensate for drift, many
methods make use of pose-graph optimization.

Popular feature-based methods are MonoSLAM [3] and Parallel Tracking
and Mapping (PTAM) [4]. PTAM is a widely used feature-based monocu-
lar SLAM method, which allows robust state estimation in real-time and has
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been successfully used on MAVs with monocular cameras [5]. ORB-SLAM [6]
has been proposed as a monocular visual SLAM method that tracks ORB
features in real-time and furthermore uses them for local and global bundle
adjustment, and candidate retrieval for loop closing. Most monocular meth-
ods have a dedicated initialization stage where both the map and the camera
movement are estimated at the same time. To this end, the initial movement
must bear a certain amount of parallax and can, thus, not be completely
arbitrary. On a second note, when using monocular methods, additional
sensors are needed to estimate the absolute scale of a scene. In contrast,
stereo, depth camera or multi-camera methods [7, 8] have a constant mea-
surement of scale and, hence, do neither suffer from scale drift nor do they
need a particular initialization stage. A later extension of ORB-SLAM [9]
incorporates stereo and depth cameras by using a dense depth estimation in
order to initialize new ORB map points. On the other hand S-PTAM [10, 11]
matches sparse features directly and does not rely on a stereo depth images
that would need to be computed in a preprocessing step. Likewise, a multi-
camera version of ORB-SLAM [12] has been presented that does not rely on
dense depth images but triangulates sparse features if stereo pairs are given.
Due to their complementary nature, feature-based methods also incorporate
readings from an inertial measurement unit (IMU) as high-frequency short-
term estimates between frames. Straightforwardly VO and inertial readings
are fused in a filter-based approach [13, 14] which is termed loose coupling.
In particular the work by Forster [15] has allowed for tight-coupling, i.e., in-
tegrating both IMU readings and visual odometry in a single non-linear cost
function. This technique has since then found its way into another variant
of ORB-SLAM [16].

In our work, we rely on a well-established and efficient feature-based
library for stereo visual odometry [7] which provides a good trade-off between
accuracy and runtime.

2.2. Direct Methods

In contrast to feature-based methods, which abstract images into a sparse
set of feature points, direct methods use the entire image information in or-
der to minimize the photometric error. In an early work [17], Comport et al.
formulate pixel-wise quadrifocal constraints for sparse corresponding stereo
matches in two subsequent pairs of images from a stereo setup. If extended
to the entire image data, these methods are computationally more intensive
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than feature-based methods. First introduced for monocular cameras by En-
gel et al. [18, 1], LSD-SLAM (Large-scale Semi-Dense SLAM) estimates a
pixel-wise inverse depth for a reference frame by means of successive small-
baseline stereo estimations. The inverse depth and the according pixel-wise
variance is propagated to a new keyframe as soon as the stereo baseline be-
comes too large. As the pose and point-wise depth estimation is done by
minimizing a cost function on image data via gradient descent, the motion
must be small or a good initial pose estimate must be given in order to not
converge to a local minimum. This is the reason that large inter-frame motion
is problematic. The relative poses between the keyframes are asynchronously
optimized in a pose graph approach in which two keyframes are connected by
a rigid transform with an additional scaling factor. Direct approaches have
been extended to stereo and RGB-D cameras. Engel et al. [19] use both
fixed-baseline stereo and temporal stereo (as in monocular LSD-SLAM) to
refine the depth estimate of the current reference keyframe. Since static
stereo is performed initially for every new stereo keyframe, a more reliable
depth estimate is available right from the beginning. Hence, the pose and
depth refinement become more robust and can deal with larger inter-frame
motion. With RGB-D cameras, direct methods are more straightforward as
a point-wise depth estimate with constant variance is given in every frame.
Stckler and Behnke [20] transform the depth image into a coarser representa-
tion, named a surfel map, for aggregation and track the camera motion with
ORB features. They later utilize this approach for dense image registration
and combine it with a sparse feature matcher in order to compute visual
odometry [21]. Dense direct methods often need to use GPUs to achieve
real-time performance [22, 23]. By using only pixels with sufficient gradient,
LSD-SLAM [1] reduces the computational demand and real-time semi-dense
SLAM becomes possible with a strong CPU. The extension to stereo cam-
eras [19] uses both fixed-baseline stereo depth and temporal multi-view stereo
in order to estimate a semi-dense environment representation. Recently, a
method for directly optimizing the depth of sparse feature points for visual
odometry, DSO (Direct Sparse Odometry), has been proposed by Engel et
al. [24]. Building upon the same optimization scheme like LSD-SLAM, they
optimize for all parameters (including the depth of numerous sparsely chosen
image points) for a sliding window of a few keyframes. In order to increase
robustness, the cameras must be calibrated photometrically and exposure
times have to be taken into account. Schöps et al. [25] use a visual-inertial
odometry approach to compute a short time horizon of camera poses and
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obtain a dense stereo estimation by plane sweeping multiple images[26]. The
latter method can be scheduled in parallel and achieves real-time applicabil-
ity by use of a GPU.

2.3. Hybrid Methods

Regarding the reconstruction of the environment, direct methods have the
advantage of estimating a dense map while feature-based methods can only
rely on the sparse features that have been tracked. Dense direct methods
are computationally demanding and are often executed as a final step for
estimating a globally consistent dense map after pose tracking with sparse
interest-points succeeded. To speed up global optimization, already tracked
sparse feature-points can be used as initialization for dense mapping [27].
The semi-direct method by Forster et al. [28] uses direct motion estimation
for initial feature extraction and continues by using only these features. A
novel release includes edgelets as features, encompasses IMU readings, and
yields a significant speedup [29]. A recent paper by Piazza et al. [30] presents
a real-time capable algorithm to compute and update a 3D manifold mesh
on a CPU. This allows for deriving a dense 3D map from a set of sparse
points as provided by any of the above SLAM systems. A combination of a
feature-based and a direct method has been presented by Younes et al. [31] as
feature-assisted direct monocular odometry. They present a VO method that
is based on DSO[24] but uses feature-based tracking when optimization yields
little relative improvement. In contrast, we always continuously combine
feature-based and semi-dense direct tracking over time, taking advantage of
the fast tracking from the feature-based method and the accurate alignment
of image gradients from direct methods. The feature-based tracking result is
immediately fed to the direct tracking at runtime as an initial guess.

3. Method

Our method is mainly based on the monocular version of LSD-SLAM
that we extended to work with stereo cameras. By using stereo cameras
instead of a single monocular camera, the absolute scale of the scene becomes
observable, eliminating scale ambiguity and the need for additional sensors,
e.g., inertial measurement units.

To ensure a high frame rate, we restrict the semi-dense direct alignment to
key frames only and estimate the motion for all other frames by the feature-
based method LIBVISO2 [7]. This motion estimate is used as initial estimate
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for direct alignment of key frames. The semi-dense environment mapping
runs in a parallel thread.

3.1. Notation

We follow the notation of Engel et al. [1]. The monochrome stereo images

captured at time i are denoted with I
l/r
i : Ω ⊂ R2 → R, with image domain

Ω. Each key frame KFi = {I li , Iri , Di, Vi} consists of the left and right stereo

images I
l/r
i , the semi-dense inverse depth map Di : ΩDi → R+, and the cor-

responding pixel-wise variance map Vi : ΩDi → R+. The inverse of the depth
z of a pixel is denoted as d = z−1. Camera motions are represented as twist
coordinates ξ ∈ se(3) with corresponding transformation Tξ ∈ SE(3). A 3D
point p = (px, py, pz)

T is projected into image coordinates u = (ux, uy, 1)T

by the projection function π(p) := K (px/pz, py/pz, 1)T with intrinsic camera
matrix K. Thus, the inverse projection function π−1(u, d) maps a pixel with

corresponding inverse depth to a 3D point p = π−1(u, d) :=
(
d−1K−1u

)T
.

3.2. LSD-SLAM

The processing pipeline of LSD-SLAM [1] consists of the three main com-
ponents: Tracking, depth map estimation, and global map optimization.

Tracking, i.e., frame-wise relative pose estimation, is based on maximiz-
ing photo-consistency and thus minimizing the photometric error between
the current frame and the most recent key frame using Gauss-Newton opti-
mization:

E(ξ) := IKF (π(p))− I(π(Tξ p)) ,∀p ∈ Ω (1)

where p is warped from I to IKF by ξ. New frames are tracked towards a
key frame and the rigid body motion of the camera ξ ∈ se(3) is estimated.

In the depth map estimation, tracked frames are then used to refine the
existing depth map of the key frame by many short-baseline stereo compar-
isons. Given the transformation between a tracked frame and the key frame,
that has been estimated prior in the tracking, the epipolar lines are calcu-
lated. Afterwards, for each pixel with sufficient gradient its depth hypothesis
is updated with stereo measurements. The depth is calculated by finding the
best matching point along the epipolar line, that is the point which mini-
mizes the SAD error measured over five equidistant points along the epipolar
line. Given the estimated depth the depth map of the most recent key frame
is then refined by either creating new depth hypotheses or improving exist-
ing ones. New key frames are created when the distance exceeds a certain
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threshold and are initialized by propagating depth of the previous key frame
towards the new frame. Once a key frame is replaced, it is added to the
pose-graph for further refinement and loop closing.

3.3. LIBVISO2

LIBVISO2 [7] is a fast feature-based VO library for monocular and stereo
cameras. Similar to other feature-based methods, it consists of feature match-
ing over subsequent frames and egomotion estimation by minimizing the re-
projection error. Features are extracted by filtering the images with a corner
and blob mask and performing non-maximum and non-minimum suppression
on the filtered images. Starting from all feature detections in the current left
image, candidates are matched in a circular fashion over the previous left
image, the previous right image, the current right image, and back to the
current left image. If the first and last features of such a circle match differ,
the match is rejected. Based on all found matches, the egomotion is then esti-
mated by minimizing the reprojection error using Gauss-Newton and outliers
are removed using RANSAC.

3.4. Semi-dense Alignment of Stereo Key Frames

We build upon the open source release of monocular LSD-SLAM and
extend it with stereo functionality. In contrast to monocular visual odome-
try, stereo allows to compute absolute depth maps and, thus, does not suffer
from scale drift. By extending LSD-SLAM to stereo, we combine the exist-
ing depth map computation over time with instant stereo depth from the
current image pair. While monocular LSD-SLAM uses a random initializa-
tion and has to bootstrap over the first frames, we take advantage of using
stereo cameras and initialize our method with absolute depth values. We use
ELAS [32] to compute the depth map of the initial key frame. The following
key frames are registered with their previous key frame by minimizing the
photometric error of their left reference frames as well as the depth error.
While in the monocular case, absolute depth is not observable; with stereo
cameras absolute depth is observable for every incoming stereo image pair.
This allows us to minimize the depth error in addition to the photometric
error. Hence, for direct tracking with stereo, we extend the minimization of
the photometric residual rp to take the depth residual rd into account:

rp(p, ξ) = ‖IKFi
(π(p))− Ij(π(Tξ p))‖ ,

rd(p, ξ) =
∥∥DKFi

(π(p))−Dstereoj(π(Tξ p))
∥∥ , (2)
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where ξ is the camera motion from the i-th key frame to the new j-th frame
and Dstereoj is the initial instant stereo depth map of the j-th frame. The
minimization is performed using a weighted least squares formulation and
solved with the Gauss-Newton method. The residual is formulated as stacked
residual r and is weighted with a 2× 2 weight matrix W :

r(ξ) = W (ξ)
∑
p∈ΩDi

(
h(rp(p, ξ))
h(rd(p, ξ))

)
;

W (ξ) =
∑
p∈ΩDi

(
wp(rp(p, ξ)) 0

0 wd(rd(p, ξ)

)
,

(3)

where both residuals are weighted with the Huber norm denoted as h(·).

3.5. Hybrid Odometry Estimation

Our idea is to take advantage of the different strengths of both approaches
and, thereby, combine fast feature matching with precise semi-dense image
alignment for efficient and reliable state estimation. The modular structure
of our approach is illustrated in Figure 2.

We initialize the first key frame with a dense depth map computed by
ELAS (Figure 2 (1)). Subsequent frames are then tracked towards the key
frame incrementally using feature-based LIBVISO2 (Figure 2 (2)). The rela-
tive poses of the tracked frames are concatenated and form the relative pose
of the camera to the key frame:

ξfeat = ξin ◦ ξin−1 ◦ · · · ◦ ξi0 . (4)

The current absolute pose of the camera at step j and key frame i can be
retrieved by:

ξij = ξKF i ◦ ξij−1 . (5)

We perform feature-based odometry as long as the motion is sufficiently
small. As soon as the motion exceeds the motion threshold

εmotion =
1

n

n∑
k=1

√(
uk

i − uk
i−1

)2
, (6)

we perform direct registration again (Figure 2 (3)) and the previous key frame
is replaced with the new frame, where n is the number of matched feature
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Figure 2: Overview of our combined semi-direct approach. While direct tracking is only
performed on key frames, feature-based tracking is performed for frames in between. The
output of the feature-based odometry serves as prior for the direct tracking.

points and (uk
i ) and (uk

i−1) are corresponding feature matches between the
current and the previous image.

The motion ξfeat serves as initial estimate for the direct registration of
the new frame towards the key frame:

ξKF i+1 = ξKF i ◦ ξfeat . (7)

This allows us to track larger motions faster and more robustly. The depth
map of a new key frame is initialized by instant stereo correspondences and
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Figure 3: Computed semi-dense depth maps for KITTI datasets (sequences 00 and 01).
Color depicts distance to the sensor.

then fused with the previous depth map by propagation as described in the
next section. Once a new key frame is initialized, we start feature-based
matching again.

3.6. Map Update

The depth map of each key frame is updated with instant stereo mea-
surements as well as with propagated depth from the previous key frame. If
a new key frame is created, the depth map is computed by instant stereo
from the left and right images. For reasons of runtime, we use a simple but
fast block matching along epipolar lines instead of ELAS [32] which is used
for the first keyframe only. Corresponding pixels are found by minimizing
the sum of absolute distances (SAD) error over a 15×15 pixel window. After
initializing the depth map with stereo measurements, the depth estimates
are refined by propagating depth hypotheses of the previous depth map to
the new frame:

pnew(p) = RC,KF p+ tC,KF , (8)

where p is the 3D point in the previous key frame. The rotation RC,KF and
translation tC,KF describe the coordinate transformation from the key frame
coordinate system KF to the candidate coordinate system C. If the residual
between the instant and propagated depth is high, the depth value with
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smaller variance is chosen. Otherwise both estimates—dstereo and dprop—are
fused to a new depth estimate dnew as a variance-weighted sum:

dnew = (1− ω) dstereo + ω dprop . (9)

The variance ω for each depth hypothesis is determined as described by
Engel et al. [33].

For fish eye lenses we extend this weighting scheme: as fish eye lenses
suffer from distortion at the image borders, we further increase the variance
of a pixels depth hypothesis depending on the distance r(u, v) to the optical
center (cx, cy):

r(u, v) =
√

(u− cx)2 + (v − cy)2. (10)

Figure 3 shows the resulting semi-dense depth maps for two KITTI sequences.

3.7. Global Map Optimization

So far, we presented an approach performing incremental visual odometry
by directly tracking incoming stereo images in combination with semi-dense
depth reconstruction. This gradual pose estimation technique accumulates
errors over time.

In order to alleviate this caveat we use G2O [34] for global pose graph
optimization. The pose graph is constructed from the key frame poses as
vertices and their relative transformations as edges. Instead of optimizing
SIM(3) constraints, i.e., assuming that two separate camera frames are re-
lated via a rigid-body motion with an additional unknown scaling factor, as
in the original proposal by Engel et al. [33], we set constraints between
key frames as their SE(3) rigid-body motion as due to our stereo setup we
have no scalar ambiguity. Once a key frame is created, its pose is added
to the key frame graph as a vertex Vl. Subsequently, we search the exist-
ing vertices in the graph for additional constraints that can refine the pose
graph. To this end, the closest n key frames, that have sufficient scene over-
lap in terms of parametrizable euclidean distance as well as parametrizable
angular overlap, are matched against the newly created key frame: We esti-
mate the transformation between both frames both ways, by registering the
constraint candidate against the key frame and vice versa using semi-dense
direct matching as described in Equation (1). Only if the matching succeeds
for both directions and the resulting transformations agree, they are added
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Figure 4: Trajectory of a camera and reconstructed map. Pink frusta indicate camera
poses for every frame taken, blue frusta denote keyframes. Edges between keyframes are
color-coded using the reprojection error between them. The coding ranges from green
(low reprojection error) to red (high reprojection error). In the global map optimization
edges between key frames are added to the pose-graph. Nearby key frames usually match
better than distant key frames (visualized as line color: green for a good match, red for a
poor match). The top picture shows the graph before optimization with many red edges
indicating poor consistency. Below: After graph optimization the key frame poses have
been refined yielding a lower overall error.
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to the graph as an additional constraint. All edge constraints Eij between
the vertices Vi, Vj define a cost function C that is optimized using G2O:

C(V0, ..., Vl) =
∑
Eij

‖TV (Vi, Vj)− TE(Eij)‖2 . (11)

where TV denotes the relative pose between two key frames corresponding
to Vi and Vj and TE yields the relative pose held by the edge Eij. Figure 4
shows an exemplifying result of the global optimization stage.

4. Evaluation

For the evaluation of our semi-direct approach we perform experiments
on three challenging stereo datasets: the well-known KITTI-dataset [35],
the EuRoC dataset [36] and a proprietary dataset recorded with our high-
performance MAV presented in Section 4.3. The datasets differ in terms of
frame rate, apparent motion, stereo baseline, and base platform. All experi-
ments have been conducted on an Intel Core i7-4702MQ running at 2.2 GHz
with 8 GB RAM.

We compare the quality of our combined approach in terms of accuracy
and runtime to LSD-SLAM [1] and LIBVISO2 [7], as well as to state-of-the-
art methods like S-PTAM [10] and ORB-SLAM [6]. The execution of the
referred methods has been obtained using the provided default parameters.

As ground truth for all sequences is available, we employ the evaluation
metrics by Sturm [37] and measure the absolute trajectory error (ATE) by
computing the root mean squared error (RMSE) over the whole trajectory. In
addition, we also provide the median error for better insight, because single
outliers can greatly affect the final result. The ATE is a popular measure
for the evaluation of visual SLAM systems as it measures the Euclidean
distance between ground truth poses and estimated poses at corresponding
timestamps, and thereby allows to evaluate the global consistency of SLAM
systems. In a first step the trajectories are rigidly aligned because they
stem from different coordinate systems. Moreover, a similarity alignment is
performed for the monocular systems to estimate the absolute scale of the
estimated trajectory. For an intuitively accessible visualization, trajectories
are always shown in bird’s eye perspective neglecting height differences in
the trajectory. In the following sections we first present detailed results for
each dataset, individually. Moreover, we evaluate the performance of visual
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KITTI Absolute Trajectory Error RMSE (Median) in m
Sequence Ours LIBVISO2 ORB-SLAM S-PTAM

00 5.79 (4.54) 29.71 (18.49) 8.30 (6.04) 7.83 (6.30)
01 61.55 (54.57) 66.54 (60.46) 335.52 (303.79) 204.65 (157.10)
02 18.99 (14.38) 34.26 (27.36) 18.66 (15.03) 20.78 (17.28)
03 0.63 (0.52) 1.67 (1.54) 11.91 (9.19) 10.53 (10.41)
04 0.67 (0.46) 0.80 (0.66) 2.15 (1.73) 0.98 (0.88)
05 5.47 (4.14) 22.14 (19.07) 4.93 (4.73) 2.80 (2.24)
06 2.06 (1.80) 11.54 (10.26) 16.01 (15.56) 4.00 (4.01)
07 2.34 (1.67) 4.41 (4.37) 4.30 (3.65) 1.80 (1.53)
08 8.42 (7.04) 47.67 (34.84) 38.80 (18.12) 5.13 (4.26)
09 5.46 (3.33) 89.83 (77.57) 7.46 (6.91) 7.27 (4.61)
10 1.68 (1.37) 49.35 (36.00) 8.35 (7.55) 2.08 (1.70)

mean 10.28 (8.53) 32.54 (26.42) 41.49 (35.66) 25.74 (20.26)
w/o S 01 5.15 (3.93) 29.14 (23.02) 12.09 (8.85) 7.85 (6.57)

Table 1: ATE Results on KITTI Dataset

SLAM compared to pure visual odometry and provide quantitative result.
Afterwards, we shortly summarize the obtained average results for accuracy
and runtime and conclude with qualitative results of our 3D reconstruction.
Finally, the following videos summarize our visual SLAM approach on the
EuRoc dataset 1 and visual odometry on the KITTI dataset 2.

4.1. KITTI

The KITTI dataset [35] is a very popular dataset for the evaluation of
visual and laser-based odometry or SLAM methods. It contains 22 stereo
sequences accompanied by laser scans, and ground truth from a localization
unit consisting of a GPS and an IMU. The stereo camera rig and the laser
scanner are mounted on top of a standard station wagon—the autonomous
driving platform Annieway [38]. The stereo rig has a baseline of approxi-
mately 54 cm.

Rectified images are provided with 10 Hz at a resolution of 1240 × 376
pixels. The sequences are recorded in real-world driving situations along

1https://www.youtube.com/watch?v=7NkHf6syRIo
2https://www.youtube.com/watch?v=PRYgnIBDVGI
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Figure 5: Results for KITTI Sequence 00. Comparison of our method to LIBVISO2 (top
row), ORB-SLAM and S-PTAM (bottom row). Our methods achieves the lowest ATE
(5.79 m)

urban, residual and countryside roads. The distance traveled ranges from a
few 100 meters up to 5 kilometers with driving speeds up to 80 km/h.

The dataset is very challenging because the low frame rate in combina-
tion with fast driving speed leads to large inter-frame motions of up to 2.8 m
per frame. This strongly restricts the number of possible feature correspon-
dences. Moreover, moving obstacles in form of passing vehicles, bicycles, or
pedestrians that have great impact on the performance of visual odometry
systems, are included frequently.

We compare the performance of our semi-direct method with four state-
of-the-art methods for visual odometry and SLAM.

We selected LIBVISO2 and LSD-SLAM for reference as our method is
built upon them. Moreover, we chose two established feature-based SLAM
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Figure 6: Results for KITTI Sequence 03. Comparison of our method to LIBVISO2 (top
row), ORB-SLAM and S-PTAM (bottom row). Our method and LIBVISO2 show accurate
trajectories.

algorithms that presented promising results: ORB-SLAM as a monocular
and S-PTAM as a stereo method. All processing is done on the original
image resolution of the rectified images of 1240× 376.

Both error measures—RMSE and Median—for the training sequences 00
to 10 of the KITTI dataset are listed in Table 1.

Unfortunately, LSD-SLAM fails on all sequences of the KITTI dataset.
This is probably caused by too large inter-frame motion for a pure monocular
direct method, as sufficient scene overlap is important for successful track-
ing. Moreover, it can be seen, that all SLAM methods lack performance on
sequence 01, resulting in a a very high ATE. Sequence 01 contains images
from driving on a highway, thus it is hard to find re-occurring feature points
in subsequent frames.
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Figure 7: Results for KITTI Sequence 09. Comparison of our method to LIBVISO2
(top row), ORB-SLAM and S-PTAM (bottom row). While ORB-SLAM looses track and
LIBVISO2 accumulates drift, S-PTAM and our method stay close to the ground truth.

Overall our method is equally good and in seven of eleven cases even
better than state-of-the-art methods. Especially sequences 03 and 04 show
very accurate results below 1 m ATE. In three of the cases S-PTAM and in
one case (sequence 02) ORB-SLAM performs better. As LIBVISO2 is a pure
odometry method, it performs significantly worse than the SLAM methods
on all datasets.

When averaging over the eleven training sequences our method ranks first,
followed by S-PTAM, ORB-SLAM and LIBVISO2. However, the bad results
from sequence 01 greatly affect the final average computation as all methods
accumulate high ATEs in sequence 01. One could argue that such high ATE
values count as outlier or failure. Therefore, we also show resulting means
when omitting sequence 01 for all methods. It follows that these results show
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Figure 8: Results for KITTI Sequence 10. Comparison of our method to LIBVISO2 (top
row), ORB-SLAM and S-PTAM (bottom row) on a longer trajectory without loop closures.

significantly lower ATEs. When omitting sequence 01 our method achieves
a mean (median) ATE of 5.15 m (3.99 m) compared to the S-PTAM result of
7.85 m (6.57 m).

For a better visualization exemplary trajectories are shown in birds-eye
perspective for the sequences 00, 03, 09 and 10.

Sequence 00 is shown in Figure 5. It can be seen, that our approach
performs best, followed by ORB-SLAM, S-PTAM and LIBVISO2. More-
over, limitations of the approaches become visible: as LIBVISO2 is a pure
odometry method, it accumulates more drift over time, and as ORB-SLAM
is a monocular method, scale is not always estimated correctly. Rotations are
challenging for all methods. In this sequence S-PTAM fails to track rotations
frequently and exhibits drift for the last part of the trajectory.

Figure 6 shows the results for sequence 03, a trajectory without full loop
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closure. We choose this sequence to compare the drift over time, when no full
loop can be closed. All estimated trajectories are close to the ground truth.
However, our method is—with 0.63 m ATE—distinctively more accurate than
ORB-SLAM (11.91 m) and S-PTAM (10.53 m). Additionally, LIBVISO2 also
shows accurate results with an ATE of 1.67 m and does not accumulate much
drift for this trajectory.

In sequence 09 a full loop closure appears at the very end of the tra-
jectory, that is not always detected from the SLAM methods before the
sequence ends. This behavior is shown in Figure 7. Again, LIBVISO2 suffers
from drift over time while the results from our Semi-Direct SLAM (5.46 m)
are more accurate than the results from S-PTAM (7.27 m). Moreover, it can
be seen, that ORB-SLAM lost track at some point and failed to relocalize.
Thus, more than half of the trajectory remains uncovered. This is not re-
flected in the error measure, because the ATE is only computed over existing
measurements.

Sequence 10 is similar to sequence 03 as it contains no full loop but
covers a longer path and performs more rotations. Results for this sequence
are visualized in Figure 8. They show that our method performs well even
if the path of LIBVISO2 drifts over time. ORB-SLAM fails to initialize
directly from the beginning but retrieves a trajectory consistent with the
ground truth later on, even with little offset. S-PTAM again shows similar
results to Semi-Direct SLAM although Semi-Direct SLAM performs slightly
better (1.68 m to 2.08 m respectively).

However, as LSD-SLAM fails on the KITTI sequences, we compare our
semi-direct approach to its fully direct version without feature-based initial
estimates. In particular, we compare the combined semi-direct approach to
its building blocks—LIBVISO2 and direct stereo tracking—separately. As
LIBVISO2 is a pure odometry method, we evaluate it against results from
our semi-direct odometry without closing loops.

In Figure 9 the results from three different datasets (00, 02 and 06) are
shown in birds-eye perspective. The left column shows the resulting path
LIBVISO2 computed and the right column the path from the semi-direct
odometry. It can be seen that LIBVISO2 accumulates more drift over time
than the semi-direct approach, while at the same time the semi-direct ap-
proach remains closer to the ground truth trajectory.

When comparing our semi-direct approach to its fully direct version with-
out feature-based odometry as initial estimate, we noticed that a fully di-
rect version has problems with strong turns in the dataset. Moreover, the
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Figure 9: Comparison of the results from LIBVISO2 (left) to our semi-direct odometry
(right). Top Row: KITTI Sequence 00, Middle Row: KITTI Sequence 02, Bottom Row:
KITTI Sequence 06. In direct comparison to LIBVISO2 our method accumulates less
drift.
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Figure 10: Comparison of the results from direct odometry (left) to our semi-direct odom-
etry (right). Top Row: KITTI Sequence 00, Bottom Row: KITTI Sequence 08. In direct
comparison to the direct visual odometry our method is clearly more robust to fast rota-
tions and to large motions.
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dataset is very challenging for a fully direct method as it contains large
inter-frame motions and difficult lighting changes. Large inter-frame mo-
tions are problematic for direct methods because they assume small pixel
displacements [39]. Without a good initial estimate they often fail to retrieve
large displacements. Difficult lighting changes, induced by auto-exposure
and changing sunlight, are tough, as they violate the brightness constancy
assumption. Thereby, it can be seen in Figure 10 that the fully direct odom-
etry accumulates more drift over time than our semi-direct version. Again,
while the semi-direct approach is shown in the right column, the fully direct
approach is visualized in the left column for sequences 00 and 06. Fully direct
tracking tends to fail especially at strong turns and at street crossings where
lighting changes increase because the car leaves shadowed street canyons. In
contrast, our approach is more robust to strong rotations and illumination
changes.

The semi-direct method performs better than its isolated building blocks.
The direct tracking is in principle more accurate but has problems with large
motions. However, when a good initial estimate is available, as in our case
from LIBVISO2, direct tracking succeeds even at large motions and with a
low frame rate.

Generally speaking, a combined semi-direct odometry performs better
than both—feature-based and direct—odometries alone. Overall, our ap-
proach shows promising results on the KITTI dataset when compared to
other state-of-the-art methods.

4.2. EuRoC

In addition to the evaluation on the KITTI dataset, we perform further
experiments on the well-known visual-inertial EuRoC MAV dataset that con-
tains stereo images and synchronized IMU readings from the on-board com-
puter of an Asctec Firefly hex-rotor helicopter. We choose six trajectories
with different difficulties from the two Vicon datasets V0 and V1. The data
has been collected from flights in a room that is equipped with a Vicon
motion capture system offering 6D ground truth poses.

The MAV carries a visual-inertial sensor [40] that captures stereo im-
ages of WVGA resolution at 20 Hz and synchronized IMU measurements at
200 Hz.

Both datasets contain three trajectories with increasing difficulty named
as: easy ( 01), medium ( 02) and difficult ( 03). The easy trajectories have
good illumination, are feature rich, and show no motion blur and only low
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EuRoC Absolute Trajectory Error RMSE (Median) in m
Dataset Ours Libviso2 LSD-SLAM ORB-SLAM S-PTAM

V1 01 0.12 (0.11) 0.31 (0.31) 0.19 (0.10) 0.79 (0.62) 0.28 (0.19)
V1 02 0.11 (0.10) 0.29 (0.27) 0.98 (0.92) 0.98 (0.87) 0.50 (0.35)
V1 03 0.75 (0.45) 0.87 (0.64) X 2.12 (1.38) 1.36 (1.09)
V2 01 0.18 (0.12) 0.40 (0.31) 0.45 (0.41) 0.50 (0.42) 2.38 (1.78)
V2 02 0.27 (0.22) 1.29 (1.08) 0.51 (0.48) 1.76 (1.39) 4.58 (4.18)
V2 03 0.87 (0.66) 1.99 (1.66) X X X

mean 0.38 (0.28) 0.85 (0.71) 0.53 (0.48) 1.23 (0.94) 1.82 (1.52)

Table 2: ATE Results on EuRoC Dataset

optical flow and low varying scene depth. They capture a static scene. The
difficulty increases in the medium trajectories by adding difficult lighting
conditions, high optical flow and medium varying scene depth. However,
they still show a static scene and a feature rich environment without motion
blur. In contrast, the difficult scenes contain areas with only few visual
features and more repetitive structures. Moreover, they add motion blur
and highly unstable lighting conditions. The MAV performs very aggressive
flight maneuvers resulting in high optical flow and highly varying scene depth
in a non-static scene.

The dataset is known to have different issues that make a reliable state-
estimation more challenging: for example, the stereo images were captured
using an automatic exposure control that is independent for both cameras.
Therefore, shutter times are different, which results in different image bright-
nesses, making stereo matching and feature tracking more challenging. This
is especially important, as direct methods minimize the photometric error.

Moreover, as the ground truth is recorded from a different physical de-
vice than the images, the accuracy depends on the synchronization scheme
used [36].

The resulting ATEs are listed in Table 2. As the difficult datasets V1 03
and V2 03 contain very dynamic movements and fast rotations with an MAV,
LSD-SLAM often loses track after a few seconds and is then unable to re-
localize for the rest of the trajectory. In Table 2 this is denoted as failure
(X). Similarly, S-PTAM and ORB-SLAM lose track for the difficult trajectory
V2 03. This dataset shows very challenging conditions with strong motion
blur and fast aggressive maneuvers. Moreover, the absence of sufficient visual
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Figure 11: Comparison of the results from LIBVISO2 (left) to our semi-direct odometry
(right) on datasets V2 01 and V2 02 with ground truth from a Vicon motion capture
system. Again our method is much closer to the ground truth even without SLAM.

features makes it hard for feature-based methods to succeed.
Table 2 also shows, that our approach outperforms the other methods

and reliably recovers the motion for all test sequences. Additionally, it can
be seen, that the results of LIBVISO2 are improved on every trajectory.

On average semi-direct SLAM achieves a higher accuracy, with 0.38 m
ATE, than LSD-SLAM, with 0.53 m, ORB-SLAM, with 1.23 m ATE, and
S-PTAM with 1.82 m ATE. LSD-SLAM, ORB-SLAM and S-PTAM often
perform poorly at fast motions in combination with rotations, and then tend
to lose track temporarily.

Additionally, we again directly compare results from Semi-Direct Visual
Odometry to LIBVISO2 and to Direct Odometry from LSD-SLAM. Figure 11
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Figure 12: Comparison of the results from LSD-SLAM (left) to our semi-direct SLAM
(right) on dataset V2 01 with ground truth from a Vicon motion capture system. While
LSD-SLAM shows an ATE of 0.45 m our methods performs better with an ATE of 0.18 m

Figure 13: Exemplary results of flight Vicon m: While the left image shows a capture of the
recorded scene, the right image shows the retrieved camera trajectory and reconstructed
semi-dense depth. Key frames are shown in blue, while feature-based tracked frames are
shown in pink.

shows the resulting trajectories for datasets V2 01 and V2 02 of LIBVISO2
and Semi-Direct Visual Odometry. Both methods were performed without
loop closures, and, thus, accumulate small errors in the estimates over time.
It can clearly be seen that the Semi-Direct Odometry is closer to the ground
truth from the Vicon system than LIBVISO2. Even though the datasets
contain rapid rotations, our method stays close to the ground truth path.

In comparison to LSD-SLAM, our approach is more robust to fast rota-
tions in the trajectory as can be seen in Figure 12. While LSD-SLAM com-
putes wrong estimates at strong turns, our method follows the path more
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precisely.
In addition to the official datasets we performed one manual flight in the

Vicon room, named Vicon m, where we evaluated the mapping abilities of
our approach. As an example sequence for our mapping abilities, Figure 13
shows a sequence captured on a manual flight: the MAV captures a corner
of the Vicon room and is able to reconstruct a semi-dense 3D representation
of the recorded scene. As can be seen, details of the scaffold are retrieved
as well as the ground plane and drawings on the blackboard. The recovered
camera trajectory is shown as well. Key frames are colored in blue while
frames that were tracked feature-based with LIBVISO2 are shown in pink.

In total, we showed that our method is more robust to dynamic motions
than the other evaluated methods and achieves a lower ATE on all evaluated
datasets.

4.3. MAV

In the previous section, we demonstrated that our semi-direct approach
is capable of accurate pose estimation with standard stereo cameras. We
furthermore evaluate the performance of our approach on different datasets,
that have been acquired with our MAV, shown in Figure 14. In contrast to
the setups in previous datasets, our MAV is equipped with fish eye lenses
and a wide baseline.

Our MAV is built as high-performance platform with a multimodal om-
nidirectional sensor setup [41]. As MAVs have very limited payload, we use
only lightweight components and are capable of navigating indoor and out-
door. Especially for (fully) autonomous navigation in unknown and dynamic
environments, a multimodal and omnidirectional sensor setup is of great ad-
vantage. The strengths of the different sensors can be combined and their
measurements can be fused in an occupancy grid map.

The MAV is built as hexarotor with six 14′′ propellers each connected to
a MK3644/24 motor. For better stability and collision protection the MAV
is surrounded with a non-rigid milled frame that does not only protect the
rotors, but also serves as mount for various sensors. For on-board compu-
tation in real-time, the MAV is equipped with a mini-ITX board, namely
a Gigabyte GB-BXi7-4770R with an Intel Core i7-4770R quad-core CPU,
16 GB DDR-3 memory and a 480 GB SSD to process all sensor outputs.

We employ a multimodal sensor setup consisting of IMU, laser scanners
and cameras. Moreover, our system is equipped with two laser scanners
and six cameras for high-level autonomous operation and navigation. In

27



Figure 14: High performance MAV during flight. The omnidirectional sensor setup in-
cludes three fish eye stereo pairs covering a wide field of view for autonomous navigation.

particular, we use two rotating Hokuyo UST-20LX laser scanners, each with
a scan range of 20 m and 270◦ apex angle. Together they can perform a full
3D scan of the environment with 4 Hz. They are used for obstacle perception
and SLAM-based 6DOF localization [42].

For visual obstacle detection and visual SLAM, the MAV is equipped
with an omnidirectional camera setup. The cameras are mounted to the
non-rigid body frame using dampers to filter out vibrations induced by the
six propellers. The camera mounting can easily be switched from a fully
omnidirectional setup with independent optical axes to a stereo setup with
three stereo camera pairs, as can be seen in Figure 15. The multi-camera
setup allows omnidirectional perception of the environment and allows ro-
bust state estimation due to redundant information sources, i.e., even if one
stereo pair faces a homogeneous wall with no texture the other two pairs still
allow for robust localization. We use XIMEA MQ013MG-E2 global-shutter
monochrome USB 3.0 cameras with 1.3 MP resolution in combination with
Lensagon BF2M2020S23 fish-eye lenses for a wide field of view. By making
use of the available independent USB controllers of the on-board system,
we distribute the USB traffic and thus can achieve high camera frame rates
at full resolution. Each stereo pair is connected to a USB 3.0 HUB, which
is connected to a dedicated on-board USB 3.0 port that offers full USB 3.0
speed. Through this setup we ensure that for each camera enough bandwidth
is available. Assuming that each HUB offers 2400 Mbit/s (300 MB/s), each
camera may use up to 1200 Mbit/s (150 MB/s). Theoretically, each camera
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Figure 15: Top down view of possible camera configurations: the left image shows a fully
omnidirectional setup with independent optical axis, while on the right a stereo setup
consisting of three independent stereo pairs is shown.

can achieve the best possible frame rate of 60 Hz in 8-bit mode and 57 Hz in
16-bit mode.

However, the real data rate is limited by additional system and protocol
overhead when reading and writing from the connected devices. Under real
lighting conditions and depending on exposure times we achieve up to 50 Hz
for each camera in 16-bit mode. Our camera driver not only ensures that the
images are published synchronously, but also offers advanced functionality
like downsampling, gamma correction or rectification.

We use laser-based SLAM [42] as ground truth and again compare the
results with those of state-of-the-art SLAM methods. In total we captured
four flights in a decommissioned car service station with challenging lighting
conditions. While on the first two flights, named rect1 and rect2, the MAV
covers a rectangular path without many loop closures, the other two flights,
loop1 and loop2, include three to four full loops.

A general prerequisite for stereo computation is to rectify the images. To
allow different models for calibration we build a general rectification nodelet
in ROS, that rectifies the images given respective look-up tables as input.
The look-up tables can be either calculated offline beforehand or online us-
ing, e.g., , the computer vision library OpenCV. The rectification nodelet
publishes rectified images together with camera info messages that contain
the necessary calibration parameters from intrinsic and extrinsic calibration.
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Figure 16: Results for MAV loop 1. Comparison of our method to LIBVISO2 (top row),
LSD-SLAM and ORB-SLAM (bottom row) on a challenging dataset that contains large
loop closures. As can be seen the monocular methods perform best while LIBVISO2
accumulates strong drift. Still, our method is able to reconstruct the trajectory with an
ATE of 0.63 m while S-PTAM fails completely.

Moreover, we added functionality to down-sample the rectified images by a
factor c for further run time enhancement. The images are captured with full
resolution of 1280 × 1024 in 16 bit-encoding and are down-sampled to half
the resolution and 8 bit in the rectification step. Figure 17 shows the result
from the rectification step on an image from the recorded dataset.

The rectification of the images runs in parallel for all six cameras and takes
1 ms for a single image when downsampling to half the original resolution.
For an even smaller resolution of 320× 256 the rectification takes 0.7 ms and
for the full resolution 4 ms.
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Figure 17: Stereo Rectification: Raw fish eye images (left) are rectified onto a plane with
half the resolution (left).

Experiments on the four flights show that retrieving the correct camera
motion is more challenging than on the previous datasets. Especially, the
stereo methods do poorly on these datasets. S-PTAM fails to initialize cor-
respondences on all datasets and, thus, cannot be taken into account for
comparison.

Exemplary results are shown for a trajectory with repeating loop closures
in Figure 16. It can be seen that the stereo methods Semi-Direct SLAM and
LIBVISO2 show a higher offset to the ground truth trajectories than the
monocular methods. Especially LIBVISO2 accumulates high errors at this
circular trajectory and the result is not as accurate as before, thereby hin-
dering the semi-direct approach. As LIBVISO2 performs no loop closure
detection, errors in the absolute trajectory cannot be resolved which leads
to a globally inconsistent trajectory. Semi-Direct SLAM uses only the rel-
ative motion estimates of LIBVISO with regards to the current key frame.
Thereby, Semi-Direct SLAM is still able to reconstruct a path close to the
ground truth with an ATE of 0.63 m. Contrarily, LSD-SLAM and ORB-
SLAM achieve an ATE below 0.31 m.

The fact that monocular methods seem to perform better than stereo
methods, suggests that the underlying lens distortion model was chosen to
allow for a rectification mapping and, hence, semi dense stereo matching,
but does not fit the used fish eye lenses very accurately. Additionally, the
non-rigid mounting of the stereo cameras introduces difficult conditions for
stereo correspondence search along fixed epipolar lines. We assume that the
wide non-rigid baseline of 53.37 cm in combination with the perspective rec-
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Figure 18: Comparison of LIBVISO2 (left) and our method (right) on the MAV dataset
rect1. Even though, the dataset contains no loop closure, our method shows accurate
results.

MAV Absolute Trajectory Error RMSE (Median) in m
Dataset Ours Libviso2 LSD-SLAM ORB-SLAM

rect1 0.13 (0.11) 1.24 (0.49) 0.30 (0.29) 0.98 (0.24)
rect2 0.84 (0.81) 1.61 (1.59) 0.38 (0.37) 0.59 (0.25)
loop1 0.63 (0.57) 1.66 (0.99) 0.31 (0.28) 0.25 (0.21)
loop2 1.58 (0.71) 2.61 (1.90) 0.54 (0.42) 1.19 (0.78)

mean 0.80 (0.55) 1.78 (1.24) 0.38 (0.34) 0.75 (0.37)

Table 3: ATE Results on MAV Dataset
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tification onto a plane impedes the stereo correspondence search. It would
generally be more appropriate to model the fish eye lenses as a projection
onto a sphere. As described in Section 3.6, we use an additional weighting
scheme that downweights the influence of inaccurate depth measurements
close to the image borders in order to cope with strong distortions. More-
over, we repeatedly estimate the extrinsic transformation of the cameras
online to handle the non-rigidity. Therefore, we are able to retrieve stereo
correspondences and estimate the trajectory on this challenging dataset, un-
like S-PTAM which fails to initialize any correspondences.

Figure 18 shows trajectories for the sequence rect1 computed by LIB-
VISO2 and Semi-Direct SLAM. The output of LIBVISO2 shows very noisy
estimates and leads to a comparably high ATE of 1.24 m. In contrast Semi-
Direct SLAM produces a smoother trajectory with an ATE of 0.13 m. How-
ever, in general we achieve a higher ATE than the monocular methods. Ta-
ble 3 summarizes the resulting ATE on all datasets.

In terms of accuracy the monocular methods perform better than all
stereo methods. This time S-PTAM is unable to track features on all datasets
and fails in recovering any motion. It is remarkable that monocular meth-
ods perform better than stereo methods on these datasets which supports
our assumption that the rectification of the fish eye images onto a plane
in combination with non-rigidly mounted stereo cameras is very challenging
for stereo computations. Moreover, the wide baseline is problematic as the
image overlap between both stereo images is reduced.

On average, we achieve an ATE of 0.8 m while monocular LSD-SLAM
achieves an average ATE of 0.38 m.

4.4. Odometry versus SLAM

In this section, we will compare the quantitative results of visual odom-
etry to visual SLAM. As visual odometry tends to drift over time, global
optimization methods such as bundle adjustment or pose graph optimization
help to reduce the drift.

In Semi-Direct SLAM loop closures are detected between key frames and
are added as additional constraints to the global pose graph (see Section 3.7).

The trajectories of the EuRoC dataset contain many possible loop clo-
sures. Therefore, we show comparative results between visual odometry and
SLAM exemplary on this dataset. Qualitative results are listed in Table 4.
In addition to the ATE as error measure, we also state the percentage im-

33



EuRoC
Dataset

Absolute Trajectory Error
RMSE (Median) in m and Improvement in %
Our

Semi-Direct VO [m]
Our

Semi-Direct SLAM [m] Improvement [%]

V1 01 0.26 (0.18) 0.12 (0.11) 53.85 (38.89)
V1 02 0.59 (0.59) 0.11 (0.10) 81.36 (83.05)
V1 03 0.81 (0.76) 0.75 (0.44) 7.41 (42.11)
V2 01 0.22 (0.13) 0.18 (0.12) 18.18 (7.69)
V2 02 0.31 (0.25) 0.27 (0.22) 12.90 (12.00)
V2 03 1.13 (0.97) 0.87 (0.66) 23.01 (31.96)

mean 0.55 (0.48) 0.38 (0.28) 30.72 (42.71)

Table 4: Odometry compared to SLAM on EuRoC

provement gained by SLAM. We measure the improvement as

Improvement =
V O − SLAM

V O
. (12)

The average improvement for all seven trajectories lies at 30.72% denoting
an absolute improvement of 0.17 m on average. It can clearly be seen that
for each trajectory the odometry result is further improved by SLAM. The
improvements range from 7.41% up to 81.36%. The maximum improvement
reached an absolute enhancement of 0.48 m. As the trajectories V1 01 and
V1 02 show significant improvements of 53.85% and 81.36% respectively,
both of the results are visualized in Figure 19. The advantages of SLAM
are visible in either example. In comparison to the pure odometry, SLAM
retrieves trajectories closer to the ground truth. The bottom row of Figure 19
highlights the improvement of 81.36% on dataset V1 02. This dataset is of
medium difficulty and contains very dynamic translational and rotational
movements. It can be seen, that the odometry might be locally accurate but
exhibits accumulated drift. In the global graph SLAM the drift is corrected
by loop closures resulting in a better aligned trajectory.

In contrast to the EuRoC dataset the KITTI dataset shows notably less
loop closure possibilities. However, when loop closures are found, the global
consistency of the map is re-established. Sequence 06 contains a distinct
loop. While visual odometry produces an ATE of 4.37 m on Sequence 06, the
result is corrected after closing the loop and the ATE decreases to 2.06 m,
showing an improvement of 52.9%. Figure 20 illustrates this phenomenon:
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Figure 19: Comparison of Semi-Direct Odometry (left) and Semi-Direct SLAM (right) on
the EuRoC dataset V1 01 and V1 02. With SLAM loop closures are found and accumu-
lated drift is corrected yielding percentage improvements of 53.85% and 81.36% respec-
tively

while the odometry drifts over time and does not retrieve the circular path,
the SLAM extension closes the loop and continues the trajectory on the
previously driven path.

Additionally, we also evaluate the performance of SLAM in comparison to
pure odometry on our MAV. Similarly to above results, loop closures greatly
help to reduce the drift on the datasets loop1 and loop2. While on dataset
loop1 the odometry yields an estimate with 1.1 m ATE, the visual SLAM
recovers the camera motion with 0.63 m. On dataset loop2 the odometry
result improves from 2.16 m to 1.58 m when performing SLAM. The relative
improvements on these datasets are 42.7% and 26.9% respectively.
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Figure 20: Comparison of Semi-Direct Odometry (left) and Semi-Direct SLAM (right) on
KITTI Sequence 06. Example of a full loop closure found by our SLAM method while
pure odometry drifts. SLAM achieves an improvement of 52.9%.

Absolute Trajectory Error RMSE (Median) in m
Dataset Ours Libviso2 LSD-SLAM ORB-SLAM S-PTAM
KITTI 10.28 (8.53) 32.54 (26.42) X 41.49 (35.66) 25.74 (20.26)
EuRoC 0.38 (0.28) 0.85 (0.71) 0.53 (0.48) 1.23 (0.94) 1.82 (1.52)
MAV 0.80 (0.55) 1.78 (1.24) 0.38 (0.34) 0.75 (0.37) X

Table 5: Average ATE Results on the different evaluated datasets

5. Accuracy

We have shown on different challenging datasets that in terms of accu-
racy we achieve similar results as current state-of-the-art stereo methods.
The mean results for all datasets are summarized in Table 5. As can be seen
in the table, our method achieves a lower ATE than the other evaluated meth-
ods on the KITTI and EuRoC datasets. On our MAV, monocular methods
outperform the stereo methods. However, in comparison to the other stereo
methods, our approach performs better and more robustly. Moreover, we

RPE Ours (VO) Libviso2 Direct VO

Translation Error (%) 0.8061 0.8449 0.8168
Rotation Error (◦m−1) 0.0051 0.0052 0.0053

Table 6: Relative pose errors of the odometry methods. Translational drift is measured in
percentage and rotational drift in ◦ m−1.
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Dataset Method Tracking Mapping Constraint Optimization Total Total
Search (VO) (SLAM)

KITTI

Ours 26.5 ms 36.6 ms 253.5 ms 564.6 ms 63.1 ms 881.2 ms
LSD-SLAM - - - - - -
ORB-SLAM 30.7 ms 254.0 ms 7.8 ms 1315.6 ms 284.6 ms 1608.0 ms

S-PTAM 71.1 ms 5.7 ms - 2036.9 ms 77.4 ms 2114.3 ms
LIBVISO2 33.8 ms - - - 33.8 ms -

EuRoC

Ours 22.6 ms 39.6 ms 153.5 ms 684.2 ms 62.2 ms 899.9 ms
LSD-SLAM 27.6 ms 85.6 ms 158.1 ms 207.3 ms 113.2 ms 478.5 ms
ORB-SLAM 17.9 ms 159.2 ms 3.7 ms 535.6 ms 177.1 ms 716.4 ms

S-PTAM 47.3 ms 1.5 ms - 976.9 ms 48.8 ms 1025.7 ms
LIBVISO2 24.8 ms - - - 24.8 ms -

MAV

Ours 17.5 ms 25.8 ms 140.0 ms 130.7 ms 43.3 ms 313.3 ms
LSD-SLAM 28.7 ms 67.3 ms 314.0 ms 637.3 ms 79.0 ms 951.3 ms
ORB-SLAM 24.3 ms 221.2 ms 11.0 ms 353.8 ms 245.5 ms 610.3 ms

S-PTAM - - - - - -
LIBVISO2 25.3 ms - - - 25.3 ms -

Table 7: Average runtimes of all evaluated methods

measure relative pose errors as proposed by Geiger et al. [35] to measure
the performance and drift of pure odometry over large-scale sequences as
in the KITTI dataset. Table 6 summarizes the results of our Semi-Direct
Odometry in comparison to LIBVISO2 and Direct Odometry. Translational
and rotational errors are measured separately. Results show that our method
shows less translational and rotational drift over time. Moreover, as already
seen above in the exemplary trajectory plots, the fully direct odometry has a
higher rotational error than the other methods as direct alignment of frames
becomes harder during large rotations.

In summary, our semi-direct approach shows accurate results for all data-
sets. Even on challenging fish eye stereo the whole trajectory can be retrieved
and loop closures are found while S-PTAM fails to find any correspondences.

5.1. Runtime

For state-estimation with visual odometry or SLAM on mobile robots,
real-time capability is an important factor. We thereby measure the efficiency
of our method in terms of average runtime in ms.

We measure the average runtime as well as the runtime of the differ-
ent blocks because it is oftentimes sufficient if tracking can be done with
high frequency since global optimization usually does not run in real-time.
The runtimes are broken down to the individual blocks: tracking, mapping,
search for constraints and pose graph optimization. Timings for all datasets
are listed in Table 7. Missing values are denoted with ’-’, e.g., S-PTAM does
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not perform a constraint search as the other methods, and LIBVISO only
performs tracking. The table clearly highlights that the SLAM parts, consist-
ing of the constraint search and pose graph optimization, are the bottleneck
for all systems.

In general, it can be seen that our approach is able to track incoming
frames with 30 Hz. The mapping thread also runs in parallel to tracking at
approximately 30 Hz. However, global optimization is still very costly for all
methods. Especially in large-scale sequences the runtime rises.

5.2. Qualitative Results

A major advantage of our semi-direct approach is that 3D point clouds
are estimated at runtime yielding an accurate semi-dense reconstruction of
the environment. Thus, we are not only able to estimate the current pose
of the camera but also maintain a 3D map of the environment which can be
used for additional tasks like obstacle avoidance.

Exemplary qualitative results are shown for sequence 00 of the KITTI
dataset. As can be seen in Figure 21, an accurate and consistent 3D re-
construction is achieved by Semi-Direct SLAM. For direct comparison to
feature-based SLAM methods, the resulting sparse map built by ORB-SLAM
is shown in Figure 22. While the reconstruction of ORB-SLAM only con-
tains sparse points, our reconstruction allows detailed inference to existing
objects in the scene. Most objects, that are visible in the camera image,
can be recovered in our semi-dense map. For example, one can clearly dis-
tinguish between individual trees and cars. Contrarily, in the sparse map of
ORB-SLAM one can only guess vaguely where the street is located.

Figure 23 shows the estimated pose graph of the camera trajectory and
reconstructed map of the medium difficult EuRoC dataset V1 02. The images
demonstrate that our estimated 3D reconstruction is globally consistent. The
objects shown in the exemplary given camera image can easily be retrieved
in the reconstructed map.

In conclusion, we state that our method builds globally consistent semi-
dense 3D maps of the environment. It is well suited for large-scale sequences
as in the KITTI dataset, as well as for smaller indoor sequences like the
EuRoC dataset. We hence believe that the semi-dense 3D reconstruction
yields a great benefit for autonomous visual navigation.
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Figure 21: Semi-dense 3D Reconstruction of KITTI 00: The top image shows the recon-
structed scene as captured by the camera. Below the semi-dense 3D reconstruction of this
scene and the complete reconstruction of this dataset is shown.
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Figure 22: Sparse feature-based 3D Reconstruction of KITTI 00 by ORB-SLAM. The top
view shows an exemplary scene where ORB features are tracked. The lower image shows
the sparse map that is obtained by tracking ORB features.

6. Conclusions

In this paper, we proposed a novel hybrid visual odometry and SLAM
method that combines feature-based tracking with semi-dense direct image
alignment. Our method fuses depth estimates from motion between key
frames with instantaneous stereo depth estimates.

The performance of our method has been evaluated in terms of accuracy,
runtime, and scene reconstruction on three challenging datasets. Our exper-
iments show that for tracking egomotion between image frames, we achieve
accuracy similar to the state-of-the-art at high frame rate without the ne-
cessity to reduce the image resolution. Due to the feature-based tracking as
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Figure 23: Semi-dense 3D Reconstruction of the EuRoC Dataset V1 02 with medium
difficulty. Results show a globally consistent semi-dense map. The depicted key frame
graph visualizes the trajectory. Key frames are shown in blue, while edge-constraints are
shown in green and red, depending on their confidence.

41



prior for semi-dense direct alignment, our method is computationally less ex-
pensive and can estimate the relative camera motion in real-time. In future
work, we plan to incorporate high frequency IMU readings and to evaluate
other feature-based tracking priors, e.g. ORB features.
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