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ABSTRACT

Self-assembling robotic systems constitute a subclass of distributed robotic systems that undertake the
fundamental task of structure formation. These systems build desired target structures by putting their
robotic modules together in a distributed and stochastic fashion, i.e., through a self-assembly process.
The use of self-assembly as the underpinning coordination mechanism provides powerful means for
structure formation across a variety of length scales as well as media. In particular, fluidic media have
been shown to be very efficient enablers for small-scale self-assembly. In this paper, we consider a
distributed robotic system consisting of multiple miniature robotic modules performing self-assembly
in 2D, at the water-air interface. The course of the assembly process in the system culminating in a
predefined target structure is shaped by the ruleset controllers programmed on the individual robotic
modules, allowing only certain formations and ruling out others throughout the process. Designing
control strategies relies heavily on accurate models of the system dynamics. Faithfully modeling such
systems and their inter-module interactions involves capturing the hydrodynamic forces acting on the
modules using typically computationally expensive fluid dynamicmodeling tools. Such computational
cost restricts the usability of the resulting models, particularly for the purpose of designing optimized
controllers. In this paper, we present a newmodeling approach and proceed by employing the resulting
model for optimizing ruleset controllers. First, we show how the hardware and firmware of the robotic
platform can be faithfully modeled in a high-fidelity robotic simulator. Second, we develop a physics
plugin to recreate the hydrodynamic forces acting on the modules and propose a trajectory-based
method for calibrating the pluginmodel parameters. Finally, we employ the resultingmodel and obtain
automatically optimized ruleset controllers for given target structures.

1. Introduction
Self-assembly is defined as the reversible and sponta-

neous phenomenon of an ordered spatial structure emerging
from the aggregate behavior of simpler preexisting enti-
ties, through inherently local and random interactions in
the system. Self-assembling robotic systems have garnered
significant interest for their robust performances in forming
structures of varied complexities and at different length
scales as well as their minimal design of constituting mod-
ules [1], [2], [3]. Among these systems, fluid-mediated self-
assembling systems are of particular interest due to their
capability for efficiently moving the modules around and
providing interactions among them, particularly at small
scales. It has been shown that fluids are highly efficient for
moving sub-millimeter-scale particles [4].

A key factor in studying self-assembling robotic systems
is developing models that accurately describe the dynamics
of the underlying physical system where the self-assembly
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process takes place. Such models help in: (1) accurately
predicting the performances (assembly rate and yield) of
the distributed system, and (2) evaluating and optimizing
control strategies, whether distributed (e.g., ruleset con-
trollers programmed on the modules) or centralized (e.g.,
modulating environmental features such as themixing forces
deriving random interactions among modules), based on
model predictions [5, 6]. Yet, relatively little effort has been
devoted tomodeling fluid-mediated self-assembling systems
of robotic modules. Models with high level of abstraction are
usually non-spatial and assume well-mixed systems. In fact,
the implications of these assumptions are difficult to gauge
due to the lack of appropriate and well calibrated modeling
tools for such robotic platforms [7]. Furthermore, state-of-
the-art robotic simulators such asWebots, Gazebo, or V-REP
do not support fluid dynamics natively and need therefore
to be either coupled with appropriate fluid dynamics sim-
ulation tools or to be augmented with appropriate plugins
in order to faithfully capture the dynamics of the overall
system. While coupling these robotic simulators with fluid
dynamic simulation tools allows for capturing the hydrody-
namic forces accurately, such accuracy comes at the cost of
having a typically very computationally heavy model. Our
goal here is thus developing a physics-based model which
is computationally lightweight and thus reasonably afford-
able for creating large datasets of system trajectory under
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different control strategies. We then use the resulting model
for predicting and evaluating system trajectories for given
ruleset controllers in order to optimize their parameters. By
doing so we create numerous datasets of sample system
trajectories which are faithful to reality, hence exploiting
the computational efficiency of the model realized while
obtaining high fidelity to the real physical system.

Our model design method utilizes the Webots robotic
simulator and involves developing a physics plugin for recre-
ating the hydrodynamic forces acting in the system. The
physics plugin is then calibrated such that the simulated
and the real world systems trajectories match closely. Our
calibration method employs a Particle Swarm Optimization
(PSO) algorithm, and consists of minimizing the differ-
ence between the Mean Squared Displacement (MSD) data
extracted from real and simulated trajectories of multiple
robotic modules.

Our model-based control method then utilizes our re-
sulting calibrated model of the system to evaluate given
ruleset controllers and find optimized parameters. We create
the rules in the ruleset using a framework introduced in
our previous work [8]. Starting from a target structure, a
ruleset which guarantees formation of the desired target
structure is created. The structure of the ruleset controller,
i.e. the constituting rules, is fixed at this point, however,
the parameters of the ruleset, i.e. the probabilities associated
with the execution of each rule, can be tuned for optimized
assembly performance. Our ruleset controller optimization
method utilizes as well a PSO algorithm and involves cre-
ating sample system trajectories by running the calibrated
model while the robotic modules execute a given ruleset.

What is unique about our approach for developing opti-
mized controllers in comparison to former contributions in
the literature is that the evaluation of the controllers required
by the optimization process is based on models calibrated
to the dynamics of the real self-assembling system rather
than abstract models as, for instance, in [9, 10]. The use
of a metaheuristic optimization method for finding optimal
ruleset parameters, a process typically requiring numerous
evaluations of the system assembly performance for a given
ruleset controller, further highlights the value of exploiting
lightweight yet accurate physics-based models.

The paper is organized as follows: Section 2 describes
the experimental fluid-mediated self-assembling robotic sys-
tem used to collect the trajectories; Section 3 presents our
approach for building the physics-based model of the system
accounting for simple hydrodynamic effects such as drag,
buoyancy, and, to some extent, fluctuations due to stirring
the fluidic arena; Section 4 describes our method to calibrate
the parameters of the physics-basedmodel based on the com-
parison between the simulated and experimental trajectories
of the robotic modules using a PSO algorithm. Section 5
presents our approach for exploiting the calibrated models
in order to optimize ruleset controllers for achieving given
target structures leveraging again a PSO algorithm. Finally,
Section 7 summarizes our contributions, discusses the future
research paths, and concludes the paper.

2. Experimental System
The experimental setup consists of a circular water-

filled tank equipped with peripheral pumps, an overhead
camera, an overhead projector, a wireless node communi-
cating with the robots for programming and data logging,
and a workstation (see Figure 1) [11]. The Lily robotic
modules are not self-locomoted, they are instead stirred by
the flow field produced by the pumps. Each Lily robotic
module is endowed with four Electro-Permanent Magnetic
(EPM) latches, one at each side, used for connecting and
communicating to neighboring Lily modules. The tank is
approximately 0.6 m in diameter and 0.3 m in depth, and has
seven inlets perpendicular to the wall which are endowed
with a small insert piece to deviate the flow by about 15
degrees, creating a flow field with both radial and circu-
lar components. While the perpendicular flow components
instigate irregular trajectories and induce collisions in the
middle of the tank, they exhibit dead spots around the wall.
The tangential components, however, generate a circular
field, giving rise to regular closed trajectories which do not
favor collisions but eliminate dead spots. To minimize any
interference with the surface flow, the outlets are all placed
at the bottom of the tank. Each pump’s flow rate can be
continuously controlled up to 9 l/min, allowing for a variety
of flow fields and corresponding induced trajectories. To
monitor the evolution of the system, we use an overhead
camera to track a passive marker located at the top of each
robot using SwisTrack [12]. The positions of the markers are
logged at a rate of approximately 30 Hz.

3. Modeling Approach
In order to realistically recreate our self-assembling

robotic system in simulation, we use Webots [13], an open
source (since December 2018) physics-based high-fidelity
robotics simulator which uses the Open Dynamics Engine
(ODE) for simulating rigid body dynamics. Additionally,
in order to simulate specific not natively supported physics
such as complex fluid dynamics, it is possible to employ
custom-designed physics plugins. Building our physics-
based model within the Webots simulation framework com-
prised two main aspects. First, faithful recreation of the
Lily robotic module’s hardware and firmware features, and
second, faithful recreation of the hydrodynamic forces acting
on the robotic modules floating in the tank filled with water.
The latest version of Webots supports a basic fluid node
which allows for a simple uniform stream velocity, but is
not capable of simulating the complex fluidic field in our
experimental arena. This motivates the design of a specific
physics plugin capable of capturing the complexity of the
real fluidic field.

3.1. Recreating the Robotic Module
We recreate the Lily robotic module within the simulated

world of Webots in several steps (see Figure 2). In the first
step, we define the physical entity of the module. A CAD
model of the external shell of the module was designed in
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Figure 1: a) Image and (b) sketch of the experimental system. c) Visual tracking of Lily robotic modules. The red arrows indicate
the pump flow. The blue lines indicate the history of the modules’ trajectories. d) A Lily robotic module.

(a) (b) (c)

Figure 2: (a) A real Lily robotic module. (b) CAD design of the Lily robotic module exported from SolidWorks to Webots. (c) A
sample world of simulated Lily robotic modules in Webots. The lines on the modules indicate axes on the EPM connectors.

SolidWorks and directly exported to Webots in the VRML
V2.0 format. This defines the bounding object (i.e. bounding
volume) associated with a Lily and is the one referred to
by the ODE engine for simulating the collisions among
modules. In the second step, a Lily robotic module PROTO
was created. Within Webots, a PROTO allows for captur-
ing all the features of a certain object within one PROTO
container. The Lily PROTO was then augmented with the
physical features of the Lily robotic modules. In particular,
its bounding object as exported from SolidWorks, mass, and
center ofmass. A physical object inWebots has its associated

linear and angular damping coefficients which are used to
slow down an object. The rotational and linear speed of each
object is reduced by the specified percentage (between 0.0
and 1.0) every second allowing for coping with simulation
instability, all initially set to a default value of 0.5 each.

The Lily PROTOwas then augmented with several func-
tionality nodes, that is four connector nodes located on the
sides to replicate the EPM latching mechanism, four emitter
as well as four receiver nodes located on the sides with a
range of 0.5mm replicating the EPM inductive channel func-
tion, one light sensor node on the top, and an emitter node
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as well as a receiver node located on the top with an infinite
range to replicate the radio channel communication with
the base station. The next step was then importing the Lily
robotic modules’ embedded controller software into the We-
bots simulated world. The low-level functionalities such as
EPM communication through sending current pulses needed
to be abstracted away and replaced by similar functions from
Webots. However, the adapted controller maintains the same
structure as the original one programmed on the real Lilies.
The specific rulesets employed on the simulated and real
modules are identical.

3.2. Recreating the Flow Field
In order to reproduce the complex flow field and the

hydrodynamic forces acting on the Lilies in the real world,
we use an approach inspired by the one in [7]. Our approach
distinguishes from the one of [7] in two ways: (i) we capture
trajectories of multiple floating objects rather than a single
one, with the aim of capturing the effects of interactions of
the floating objects which disturb the flow field, (ii) rather
than brute force search, we employ a PSO algorithm to
optimize the model parameters.

A spherical object has an isotropic drag coefficient, i.e.
a constant value in all directions, while submerged in a fluid
flow. As a result, a spherical object exhibits the same drag
coefficient regardless of the angle of attack of the fluid field.
When subject to a flow field, the drag force acts on any
object floating in the field and is what makes the object
move around with the flowing fluid. The drag force is a
function of the velocity of the fluid field as well as the drag
coefficient of the floating object (see Equation 2). Here we
are interested in capturing the underlying flow field in our
system. However, what we can easilymeasure by directly ob-
serving the system is the velocity field of objects floating and
moving with the flow. Our approach involves inferring the
flow field through observing the motion and visual tracking
of spherical floating objects. The isotropic drag coefficient
of the spherical objects simplifies computing the flow field
based on their observed velocity field (see Equation 2).
When we eventually consider having Lily robotic modules
floating in the tank, their drag coefficient is considered as
a free optimization parameter estimated through the auto-
mated optimization process (see Equation 5). We record the
trajectory of floating spherical blocks (diameter of 3 cm),
roughly the same size of a Lily robotic module, for three
experiments with random starting positions and duration
of 10 minutes each. For this, we use 24 ping pong balls
whose weights are tuned such that the submersion level is
similar to that of a Lily robotic module (25 mm below water
level). The captured velocity fields acquired from different
experiments are then augmented and discretized on a regular
grid of 50 cells on each side, for our water tank of 60 cm in
diameter. For each cell of the grid, the average and standard
deviation of the observed velocity vectors are computed and
assigned to that cell (see also Eq. 4). The fluid velocity
field can then be computed considering the drag force. The
value of the Reynolds numberRe determines the flow regime

and the form of the drag force. The Reynolds number is a
dimensionless value that measures the ratio of inertial forces
to viscous forces and describes the degree of laminar or
turbulent flow. The Reynolds number is calculated as below
for the parameters of our system:

Re =
�V L
�

≃ 6700 (1)

This value of Reynolds number indicates a quadratic
drag force as below:

|F⃗drag| =
1
2
�AC|v⃗block − v⃗flow|2 (2)

where � = 103 kg∕m3 is the density of water, V ≃ 20
cm∕s the experimentally-measured mean velocity of a ball,
L = 3 cm the characteristic dimension, and � = 8.90 . 10−4
Pa.s the dynamic viscosity of water. The submerged area of a
ball in the experimental system is approximately A = 7 cm2
(note that in simulation this value is measured by the physics
plugin, we assumeA = 7 cm2 for the computation of the flow
field) and the drag coefficient constant in all directions C =
0.47. The velocity and acceleration of the ping pong balls are
computed using the captured trajectory data. Considering
the mass of a ballm, the flow velocity is then computed from
Eq. 2 as below, considering F⃗drag = ma⃗drag = ma⃗, with a⃗
having components ax and ay in the 2D plane along the X-
and Y-axis, respectively:

v⃗flow = v⃗block +
ma⃗

√

1
2�ACm

√

a2x + a2y

(3)

A customized physics plugin is then designed forWebots
so that an appropriate drag force is applied to a simulated
Lily module based on the velocity of the module and the
flow velocity at its location at each time instant. In order
to account for rotational effects, the drag force is integrated
over each face of the module. Each face is divided into
N = 10 sections, and the drag force is computed for each
section using Eq. 5.

For each cell j in the grid of a total of 2500 cells, we
record the average �j and the standard deviation �j of the
computed flow velocity vectors. We also test the normality
of the distribution in each cell using the KS test. Results,
shown in Figure 3, demonstrate that for the majority of the
grid cells, the KS test failed to reject the hypothesis that
the samples do not belong to a normal distribution with
a confidence level of 95%. We can thus assume that the
velocity at the location of each grid cell can be drawn from
a normal distribution. Therefore, when a block falls in a
given cell j, the physics plugin applies the corresponding
flow velocity as below, where Kv is a free model parameter
to be optimized.

vflow,j = Kv (�j , �j) (4)
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(a) (b)

Figure 3: Visualization of the KS test results on the captured flow velocity field along (a) X-axis, and (b) Y-axis. The points of
higher temperature (yellow color) indicate the grid cells for which the hypothesis that the data points within the corresponding
cell have a Gaussian distribution  (�, �2) is rejected at a significance level of 5%.

We consider the drag force acting on the Lily robotic
modules as below, where KF is a free optimization parame-
ter, estimating an appropriate value for the Lilymodules drag
coefficient. The area A on which the force acts is measured
by the physics plugin.

|F⃗drag| = KF
1
2
�A|v⃗block − v⃗flow|

2 (5)

The physics plugin also adds a stochastic force Fs ∼
 (0, �2stocℎ) to the center of mass of each block in order to
take into account the stochasticity and non-modeled effects
as in [7]. The standard deviation �stocℎ defines our third
optimization parameter. Moreover, we have two additional
free parameters in Webots which are the linear and angular
damping of an object:Dlinear, Dangular. In summary, we will
have a total of five free optimization parameters to be cali-
brated: the constants Kv, KF , �stocℎ, Dlinear, and Dangular.

4. Calibration Approach
By definition, model calibration is an optimization pro-

cess of adjustment of themodel parameters to obtain amodel
representation of the processes of interest that satisfies pre-
agreed criteria, typically expressed in the form of faithful-
ness metrics. We use the trajectories of the blocks floating
on the simulated and real flow fields and refer to the MSD
extracted from each data set for comparison. We then define
our faithfulness metric to be optimized during the process
as the error between the real and simulated MSD functions.
We run a PSO algorithm in order to optimize the free model
parameters, namely, Kv, KF , �stocℎ, Dlinear, and Dangular.

4.1. Optimization Algorithm
PSO is a population-based stochastic metaheuristic op-

timization technique originally introduced by Kennedy and

Eberhart [14]. PSO is inspired by the social behavior of
bird flocking or fish schooling, and represents a pool of
candidate solutions as a swarm of particles moving in a
multi-dimensional space and evaluated through a series of
iterations. The pool of candidate solutions is then updated at
the end of each evaluation iteration. The size of the swarm
defines the number of candidates in the pool evaluated at
each iteration. The information carried by each particle is a
function of the dimension of the search space which in turn is
defined by the number of parameters to be optimized through
the metaheuristic search. The algorithm is initialized with
a population of random candidate solutions and searches
for optima by evaluating and updating the pool of solutions
over iterations. While PSO shares many similarities with
evolutionary optimization techniques such as the Genetic
Algorithms (GA), the way candidate solutions are modified
through iterations is totally different [15].

Pugh et al. showed that PSO could outperform Genetic
Algorithms on benchmark functions and for certain sce-
narios of limited-time learning under the presence of noise
[16, 17]. This motivates the choice of PSO for our particu-
lar optimization problem where stochasticity is an inherent
feature of the underlying system. Multiple computationally
efficient recipes for increasing the robustness of the PSO
algorithm to noisy evaluations have been proposed in the
literature [18, 19]. In this work, we have opted for a simple
solution involving a re-evaluation and aggregation of the
personal best performance of each particle as suggested in
[17].

In PSO, the movement of particle i in dimension j
depends on three components: the velocity at the previous
step weighted by an inertia coefficient w, a randomized
attraction to the particle’s own personally best visited loca-
tion over the previous iterations x∗i,j weighted by wp, and a
randomized attraction to the particle’s neighborhood’s best
visited location over the previous iterations x∗i′,j weighted
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(a) (b)

Figure 4: (a) Effect of changing pump power on MSD. All experiments were done at the same water level, i.e. -7 cm. (b) Effect
of water level on MSD. The pump power is fixed at 69%.

bywn (Eq. 6a). r1 and r2 are random numbers drawn from a
uniform distribution between 0 and 1. The particle position is
then updated at each step using the updated velocity (Eq. 6b).

vi,j ∶= w⋅vi,j+wp ⋅r1 ⋅(x∗i,j−xi,j)+wn ⋅r2 ⋅(x
∗
i′,j−xi,j) (6a)

xi,j ∶= xi,j + vi,j (6b)

The equation above is valid for both the canonical ver-
sion and the noise-resistant one. Our approach to cope with
stochasticity in our system is to evaluate each particle at
each iteration multiple times. The total execution time for
a PSO optimization procedure depends on four factors:
population size (Np), individual candidate evaluation time
(te), number of iterations of the algorithm (Ni), and number
of re-evaluations of each candidate solution’s personal best
within the same iteration (Nre). We evaluate all the particles
in the swarm in parallel at each iteration, as a result the total
time for the optimization procedure in our case is as below:

ttotal = te ⋅Ni ⋅Nre (7)

The individual candidate evaluation time te depends directly
on the complexity of the model utilized in simulation and its
computational efficiency.

4.2. Optimization Metric
Diffusion drives mixing in our system. In statistical

mechanics, the MSD is a measure of the deviation of the
position of a particle with respect to a reference position over
time. It is the most common measure of the spatial extent
of random motion, and can be thought of as measuring the
portion of the space “explored” by the random walker. In
the realm of biophysics and environmental engineering, the
MSD is measured over time to determine if a particle is

spreading solely due to diffusion, or if an advective force
is also contributing. For instance, MSD analysis is a tech-
nique commonly used in colloidal studies to determine the
dynamics of displacement of particles over time. The MSD
is expressed as below.

< Δr2(t) > =
n
∑

k=0
< [Rk(t) − Rk(t0)]

2 > (8)

WhereR is the position vector, and n is the total number
of particles. The MSD is usually used to calculate the diffu-
sion coefficient of a given system [20]. In order to verify that
theMSD captures the change in the system dynamics, exper-
iments of 10 minute length per water level and pump power
configuration were conducted using 24 ping-pong balls. As
indicated before, we use ping-pong balls for simplicity as
they are symmetric and have an isotropic drag coefficient.
We used three water levels in the tank, measured from the
upper border as -7, -8, and -9 cm, respectively.

Figure 4 illustrates the MSD curves for different pump
power and water level settings. Each pump has a maximum
flow of 9 l/min at 100% power. First, we can notice that the
MSD has a transient oscillating pattern followed by a conver-
gence on a plateau. The oscillations are related to a situation
where the blocks are affected by the stirring flow generated
by the pumps and the frequency of the oscillations is related
to the speed of circulation. On the other hand, the plateau
indicates a maximum effective displacement explored by
the blocks. As we can see in Figure 4(a), the higher the
pump power, the higher the frequency of the oscillations and
the lower is the plateau. This can be explained considering
that when the pumps power is increased, the force pushing
the blocks towards the center is higher and therefore the
effective radius of the area explored by the blocks is smaller.
Furthermore, by keeping the same pump power, but reducing
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Figure 5: Calibration approach block diagram. There are three main components in the procedure, the trajectories of the real
ping-pong balls, the trajectories of the real Lilies, and the simulated Lilies trajectories.

the water level, we can see a similar effect. Lowering the
water level will change the relative alignment between the
pumps’ nozzles and the surface of the water, therefore in-
creasing the fluidic force acting on the blocks’ which in turn
will decrease the effective exploration radius. The fact that
the MSD of system trajectories is significantly different in
different agitation modes in the system is a positive indicator
that the MSD metric provides a reliable representation of
system dynamics.

4.3. Optimization Procedure
As discussed earlier, the basic principle of the calibration

is to match the simulated and real MSD curves in an attempt
to faithfully reproduce the dynamics of the real system in
simulation. There are five model parameters to be tuned in
the calibration process; Kv defining a scaling factor for the
randomness in the velocity field as described in Eq. 4, KF
defining a scaling factor in the drag force as described in
Eq. 5, �stocℎ defining the standard deviation of the stochastic
force field, and the two linear and angular damping coef-
ficients used by Webots for any body mass expressed as
Dlinear and Dangular, respectively. As mentioned before, we
use a PSO algorithm to fine tune these parameters so that
real and simulated MSD curves are as aligned as possible.
The optimization takes place only within a specific range
for each of these parameters in order to ensure the stability
of the simulation. The PSO parameters of inertia, personal
best coefficient, and global best coefficient are set to 0.1832,

0.5287, and 3.1913, respectively, according to [21]. No
particular attempt to optimize the PSO parameterization was
carried out.

The fitness function is therefore the difference between
the resulting MSD from simulation and the mean MSD
measured on our real set-up. When computing the MSD
value the trajectories of each of the floating blocks are
aggregated, rather than being considered separately, and the
resulting MSD curves are averaged. Mathematically, we can
formulate as below, where Ns is the number of time steps
per sample. Where Ns = 2400 in our case corresponds to
60 s emulated time with a simulation time step of 25 ms.

F itness =
Ns
∑

i=1
|MSDwebots −MSDreal| (9)

Figure 5 depicts a block diagram of our calibration pro-
cedure. The flow field extracted from trajectories exclusively
generatedwith ping-pong balls is used to create the flowfield
in simulation using the dedicated physics plugin explained
in Section 3.2. We used 24 ping-pong balls, a water of -
8 cm from the edge of the tank, and a pump power of
69 %. At this point the development of the flow field in
simulation is frozen. Originally, we first applied the opti-
mization to the case of floating ping-pong balls trajectories.
The optimized parameters were then used as a starting point
for the optimization involving the Lily robotic modules.
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(a) (b)

Figure 6: Lily modules experiment:(a) Optimizing for the fitness function throughout the PSO algorithm iterations. (b) Comparison
of simulated and real MSD data.

Table 1
PSO algorithm parameters and optimized physics-based model parameters for simulated and real experiments with ping-pong
balls and Lily robotic modules.

Floating
blocks

Dimensions Iterations Swarm size Kv KF �stocℎ Dlinear Dangular

Ping-pong
balls

5 30 47 1.24 2.266 195.25 0.3483 0.2476

Lilies 5 100 47 1.365 0.442 126.82 0.332 0.12

In this further optimization process, however, the objective
was to match the MSD values obtained from experiments
involving both real and simulated Lily robotic modules. The
parameters used for these simulations are shown in Table 1.
We later discovered that the optimization process was robust
enough to allow for a procedural simplification.We therefore
directly optimized the model parameters for the case of the
real and simulated trajectories of Lily robotic modules, as
depicted in Figure 5.

We used 15 Lily robotic modules for capturing real
trajectories. The water level and pump power were the same
as before, namely -8 cm and 69%, respectively. The PSO
results as well as the resulting matching MSD are shown in
Figure 6 and the used simulation parameters as well as the
optimized model parameters are listed in Table 1. It can be
seen that the MSD curves from the simulated and real Lily
robotic modules have a close matching using the optimized
model parameters. As a further validation step, we compared
the normalized mean velocities in x and y directions as
depicted in Figure 7, where the data was extracted from 10
minutes of experiment using 24 ping-pong balls.

5. Model-Based Control of Self-Assembly
Depending on the capabilities of the self-assembly build-

ing blocks and the controlability of the environment, a range
of fully distributed to fully centralized control approaches

may be employed. The control approaches aim to guide the
self-assembly process towards building the desired target
structure efficiently. The efficiency of a control approach can
be measured considering two metrics, the rate and the yield
of the controlled process. The assembly yield at each time
is the number of copies of the target structure assembled
at that time. The final yield is at a point in time when the
experiment is halted. The assembly rate indicates the rate at
which the process progresses towards building copies of the
target structure. The problem of designing control strategies
for self-assembling robotic systems has been traditionally
studied in a very abstract way. In one of our previous
contributions [8], we addressed the problem of designing
ruleset controllers directly applicable to robotic modules
rather suited only for abstract bodiless modules. Here, we
aim to present a method for optimizing the parameters of
such rulesets, namely the probability associated with the
execution of each rule. To this end, we need to understand the
functionality of the system as well as its dynamics and have
accurate models of the system dynamics at hand. In our self-
assembling system of Lily robotic modules, the process of
assembling a given desired target structure can be influenced
mainly by two factors. First, by tuning the program, i.e.
the embedded ruleset controller, governing the assembly
decisions of the robotic modules and second, by tuning the
flow in the environment moving the robotic modules around.
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Figure 7: Comparison of real (top row) and simulated (bottom row) mean velocity. The data is extracted from 10 minutes of
experiment using 24 ping-pong balls.

In the current work, we consider a fixed agitation mode in
the system, i.e. the one for which the calibration procedure
has been carried out as explained in the previous sections,
and focus our optimization task on finding optimal ruleset
parameters.

Forming a target structure by a swarm of Lilies involves
several aspects. Given a target structure, an appropriate
behavioral ruleset is programmed on all robots through
wireless bootloading. The robots EPM latches are by default
enabled, resulting in a default latching upon meeting another
robot. Once latched, the EPM-to-EPM inductive commu-
nication channel is physically established. The robots then
exchange their internal states and look for an applicable rule
in their ruleset. The ruleset contains interaction rules similar
to chemical reactions, with the left-hand side representing
the current self-state and the neighbor-state, and the right-
hand side representing the corresponding updated states. If
no applicable rule is found, the robotic modules will unlatch
by switching off their EPM latches; otherwise, they remain
latched and update their internal states accordingly. Each
Lily then updates the base station with its new internal state
over the radio. This information can then be used to log the
experiment and also as the ground truth for validating the
models of the system. In addition to event-based reporting
of their internal state, Lilies periodically communicate to
the base station to check for pending commands such as a
query about the battery voltage level or the internal state,
a command for pausing the experiment, or a command for
turning the robotic modules off. This scheme allows the
robotic modules to spend most of their time in sleep mode or
having the power-hungry radio transceiver off, thus resulting

in an extended battery life. The commands from the base
station can be as well used to modify the robotic moules’
behavioral ruleset on the fly.

5.1. Synthesizing Structures of the Rulesets
We employ a dedicated software framework which al-

lows for automatically synthesizing rulesets which are di-
rectly programmable on the robotic modules [8]. The frame-
work is based on an extended graph grammars formalism
and generates rulesets based on a geometrical description of
the desired target structure, a specified synthesis algorithm,
and the geometry of the robotic modules. The synthesized
rulesets include two types of rules, forward and reverse
rules. The forward rules advance the assembly process for-
wards by having a larger assembly form as a result of the
execution of the rule. The reverse rules break down an
assembly into smaller ones, essentially reversing the effect of
a forward rule. For any forward rule in the ruleset there exists
a corresponding reverse rule, reversing the effect of that rule.
The significance of the reverse rules is in providing a method
for avoiding deadlock situations in the system, where as a
result of the modules having only partial information about
the state of the system, several partially built copies of the
target structure may co-exist, essentially competing with one
another rather than contributing to the completion of a copy
of the target structure. Probabilistic execution of the reverse
rules allows for avoiding deadlock situations and achieving
the target structure with probabilistic guarantees[1]. It is
these probabilities which we intend to optimize in the fol-
lowing sections.
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Figure 8: Diagram of the overall software framework. The “synthesis algorithm" block may utilize different rule synthesis algorithms.
In the current work SingletonR synthesis algorithm has been used from [8].

Structurally, the synthesized rules describe two interact-
ing modules’ states using a combination of a control state
variable and a relative hop number. The idea is that the
robotic modules can only take part in a reaction defined by a
certain rule if they have the right control state and are partic-
ipating in the reaction with the appropriate orientation. Once
a latching connector is engaged, the module communicates
its internal state in the form of a relative extended label of
l = (la, lℎ) with la being the module’s control state and lℎ
being a relative hop number which represents the relative
orientation of the currently engaged connector with respect
to its predecessor, assuming a CCW hop convention. For
a module with an internal state of (la, ln) and N connec-
tors, the relative hop number is calculated as lℎ = [(ln −
lc)modN] + 1, where ln and lc are the indexes of the most
recently and the currently engaged connectors, respectively.
For an isolated module the connectors are anonymous in
terms of interaction possibilities, thus lℎ = 0.

Assuming that Lilies are all initialized with a state of
(0, 0), the rulesets �S− and �S+ shown below synthesized by
the SingletonR algorithm in [8] allow for formation of a
chain shape and a cross shape as depicted in Figures 9 and
11, respectively. The S index indicates a serial assembly
strategy induced by the rulesets, meaning that each assembly
step proceeds by having exactly one isolated robotic module
joining the growing structure. The forward rules, r1 to r4,
advance structure formation, while the backward rules, r̄1 to
r̄4, allow for avoiding deadlocks.

The resulting rulesets are typically not easy to under-
stand at first glance. Here, we provide additional explana-
tions and visualizations in order to bring further intuition on
their operation. Consider the �S− whose SA progress course
using five Lily robotic modules is visualized in Figure 9. The
values of lℎ = 3 on the Left-Hand-Side (LHS) of the rules
dictate two hops on the link slots between the successive
latching events, resulting in a linear structure considering the
square-shaped modules. The reverse rules all have lℎ = 1 at
the LHS, indicating that the rule’s corresponding interaction
happens at the link slot engaged the latest.

�S− =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(0, 0) (0, 0)
r1
←←←←←←←←→ (1, 1) − (2, 1)

(1, 3) (0, 0)
r2
←←←←←←←←→ (3, 1) − (4, 1)

(4, 3) (0, 0)
r3
←←←←←←←←→ (5, 1) − (6, 1)

(6, 3) (0, 0)
r4
←←←←←←←←→ (7, 1) − (8, 1)

(1, 1) − (2, 1)
r̄1
←←←←←←←←→ (0, 0) (0, 0)

(3, 1) − (4, 1)
r̄2
←←←←←←←←→ (1, 3) (0, 0)

(5, 1) − (6, 1)
r̄3
←←←←←←←←→ (4, 3) (0, 0)

(7, 1) − (8, 1)
r̄4
←←←←←←←←→ (6, 3) (0, 0)

�S+ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(0, 0) (0, 0)
r1
←←←←←←←←→ (1, 1) − (2, 1)

(1, 2) (0, 0)
r2
←←←←←←←←→ (3, 1) − (4, 1)

(3, 3) (0, 0)
r3
←←←←←←←←→ (5, 1) − (6, 1)

(5, 4) (0, 0)
r4
←←←←←←←←→ (7, 1) − (8, 1)

(1, 1) − (2, 1)
r̄1
←←←←←←←←→ (0, 0) (0, 0)

(3, 1) − (4, 1)
r̄2
←←←←←←←←→ (1, 4) (0, 0)

(5, 1) − (6, 1)
r̄3
←←←←←←←←→ (3, 3) (0, 0)

(7, 1) − (8, 1)
r̄4
←←←←←←←←→ (5, 1) (0, 0)

Consider the �S+ whose SA progress course using five
Lily robotic modules is visualized in Figure 11. Each square
represents a Lily, labeled with its internal state la value in
the middle. The most recent engaged link slot is indicated
with a blue mark, while the relative hop numbers of lℎ are
shown on the modules’ sides. For each Lily, numbering the
slots always starts with lℎ = 1 at the most recently engaged
slot and follows a CCW convention. Note that the synthesis
algorithms only generate the rules; appropriate probabilities
should be associated with forward and reverse rules in order
to allow the system to recover from deadlocks, while reliably
forming the target.

5.2. Optimizing Parameters of the Rulesets
Assuming a stable final target structure, the probability

associated with the backward rule r̄4 dissociating the fully
formed target structure is set to zero. As a result, there are
three ruleset parameters to be optimized, namely the p1,
p2, and p3, associated with r̄1 to r̄3 backward rules. The
optimization is done independently for each of the rulesets
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Figure 9: Progress of the SA process for the chain shape target structure employing �S−. The latest engaged latching connectors
on the modules are highlighted with a blue mark, while the relative hop numbering starting at the most recently engaged latching
connector are shown on the sides of each module.

(a) (b)

Figure 10: Chain shape target structure comprising five Lilies: (a) Evolution of the fitness function throughout iterations of the
PSO algorithm. (b) Comparison of ruleset performance for optimized vs empirically selected parameters.

and its corresponding target structure. The forward rules are
chosen to be executed with probability 1, meaning that if
there is a chance for the right configuration to form upon
collision of two Lilies, it will form and the assembly will
proceed.

Similar to the case of the model calibration, we use a
PSO algorithm to optimize the ruleset parameters so that
a fitness function is minimized. In order to cope with the
stochasticity in the system, we use the same noise-resistant
version of PSO as explained in Section 4.1. The PSO param-
eters of inertia, personal best coefficient, and global best co-
efficient are set to 0.1832, 0.5287, and 3.1913, respectively.
No particular attempt to optimize the PSO parameterization
was carried out. Each particle has a dimension of three
corresponding to the three ruleset probability parameters.
A total of 15 particles are evaluated over 20 iterations.
As we use a noise-resistant variant of the PSO algorithm,
each particle is evaluated twice and the fitness value is
averaged. The total number of evaluations therefore sums up
to 600. Each evaluation runs aWebots simulated world of the
system with 15 Lily robotic modules programmed with the

ruleset corresponding to the particle being evaluated. The
maximum achievable yield is three for our target shapes of
size five and the simulated world is evaluated over a period
of 4 hours or 14400 seconds, denoted as Tsim. The system
trajectory is thus evaluated for an overall duration of 2400
hours of simulated time. We run the simulations on a cluster,
engaging 15 nodes at a time each node comprising an Intel
Xeon E5620 processor of 8 cores, with each node running
one instance of the simulated world. In this configuration,
600 evaluations of the system trajectory each for a duration
of four hours takes a total of about 28 hours wall-clock time.

The fitness function that we employ aims to maximize
the assembly rate while achieving the highest yield possible.
It is defined as the sum over an array {ΔT i}Ni=1 whose
elements are initialized with Tsim, whereN is the maximum
yield or the total number of copies of the target structure
achievable in the system. The ntℎ element in the array corre-
sponds to the formation of the ntℎ copy of the target structure
and is the time elapsed between the formation of the (n−1)tℎ
and ntℎ copies of the target, provided that the event occurs
within the simulation duration. The first element stores the
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Figure 11: Progress of the SA process for the cross shape target structure employing �S+. The latest engaged latching connectors
on the modules are highlighted with a blue mark, while the relative hop numbering starting at the most recently engaged latching
connector are shown on the sides of each module.

time until the formation of the first copy of the target since
the beginning of the simulation. Mathematically, we can
formulate the fitness function as below, where N is the
maximum yield.

F itness =
N
∑

i=1
min(ΔT i, Tsim) (10)

Figure 10 shows the results of the optimization process
and a comparison of the optimized rule parameters with an
empirically chosen set of parameters for the chain shape
target structure. The evaluations of the best set of parameters
and the empirically chosen set of parameters are carried
out for 15 runs. The optimized set of parameters for p =
[p1, p2, p3] as well as the empirically set ones are po =
[0.4796, 0.4203, 0.0016] and pe = [0.01, 0.005, 0.000025],
respectively. The choice of pe is simply based on the intuition
that the more advanced the structure the more stable it must
be and also that the formation of the dimers should be quite
stable. It is interesting to note that while the optimized rule
probabilities achieve a significantly higher assembly rate,
the overall assembly yield is eventually higher for the case
of empirically chosen parameters. The crossing of the two
curves highlights two points. First, it highlights a feature of
our specific choice of fitness function which seems to favor
achieving a higher rate over actually building the maximum
number of targets. A different fitness function might lead to
optimized parameters which allow improved rate and yield
compared to the empirical choice. Second, in the case that
no such fitness function exists, this motivates employing a
hybrid strategy where the two sets of rule probabilities po
and pe are used during the assembly process, depending on
the number of copies of the target structure formed in the
system.

Figure 12 shows the results of the optimization process
and a comparison of the optimized rule parameters with
an empirically chosen set of parameters for the cross shape
target. The evaluations of the best set of parameters and the
empirically chosen set of parameters are carried out for 15
runs. The optimized set of parameters for p = [p1, p2, p3]
and the empirically set ones are po = [0.4857, 0.4086, 0] and
pe = [0.01, 0.005, 0.000025], respectively. Here again the

choice of pe is simply based on the intuition that the more
advanced the structure the more stable it must be and also
that the formation of the dimers should be quite stable. For
the case of the cross shape target structure, the optimized set
of parameters allows for a higher rate and yield compared to
the empirically set parameters.

6. Discussion and Conclusion
In this paper, we addressed the problem of designing and

calibrating accurate physics-based models of self-assembly
of floating modules in a fluidic environment, subsequently
exploited for designing model-based control strategies for
the system. In particular, we considered the case of our
fluid-mediated self-assembling robotic system built around
the water-floating Lily robotic modules which rely on the
surrounding environment for their mobility. The fluidic flow
in the environment is created by several peripheral pumps
on the fluidic tank. The self-assembly process in the system
was guided towards achieving a global target structure in
a distributed fashion by means of appropriate ruleset con-
trollers programmed on the robotic modules. The robotic
modules maintained an internal state corresponding to their
local perception of the progress of the self-assembly process.
The ruleset controller programmed on themodules regulated
the outcome of the random interactions between two robotic
modules and was characterized by specific rules as well as
their associated parameters of execution. Given a desired
target structure composed of several robotic modules, the
rules, constituting the structure of a ruleset, were synthe-
sized using a formal framework developed in one of our
previous works. The framework essentially compiles the
desired target structure into a set of assembly steps. Finding
optimized ruleset parameters is then realized by exploiting
the physics-based model of the system, ultimately resulting
in a nonconventional model-based control approach.

The primary and main contribution of this work is intro-
ducing a method for designing and calibrating a lightweight
physics based model of a fluid-mediated self-assembling
system of robotic modules. To this end, we first recreated
our robotic modules’ hardware and firmware in a simu-
lated world using the Webots robotic simulator. We then
developed a dedicated physics plugin to apply appropriate
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(a) (b)

Figure 12: Cross shape target structure comprising five Lilies: (a) Evolution of the fitness function throughout iterations of the
PSO algorithm. (b) Comparison of ruleset performance for optimized vs empirically selected parameters.

hydrodynamic forces on the simulated robotic modules. In
particular, we introduced a novel method for automatically
calibrating the model parameters employing a PSO algo-
rithm. The secondary contribution of this work is using the
calibrated physics-based model of the system in order to
optimize ruleset controllers for the robotic modules in order
to achieve a desired target structure. This was motivated by
the fact that the physics of the system, in particular, the
mixing created by the agitation in the environment, plays a
key role in the progress of the assembly process. As a result,
the performance of a ruleset controller can only be reliably
evaluated and subsequently optimized by observing the real
physical system or a faithful simulation model of it.

The strengths and limitations of our proposed approach
can be summarized as follows. For a given agitation mode in
the fluidic arena, our model design and calibration approach
results in a computationally lightweight but accurate model
of the system which can in turn be used to evaluate the
efficiency of control strategies. The reduced computational
cost of the model makes it particularly suitable for use
in combination with metaheuristic optimization procedures
where numerous evaluations of the system trajectory are
necessary. Our current method for optimizing the ruleset
controller considers first synthesizing the rules based on the
given desired target structure and then generating optimized
rule probabilities through exploitation of a previously cal-
ibrated physics-based model. In general, for a given target
structure several assembly strategies, or equivalently, several
rulesets guaranteeing the creation of the target structures
exist. By fixing the ruleset prior to performance evaluation
under realistic conditions we are probably limiting the over-
all assembly performance. A more general approach for op-
timizing ruleset controllers would be to simultaneously opti-
mize the actual rule ensemble (among themultiple candidate

rulesets ensuring the creation of the targeted structure) and
its parameters.

Future work will be followed on several fronts. In addi-
tion to investigating the simultaneous optimization of ruleset
selection and rule parameters mentioned above, we intend
to leverage the same modeling approach to investigate and
optimize more sophisticated control strategies involving a
combination of distributed and centralized control for the
robotic modules and the agitation, respectively. Finally, last
but not least, a validation of our optimized control solutions
with real Lily robotic modules will be needed.
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