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Abstract

The motion of a mechanical system can be defined as a path through its
configuration space. Computing such a path has a computational complex-
ity scaling exponentially with the dimensionality of the configuration space.
We propose to reduce the dimensionality of the configuration space by intro-
ducing the irreducible path — a path having a minimal swept volume. The
paper consists of three parts: In part I, we define the space of all irreducible
paths and show that planning a path in the irreducible path space preserves
completeness of any motion planning algorithm. In part II, we construct an
approximation to the irreducible path space of a serial kinematic chain un-
der certain assumptions. In part III, we conduct motion planning using the
irreducible path space for a mechanical snake in a turbine environment, for
a mechanical octopus with eight arms in a pipe system and for the sideways
motion of a humanoid robot moving through a room with doors and through
a hole in a wall. We demonstrate that the concept of an irreducible path can
be applied to any motion planning algorithm taking curvature constraints
into account.
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1. Introduction

Motion planning [1] has been succesfully applied to many mechanical
systems with applications in computer graphics, humanoid robotics or pro-
tein folding. The key idea of motion planning is to define the motion of
a mechanical system as a path through its configuration space. Given two
configurations, the goal of motion planning is to construct a motion planning
algorithm computing a path connecting the two configurations.

Real-world systems like mechanical snakes or humanoid robots have many
degrees of freedom (DoF) and therefore a high-dimensional configuration
space. The higher the dimensionality of the configuration space, the more
time a motion planning algorithm needs to find a solution. In fact, any
motion planning algorithm has a computational complexity scaling exponen-
tially with the dimensionality of the configuration space [2].

A key challenge in motion planning is therefore to reduce the dimension-
ality of the configuration space. Dimensionality reduction of configuration
spaces has been addressed by several researchers [3, 4, 5], but the results only
apply in special cases. In fact, there is no general approach to reduce the
dimensionality of a configuration space in a principled way.

Our work contributes to this effort by introducing the irreducible path
[6], a configuration space path having a minimal swept volume 1. The space
of all those minimal swept volume paths creates the irreducible path space.
Our main result is Theorem 3, which shows that replacing the full space of
continuous paths with the space of irreducible paths preserves completeness
of any motion planning algorithm. This is advantageous because computing
an irreducible path can often be done in a lower dimensional configuration
space, thereby reducing the computational complexity.

The paper consists of three parts. In Part I we define the irreducible
path and the irreducible path space. We discuss the partitioning of the
irreducible path space under equivalent swept volumes. We then prove the
completeness of any motion planning algorithm using the irreducible path
space in Theorem 3. We note that those concepts apply to any functional
space: the space of all dynamical feasible paths, all statically stable paths,
all torque constraint paths or all collision-free paths. For sake of simplicity,
we focus here exclusively on collision-free paths.

1The swept volume is the volume occupied by the body of a mechanical system while
moving along a path [7]
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Figure 1: Left: A serial kinematic chain with a root link (grey) and four sublinks (white).
Middle left: Root link moves on a curvature constraint path and sweeps a volume
(lightgrey). Middle Right: Our algorithm projects the sublinks into the swept volume
of the root link. Right: If the curvature of the root link path is too high, the algorithm
will fail to project the sublinks.

In Part II, we approximate the irreducible path space of a serial kinematic
chain. The main idea is the following: if the root link moves on a curvature-
constraint path, then all the sublinks can be projected into the swept volume
of the root link. Therefore, we can ignore the sublinks and we can thereby
reduce the dimensionality of the configuration space. This has been visualized
in the case of a serial kinematic chain in the plane in Fig. 1.

In Part III, we apply the reduction of the serial kinematic chain to four
different mechanical systems: an idealized serial kinematic chain on SE(2)×
R3, SE(2)×R6 and SE(3)×R12, a mechanical snake in a turbine environment
on SE(3) × R16, a mechanical octopus in a tunnel system on SE(3) × R80

and a humanoid robot moving sideways on SE(2)×R19 through a room with
doors and through a hole in a wall.

This work extends previous results in [6], where we introduced the ir-
reducible path and applied it to the sideway motion of a humanoid robot.
Section 3 is based on [6], it has been revised and the proofs have been sim-
plified.

2. Related Work

Dimensionality reduction of configuration spaces has been extensively
studied in the motion planning literature. [3] have used a principal com-
ponent analysis (PCA) to locally reduce dimensions of small volume and
thereby bias random sampling. In the context of manipulation planning, [8]
and [4] have introduced the eigengrasp to identify a low-dimensional repre-
sentation of grasping movements. [9] perform a PCA for a high-dimensional
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cable robot by sampling deformations. The idea being that many configura-
tions occupy similar volumes in workspace. [10] plan the motion of a cable
by first planning a motion for the head. [11] approximate the manifold of
self-collision free configurations of the robot, thereby projecting the planning
problem onto a lower dimensional sub-manifold in the configuration space.

The approach closest to ours is a subspace decomposition scheme by [5]:
an initial path is planned by using only one large subpart of the robot. This
initial path is then deformed to account for the remaining links. However,
there is no justification or guarantee for being complete.

[12] seem to be the first to introduce the term reducibility of motions.
They consider sweeping of disks along a planar curve, whereby the volume
of a disk swept along a path is reduced if it is a subset of the swept volume
of the same disk swept along another path. We generalize this concept to
arbitrary configuration spaces.

In Sec. 4 we establish that sublinks of a serial kinematic chain can be
projected into the swept volume if the root link moves on a curvature con-
strained path. Curvature constrained paths are one of the central objects
of study in differential geometry [13]. Our work builds upon work by [14]
who compute the reachable regions for curvature-constraint motions inside
convex polygons. A generalization of these ideas to 3D has been investigated
by [15] who discuss curvature and torsion constraints on space curves in the
context of data point approximation.

Our applications consider motion planning for a mechanical snake, a me-
chanical octopus and a humanoid robot.

The mechanism and locomotion system for snake robots have been studied
by [16]. Path planning for snake robots has been investigated in relatively
few papers, some of whom are classical approaches using numerical potential
fields [17], genetic algorithms [18] or Generalized Voronoi Graphs [19]. The
idea of dimensionality reduction for snake robots has been studied by [20],
who define a frame consistent with the overall shape of the robot in all
configurations. [21] plan a path only for a portion of the snake robot.

Octopus robots have been built by [22] and [23], and its locomotion be-
havior has been intensively investigated by [24]. However, there has been
no demonstration of motion planning for an octopus robot. We concentrate
here on motion planning using jet propulsion in narrow environments like a
system of pipes.

Motion planning for humanoid robots is a well studied field [25]. Ap-
plications range from manipulation planning in kitchen environments [26],
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Figure 2: Explanatory example of irreducible paths for a 2-link, 2-dof robot, which can
move along the y-axis, and which has one rotational joint between its two links, such that
its configuration space is C = R× [−π2 ,

π
2 ]. Left. Three configuration space paths τ1, τ2, τ3

with τ1(0) = τ2(0) = τ3(0) = qI , τ1(1) = τ2(1) = τ3(1) = qG. Right. The workspace
volume of the starting configurations qI , qG, and the swept volume of the three paths,
whereby we have that V (τ1) ⊂ V (τ2) and V (τ1) ⊂ V (τ3), i.e. τ2 and τ3 are reducible by
τ1, and τ1 is in fact irreducible. Adapted from [6].

contact planning in constrained environments [27][28][29] to ladder climbing
tasks [30]. Since general multi-contact planning has a high run-time, re-
searchers have tried to decompose the problem by first planning for simple
geometrical shapes. A common approach is first to plan for a sliding box on
a floor, then generate footsteps along the box path [3][31]. Such an approach
does not work in the environments we consider, and our approach can be seen
as a generalization of the decomposition to include the original geometry of
the robot.

3. Irreducible Paths

The irreducible path is a path of minimal swept volume [6]. In this section
we define the irreducible path space, we discuss why the irreducible path
space is important (Sec. 3.1), and we investigate the internal structure in Sec.
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3.2. Then we prove completeness (Sec. 3.3: If a motion planning algorithm
is complete using all paths, then it is complete using only irreducible paths.
Finally, we discuss generalizations to dynamically feasible paths in Sec. 3.4.

Let R be a robot and C its configuration space, the space of all transfor-
mations applicable to R [1]. Let further qI ∈ C be the initial configuration
and qG ∈ C be the goal configuration.

A motion planning algorithm needs to compute a continuous path be-
tween qI and qG. The solution space is therefore defined in terms of functional
spaces [32, 33]. We first define the space of all paths in C as

Φ = {φ : [0, 1]→ C| φ continuous} (1)

We denote the path space between qI and qG as

FqI ,qG = {τ ∈ Φ | τ(0) = qI , τ(1) = qG} (2)

For the purpose of this paper we will abbreviate F = FqI ,qG assuming that
some qI , qG ∈ C have been choosen. F will be called the (full) path space.

If the robot R follows a path τ ∈ F , the body of the robot will sweep
a volume. We will denote this swept volume by V (τ). We then define an
irreducible path as

Definition 1 (Irreducible Path). A path τ ′ ∈ F is called reducible by τ , if
there exist τ ∈ F such that V (τ) ⊂ V (τ ′). Otherwise τ ′ is called irreducible.

All irreducible paths define the irreducible path space.

Definition 2 (Irreducible Path Space). The space of all irreducible configu-
ration space paths is

Î = {τ ∈ F | τ is irreducible} (3)

Example 1. [2-dof robot]
In Fig. 2 we consider a 2-link 2-dof robot, which can move along a straight

line and which can rotate its second link around a pivot point. In the second
column, the robot is shown in the workspace, once for its initial configuration
qI , once for its goal configuration qG. In the first column, we show three
configuration space paths τ1, τ2, τ3 connecting qI to qG. On the right we show
the corresponding swept volumes in workspace for each path. Applying the
definition of irreducibility, we have that τ2 and τ3 are reducible by τ1, while
τ1 is irreducible.
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3.1. Feasibility of Irreducible Path Space

The importance of the irreducible path space comes from the following
claim: If every irreducible path is infeasible, then all paths are infeasible. We
prove this claim in Theorem 2.

Let us denote by E the environment, the set of obstacle regions in R3

[1]. We say that a path τ ∈ F is called feasible in a given environment E, if
V (τ) ∩ E = ∅.

Theorem 1. Let τ ∈ Î, τ ′ ∈ F be such that V (τ) ⊂ V (τ ′), i.e. τ ′ is reducible
by τ .

(1) If τ is infeasible ⇒ τ ′ is infeasible
(2) If τ ′ is feasible ⇒ τ is feasible

Proof. Let S = V (τ) and S ′ = V (τ ′). (1) Let S ∩ E 6= ∅, then there exists
v ∈ S ∩ E. Since S ⊂ S ′, v has to be in S ′. But v is also in E, such that
S ′ ∩ E has to contain at least v and is therefore not empty.
(2) Let S ′ ∩ E = ∅. Since S ⊂ S ′, it follows that S ∩ E = ∅, which shows
that τ is feasible.

We will say that a path space F is feasible, if there exists at least one
feasible τ ∈ F . If there is no feasible τ ∈ F , then we say that the space itself
is infeasible. By Theorem 1 it follows that

Theorem 2. If Î is infeasible, then F is infeasible.

Proof. Let τ ∈ F . There are two cases: either (1) there exists a τ ′ ∈ Î such
that V (τ ′) ⊂ V (τ). Then τ is infeasible by Theorem 1. Or (2) there is no
τ ′ ∈ Î such that V (τ ′) ⊂ V (τ). Then τ is by definition in Î and therefore
infeasible.

3.2. Structure of Irreducible Path Space

The irreducible path space Î can be partitioned into equivalence classes
of paths with equivalent swept volumes.

Definition 3 (Swept Volume Equivalence). Two irreducible paths τ, τ ′ ∈ Î
are swept-volume equivalent τ ' τ ′ if V (τ) = V (τ ′)
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This equivalence relation gives rise to equivalence classes of swept-volume
equivalent trajectories. This includes all injective and continuous time-
reparameterizations s : [0, T ]→ [0, 1] of a path.

Those equivalence classes partition the irreducible path space into a union
of disjoint path spaces. This is made precise by taking the quotient space
[34] of Î as

I = Î/' (4)

i.e. all swept-volume equivalent paths in Î are assigned to exactly one
path in the quotient space I.

3.3. Completeness of Irreducible Path Space

We say that a motion planning algorithm is complete in F if it finds a
feasible path in F if one exists or correctly reports that none exists. Imagine
replacing F by I. We claim that if a motion planning algorithm is complete
in F then it is complete in I and vice versa.

Theorem 3. A motion planning algorithm is complete in I iff it is complete
in F

Proof. To prove equivalence, we need to prove four statements.

(1) I infeasible ⇒ F infeasible,
(2) I feasible ⇒ F feasible,
(3) F infeasible ⇒ I infeasible and
(4) F feasible ⇒ I feasible.

(1) is true by Theorem 2. Statements (2) and (3) are true by inclusion
and (4) is true by contraposition of Theorem 2.

In light of Theorem 3 we call the reduction from F to I a completeness-
preserving reduction.

Example 2. [Completeness-preserving reduction]
Let us demonstrate the completeness property by the example from Fig.

2. Imagine that F contains only τ1, τ2, τ3 and I contains τ1. Imagine further
that τ1 is infeasible because it is in collision with some imagined obstacle.
Then I is infeasible. But since τ2 and τ3 are supersets of τ1, they are infeasible
too, so we see that F must be infeasible. Imagine that τ1 is feasible. Then I
is feasible. Since I is contained in F , F must be feasible, too.
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3.4. Generalization of Irreducible Path to Dynamics

If we consider the dynamics of the robot, we could obtain a situation
where the only dynamically feasible path is not irreducible. This could hap-
pen if the momentum of the sublinks is crucial to solve a task. While in this
paper we focus on collision-free paths where the dynamics are not consid-
ered, the concept of an irreducible path can in principle be generalized to
incorporate dynamically feasible paths.

A path is dynamically feasible if it is a solution to the equation of motion
of the robot. We define FD as the subspace of all paths being dynamically
feasible. Combined with the concept of an irreducible path we obtain

Definition 4 (Dynamically Irreducible Path). A path τ ′ ∈ FD is called
dynamically reducible by τ , if there exist τ ∈ FD such that V (τ) ⊂ V (τ ′).
Otherwise τ ′ is called dynamically irreducible.

We note that the previous discussion of completeness analogously applies
to dynamically irreducible paths. In this paper, however, we consider only
the non-dynamical case. The characterization of the dynamically irreducible
path space is left for future work.

4. Irreducible Motion Planning for Serial Kinematic Chains

As an application, let us approximate the irreducible path space of a serial
kinematic chain. A serial kinematic chain is an alternating sequence of N+1
links and N joints as examplified in Fig. 3.

We will call the first link in the chain the root link and we will call the
remaining N links sublinks. Our assumptions are that all joints are either
revolute or spherical, that the volume of the root link is bigger or equal to
the volume of the sublinks, and that the root link is free-floating.

Under those assumptions, our main idea is the following: if the root link
follows a curvature-constrained path, then the sublinks can be projected into
the swept volume of the root link along the path. Each curvature-constrained
path is thereby associated with an irreducible path.

Motion planning for a serial kinematic chain is thereby decomposed into
two parts: first, conduct curvature-constrained motion planning for the root
link, and second, project the sublinks into the swept volume of the root link.
We will first describe how to conduct motion planning for the root link, and
then describe how to construct an algorithm to project the sublinks.
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Figure 3: A serial kinematic chain with L0 being the root link, and L1, L2, · · · are called
the sublinks.

4.1. Motion Planning for the Root Link

The root link is a free-floating rigid body. Our goal is to plan a path for
the root link under a certain maximum curvature constraint κ. Since the
swept volume of a path is invariant to reparameterization of the path (Sec.
3.2), we can compute the path where the robot moves at unit speed.

Planning with a curvature-constrained functional space using constant
unit speed is equivalent to planning a path for a non-holonomic rigid body
subject to differential constraints describing forward non-slipping motions.
This is equivalent to the model of Dubin’s car, which can be solved in both
2d and 3d using kinodynamic planning [1].

In 2d, the configuration space of the root link is SE(2) with q = (x, y, θ)T

and the differential model at unit speed is given by

ẋ = cos θ

ẏ = sin θ

θ̇ = u

(5)

where the control space is defined by the steering angle u ∈ [− atan(κ), atan(κ)]
with κ being the curvature constraint. In 3d, the configuration space of the
root link is SE(3) and the differential model is similar to a driftless airplane
given by

q̇ = q

(
X1 +

6∑
i=4

uiXi

)
(6)

where

X1 =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
X2 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
X3 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
X4 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
X5 =

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
X6 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
10



is a basis for se(3), the Lie algebra of SE(3)[35]. The controls u4, u5 ∈
[− atan(κ), atan(κ)] and u6 ∈ R are the yaw, pitch, and roll steering angles
and X1 represents the forward motion at unit speed.

In Appendix A we analytically compute the curvature κ for a serial chain
in the plane using disk-shaped links. In all our experiments we have com-
puted κ as if the chain would be 2-dimensional. We have observed that this
worked well in experiments. However, further research needs to investigate
the correctness of this claim.

4.2. Algorithm to Project Sublinks into Swept Volume of Root Link

Let τ : [0, 1]→ SE(3) be a path for the root link of the serial chain, and
let τ be constrained by having a maximal curvature κ such that κ(s) ≤ κ
for all s ∈ [0, 1]. Given τ , let V (τ) be the swept volume of the root link.
We claim that for a given κ, we can find at least one configuration of the
sublinks such that the swept volume of the sublinks is a subset of V (τ). In
Section 4.2.2 we discuss the correctness of this claim, and in Appendix A we
provide a proof for an N-dimensional serial kinematic chain in the plane.

In this section, we develop the curvature projection algorithm, which
takes as input a path of the root link and provides one configuration of the
sublinks. Our algorithm approximates the serial chain by a set of spheres of
radius δ0, · · · , δN which are connected by lines of length l0, · · · , lN−1. The se-
rial chain has N joints centered at each of the spheres. Each joint is described
by two parameters (θi, γi), whereby θi represents the rotation around the nor-
mal unit vector centered at the previous link and γi represents the rotation
around the binormal unit vector centered at the previous link. The system is
then represented by the position and orientation of the root link in space, i.e.
SE(3), plus its joint configurations θ = {θ1, · · · , θN} and γ = {γ1, · · · , γN}.

4.2.1. Algorithmic Description

The resulting algorithm is described in Fig. 1. It takes as input the
path of the root link τ , its first and second derivative τ ′ and τ ′′, the size of
the spheres δ0:N for the root link and the N sublinks, and the length of the
links l1:N . It outputs the configurations of the sublinks θ1:N , γ1:N , such that
each sublink is inside the swept volume of the root link. We assume that
there exists a world frame O with basis ex, ey, ez. Starting from slast = 0 we
compute a frame S0 centered at the root link with orthonormal basis e1, e2, e3

(Line 1-4), and we compute the rotational transformation matrix R between
O and S0 (Line 5). Then for each sublink (Line 6), we start at slast, and we

11



Algorithm 1: Irreducible Curvature Projection Algorithm

Data: τ, τ ′, τ ′′, δ0:N , l1:N ,∆t
Result: θ1:N , γ1:N

1 e1 ← τ ′(0);
2 e2 ← τ ′′(0);
3 e3 ← τ ′(0)× τ ′′(0);
4 slast ← 0;

5 R←

e1 · ex e2 · ex e3 · ex
e1 · ey e2 · ey e3 · ey
e1 · ez e2 · ez e3 · ez

;

6 for i← 1 to N do
7 snext ← slast;
8 while ‖τ(snext)− τ(slast)‖ ≤ li do
9 snext ← snext −∆t

10 τn ← τ(snext);
11 pI ← τ(snext)− τ(slast);
12 pW ← RTpI ;
13 xL ← (−1, 0, 0)T ;
14 pxy ← pW − (pTWez)ez;
15 pzx ← pW − (pTWey)ey;

16 θi ← acos(
pTxyxL
‖pxy‖‖xL‖

);

17 γi ← acos( pTzxxL
‖pzx‖‖xL‖

);

18 if pTWez < 0 then
19 γi ← −γi;
20 if pTWey > 0 then
21 θi ← −θi;
22 R← R ·RY (γi) ·RZ(θi);
23 e1 ← Rex;
24 e2 ← Rey;
25 e3 ← Rez;
26 slast ← snext;

12



follow τ backwards until the distance between τ(snext) and τ(slast) is equal
to li (Line 7-9). This position marks the position of the i-th sublink. We
mark the position as snext (Line 10), we compute the vector from S to snext
(Line 11), and we rotate this vector into the world frame O (Line 12). Then
we compute the angle of the vector to the xy and the zx plane, respectively
(Line 13-21). Those angles give the configuration θi, γi of sublink i. Finally,
we rotate the rotation matrix R correspondingly (Line 22) to obtain a new
frame Si centered at link i (Line 23-26). The algorithm is iterated until all N
sublinks have been placed in that manner. See also Fig. 4 for a visualization
of the algorithm in a 2D setting.

Figure 4: Given a path τ ∈ FκN
, we can analytically compute the joint configurations,

such that sublinks of the serial kinematic chain are reduced, i.e. they are inside of the
swept volume of τ ⊕ L0.

4.2.2. Complexity and Correctness

The complexity of the algorithm is O(N), N being the number of sub-
links. In Appendix A we prove the correctness of the algorithm for a serial
kinematic chain in 2D, whereby we assume that the lengths between joints
is equidistant. The proof first verifies the correctness of the algorithm of
a chain with N = 1 sublinks and then generalizes this result to arbitrary
sublinks N > 1. The proof of correctness of the algorithm with arbitrary
lengths and with spherical joints in 3D is subject of further research.

5. Experiments

We will show that the concept of an irreducible path space can be applied
to any motion planning algorithm taking curvature constraints into account,
and that each planning algorithm using the irreducible path space outper-
forms the same motion planning algorithm using the space of all continuous
paths.
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Figure 5: Serial kinematic chain in 2D (From Left to Right). Image 1 and 2 show the
start and goal configuration of Experiment 1 and the swept volume along one irreducible
solution path, respectively. Image 3 and 4 show a serial kinematic chain in an environment
filled with rocks. We show the start and goal configuration and the swept volume along a
solution path, respectively.

We performed seven experiments to test our hypothesis. Our first three
experiments are planning scenarios for an idealized serial kinematic chain in
a 2d maze, a 2d rock environment and a 3d rock environment. We compared
the kinodynamic Rapidly-exploring Random-Tree (RRT) [36] algorithm both
using the original space and the irreducible path space. In the fourth exper-
iment we plan a path for a mechanical snake in a turbine environment. We
compared four different motion planning algorithms: RRT, Path-Directed
Subdivision Tree planner (PDST) [37], Kinodynamic motion Planning by
Interior-Exterior Cell Exploration (KPIECE) [38] and Stable Sparse Tree
(SST) [39]. In the fifth experiment we plan a path for a mechanical octopus
in a pipe environment, using the same four algorithms. In all those experi-
ments we assume that the head of the robot can be independently controlled.
In the sixth and seventh experiments we plan a path for a humanoid robot,
first in a room with doors of different heights and second on a floor with a
hole in a wall.

For each experiment we specify the values of the serial kinematic chain,
the maximum curvature κ, the joint limit θL, the size of the root link δ0 and
the number of sublinks N . Each experiment is repeated M times and it is
terminated if a time threshold T is reached or if a goal region of size εgoal

around the goal configuration is reached.

5.1. Experiment 1: Serial Kinematic Chain in 2D maze

Our first experiment is a 2d maze environment as depicted in Fig. 5,
where a serial kinematic chain has to be moved from a given start to a
given goal configuration. We assume that the root link can be independently

14



Figure 6: Planning for the root link of a serial kinematic chain on SE(3). Left: 3d
rocks environment with starting position (green) and goal position (red). Middle: An
irreducible path found by RRT [Irreducible]. The swept volume of the root link is shown in
magenta. The position of the sublinks is an output of the curvature projection algorithm.
Right: Close-up of a position of the robot along the irreducible path, showing how the
sublinks are inside the swept volume of the root link.

actuated. The configuration space is SE(2)×R3. We compare RRT using the
full space of paths with RRT [Irreducible] using the space of irreducible
paths. We report on the success rate, the average time to plan, and the
standard deviation of the planning algorithm in Tab. 1. It can be seen that
RRT [Irreducible] has a lower planning time of one order of magnitude.
The parameters used were κ = 1, θL = π

2
, δ0 = 0.23, N = 3, M = 100,

T = 3600s and εgoal = 0.1.

5.2. Experiment 2: Serial Kinematic Chain in 2D rock environment

Our second experiment is a 2d rock environment as depicted in Fig. 5.
We compared again RRT with RRT [Irreducible]. The results are reported
in Table 1 and show that RRT [Irreducible] using the irreducible path
space outperforms RRT using the space of continuous paths. The parameters
used were κ = 1, θL = π

2
, δ0 = 0.23, N = 6, M = 100, T = 3600s and

εgoal = 0.1.

5.3. Experiment 3: Serial Kinematic Chain in 3D rock environment

Our third experiment changes the 2d rock environment into a 3d rock
environment, where the serial kinematic chain has to move through a series
of holes to reach a target. The configuration manifold is SE(3)× R12.

We compare again RRT and RRT [Irreducible], results shown in Ta-
ble 1. Fig. 6 shows a time instance from one successful run of the RRT

[Irreducible], where the swept volume of the planned motion for the head
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Figure 7: Visualization of the motion planning experiments. For each experiment we show
the environment (column 1), the start configuration in green and the goal configuration
in red (column 2), the close up of a swept volume of one irreducible solution path in
magenta (column 3) and milestones along the swept volume in gray (column 4). The first
row (Experiment 4) shows a mechanical snake in a turbine environment. The second row
(Experiment 5) is a mechanical octopus in a pipe environment. The third row (Experiment
6) shows a humanoid robot moving sideways through a room with doors of different height.
For better visualization, only the swept volume of the chest is visualized. The fourth row
(Experiment 7) shows the same humanoid robot moving sideways through a hole in a wall
shaped according to the geometry of the robot.
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is shown in magenta, and the sublinks are shown as the results of our pro-
jection algorithm. Parameters used were κ = 1, θL = π

2
, δ0 = 0.23, N = 6,

M = 100, T = 3600s and εgoal = 0.1.

5.4. Experiment 4: Mechanical snake in 3D turbine environment

In the fourth experiment we use a mechanical snake which has to move
through a 3D turbine environment. Inside the turbine there is a narrow hole
through which the snake has to move. The dimensionality of the configura-
tion space is SE(3)×R16. We compare RRT, PDST, KPIECE and SST with the
full path space against the same algorithms using the irreducible path space.
The results in Table 1 show that each original algorithm is outperformed by
the same algorithm using the irreducible path space. The overall best av-
erage computation time has been achieved by KPIECE [Irreducible]. The
environment, the start and goal configuration, a swept volume along the one
irreducible solution path and a close up of milestones are shown in row 1 of
Fig. 7. The parameters are κ = 1.57, θL = π

4
, δ0 = 0.1, N = 8, M = 100,

T = 1200s and εgoal = 0.5.

5.5. Experiment 5: Mechanical octopus in 3D pipe environment

In the fifth experiment we use a mechanical octopus which has 8 arms with
each 5 sublinks leading to a configuration space of dimensionality SE(3) ×
R80. For the irreducible path space we compute a path for the head on
SE(3), then project all the remaining links into the swept volume of the head
by applying the curvature projection algorithm on each arm individually.
Results in Table 1 indicate that the original problem was too difficult to be
solvable by any algorithm. However, the irreducible path space variations
can find a solution with PDST [Irreducible] achieving the best average
computation time while succeding in 100 percent of the cases. Row 2 of Fig.
7 visualizes the environment and one solution path. The parameters used
were κ = 2.66, θL = π

2
, δ0 = 0.1, N = 5, M = 100, T = 1200, and εgoal = 1.0.

5.6. Experiment 6: Humanoid Robot in Room environment

In the sixth experiment we consider motion planning for the sideways
motion of a humanoid robot as shown in row 3 of Fig. 7. This can be helpful
to estimate if a humanoid robot can potentially fit through a door or a small
opening. The environment consists of two doors with different heights. We
make the assumption that the robot slides on the planar floor leading to the
configuration space SE(2)× R19. We apply the idea of the irreducible path
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space to the chest of the robot, such that the arms of the robot behave like
the sublinks of the serial kinematic chain. Since each arm has 7 dofs, the
resulting dimensionality is SE(2)×R5. As shown in Table 1 each algorithm
using the irreducible path space outperforms the same algorithm using the
full path space. The best algorithm in terms of average computation time is
RRT [Irreducible] achieving 100 percent success rate. A solution path is
shown in row 3 of Fig. 7, showing how the arms have been projected into the
swept volume of the chest. The parameters are κ = 2.66, θL = π

2
, δ0 = 0.1,

N = 3, M = 100, T = 1200, and εgoal = 0.5.

5.7. Experiment 7: Humanoid Robot in Hole in Wall environment

The last experiment is similar to experiment 6 with a more challenging
environment. The humanoid robot has to move through a hole in a wall which
is shaped according to the robot’s geometry. This is difficult , since a possible
solution path has to overcome the narrow passage in the configuration space.
Due to this difficulty we only used the best algorithm from experiment 6, the
RRT using M = 10 runs with a timelimit of T = 86400s or 24h. We compared
the performance of RRT [Irreducible] with RRT as shown in Table 1. It can
be seen that RRT [Irreducible] is able to find a path although it takes on
average 100 minutes to obtain a solution. RRT was not able to find a solution
in the given time limit. A solution path is shown in row 4 of Fig. 7 after a
shortcut procedure was applied. This experiment is a reimplementation of
the experiment conducted in [6].

6. Conclusion

We described the irreducible path space, a novel concept to reduce the
dimensionality of the configuration space. Our main result is given in Theo-
rem 3 stating that a motion planning algorithm using the space of irreducible
paths is complete. While this result remains true if we apply arbitrary con-
straints, we have focused here exclusively on collision-free paths.

We have described how to approximate the space of irreducible paths for
a serial kinematic chain by using the space of curvature constrained paths of
the root link. We developed an algorithm to project sublinks into the swept
volume of the root link. This algorithm works for serial kinematic chains
with configuration space SE(3)× R2N or any subset of that.

We have proven the correctness of this algorithm for a serial chain disk
robot in 2D having revolute joints and equal length between joints. The
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Table 1: Results of the seven experiments. Each algorithm used is compared between its
original version and the irreducible version using the irreducible path space.
Algorithm Manifold Sampling

Manifold
Success

(%)
Time(s)

Serial Kinematic Chain — Maze 2D Environment (M=100, T=3600)

RRT
SE(2)× R3 SE(2)× R3 100 174.70± 177.07

RRT [Irreducible] SE(2) 100 17.92± 9.47

Serial Kinematic Chain — Rock 2D Environment (M=100, T=3600)

RRT
SE(2)× R6 SE(2)× R6 100 115.63± 148.75

RRT [Irreducible] SE(2) 100 4.24± 3.17

Serial Kinematic Chain — Rocks 3D Environment (M=100, T=3600s)

RRT
SE(3)× R16 SE(3)× R16 0 3600.00± 0.0

RRT [Irreducible] SE(3) 100 531.40± 623.32

Mechanical Snake — Turbine Environment (M=100, T=1200s)

KPIECE
SE(3)× R16 SE(3)× R16 52 625.74± 566.55

KPIECE [Irreducible] SE(3) 100 13.42± 64.83

PDST
SE(3)× R16 SE(3)× R16 15 1120.35± 208.10

PDST [Irreducible] SE(3) 96 95.43± 250.40

RRT
SE(3)× R16 SE(3)× R16 46 813.32± 481.19

RRT [Irreducible] SE(3) 90 352.40± 392.35

SST
SE(3)× R16 SE(3)× R16 51 811.40± 462.88

SST [Irreducible] SE(3) 87 360.60± 436.69

Mechanical Octopus — Pipes Environment (M=100, T=1200s)

KPIECE
SE(3)× R80 SE(3)× R80 0 1200.00± 0.0

KPIECE [Irreducible] SE(3) 100 308.72± 60.78

PDST
SE(3)× R80 SE(3)× R80 0 1200.00± 0.0

PDST [Irreducible] SE(3) 100 23.88± 14.26

RRT
SE(3)× R80 SE(3)× R80 0 1200.00± 0.0

RRT [Irreducible] SE(3) 97 215.05± 270.08

SST
SE(3)× R80 SE(3)× R80 0 1200.00± 0.0

SST [Irreducible] SE(3) 99 110.10± 207.82

Humanoid Robot HRP-2 — Doors (M=100, T=1200s)

KPIECE
SE(2)× R19 SE(2)× R19 0 1200.00± 0.0

KPIECE [Irreducible] SE(2)× R5 31 1019.67± 316.00

PDST
SE(2)× R19 SE(2)× R19 0 1200.00± 0.0

PDST [Irreducible] SE(2)× R5 19 1051.05± 336.31

RRT
SE(2)× R19 SE(2)× R19 40 834.38± 467.78

RRT [Irreducible] SE(2)× R5 100 166.36± 181.99

SST
SE(2)× R19 SE(2)× R19 59 746.34± 426.11

SST [Irreducible] SE(2)× R5 99 175.92± 199.39

Humanoid Robot HRP-2 — Wall (M=10, T=86400s=24h)

RRT
SE(2)× R19 SE(2)× R19 0 86400.00± 0.0

RRT [Irreducible] SE(2)× R5 100 6077.40± 2128.15
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proof for 3D robots with spherical joints and arbitrary lengths is subject of
future research.

Using the space of irreducible paths, we conducted experiments for several
mechanical systems including a mechanical snake, a mechanical octopus and
a humanoid robot. We compared four state-of-the-art kinodynamic motion
planning algorithms and we showed that each algorithm performs better
using the irreducible path space.

In future work, we will address the generalization to arbitrary constraints,
the automatic discovery of serial kinematic chains, and we will construct the
irreducible path space for more general chain structures, using the serial kine-
matic chain as a fundamental building block. Furthermore, we like to apply
the irreducible path space concept to optimal motion planning algorithms
[40].
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[3] Sébastien Dalibard and Jean-Paul Laumond. Linear Dimensionality Re-
duction in Random Motion Planning. International Journal of Robotics
Research, 2011.

[4] PeterK. Allen, Matei Ciocarlie, and Corey Goldfeder. Grasp planning
using low dimensional subspaces. In Ravi Balasubramanian and Veron-
ica J. Santos, editors, The Human Hand as an Inspiration for Robot
Hand Development, Springer Tracts in Advanced Robotics. Springer In-
ternational Publishing, 2014.

[5] Liangjun Zhang, Jia Pan, and Dinesh Manocha. Motion planning of
human-like robots using constrained coordination. In IEEE Interna-
tional Conference on Humanoid Robots, 2009.

[6] Andreas Orthey, Florent Lamiraux, and Olivier Stasse. Motion Plan-
ning and Irreducible Trajectories. In IEEE International Conference on
Robotics and Automation, 2015.

20

http://planning.cs.uiuc.edu/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4568037
https://hal.archives-ouvertes.fr/hal-00486793
https://hal.archives-ouvertes.fr/hal-00486793
http://dx.doi.org/10.1007/978-3-319-03017-3_24
http://dx.doi.org/10.1007/978-3-319-03017-3_24
http://homepages.laas.fr/aorthey/papers/orthey_2015a.pdf
http://homepages.laas.fr/aorthey/papers/orthey_2015a.pdf


[7] Jesse C Himmelstein, Etienne Ferre, and J-P Laumond. Swept volume
approximation of polygon soups. IEEE Transactions on Automation
Science and Engineering, 2010.

[8] M. Ciocarlie, C. Goldfeder, and P. Allen. Dimensionality reduction for
hand-independent dexterous robotic grasping. In IEEE International
Conference on Intelligent Robots and Systems, 2007.

[9] Arthur Mahoney, Joshua Bross, and David Johnson. Deformable robot
motion planning in a reduced-dimension configuration space. In IEEE
International Conference on Robotics and Automation, 2010.

[10] Ilknur Kabul, Russell Gayle, and Ming C Lin. Cable route planning in
complex environments using constrained sampling. In ACM Symposium
on Solid and Physical Modeling. ACM, 2007.

[11] O. Salzman, K. Solovey, and D. Halperin. Motion planning for multilink
robots by implicit configuration-space tiling. Robotics and Automation
Letters, 1(2), July 2016.

[12] Sergey Bereg and David Kirkpatrick. Curvature-bounded traversals of
narrow corridors. In Symposium on Computational geometry. ACM,
2005.

[13] Thomas F Banchoff and Stephen T Lovett. Differential geometry of
curves and surfaces. CRC Press, 2015.

[14] Hee-Kap Ahn, Otfried Cheong, Ji Matouek, and Antoine Vigneron.
Reachability by paths of bounded curvature in a convex polygon. Com-
putational Geometry, 2012.

[15] Sumanta Guha and Son Dinh Tran. Reconstructing curves without de-
launay computation. Algorithmica, 2005.

[16] Shigeo Hirose and Hiroya Yamada. Snake-like robots [Tutorial]. Robotics
and Automation Magazine, 2009.

[17] Erdinc Sahin Conkur and Riza Gurbuz. Path Planning Algorithm for
SnakeLike Robots. Information Technology And Control, 2008.

21

http://dx.doi.org/10.1109/TASE.2008.2010553
http://dx.doi.org/10.1109/TASE.2008.2010553
10.1109/IROS.2007.4399227
10.1109/IROS.2007.4399227
http://www.cs.utah.edu/gdc/publications/papers/ICRA2010dejohnso.pdf
http://www.cs.utah.edu/gdc/publications/papers/ICRA2010dejohnso.pdf
http://gamma.cs.unc.edu/papers/documents/articles/2007/kabul07.pdf
http://gamma.cs.unc.edu/papers/documents/articles/2007/kabul07.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4799450
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7900&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7900&rep=rep1&type=pdf


[18] Jinguo Liu, Yuechao Wang, Bin Ii, and Shugen Ma. Path planning of
a snake-like robot based on serpenoid curve and genetic algorithms. In
Intelligent Control and Automation, 2004.

[19] W. Henning, F. Hickman, and Howie Choset. Motion Planning for Ser-
pentine Robots. In Proceedings of ASCE Space and Robotics, 1998.

[20] David Rollinson and Howie Choset. Virtual Chassis for Snake Robots.
In IEEE International Conference on Intelligent Robots and Systems,
2011.

[21] E.A. Cappo and H. Choset. Planning end effector trajectories for a
serially linked, floating-base robot with changing support polygon. In
American Control Conference, 2014.

[22] Michael Sfakiotakis, Asimina Kazakidi, Avgousta Chatzidaki,
Theodoros Evdaimon, and Dimitris P Tsakiris. Multi-arm robotic
swimming with octopus-inspired compliant web. In IEEE International
Conference on Intelligent Robots and Systems, 2014.

[23] M Cianchetti, M Calisti, L Margheri, M Kuba, and C Laschi. Bioinspired
locomotion and grasping in water: the soft eight-arm octopus robot.
Bioinspiration & Biomimetics, 2015.

[24] Marcello Calisti, Francesco Corucci, Andrea Arienti, and Cecilia Laschi.
Dynamics of underwater legged locomotion: modeling and experiments
on an octopus-inspired robot. Bioinspiration & Biomimetics, 2015.

[25] Kensuke Harada, Eiichi Yoshida, and Kazuhito Yokoi, editors. Motion
Planning for Humanoid Robots. Springer, 2010.

[26] Niko Vahrenkamp, Dmitry Berenson, Tamim Asfour, James Kuffner,
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Appendix A Proof that 2D Serial Chain on Curvature Constraint
Path is Irreducible

We will show that if the root link of a serial kinematic chain moves on a
κN -curvature constrained path, then there exists at least one sublink config-
uration, such that all sublinks are inside the swept volume of the root link.
We first prove this for N = 1 case, then generalize our proof to the N > 1
case.

We consider a serial kinematic chain in the plane, consisting of a disk-
shaped root link of radius δ0 plus N disk-shaped sublinks of radius δ1, · · · , δN .
The chain has N revolute joints centered at the center of each disk. The
distance between joints is l0, · · · , lN−1, and the radius of the disks is such
that δi ≤ δ0 for any i > 0. We will denote by θ1, · · · , θN the configuration of
the sublinks. The configuration space of the serial chain is then SE(2)×RN

whereby each joint is restricted by joint limits. An N = 2 serial kinematic
chain is visualized in Fig. 8.

We will prove that if the root link moves on a curvature constrained path
on SE(2), then there exists at least one configuration θ1, · · · , θN such that
the sublinks are inside the volume swept by the root link.

The proof consists of two parts. First, we prove the result for a serial
kinematic chain with N = 1 sublinks. Second, we generalize this result to
N > 1 sublinks. The proofs use only elementary notions from differential
geometry of curves like the osculating circle. A comprehensive introduction
to curve geometry can be found in [13].

A.1 Single Link Chain

Let us consider an N = 1 serial kinematic chain with disk links L0, L1

in the plane R2, connected by a rotational joint at the center of L0, with
distance l0 to the center of L1. The rotational joint has an allowed rotation
of θ ∈ [−θ̄, θ̄], whereby θ̄ is the upper limit joint configuration and −θ̄ is
the lower limit joint configuration. Let us denote by p0 = (p0,0, p0,1) ∈ R2

the position of L0, and by p′0 its orientation. Let us define a cone Kθ̄(p0) =
{(x0, x1) ∈ R2|‖x1 − p0,1‖ ≤ (x0 − p0,0) tan θ̄} with apex p0, orientation p′0,
and aperture θ̄. See Fig. 9. Given L0 at (p0, p

′
0) let us define the set Q0 of all

possible positions of L1 as a circle intersecting Kθ̄(p0) and the corresponding
disk segment P0 as a disk intersecting Kθ̄(p0).
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Figure 8: N = 2 serial kinematic chain system

P0 = {x ∈ R2|‖x− p0‖ ≤ l0} ∩ Kθ̄(p0) (7)

Q0 = {x ∈ R2|‖x− p0‖ = l0} ∩ Kθ̄(p0) (8)

whereby P0 and Q0 are visualized in Fig. 9.
Let us construct a functional space Fκ0 such that all functions from Fκ0

starting at (p0, p
′
0) will necessarily have to leave P0 by crossing Q0.

We define the functional space

Φ2 = {φ ∈ C2 | φ : [0, 1]→ R2} (9)

FP0 = {τ ∈ Φ2 | τ(0) = p0, τ
′(0) = p′0, τ(1) /∈ P0} (10)

whereby C2 is the space of all continuous two times differentiable functions.
Let Fκ0 ⊆ FP0 be the subspace of all curvature constrained functions

Fκ0 = {τ ∈ FP0 | κ(τ(s)) ≤ κ0} (11)

κ0 =
2 sin(θ̄)

l0
(12)

whereby κ(τ(s)) is the curvature at τ(s). The curvature κ0 has been con-
structed in the following way: first, we observe that for any point τ(s) on τ
the curvature is defined by κ0 = 1

R0
whereby R0 is the radius of the osculating

circle at τ(s)[13]. We consider paths parametrized by arc-length, such that
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P0 ∩ LD(s) \BR(0, R)

θ̄

Figure 9: Q0 is the space of all possible positions of link L1, constrained by link L0.
We establish in this section that for a specifically constructed functional space Fκ0

any
function which starts at p0 and has first derivative equal to p′0 will leave the area P by
crossing Q0.

τ ′(s) · τ ′′(s) = 0. The center of the osculating circle has to lie therefore in
the direction of vector τ ′′(s). We are searching for the minimal osculating
circle, which ensures that all functions will necessarily leave P0 through Q0.
This minimal osculating circle touches the most extreme point of Q0, which
we call xM :

xM = (l0 cos(θ̄), l0 sin(θ̄))T (13)

See also Fig. 9 for clarification. The minimal osculating circle can be found
by solving the equation

‖xM − (0, R0)T‖2 = R2
0 (14)

The solution is given by

R0 =
l0

2 sin(θ̄)
(15)

We are going to prove some elementary properties of the functional space
Fκ0 , which will show the conditions under which we can project the sublinks.

Theorem 4. For all τ ∈ Fκ0 there exists s0 ∈ [0, 1] such that τ(s0) ∈ Q0

and τ(s) ∈ P0 for all s ≤ s0.
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Figure 10: Cone spanned by the length l0, the limit angle θ̄ and the position of s. Every
function from Fκ0

will necessarily leave P0 by crossing Q0 at τ(t0) to reach a point τ(1)
outside P0.

Explanation: any path from the functional space Fκ0 will leave the region
P0 by crossing Q0. Visualized in Fig. 10.

Proof. Let us decompose the problem into two parts. First, let us show that
all circles with center (0, R) and radius R ≥ R0 will intersect Q0. Second, let
us show that all paths from Fκ0 will necessarily leave P0 by crossing Q0, such
that there is no path crossing the ball BR(0, R) for given curvature κ = 1

R
.

• By construction the circle with radius R0 intersects Q0 at the point

specified by angle θ̄ = θ(R) = asin

(
l0

2R

)
. Since asin is monotone

increasing on [0, 1], l0, R ≥ 0 and l0 ≤ 2R, we have that θ(R) ≥ 0.

We have θ̄ ≥ θ(R) since asin

(
l0

2R0

)
≥ asin

(
l0

2R

)
and therefore we

can write
l0

2R0

≥ l0
2R

since asin is monotone increasing. It follows that

R ≥ R0.

• Let us define the left side of p0 as LD(p0) = {(x0, x1) ∈ R2|(x0−p0,0) ≥
0, (x1 − p0,1) ≥ 0} and let us construct a polygonal chain as defined
by [14]. For a given R ≥ R0 start on the boundary of P0 at point p0

and follow direction p′0 until Q0 is reached. At Q0 move along on Q0

until the ball with radius R is intersected. This constitutes a polygonal
forward chain [14]. This chain follows the boundary of P0∩LD(p0). Let

28



us apply Lemma 6 in [14], stating that if a forward chain intersects the
circle of radius R, then the reachable region of all paths in Fκ0 is given
by P0 ∩ LD(p0) \ BR(0, R). See Fig. 9 for visualization. Applying the
pocket lemma from [41] it follows that no path can escape the region
P0 ∩LD(p0) \BR(0, R) except through Q0 or the lower boundary. The
same arguments apply for the right side of p0 with RD(p0) = {x ∈
R2|x0 − p0,0 ≥ 0, x1 − p0,1 ≤ 0} and therefore any function in Fκ0
starting in p0 can escape the region P0 \ (BR(0, R) ∪ BR(0,−R)) ⊂ P0

only through the arc segment Q0. Since τ(1) /∈ P0, the result follows.

Theorem 4 assures that a particle starting at (p0, p
′
0), following τ ∈ Fκ0

will always cross the arc segment Q0. Now we consider the sweeping of disks
Dδ(p) = {x ∈ R2|‖x − p‖ ≤ δ} with radius δ along a path τ ∈ Fκ0 . Let
us define L0 = Dδ0(p0), L1(θ) = Dδ1(p1(θ)) with p1(θ) = (l0 cos(θ), l0 sin(θ)).
Let ⊕ denote the Minkowski sum.

Theorem 5. Let L0 = Dδ0(p0). Then there exist a θ1 ∈ [−θ̄, θ̄] with the
property that for all τ ∈ Fκ0 there exists s0 ∈ [0, 1] such that L1(θ1) ⊂
(τ(s0)⊕ L0) if δ1 ≤ δ0.

Proof. Applying Theorem 4 a function τ ∈ Fκ0 will necessarily intersect Q0.
Let τ(s0) ∈ Q0 be the intersection point. Let us choose p1(θ1) = τ(s0) as the

position of link L1. θ1 can be computed as θ1 = acos

(
(τ(s0)− τ(0))Tp′0

l0

)
.

The volume of link L1(θ1) is given by (τ(s0) ⊕ L1(θ1)), and is smaller than
(τ(s0)⊕ L0) exactly when δ1 ≤ δ0.

A.2 Multi Link Chain

Let L0, · · · , LN ∈ D2 be disk links of radius δ0, · · · , δN connected by lines
of equal length l0, · · · , lN−1 with l0 = · · · = lN−1, δi > 0, li > δi+δi+1 (no over-
lapping disks), δi ≤ δ0 for all i > 0 and joint limits {{−θ̄0, θ̄0}, · · · , {−θ̄N−1, θ̄N−1}}
with θ̄0 = · · · = θ̄N−1. We will refer to this serial kinematic chain structure
as RN

L .
Let V (θ0, · · · , θN−1) be the swept volume of the chain without the links

for a given set of configurations. We define PN as the union of all swept
volumes of the chain under the constraint that −θ̄ ≤ θi ≤ θ̄ for every i ∈
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Figure 11: A succession of cones, spanning the space between s and QN , which necessarily
has to be traversed by any function from FκN

.

[0, N − 1]. This is depicted in Fig. 11. Further, let QN be the part of the
outer border which we obtain by removing the swept volume of the minimum
joint configuration V (θ0 = −θ̄, · · · , θN−1 = −θ̄), and the swept volume of
the maximum joint configuration V (θ0 = −θ̄, · · · , θN−1 = −θ̄), from the
boundary of PN . QN is shown in Fig. 11.

As in the N = 1 case, let us construct a functional space FκN as

FPN = {τ ∈ Φ2 | τ(0) = p0, τ
′(0) = p′0, τ(1) /∈ PN} (16)

Let FκN ⊆ FPN be the subspace of curvature constrained functions

FκN = {τ ∈ FPN | κ(τ(s)) ≤ κN} (17)

κN =
2 sin(θ̄)

Nl0
, N > 1 (18)

For N = 1, we proved that there exist θ0 such that L1(θ0) ∈ τ ⊕ L0(p0).
For N > 1, we need to take into account the change of orientation when
the point has moved from L0 to L1. At L1, we need to make sure that
the obtained orientation θ0 and the next orientation θ1 are both below the
maximum orientation θ̄. See Fig. 12 for clarification.

To ensure that we can always find a feasible configuration, such that all
links are on τ , we therefore need to ensure that θi+θi−1 ≤ θ̄ for all i ∈ [1, N ].
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Figure 12: Serial kinematic chain along a curve τ with constant curvature κN .

We like to rewrite all angles in terms of the radius of the osculating circle
R0 and the length of the links li. The angle θi can be readily expressed as

θi(R0, li) = arctan

 li√
4R2

0 − l2i

 (19)

This expression is obtained by centering a coordinate system at the center
Oc = (0, 0) of the circle, then drawing two circles, one about Oc with radius
R0, one about L1 with radius l0. Since we have chosen R0 such that R0 >
l0, those circles have two intersection points. The two intersection points
together with Oc and L1 create a geometric kite, which can be analyzed by
geometrical inspection to arrive at the equation, see circle-circle intersection
2.

Let

R0 =
Nl0

2 sin θ̄
(20)

such that FκN is defined by κN = 1
R0

.

Lemma 1. Given a path τ ∈ FκN with 1
κN

= R0 =
Nl0

2 sin θ̄
and N > 1, there

2Circle-Circle Intersection – Wolfram Mathworld
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exist joint configurations θ1, · · · , θN for the serial kinematic chain RN
L , such

that every Li is located on τ . Furthermore, the maximum distance between τ
and the lines (L0L1) · · · (LN−1LN) is given by

dκN = R0 −
√
R2

0 −
l20
4

(21)

Proof. Evaluating θi at R0 gives

θi(R0, l0) = θi(N) = arctan

(
sin θ̄√

N2 − sin2 θ̄

)
(22)

for N > 1. By induction on N , we get for N = 2

θi(2) = arctan

(
sin θ̄√

4− sin2 θ̄

)
≤ arctan

(
sin θ̄

2

)
≤ sin θ̄

2
≤ θ̄

2

(23)

whereby we relied on the fact that for x > 0 we have arctan(x) ≤ x since
arctan′(x) = 1

1+x2
≤ 1, for x > 0 we have sin(x) ≤ x since sin′(x) = cos(x) ≤

1.
We now observe that

θi(N) = arctan

(
sin θ̄√

N2 − sin2 θ̄

)
≥ arctan

(
sin θ̄

N

)

≥ arctan

(
sin θ̄√

(N + 1)2 − sin2 θ̄

)
= θi(N + 1)

(24)

which shows that θi(N) + θi−1(N) ≥ θi(N + 1) + θi−1(N + 1). Therefore
θ̄ ≥ θi(2) + θi−1(2) ≥ · · · ≥ θi(N) + θi−1(N) for N > 1 as required.

Given the constant maximum curvature κN , the points Li, Li−1 and Oc

are creating an isosceles triangle. See Fig. 12 for clarification. The maximum
distance di of the line (LiLi−1) and the circle can therefore be obtained by
subtracting the height of the isosceles triangle from the radius of the circle

as dκN = R0 −
√
R2

0 −
l2i
4

.
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The swept volume of the root link L0 will be the Minkowski sum with
the path τ , i.e. VL0(τ) = L0 ⊕ τ . However, the sublinks will not lie inside of
this swept volume at the starting configuration. To circumvent this problem
we imagine the path τ being extended along the positions of the sublinks at
the start configuration.

We call this extended part τI ∈ FκN . τI can be obtained by computing
a path which starts at s = 0 at the position of the sublink LN at the start
configuration, and follows each sublink Li until it reaches L0 at instance
s = 1, such that τI(1) = τ(0) and τ̇I(1) = τ̇(0).

We claim that along τI ◦ τκN we can find at least one configuration of the
sublinks, such that the volume of the sublinks is inside the swept volume of
the root link.

Theorem 6. Let τ = τI ◦ τκN ∈ FκN . If the root link L0 moves along
τκN , then for δi ≤ δ0 and dκN ≤ δ0, we have that there exists at least one
configuration θ1(s), · · · , θN(s) for any s ∈ [0, 1] such that the volume of the
serial kinematic chain RN

L is a subset of τ ⊕ L0

Proof. By Theorem 1 θ1(s), · · · , θN(s) can be chosen such that the center
of every Li(θ1(s), · · · , θi(s)) is located on τ . Then there exists an instance
si ∈ [0, 1] such that Li(θ1(s), · · · , θi(s)) = τ(si). Li(θ1(s), · · · , θi(s)) is a
subset of τ ⊕L0 if δ0 ≥ δi. By Lemma 1, the maximum distance of the serial
kinematic chain at θ1(s), · · · , θN(s) to τ is given by dκN . If δ0 ≥ dκN , then
any point on the serial kinematic chain curve will be inside τ ⊕ L0.
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