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Abstract

This paper presents a literature survey and a comparative study of Bug Algorithms, with the goal of investigating their
potential for robotic navigation. At first sight, these methods seem to provide an efficient navigation paradigm, ideal
for implementations on tiny robots with limited resources. Closer inspection, however, shows that many of these Bug
Algorithms assume perfect global position estimate of the robot which in GPS-denied environments implies considerable
expenses of computation and memory – relying on accurate Simultaneous Localization And Mapping (SLAM) or Visual
Odometry (VO) methods. We compare a selection of Bug Algorithms in a simulated robot and environment where they
endure different types noise and failure-cases of their on-board sensors. From the simulation results, we conclude that
the implemented Bug Algorithms’ performances are sensitive to many types of sensor-noise, which was most noticeable
for odometry-drift. This raises the question if Bug Algorithms are suitable for real-world, on-board, robotic navigation
as is. Variations that use multiple sensors to keep track of their progress towards the goal, were more adept in completing
their task in the presence of sensor-failures. This shows that Bug Algorithms must spread their risk, by relying on the
readings of multiple sensors, to be suitable for real-world deployment.
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1. Introduction

Robotic indoor navigation of robots has been a sought-
after topic for the last few decades within the robotic
community. An important stimulus for this interest is
its potential for a wide range of scenarios, e.g. search-
and-rescue, greenhouse observation, industrial inspection.
Indoor navigation also comes with a wide range of issues,
such as the absence of a reliable GPS-signal and wall in-
terference in long-range communication. An indoor robot
should preferably be autonomous and able to navigate
based on its on-board sensors and computational capac-
ity.

There has been tremendous progress in autonomous
robotic navigation, up to a point that some researchers
believe this to be an already solved problem. With the
emerging autonomous cars, simultaneous localization and
mapping (SLAM) has reached high maturity in develop-
ment (see Bresson et al. (2017) for a review). SLAM is
a notoriously complex and expensive algorithm, consum-
ing much of the robot’s on-board progressing power. To
strive towards computationally efficient methods is advan-
tageous for any robot, but it becomes vital when the ap-
plication requires the use of tiny, light-weight robots. For
instance, small Micro Aerial Vehicles (MAVs), in the order
of 50 grams and 15 cm diameter, could be ideal for explor-
ing small and confined spaces. However, their on-board
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Figure 1: An example of an agent performing a Bug Algorithm-like
behavior, while navigation in a indoor environment. From a starting
position (bottom-right), it moves towards the target (top-left), where
it tries to move towards the target whenever it can, and follows the
obstacles’ boundary when it hits an obstacle. Its trajectory is given
in green.

computational resources are so limited that currently they
cannot make use of SLAM methods.

Given these strict computational requirement for tiny
robotic platforms, an important question is raised: does
the actual simple principle of navigation, going from point
A to point B, need the computational and memory require-
ments for constructing and maintaining high-resolution
metric maps? Should the complexity of the strategy not
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be proportional to the simplicity of the task?
There are several light-weight alternatives to SLAM to

consider, such as Topological SLAM (see Boal et al. (2014)
for a review). Biologically inspired techniques like the
Snapshot Model (Cartwright and Collett (1983)) and the
Average Landmark Vector (Lambrinos et al. (2000)) can
also be considered. These efficient methods, however, still
have the tendency to scale up the memory requirements,
when navigating in a more complex and large environ-
ments.

In this article, we will look at a navigation method of a
different kind: Bug Algorithms. Although the name sug-
gests a biological origin, it is a path-planning technique
that evolved from maze-solving algorithms. The main
principle of Bug Algorithms is that they do not know the
obstacles in their environment and only know their target’s
relative position. They will locally react only upon con-
tact with obstacles and walls, in a way that lets the agents
progress towards their goal, by following the obstacle’s
boundaries (”wall-following”), as illustrated in Fig. 1. The
nature of Bug Algorithms is ideal for indoor navigation on
tiny, resource-limited, robotic systems, as their potential
memory and processing requirements are low, therefore ex-
pected to take up little space on the on-board computer.
This will free up resources for other tasks/behaviors.

In this paper we will delve into Bug Algorithms in more
detail, by providing an overview of the techniques existing
today. There have been two comparative studies on Bug
Algorithms before (Noborio et al. (2000), Ng and Bräunl
(2007)), however the biggest difference is that we will eval-
uate how suitable Bug Algorithms are in becoming a new
navigation standard within robotics. Here we will look
into the assumptions made about the environment and we
will evaluate whether they are realistic. An important con-
clusion of our study is that Bug Algorithms tend to heav-
ily rely on a perfect position estimation, which cannot be
taken for granted in a GPS-deprived indoor environment.
Global positioning systems could be set up beforehand,
such as a motion capture or Ultra-Wide-Band (UWB) lo-
calization system (like in Mueller et al. (2015)). However,
in cases like search-and-rescue scenarios, it is undesirable
to have humans prepare the robot’s environment. The
robots would need to rely on their estimated position, ob-
tained by their own, noisy, on-board sensors.

We will compare a representative subset of Bug Algo-
rithms in the ARGoS simulator, which is capable of mod-
eling realistic physical interactions with objects in the en-
vironment. Although we will not implement as many Bug
Algorithms as Ng and Bräunl (2007) did, we will test them
in more realistic real-world conditions, containing elements
such as odometry-drift or recognition-failures. We investi-
gate their behaviors on hundreds of procedurally generated
indoor environments, to compare their performance statis-
tically. Here it is shown that the increased measurement
noise on the on-board sensors causes a dramatic drop in
overall performances of the Bug Algorithms. We will dis-
cuss how this affects the potential of Bug Algorithms in

robotic navigation and what type of assumptions we can
make about the environment, which can point us to the
variations that are the most suitable.

An overview of Bug Algorithms is given in section 2,
starting from their ”maze-solver” origins, to the funda-
mental contact-based Bug Algorithms, to the more recent
extended range-based versions and hybrid solutions. This
is followed by a sum-up of the methods already used in
robotic navigation in section 3. Subsequently, we perform
a quantitative comparison of the Bug Algorithms perfor-
mances, of which the setup is explained in section 4. The
experiments themselves are discussed in section 5, and in-
volve various degrees of sensor-noise and -failures. The
findings of this paper will be discussed in section 6, from
which we will present our conclusions in section 7.

2. Theory and Variants of Bug Algorithms

The late 80s is when the term Bug Algorithms first came
into existence, evolving from the existing path planning
algorithms like Dijkstra (Dijkstra (1959)) and A* (Hart
et al. (1968)). However, the latter methods need to know
their environment in advance, which includes start and
goal positions, all obstacles and their position along the
way. With this information, they need to find the quickest
path from A to B within a predefined scenario1. But yet,
what if the location, size, shape and the amount of those
obstacles are not known?

2.1. Origins: Maze solving algorithms

Maze-solving algorithms first explored the navigational
problem without knowledge about the environment, for
enclosed spaces with walls and only one entrance and exit.
The random-walker algorithm is the simplest technique
to solve a maze (Evans (2017)). It moves in a straight
line until it encounters an obstacle. At that point, it will
choose an arbitrary and oblique direction to go to next.
Luck determines the random walker’s success and it could
take a significant amount of time before the exit is reached.

If the target is reachable through a series of intercon-
nected walls, a wall-follower would guarantee a quicker so-
lution than the random mouse (Mishra and Bande (2008)).
Its left or right side must be in contact with the bound-
ary of the obstacle or wall while it moves towards the exit.
However, if the environment is not an interconnected maze
and contains disjoint obstacles between the start- and end-
location, the wall-follower might get stuck in an endless
loop.

The Pledge algorithm can handle a maze with disjoint
walls (Abelson and DiSessa (1986))2. The Pledge-agent
will first commit (”pledge”) to a fixed oblique direction
in heading and moves there in a straight line. If it hits

1Also called the ”piano movers problem”
2The Pledge algorithm was originally intended as a mathematical

educational tool
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Figure 2: The behavior of simple Bug Algorithms: a) Com, b) Bug1
and c) Bug2. The S and T depicts the start and target position
respectively.

an obstacle, it will adapt a wall-following behavior, while
monitoring the changes in heading. If the angular sum of
its heading, with respects to its initially committed head-
ing, returns to 0◦(here not equivalent to 360◦), the Pledge
algorithm will leave the obstacle at that point and con-
tinue to follow the original direction it started out with.
This enables the Pledge agent to also handle mazes with
disjoint walls, which is an improvement from the simple
wall-follower. However, this algorithm will by itself not
move directly towards the exit, as it does not have any
knowledge of where it is. If, for instance, its final goal is a
fixed position located in an wide open space, the Pledge-
algorithm could miss it entirely.

2.2. Contact Bug algorithms

Typical indoor environments have corridors, rooms and
disjoint obstacles, where Bug Algorithms (BAs) should be
able to solve the path planning problem. Lumelsky and
Stepanov (1986) are the pioneers in developing this new
technique. At first, they described a very simplistic BA,
called the ”common sense algorithm” which can be ab-
breviated as Com. Fig. 3(a) shows a state machine of the
BA, where it will move towards the target whenever it can.
This results in the behavior illustrated in Fig. 2(a). The
position where a BA hits the obstacle for the first time is
called a hit-point, and it has a leave-point as soon as the
direction to the target is free. Intuitively, Com could solve
many situations; however, Lumelsky and Stepanov (1986)
pointed out that there are scenarios in which it cannot
reach the goal. This happens when introduced to a more
complex environment as, for instance, the one illustrated
in Fig. 4(a).

In the same paper of Lumelsky and Stepanov (1986), the
Bug1 algorithm was introduced, following a different strat-
egy to overcome the issues that Com is facing (see Fig. 3(b)
for its state machine). Every obstacle Bug1 comes across,
it first has to ”explore” the obstacle by following its entire
border, while simultaneously keeping track of which posi-
tion is the closest to the target, as shown in the simple
environment in Fig. 2(b). After it encounters its original
hit-point, Bug1 will continue and move towards the po-
sition closest to the target, from which it will leave the
obstacle. The path length will therefore never exceed the
limit: P = d(S, T ) + 1.5 ·

∑
pi, where P is the total
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Figure 3: Bug algorithm state machines. The S and T represent the
start and target position respectively. Oi is the i-th obstacle that the
bug hits and Li and Hi is the i-th leave- and hit-point, respectively.
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Figure 4: Generated paths by the Bug Algorithms (a) Com, (b)
Bug1, (c) Bug2, (d) Com1, (e) Alg1, (f) Alg2, (g) DistBug, (h)
Rev1 and (i) Rev2 in a more challenging environment. The S and
T depicts the start and target position respectively and Hi means
the ith hit-point. x is the current position of the agent and CW and
CCW stand for Clock Wise and Counter Clock Wise respectively.

path length, d(S, T ) the direct distance between the start
(S) and target (T) location and pi is the length of the
boundary of the ith obstacle. Bug1 is able to handle en-
vironments where Com failed (as seen in Fig. 4(b)); how-
ever, it is a less intuitive approach. As it needs to know
the entire border of the obstacle, this will naturally create
unnecessary long paths.

Lumelsky and Stepanov (1987) recognized the non-
optimal path-lengths of Bug1, and therefore proposed an
alternative: Bug2. Between the beginning and end posi-
tion, an imaginative line is drawn, called the M-line (see
Fig. 3(c) for Bug2’s state-machine). In the simple scenario
of Fig. 2(c), this means that the bug will follow the obsta-
cles border until it hits the same M-line at the other side.
As long as that point is closer towards the target than
the hit-point’s position, it will depart from the obstacle.
This reduces the maximum possible BA’s path length to
P = d(S, T )+1·

∑
pi, which is also illustrated by Fig. 4(c).

Sankaranarayanan and Vidyasagar (1990) still found
scenarios in which Bug2 would still produce an unneces-
sary long path. According to them, it is because of its
incapability to store and compare previous visited points
along the obstacle’s boundary. They extended the Bug2
algorithm with the following principle: to change its wall-
following direction if it comes across a previously visited
hit-point along the border of the obstacle. It has been

dubbed as Alg1, which can be seen in Fig. 3(d). It is true
that in some situations a shorter path will be generated,
however Alg1’s maximum possible path length is longer:
P = d(S, T ) + 2 ·

∑
pi. Fig. 4(e) shows an example of its

behavior in a complex environment.
Sankaranarayanan and Vidyasagar (1990) also ex-

pressed interest for the intuitive method Com, as it does
not exploit the restrictive M-line, but leaves the bound-
ary as soon as there is a free space between the BA and
the target. They suggested an extended version of Com,
Com1 3, which remembers the previous hit-point’s distance
to the target. Com1 will utilize this as an extra argument
in his state-machine (Fig. 3(d)), to initiate the departure
from the obstacle boundary, as seen in Fig. 4(d). Based
on Com1, Alg2 was created in the same paper of Sankara-
narayanan and Vidyasagar (1990) as well, where it, similar
to Alg1, reverses the wall-following direction if it encoun-
ters a previous saved hit-point (Fig. 3). Alg2 therefore
needs to keep track of all previous hit-points on its way
for the reverse local direction condition, as it this will oc-
casionally occur (Fig. 4(f)).4

Kamon and Rivlin (1997) created a BA quite similar
to Alg2, DistBug5. The only difference is that it will not
remember the positions of all the previous hit-points, but
solely the last one, therefore making it more memory effi-
cient. Another intriguing aspect of DistBug, is that there
is no fixed initial local wall-following direction along the
boundary of the obstacle, as it depends on the orientation
on which the BA touches the hit-point. Most times, this
will naturally lead it to the target and result in a shorter
path, which is noticeable in the environment illustrated in
Fig. 4(g). However, there are situations where such a pol-
icy will fail, as in Fig. 5(a). At the first hit point, it would
be better to follow the wall in the other direction.

An extension to both Alg1 and Alg2 was proposed by
Horiuchi and Noborio (2001), named Rev1 and Rev2 re-
spectively. Both BAs will alternate their local direction
at each (new) hit-point, which is a good strategy for en-
vironments like in Fig. 4(h) and (i). Rev1&2 save the
chosen local direction and its associated hit-point in a list.
If these locations are revisited again, the bug algorithm
will chose the opposite local direction than the one stored.
However, the ”best” choice for the local wall-following di-
rection is not trivial. Fig. 5(b) and (c) show a situation
where alternating the local wall-following direction is not
the best policy. One may argue that the shown case is dis-
advantageous to Rev1 and Rev2, as they do not encounter
any previous hit-points on their path. However, the exam-
ples does show that the best choice of local direction de-

3This is also being referred to as Class1 in the studies of Noborio
et al. (2000) and Ng and Bräunl (2007)

4 The statemachine of Com, Com1, Bug2, Alg1 and Alg2 are also
available as pseudo code in appendix A, as they will be implemented
later in this paper for the comparative study.

5Here we are revering to the extended DistBug algorithm of the
same paper, with the search manager and local-direction choice based
on the slope of the wall.
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Figure 5: An alternative complex environment to show a case that
would produce a long path-length for a) DistBug, b) Rev1 and c)
Rev2.

pends on the environment. It is, therefore, difficult to find
a generic strategy for determining the best wall-following
direction.

2.3. Bug Algorithms with a Range Sensor

What if the robot is able to sense obstacles already at a
certain range and therefore act before touching the obsta-
cles physically? Lumelsky and Stepanov (1986) already
mentioned this idea in their first paper, which has been
materialized in Lumelsky and Skewis (1988) and Lumel-
sky and Skewis (1990) as VisBug 21 & 22. Both are based
on Bug2, but are also equipped with a range sensor able
to sense up to a given maximum range. The BA will still
follow the M-line but they can detect ”short-cuts” to the
next obstacle which should reduce the total path traveled,6

as can be seen in Fig. 6(a).
Kamon et al. (1996) introduced a successful version

of the range-based Bug Algorithms, called TangentBug.
Within the maximum range of its sensor, a local tangent
graph (LTG) is constructed, as illustrated in Fig. 6(b).
The LTG represents the discontinuities/borders of the de-
tectable obstacle field around the robot. It starts out by
moving towards the target while traversing the LTG edge
that results in the quickest path to the target (T ) from its
current position (x). This goes as follows:

i← argmini(Di) with (1)

Di = d(x,Oi) + d(Oi, T ) (2)

i = left, right (3)

, where Di is the distance of the agent towards the left
or right obstacle Oi (d(x,Oi)) plus the remaining distance
from that obstacle to the target d(Oi, T ). TangentBug will
always follow the LTG edge which is expected to result in
the smallest path towards the target. However, if D of that
edge increases, it will save the current range to the target
as a local minimum (dmin) and will continue following the
remaining boundary of that obstacle. If the robot senses a

6No indication of the path length is given here, however, of the
complexity, this will no longer be mentioned from here on in this
report.
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a) VisBug
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LTG

d(OL, T )

d(OR, T )

b) TangentBug

LeavePoint

S

T

dmin

c) Special Scenario
Tangentbug

Figure 6: The Bug Algorithms developed with obstacle detection
with range sensors: (a) VisBug and (b) TangentBug. The S and T
depicts the start and target position respectively. r stands for radius
of the range sensor. LTG stands for local tangent graph and OL

and OR stand for the left and right border of the detected obstacle
within the range sensor respectively. (d(OR, T ) and (d(OL, T ) stand
for the distance between the left and right obstacle boundary to the
target, respectively. (c) A close up of a scenario in which Tangent
bug is able to handle local minima.

node on the boundary of the obstacle that is smaller than
dmin, it trigger a leave-condition and, if possible, moves
directly to the target (see Fig. 6(c)). Kamon et al. (1999)
extended TangentBug to operate in 3D-environments as
well (3DBug).

TangentBug is probably the most referred work in the
field of BAsand many variants of it exists. The 360◦ range
sensor assumption is changed to a sensor with a lim-
ited field of view with WedgeBug (Laubach and Bur-
dick (1999)), for instance,to represent a stereo camera.
Magid and Rivlin (2004) developed a BA which will ac-
tively search for the right local wall-following direction, to
prevent a long-path length. Their CautiousBug will not
choose a direction based on the angle of attack on the hit-
point, as DistBug, but will first do a spiral search along
the border, with the hit-point in the center. A disadvan-
tage of this method seems that the spiral search by itself
will also produce a long path, therefore it has less of an
advantage over Tangentbug. A newer variation is Insert-
Bug by Xu and Tang (2013), which navigates by means of
way-points, placed on a safe distance from the obstacle’s
boundary. This could be seen as a version of TangentBug
that adds a safety margin to each obstacle detected.

2.4. Special Bug Algorithms

Some BAs either take a special approach or are com-
bined with other existing methods (HybridBugs). Lee
et al. (1997) used fuzzy logic with an adjusted Com
method, a.k.a FuzzyBug. Assuming the BA is equipped
with two single-beam sensors, pointed forward on both
sides, it can detect if an obstacle is closer to its right or
left. Based on a fuzzy membership function, FuzzyBug
decides to follow the obstacle’s boundary on its right or
left, which a similar approach to DistBug’s strategy.

Noborio et al. (1999) developed HB-I, which is another
HybridBug. After each hit-point of the obstacle, HB-I
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moves along the border in both directions until it hits a
corner. It will then select the best direction first, based
on the best-first search of a decision tree. Xu (2014) used
a different approach with RandomBug. Once it detects
an obstacle, it generates random points within the range
of its sensor. From these points, RandomBug selects the
optimal one, dependent on how close the point is to the
target, and generates a motion vector towards it. This pro-
duces a path quite similar to InsertBug, but the process is
highly related to rapidly-exploring random trees (LaValle
and James J. Kuffner (2001)).

Taylor and LaValle (2009) developed IBug, which is
short for Intensity-bug. Its only information about its tar-
get is a wireless beacon on the specified location, of which
it will navigate towards by means of the signal strength.
Since they assume that IBug can make use of a ”tower-
orientation” sensor, the agent will move towards the bea-
con location. When it does, IBug will temporarily save
the value of the intensity (iH) at that very moment. Here,
a high intensity (signal strength) means a short distance
to the target and a low intensity a large distance. While
the robot follows the obstacle’s boundary (always CW or
CCW), it compares the current intensity level with iH , as
well as the current intensity and of time-steps back. If
the signal strength decreases after increasing, the agent
will have detected a local minima and a leave-condition
is triggered, but only if the current measured intensity is
larger than iH . Although the leave condition is different,
the latter comparison of intensity levels at the hit- and
leave-points is quite similar in approach to Com1, with
intensities substituted for distances.

2.5. Overview Bug algorithms

The BAs discussed in the previous sections are visual-
ized in the overview of Fig. 7, where they are connected
based on their development and features.We subdivide the
algorithms in a few major categories. The main division
already started in the paper of Lumelsky and Stepanov
(1986), where they presented Com, Bug1 and Bug2. Com
led to a series of Bug Algorithms that navigated in an az-
imuth angle towards the goal whenever it had the chance
to do so. Hence, here we categorize them as Angle-Bugs.
Lumelsky and Stepanov (1986) realized that their next
creation, Bug1, would create long trajectories by default.
The community seems to have agreed as no extension or
variation of Bug1 was developed here after, so therefore
no similar Bug Algorithms has emerged since. Lumel-
sky and Stepanov (1986)’s alternative solution, Bug2, did
have more potential, so new variations of M-line-Bugs have
been presented, leading to a separate category of BAs.

Com is arguably the most simplest BAs, as it uses no
memory, nor determines any M-line. Although for some
simple environments this proved to be sufficient, Com has
a chance of never reaching its final destination in more
complex scenarios. With Com1, Sankaranarayanan and
Vidyasagar (1990) added a distance-based leave condition,
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Figure 7: An overview of all the discussed Bug Algorithms (BAs)
in section 2. These BAs are presented in a development tree of
increasing complexity. It makes a distinction between Angle-Bugs,
BAs that move to the target’s azimuth direction, M-line-Bugs, BAs
that use an M-line to navigate, and Range-Bugs, which use a range
sensor to detect obstacles. The BAs noted in a dotted circle are
special/ hybrid-bugs. The gray blobs indicate the type of memory
and leave-condition added to the method. The latter is only shown
until Rev1&2.

where it will only leave the obstacle if it reached a posi-
tion closer as it has been before. This requires Com1 to
remember what its latest closest distance was to the goal
and use it in the techniques’s leave-condition, which has
been adopted by the following BAs ever since.

Sankaranarayanan and Vidyasagar (1990)’s Alg1 and 2
are given additional memorization tasks. Not only do they
remember the previous minimal distance to the goal, but
all the hit-points’ locations in between as well. If Alg1&2
encounter one of those saved hit-points, they will reverse
the local direction of their wall/boundary-following. Hori-
uchi and Noborio (2001) went one step further and made
the Rev1&2 remember their last local wall-following di-
rection, together with the local direction chosen at each
hit-point, and alternates at each revisit. However, Dist-
Bug uses a more memory-friendly approach to determine

6



his local position, which is purely based on the detected
slope of the approached obstacle, which sets it apart from
Rev2.

Fig. 7 shows that BAs started to use range-sensors at one
point, creating the Range-Bugs category. Visbug21&22
were able to find shortcuts from the M-line to the ob-
stacle’s boundary. Both FuzzyBug and TangentBug used
their range-sensor to choose the expected best local di-
rection and guide the obstacle-following behavior and the
same holds for the many variants of TangentBug.

We make some general observations about the overview
in Figure 7. Firstly, there are more Angle-bug-based BAs
than M-line bugs. This is likely thanks to their more in-
tuitive and less restrictive navigation strategy towards the
target. Secondly, more and more features are added to
the BAs as time progresses. Each new BA builds on top
of an other, adding new leaving conditions and memory
capabilities, therefore increasing the bug’s complexity in
the hope to find more efficient paths. The sole exception
is the more recent Ibug, which is a more recent variation,
but is only one step away from Com1 in complexity.

3. Bug Algorithms for Robotic Navigation

The BAs presented in the last section are considered as
a potential new robotic path planning paradigm, because
of their simplicity and low memory footprint. We first
will discuss how the principle of BAs translates to realistic
operating conditions. Afterwards, existing BA robotic im-
plementations will be presented, discussing how well these
studies represent real-world scenarios.

3.1. Bug Algorithms in Real-World Conditions

In the earlier literature overview in section 2, it seems to
be the case that BAs heavily rely on perfect localization.
They almost all assume that the BA does not know the
exact location and shape of the obstacles, however they
almost all need to know the exact coordinates of their goal
position and their own position. The latter is used for more
aspects of BAs than first meets the eye:

• Angle Bugs (i.e. Com, Com1, Bug2, Alg2) need to
know the distance and azimuth angle to the target at
any point.

• M-line-Bugs (i.e. Bug2, Alg1, Rev1) both remember
the exact line (and direction) between the starting po-
sition and the goal, and recognize if they have reached
it.

• Hit-point memorizing BAs (i.e Alg1&2) need to match
their current position estimate with previously hit-
point coordinates.

In a typical indoor GPS-deprived environment, obtain-
ing and maintaining a world position is a significant chal-
lenge.. An external global localization system can be set
up (e.g. motion capture, UWB triangulation); however,

in many scenarios (e.g., in a search-and-rescue scenario)
there might not be the possibility or time to do this. Real-
world robots will need to rely on odometry, which is prone
to errors and has the tendency to drift in time from the
ground truth. With ground-bound robots, wheel slippage
(Borenstein and Feng (1996)) can cause an increasing error
between the real and estimated position. The same goes
for visual odometry (Scaramuzza and Fraundorfer (2011)),
used by MAVs or hovercraft-like vehicles, where the error
of the noisy velocity estimate will get accumulated over
time. This is especially the case in a texture-poor envi-
ronment.

Some BAs (i.e. Alg1&2 and Rev1&2) have to remem-
ber the exact coordinates of where they have been, which
ensures a convergence to the target. From a practical
perspective, this means that the robot needs to recognize
where it has been before. As stated earlier, this could be
done by odometry. On the other hand, a BA can recog-
nize its current position with the features of its surround-
ings. An omni-directional camera can observe the scene
which will be memorized with local feature descriptions as
SIFT (Goedemé et al. (2007)) or global scene descriptors
as Bag-of-Words (Fraundorfer et al. (2007)). It then has
to evaluate that template of features the entire time while
it is traversing along the border of an obstacle. As with
visual odometry, the descriptor’s performance depends on
the texture of the environment. Practically, this will take
up extra capacity of the on-board computer. On a limited
platform, this is something that is best avoided. More-
over, this principle tends to move towards the definition of
map-based navigation.

Most BAs use a Distance-to-Target (DT) measurement
in their leave-condition. Next to using the drift-susceptible
odometry, they could also retrieve the DT in ways such
as received signal strength intensity (RSSI) of BlueTooth
(Bargh and de Groote (2008)) or Ultra-Wide Band (UWB,
Guo et al. (2017)). This does of course require the place-
ment of a wireless transmitter at the target location.
Moreover, none of these sensors are perfect. DT estimation
by BlueTooth RSSI could get an error up to 2 meters and
can not practically determine a range from 5 meters on7

(Coppola et al. (2018)), which is influenced by the amount
of environment clutter. UWB has better statistics, with
a standard deviation of 0.2 meters and a maximum limit
up to 100 meters8, with less interference from walls and
obstacles in between. Even if the distance measurements
are very good, the higher energy expenditure of the latter
could be a valid reason to prefer the more energy efficient
BlueTooth dongle.

3.2. Existing Implemented Bug Algorithms for Robotic
Navigation

This section will look at current robotic BA implemen-
tation, either in a real world environment or a simulated

7This is based on a Bled112 Bluegiga Bluetooth module
8This is based on a DecaWave UWB module in ranging mode
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Table 1: Robotic implementations of various Bug Algorithms (BAs). These are evaluated on the type of platform used, whether the
environment was real or simulated and which BA type was used. Moreover, it shows the used local sensors for obstacle detection and the
used global sensor for a position estimate.

Paper Platform Environment Bug algo-
rithm

Local sensors Global sensors

Kamon and Rivlin (1997) Wheeled robot Real DistBug Range sensors Global localization
(system not given)

Laubach and Burdick (2000) Microrover Real RoverBug
(wedgebug
extended)

Stereo images Guiding operator
(First person view)

Mastrogiovanni et al. (2009) Wheeled robot
Hexapod robot

Real µNAV Ultrasound range sensor
Wheel odometry

Azimuth angle by
photo diodes
(only for hexapod)

Zhu et al. (2010) Wheeled robot Real Bug2 and a
DistBug vari-
ant

Laser scanner (180 deg) Global localization
(system not given)

Kim et al. (2013) Wheeled robot Real Tangentbug
(adjusted)

Ultrasound range sensor
Wheel odometry

Global localization
(system not given)

Taylor and LaValle (2014) Wheeled robot Real Ibug Touch sensors IR Beacon
Ebrahimi et al. (2014) Quadcopter Simulation UavisBug Camera Motion Capture Sys-

tem
Gulzar et al. (2015) Wheeled robot Real Not Given Ultrasound Motion Capture Sys-

tem
Marino et al. (2016) Quadcopter Simulation Bug2 Laser scanner (180 deg) UWB localization

scenario. An overview of these methods is presented in
Tab. 1, which lists the platform they used and shows the
sensors the robot was equipped with for local obstacle sens-
ing and global position estimations.

Kamon and Rivlin (1997) were one of the first to con-
sider more realistic sensors for the agents in BAs. With
DistBug, they showed, as one of the first, a BA imple-
mented on an actual wheeled robot, a Nomad200. In their
paper they mention that the robot, while moving to the
target, only responds to local measurements by the contact
sensors. However, the robot always moves towards the tar-
get after boundary following, therefore, it must also know
its own and the targets position in global coordinates. Al-
though the paper of Kamon and Rivlin (1997) has not
specified this, their BA would need to use a global local-
ization system.

Laubach and Burdick (2000) extended their earlier de-
veloped WedgeBug to RoverBug, for implementation on
a real-world micro-rover. It used a stereo camera to de-
tect and follow the obstacles. However, the initiative to
leave the obstacle to move towards the target is controlled
by a tele-operator, which monitors the rover through a
first-person-view image feed. Zhu et al. (2010), Kim et al.
(2013) and Gulzar et al. (2015) have implemented a BA
on autonomous real-world wheeled robots without a tele-
operator. In all cases, they were using single beam range
sensors and/or a laser scanner. Again, the exact location
of the robots is needed in order for the BA to move towards
the target. Unfortunately, the papers do not specify which
type of global localization system was used in their exper-
iments.

Mastrogiovanni et al. (2009) acknowledged that a robot
would not be able to know its exact position, but would
need to infer it from its noisy on-board sensors. They im-
plemented µNav on a real-world wheeled robot, AmigoBot

and a hexapod, Sistino. The first platform used ultra-
sonic sensors for obstacle detection and wheel-odometry
for global localization. Since the wheeled robot combined
its wheel-odometry with the azimuth angle toward the tar-
get, it could reach the target location from one room to
another, even if the orientation was manually perturbed by
the researchers. However, the operation area only spanned
across a few rooms and no notion was given of what the
navigational limit was, based on accumulated errors of
odometry drift. Their second robot, the hexapod, was
not able to use odometry, so the azimuth angle had to be
given by an external source through photo diodes.

Taylor and LaValle (2014) implemented IBug on a small
wheeled robot for several small-scale environments. In
their previous work (Taylor and LaValle (2009)), they de-
scribed the BA to be suitable for navigating towards a
single wireless beacon. Nevertheless, for the test on a
real robot, a Lego-Mindstorm-based platform, Taylor and
LaValle (2014) used an infra-red (IR) beacon instead. It
proved to be challenging for their tests to use the signal
strength of i.e. a WiFi beacon at a large range. The use
of the IR beacon did necessitate a constant line of sight,
which required the obstacles and walls to be lower than
the robot itself. Moreover, the IR sensor could detect a
low-resolution bearing towards the beacon, but not the dis-
tance towards it. This means is that the minimal-distance-
based leave-condition from IBug could not be used. Al-
though the tested environments did not require this extra
argument, it will be essential once loop-detection is re-
quired in more complex environments.

Marino et al. (2016), from the same group as Mastro-
giovanni et al. (2009), created a simulation of a MAV to
navigate through multiple floors. Bug2, enhanced with a
potential-field-based boundary following, is implemented
on the simulated quadcopter. The model was equipped
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with a 360◦ laser scanner and a salient cue sensor, which
is used to detect the target. For simulation it was assumed
that its exact location is known, referring to recent UWB
localization systems. Moreover, if the agent believes it is
at the right goal position but on a different floor, it will use
the Dijkstra method to compute the shortest path. This
is an interesting choice, as the original Dijkstra algorithm
does need to know the grid map of the environment and
its obstacles, which is opposite to the problem that BAs
intend to solve.

Another simulated MAV implementation by Ebrahimi
et al. (2014) assumes exact localization, mention a motion
capture system. They developed UavisBug for a simulated
MAV for visual guided navigation. The navigation strat-
egy exists in a 2D horizontal plane only and is quite similar
to Bug2. However, they combined the BA with SLAM for
the obstacle detection and boundary following, from which
they used a potential force field to navigate around the ob-
stacle. Even though, Ebrahimi et al. (2014) and Marino
et al. (2016) acknowledged the limited sensing, comput-
ing and energy capability of MAVs, they still combine the
efficient BAs with computationally-heavy navigation tech-
niques.

If we look at the existing implementations of BAs in
real or simulated robots, they all assume or need explicit
global localization, either by a UWB localization system,
a motion capture system or a guiding navigator, for the
exception of IBug, which used a visual beacon. Mastro-
giovanni et al. (2009) is actually the only one that used the
odometry of a (bigger) wheeled robot to recover its own
position and to update the azimuth angle towards the tar-
get; however, the real-life test was too small to draw any
conclusions about the suitability of BAs for robotic nav-
igation. In the comparative study, presented in the next
sections, we will test various BAs with varying amounts
of odometry drift, recognition failures and distance noise.
This will show that these real-world conditions will have
significant effect on the BAs’ performances.

4. Experimental Set-up Comparative Study Bug
Algorithms

In this paper, we study whether BAs could be used for
real-world robotic navigation. Most indoor environments
have more complex obstacle configurations than an open
environment with a few convex obstacles. There are many
situations where the robots could get stuck on their way,
particularly in rooms. In this section, we will present our
motivation for this study and the chosen set of BAs to be
evaluated. We will then provide the details of the simu-
lation used and the procedural environment generator for
typical indoor environments. Afterwards, the implemen-
tation specifics of the BAs will be presented, by explaining
a wall-following paradigm, which is the foundation for all
BAs to be implemented.

4.1. Motivation and Choice Bug Algorithms

There have been previous comparisons between the dif-
ferent BAs. In the paper of Noborio et al. (2000), Class1,
Bug2, Alg1, Alg2 and HB-I, of which the latter is of
their own making, were compared and evaluated on their
generated path-length within a complex maze. Evaluat-
ing four different starting positions, they concluded that
Class1 and Bug2 had the longest path-length and usually
could not complete the task within the required amount
of time. Alg1, Alg2 and in particular HD-I, had shorter
path lengths and all finished in time. However, they only
based their observations on just one indoor environment.

A newer comparative study was performed by Ng and
Bräunl (2007), on: Bug1, Bug2, Alg1, Alg2, DistBug,
TangentBug, OneBug, LeaveBug, Rev1, Rev2 and Class1.
They presented the BAs with four types of environments
and recorded the total path length for each run. They
concluded that in 3 of the 4 environments, Bug1 is the one
with the longest trajectory and Tangentbug is the fastest
out of the 4. However, for the other BAs, their perfor-
mance could not be adequately compared due to the in-
consistent results.

Here, we test the BAs in hundreds of procedurally gen-
erated environments, so we can statistically evaluate their
performances. Moreover, we also want to select a set of
BAs, from the literature review in Sect. 2, to be imple-
mented in a more realistic simulation environment. The
selection will not be as large as the selection of Ng and
Bräunl (2007) and Noborio et al. (2000), as we believe
that these will have similar effects on BAs that stem from
the same groups in the overview shown in Fig. 7. In the
overview of the BA-methods existing today (section 2.5),
it can be seen that many of the methods are natural in-
crements of one another with increasing complexity. If the
fundamental BAs can be tested with these real-world con-
ditions, we would automatically find the issues that their
descendants are facing as well.

Specifically, we have selected Com, Com1, Bug2 and
Alg1&2, based on the overview in Fig. 7. Range-bugs will
not be considered as these BAs are the base of those more
complex versions. Moreover, the selected BAs presents a
mix of different types of strategies (Angle-Bugs and M-
line-Bugs) and memory-use (distance and/or hit-points).
We will exclude bugs that determine a local wall-following
direction, as the policy for this choice is heavily influenced
by the structure of the environment, as previously dis-
cussed in section 2.2. Moreover, any special bugs will not
be considered as well, since they contain aspects and en-
hancements that no other BA-related research followed up
on.

4.2. Simulation and Procedurally Environment Generator

It is our ambition to test the earlier mentioned BAs in
a simulator with realistic and swift physics calculations.
ARGoS, a multi-physics robot simulator developed by Pin-
ciroli et al. (2012), is used for our comparative study. Its
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e) Divide rooms f) Create doors

a) Start corridor
agents

b) Corridor
generation

c) Final result
corridors

d) Create corridor
walls

Figure 8: The steps of the procedural generated environment method
will be explained here. The corridor-generating random agents (blue
circles) start in (a) at the same positions as the start and target
locations of the experiment. These will move forward in (b), while
occasionally turning left and right, while leaving a corridor trace (red
blocks). Once it reaches the corridor-density threshold in (c), the
corridors-cells are tested for interconnectivity, such that the target
position can be reached from the starting position (green circles).
The corridor walls are created in (d) and then, in (e), remaining
non-corridor spaces are then divided into rooms (purple stripes) and
random door-openings (gray blocks) are created along the border of
the corridors in (f).

main trait is its efficiency, which enables the simulator to
run many times faster than real-time, which will be essen-
tial if the BAs are evaluated in many environments. Al-
though ARGoS does have the capability to incorporate its
own, C++ based, controller for the robots, the ROS frame-
work is used to enable Python-based controllers. The ROS
messaging system is also ideal to modulate whether a new
environment needs to be generated, to vary the measure-
ment noise and select the right bug algorithm.

Since the BAs will be evaluated in many indoor envi-
ronments, it would be unfeasible to design these by hand.
Therefore, a procedural indoor environment generator will
automatically generate a new arena for the bugs to nav-
igate in. This process is depicted in Fig. 8. First, in a
coarse grid world (a), two entities are initialized on the
exact position of the start and target position to be in
the eventual task. They will perform a simple 4-connected
path generation, where they will have a certain chance of
going straight (pstr). The chance of either going left or
right is equal to 1− pstr. Each agent will leave a corridor
trace, as can be seen in (b), until, in (c), the amount of
corridors hit a density threshold (tcor = 0.4), which is the
number of grid-cells occupied with a corridor divided by
the total number of existing grid cells in the environment.

A connectivity check is performed, to check if the initial
position of the robots are connected by these corridors,
which will re-initiate the process in case it fails. This is to
ensure that the BA is always able to reach its final desti-

(a) Generated environment in ArGos

(b) Modified ArGos Foot-bot

Figure 9: (a) Th resulting environment from Fig. 8(f) generated
within the ARGoS simulator and (b) a modified Foot-bot simulated
robot with range sensors (red lines) used for wall following.

nation. Next, walls will be added to these corridors (d).
The remaining areas will act as rooms and are divided
when they are too large in (e). Finally, in (f), random
openings are added along the border of the corridors to
create passages these areas. Rooms are especially chal-
lenging, as they can lead to agents getting stuck in loops,
which will showcase the strengths and weaknesses of the
evaluated BAs. The resulting environment in the ARGoS
simulation is shown in Fig. 9(a).

The ARGoS FootBot is used for our experiments, which
is a simulated wheeled mobile platform (see Pinciroli et al.
(2012) for specifications). The FootBot contains many op-
tions to attach various types of sensors, however for our
experiments we will only use the proximity sensors. We
adapted FootBot to turn the proximity sensors into sin-
gle beam range sensors with a maximum measurable dis-
tance of two meters, placed in the configuration shown
in Fig. 9(b). The robot has two separate single beam
range sensors located on each side and 20 range sensors
pointing to the front in a wedge shape. This is to sim-
ulate a depth sensor/stereo-camera for obstacle detection
with a few additional range sensors on the side. Since the
robot must move towards the range-wedge configuration,
its movement will be non-holonomic.
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Figure 10: (a-f)Schematics to explain the wall-following paradigm for a right-sided local direction with (g) the corresponding state machine .
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Figure 11: The results of (a) the wall-following only (WF) and the
implemented bug algorithms that use the same WF (b-e) as part of
their navigation strategy. The time limit is 200 sec.

4.3. Implementation Details Bug Algorithms

The most important element of any BA, is the ability
to follow a boundary of an obstacle or wall. Based on
the robot configuration in Fig. 9(b), we developed a wall
following principle as illustrated in Fig. 10. Fig. 10(a-f)
shows the wall following of the footbot for a right-sided
local direction and Fig. 10(g) shows the state machine,
which can also be found as pseudo code in appendix B.2,
Alg. B.1. If the robot moves forward and hits a wall, like
in Fig. 10a, the angle of the wall can be estimated by using
a RANSAC line-fit method (Fischler and Bolles (1981)) in
the wedge of range sensors.9 This is done so that the true

9Since RANSAC uses random samples to determine the slope of
the plane, some stochastic is expected in the wall-following behavior.

distance d(x,O⊥)R can be estimated from the robot to the
wall.10 If this distance becomes smaller than dref , the pre-
ferred distance from the wall, it will keep turning either
CW or CCW until it is aligned with the wall. Fig. 10(b)
and (c) shows this alignment for a right-side local direc-
tion. This will be the case if the measurement of the side
range sensor rs is equal rf · cosβ, where rf is the element
from the range wedge that is the closest to rs and β is the
angle between rs and rf .

After the robot is aligned, it will need to follow the
wall, as in Fig. 10(c). Now the true distance to the wall
(d(x,O⊥)C)11 will be calculated as follows:

d(x,O⊥)C =
rs · rf sinβ√

r2s + r2f − 2 · rs · rf cosβ
(4)

The derivation of the latter equation can be found in
appendix B.1. The FootBot will maintain d(x,O⊥)C to be
near dref , and to keep being aligned in the process. How-
ever, since the robot’s heading and the measurements of
rs and rf are coupled, therefore a separate control heuris-
tic is developed to make the wall alignment possible. The
details of this wall-alignment method can be found in ap-
pendix B.2, Alg. B.2.

When the FootBot hits another wall during its forward
motion, as in the corner in Fig. 10(d), while in its wall-
following state, it will turn away from the wall until it is

10This only goes with the assumption that the robot will always
encounter walls and no single objects, such plants. The later will not
be simulated in ARGoS; however, a classifier able to distinguish walls
from small obstacles, must be added if this principle is implemented
on a real robot.

11The R and C subscript of d(x,O⊥) enables separation of the two
methods (RANSAC or only 2 ranges) of retrieving the true distance
to the walls.
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aligned with the wall (similar condition as with Fig. 10(b)).
If during a forward motion, the front-range sensor is out
of range, as in Fig. 10(e), the foot-bot will initiate a wide
turn, to find the wall on the other side as in Fig. 10(f). The
state macine for the wall-following behavior can be found
in Fig 10 (b), of which the pseudo code can be found in
appendix B.2, Alg. B.1.

This control heuristic should result in a robust wall-
following behavior, in particular for indoor environments
with straight walls. The resulting wall-following behavior
is shown in Fig. 11(a). Here it can be seen that the wall-
following produces a smooth path all along the walls of
the mirrowed ”G”. All the implemented bug algorithms,
from which the pseudo-code can be found in appendix A,
will make use of this exact same wall following behavior
in their state machine. The resulting trajectories in the
ARGos simulated environment are shown in Fig. 11(b-f).

5. Experimental Results of Bug Algorithms in
Real-World Conditions

In this section, the BAs will be compared against each
other on a wider range and variety of environments than
in previous studies. Moreover, we will investigate how sen-
sitive these algorithms are to real-world conditions, sub-
jecting them to the experimental setup explained in sec-
tion 4. First the selected BAs, which are Com, Com1,
Bug2, Alg1 and Alg2 (see subsection 4.1 for the choice’s
motivation), will be evaluated with perfect localization.
After that, the BAs will be subjected to increasing severity
of odometry drift. Next, we will experiment with varying
hit-point recognition failures and Distance-to-Target (DT)
noise. The results of this section will be discussed in the
following part of this paper.

5.1. Experiments with Perfect Localization

The implemented BAs’ performances are now evaluated
in 200 procedurally generated environments, with a con-
stant size of 14 by 14 meters. Each BA will have one
chance to navigate through the same environment with
a time limit of 300 seconds. This should be a sufficient
amount of time to reach the target, while preventing the
simulation to run endlessly, if one of the BAs gets stuck in
a loop. Each BA’s success percentage is recorded, which
is the percentage of when the target is reached out of the
200 environments. Fig. 12(a) shows the percentage of BAs
that made it to the goal within the required 300 seconds,
where the goal is considered reached if the BA is able to
get within one meter radius.

The BA’s total trajectory is recorded as well, which is
normalized by dividing by an optimal path length as cal-
culated by the A* path planning algorithm. A* will get
an occupancy grid, identical to the procedurally generated
environment, which is not available to the bug algorithms
by any means, and can visit all the 8 neighboring cells

WF Com Com1 Bug2 Alg1 Alg2
0

20

40

60

80

100

B
A

re
a
ch

ed
T
a
rg
et

[%
]

(a) Success percentage.

WF Com Com1 Bug2 Alg1 Alg2
0

2

4

6

8

T
ra

je
ct
o
ry

B
A

/
T
ra

je
ct
o
ry

A
*

(b) Normalized trajectory length.

Figure 12: (a) The percentage of the wall-follower (WF), and the
Bug Algorithms (BAs) Com, Com1, Bug2, Alg1 and Alg2, which
made it to the goal in an ideal situation with perfect localization,
and (b) the trajectory length normalized by the optimal trajectory
length calculated by A*.

at each step.12 The normalization is applied in order to
compare the performances adequately across the generated
environments, as the optimal path will be different at each
iteration. Fig. 12(b) shows a box-plot of the length of the
BAs’ trajectories. For all BAs, all path-lengths are taken
into account, including the ones that did not reach the
goal. Although this can skew the statistics, a time limita-
tion of 300 seconds will be held constant throughout the
experiments to ensure consistency.

In the simulation set-up, the goal is not located near a
wall, so the BA would need to leave the walls physically to
reach it. Therefore, the wall-follower (WF) can should not
be able to reach the goal position at all. However, there are
still a few moments that the environment generator creates
a situation where the WF does reaches the goal within
one meter, so there is still a slim chance it is reaching the
goal, as seen in Fig. 12(a). However, as WF is not moving
actively towards the target, this number is marginal small.
Com has more freedom in movement as it can leave the
wall whenever it is free; however, is only capable to reach

12An 8-connection A* will cause the path to go through a corner
of an obstacle. The grid that is available A*, will include padded
wall and obstacles compared to the actual environment where the
Bug Algorithms will navigate in.
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Figure 13: Behaviors of the implemented (a) wall-follower (WF) and
Bug Algorithms (BAs): (b) Com, (c) Com1, (d) Bug2, (e) Alg1 and
(f) Alg2 in one generated environment. The BA starts in the top left
corner at Start (S) and ends withing 1 meter radius from the Target
(T), with a time-limit of 300 seconds.

the goal about 60 % of the time. Being the simplest of
all the BAs, Com does not use memory, therefore, can
not recognize where it has been before. Consequently, it
quickly get stuck in loops, as shown in Fig. 13(b). The
last four BAs, Com1, Bug2, Alg1 and 2, have a success
percentage around the 90% in Fig. 12(a). Still the latter
two have a much shorter trajectory in comparison, which
is around 2.5 times A* instead of 3.3 (Fig. 12(b)).

In Fig. 13(d) and (e), it can be seen that Alg1 and its
ancestor Bug2 need to find the M-line first before it can
leave the wall. However, this restriction seem to result in
longer trajectories. The M-line-Bugs will even navigate
behind the target before finding the M-line again. Com1
and Alg2, on the other hand, will move towards the target
if the chance arises, hence have more leave-opportunities
along their path (Fig. 13(c) and (f)). The outcome is that
in the 200 generated environments, Com1 and Alg2 have
a shorter path-length than Bug2 and Alg1 in average.13

5.2. Experiments with Odometry Drift

In this paper, we test BAs’ potential for real-world nav-
igation purposes. Therefore, we have added more realistic
elements to the simulation, based on our discussion in sec-
tion 3.1. In the absence of an exact global position, BAs
will need to rely on odometry. Therefore, this section will
investigate the effects of odometry drift. We assume that
the BA will know its own and the target’s position at the

13A bootstrapping based statistical similarity analysis of both the
success rate and the trajectory length can be found in appendix C.1.
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Figure 14: The (a) percentage of the Bug Algorithms Com, Com1,
Bug2, Alg1 and Alg2, which made it to the goal of increasing velocity
measurement noise (σ) which causes odometry drift, and (b) the
trajectory length normalized by the optimal path calculated by A*.

start of the experiments, but it has to keep them up-to-
date with its own, noisy, velocity measurements. For these
experiments, we assume that the position estimate is ac-
quired by the latter assumption, namely:

x̃t = x̃t−1 + ˙̃xt−1 (5)

, where x̃t is the x- and y-position estimate at a given time.
˙̃xt−1 is assumed to be N (ut−1, σ), where u is the actual
velocity, from which the outcome on the system consists
of noise with a standard deviation of σ.

Fig. 14 shows the impact on the performances of the
BAs when exposed to odometry drift due to noisy velocity
estimates, with a σ of 0.05, 0.10, 0.15 and 0.2. In Fig. 14(a)
indicates a significant drop in all the BAs’ success percent-
age with an increasing σ. In Fig. 14(b) we see that it has
a large effect on the trajectory length overall, although
there is a less significant degeneration of the Angle-Bugs’
performance (Com, Com1 and Alg2). Bug2’s and Alg2’s
performances took the deepest dive with a relatively small
increment of the odometry drift, whereas Com’s perfor-
mance only gradually decreased. As Com does not save

13



S

T

a) σ=0.05 (300.10 sec)

S

T

b) σ=0.10 (59.70 sec)

S

T

c) σ=0.15 (70.50 sec)

S

T

d) σ=0.20 (300.10 sec)

Figure 15: Example of Alg2 in environment # 123 of the experimen-
tal testing, with increasing noise variance of σ = (a) 0.05, (b) 0.10,
(c) 0.15 and (d) 0.20. The BA starts in the top left corner at Start
(S) and ends withing 1 meter radius from the Target (T), with a
time-limit of 300 seconds. In (d) Alg2 suddenly turns 180 degrees on
the left side of the environment, without having seen that hit-point
before.

any position or distance-to-goal at hit-points, only its bear-
ing estimate towards the goal is effected by faulty velocity
estimates, resulting in the simplest BA outperforming the
rest with σ > 0.05. Alg2 already lost its advantage to
recognize previously visited places, as its success-rate is
similar, if not lower, than Com1 at a σ of 0.2.

However, both Alg1 and Alg2 show signs of stagnation
from σ = 0.15 and on, as their performances does not seem
to decrease any further and even seem to improve slightly.
At that point, it could be that it would accidentally recog-
nize a previously hit-point at a location where it has not
been before due to the odometry drift. Although seemingly
unwanted, this randomness could have helped the BA to
get out of difficult situations, as in Fig. 15 with Alg2. Al-
though it is still successful at a σ = 0.05 (Fig. 15(a)),
at a velocity measurement noise of σ > 0.05, Alg2 is al-
ready unable to go straight towards the goal in Fig 15(b-
c), prematurely hitting a wall and navigating backwards.
Fig. 15(d) shows that at a σ = 0.2, Alg2 suddenly encoun-
ters a place that it thinks it has been before and turns
around during wall following. Although the BA’s observa-
tion is false, it did put Alg2 back into a situation where it
could reach the goal once again, even though it needed a
longer trajectory than without odometry drift.14
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Figure 16: The (a&b) measured trajectory length and (c&d) per-
centage of Alg1 and Alg2 reaching the goal, with a varying chance
(p) of a false-positive (FP) or a false-negative (FN) of a previous
recognized point to occur.

5.3. Experiments with False Positive and False Negative
Recognition Rate

BAs can also recognize previous hit-points based on
scene recognitions. In this paper, we will not use the tech-
niques and descriptors discussed in subsection 3.1, but will
simulate their performance through false-negative (FN)
and false-positive (FP) recall rates. With an increasing
probability (p) of a uniform distribution, the chances of
a previously visited hit-point being falsely recognized at a
different location (FP) or not being recognized at the right
position (FN) will increase.

14Statistical correlation analysis of the effect of the increasing
odometery noise both the success rate and trajectory length can be
found in appendix C.2.
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Figure 17: An example environment with the trajectories of Alg1
with increasing chance(p) of False Positives (FP) to occur, with
p(FP) = (a) 0.0, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8 and (f) 1.0.The
BA starts in the top left corner at Start (S) and ends withing 1
meter radius from the Target (T), with a time-limit of 300 seconds.

Of the implemented BA, only Alg1 and Alg2 specifi-
cally use previously visited locations to change their lo-
cal wall-following direction from right- to left- sided. In
Fig. 16, they are being evaluated with an increasing p(FP)
in Fig. 16(a&b) or p(FN) in Fig. 16(c&d) over 100 gener-
ated environments. At a p(FP)=0.005, there is a chance of
FP occurring 1-2 times (0.5 %) during the run-time of 300
second and at p(FP)=0.025 a chance of 7-8 times (2.5 %).
At p(FN) = 0.2, every time the BA encounters a previous
hit-point, there is a 20 % chance that it will not recognize
it and at p(FN)=1.0, the hit-point will never be recalled.

Fig. 16(a) and (b) shows that increasing the p(FP) has
more effect on the performance of Alg1 than Alg2. An
example of Alg1’s behavior in an environment with an in-
creasing p(FP) is shown in Fig. 17(a). From p(FP)=0.2
and on, Alg1 misses the sparse and crucial places on the
M-line where it needs to leave the wall, at the moments it
prematurely detects a hit-point (17(b-f)). Alg2 has fewer
leave-restrictions and can move towards the target when-
ever its path is clear. Thanks to this flexible behavior, it
seems to be less sensitive to more frequent occurrences of
FP.

In Fig. 16(c) and (d), the effects of a higher FN rate is
shown; however, both Alg1 as Alg2 seemed to be hardly
effected by it. The only trend that could be noticed is for
Alg2 as the variance of the trajectory length slowly creeps
up with an increasing p(FN) in Fig. 16(c). When p(FN) =
1.0, then Alg2 is completely identical to the implemented
Com1, as it only remembers the range measurements at
hit-points as a leave-condition. The same goes for Alg1,
which transforms into its ancestor Bug2 with p(FN). As
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Figure 18: The performance of Alg2 and IBug with varying distance
measurement noise (σ) in meters, in the (a) normalized trajectory
length and percentage (b) of bugs who made it to the goal.

both Bug2 and Com1 have the ability to get out of a loop,
almost no difference can be noticed in the success rate of
Fig. 16(d) with p(FN) = 0.0 and 1.0 for both Alg1 and
Alg2.15

5.4. Experiments with Distance Measurement Noise

BAs could also use a Distance-to-Target (DT) measure-
ment, so here we assume that the agents are carrying a
sensor able to determine this. Com1 and Alg2 both save
previous DT measurements to prevent getting stuck in a
loop in some situations. In Fig. 18, we are showing the
(a) trajectory length and (b) success rate of the increasing
standard deviation of the DT noise, while keeping both the
velocity measurement noise (odometry drift) and the FP
& FN rate at 0.0. The noisy DT measurements (d̃(x, T )t)
at time t are modeled by d̃(x, T )t = N (d(x, T )t, σ), where
d(x, T )t is a scalar that stands for the true DT at time t
and σ is the standard deviation of the noise. The degrad-
ing performance in both trajectory length and success per-
centage for increasing σ is more noticeable for Com1 than
for Alg2. Com1’s only mechanism to get out of a poten-
tial loop is to compare its current DT with a saved one
to decide when to leave the wall. Once it is gradually los-
ing this capability with the noisier DT measurements, its
behavior will become more and more similar to Com’s, as
observed in Fig. 19. Moreover, Com1’s success percentages
in Fig. 19(b) drops to around 60 percent at a σ=6 meters,
which is equivalent to Com’s score in Fig. 12(b). Alg2 is
less affected by the increasing DT noise, which is likely be-

15Statistical correlation analysis of the effect of the increasing
recognition failure rate on both the success rate and trajectory length
can be found in appendix C.3.
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Figure 19: An example environment with the trajectories of Com1
with increasing distance measurement noise variance (σ) in meters
of (a) 0, (b) 1, (c) 2, (d) 3, (e) 4 and (f) 5 meters. The BA starts in
the top left corner at Start (S) and ends within 1 meter radius from
the Target (T), with a time-limit of 300 seconds.

cause it can rely on memorized position as an additional
leave condition.16

6. Discussion

This section will reflect on both the experimental set-
up and results. The modeled real-world conditions will
be discussed first, including the implementation details of
the simulation and the chosen noise-models and Bug Al-
gorithms (BAs). Here we will give some suggestions for
future development in this topic. Afterwards, we will dis-
cuss the results from our experiments, from which we will
determine which BA aspects work or do not work for real-
world scenarios. This discussion will be concluded on in
the last section of this comparative study.

6.1. Modeling Real-World Conditions

BAs are a seemingly ideal indoor navigation paradigm
for tiny robotic platforms with limited recourses. Poten-
tially, they could only take up a small fraction of the on-
board computer’s capacity, which opens up space for other
computations and tasks. Although the paths generated
are sub-optimal compared to path-planning algorithms as
A*, no map is needed or needs to be generated. With
the target’s location in mind, the BA reacts locally on ob-
stacles and only saves small bits of information in order

16Statistical correlation analysis of the effect of the increasing DT
measurement noise on both the success rate and trajectory length
can be found in appendix C.4.

to converge. Nevertheless, we established that the BAs,
presented in section 2, tend to over-rely on a perfect local-
ization, which can not be guaranteed for indoor environ-
ments.

If no global localization scheme can be set-up, the BA
needs to rely on its noisy on-board sensors to know where
it is and integrate this knowledge with the target’s posi-
tion. In section 3, we reflected on several issues that a
robotic implementation of a BA will come across. This
includes: an increasing odometry drift, a mis-match be-
tween its measured position and the ground truth; recog-
nition failures, i.e. when it fails to recognize a previous
location or falsely detects one; and noisy distance to tar-
get measurements, which could interfere with the suitable
leaving-condition. There are other sensor-noise and fail-
ures to consider, such as the noise in the laser-range sen-
sors or (stereo-)cameras for (local) boundary/wall follow-
ing. However, in this paper, we focused on the global
position estimation instead, as this is an issue that all bug
algorithms have to deal with and is less dependent on the
implemented platform. Moreover, we aimed to keep the
wall-following behavior identical among the implemented
BAs.

In the experimental setup, section 4, we selected a set of
suitable BAs to experiment on and motivated that choice.
We believe that this selection represented most issues of
real-world implementation well enough to draw generic
conclusions, applicable to the more current BA variants,
such as TangentBug (Kamon et al. (1998)). However,
for future work, we could also look at newer BAs, where
we could include the earlier mentioned local sensor noise.
Next to this, the ARGoS simulator and environment gen-
erator was very useful for this paper’s experiments, as it
was able to generate new environments at a high pace and
run the experiments quicker than real-time. This enabled
us to test the BAs on hundreds of environments, leading to
more reliable results. Nevertheless, further development of
these experiments must be performed in a more realistic
simulation, with more types of obstacles and visual repre-
sentations, to induce more challenges of a typical indoor
navigation task.

For the experiments themselves in, section 5, we used
simple noise models, i.e. using a Gaussian probability dis-
tribution for the odometry drift and noisy range measure-
ments, and a pseudo-random number generator for FNs
and FPs occurrences. Future work could look at more re-
alistic noise characteristics. For ground-bound robots, for
instance, wheel slippage is determined by the materials
used and the friction with the floor. If visual-odometry is
used, Gaussian noise could very well be applied, however
the texture of the environment is crucial to the variance.
The FP & FN occurrences are also very much determined
by the features of the environment, as aliasing could occur
at areas that are very similar. There is no equal probabil-
ity of these failures to happen throughout the trajectory of
the bug. Moreover, distance measurements by radio bea-
cons not only suffer from regular noise around the mean,
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but have to endure a whole range of disturbances. This
includes uneven directional propagation noise, the reflec-
tion off the walls, interference of other signals. For the
experiments in this paper, we wanted to have more con-
trol over the noisy measurements to find a clear correlation
between its severity and the performance of the BAs, so we
restricted ourselves to use the basic versions of the noise
models. However, these considerations be included for an
even more realistic simulation in future work.

6.2. Experimental Results

Generally, our experiments showed that all BAs per-
formed worse with a higher odometry drift, noisier range
measurements and increasing failure cases. The most no-
ticeable feature, is that the BAs did not all have a similar
drop in performances, which is especially noticeable with
increasing odometry drift in Fig. 14. Some had a more
severe response than others, namely those using memory.
Com, being the simplest of all BAs, started out as the
worst one of the six, to the best performing with only
standard deviation of 0.1 m/s in the velocity estimation.
As it only uses the odometry to get a range and bearing
to the goal and nothing else, there are less ”bad” decisions
it could make based on it. Since odometry is likely to be
noisy on very small robots, such simplicity may be the bet-
ter strategy. Nevertheless, although Com is less influenced
by odometry drift, it success rate still drops to 40%, which
is still a low score. In general, it is ill-advised to have BAs
solely rely on odometry alone.

In section 5.3 and 5.4, we also assumed that the BAs
will also have access to measurements other than odome-
try. Although a decrease in performance was noticed in all
the tested BAs with these specific features (Com1, Alg1
and Alg2), it became evident that Alg2 is the most re-
silient algorithm. With increasing FN & FP occurrences,
Alg1’s performance was noticeably decreasing but Alg2
was hardly affected. This indicates that the M-line-Bugs,
as Alg1, seem to have a disadvantage over Angle-Bugs, as
Alg1, due to their restrictive leave-condition. This is also
noticeable in section 5.2, as M-line-Bugs suffered the most
from increasing odometry noise. If real-world conditions
apply, BAs should rather be able to leave the wall/obstacle
whenever there is the possibility to do so.

The same goes for noisy distance-to-target measure-
ments (section 5.4), where Com1 is performing worse than
Alg2. The reasoning behind this observation is simple:
Alg2 is using more mechanisms to get out of complex situ-
ations, namely remembering range measurements and lo-
cations of previous hit-points. If one of these mechanisms
perform badly, then Alg2 can fall back on the other one.
Now these measures are operating separately and have a
different behavioral outcome; however, it could be more
beneficial to a BA if they were fused together or used for
cross validation and checking if the bug is stuck in a loop.
Nevertheless, it is of great interest to have multiple types
of measurements to rely on, either concerning position of
the robot itself or the relative position of the goal.

7. Conclusion

This paper investigates the potential of Bug Algorithms
as a computationally efficient method for robotic naviga-
tion. Although the general idea behind the methods seems
ideal for implementation of light-weight robots, the liter-
ature survey shows that many of their variants rely on
either a global localization system or perfect on-board sen-
sors. Our simulation experiments evaluated several imple-
mented Bug Algorithms with varying noisy measurements
and failure cases, which showed a significant performance
degradation of all algorithms. This indicates that Bug Al-
gorithms can not simply be implemented as they are on a
navigating robot, which has to rely on only on-board sen-
sors without any external help. The experimental results
did, however, shed some light on how these techniques can
be enhanced. Simplicity is a key element, as the most ba-
sic Bug Algorithm, Com, was also the one that was the
most resilient to odometry drift. Another crucial element
is a robust loop detection system, where the robot should
not just rely on one but on multiple measured variables,
especially in realistic, noise-inducing, environments. Con-
sidering these observations in the design of new Bug Algo-
rithms, will make them suitable for the autonomous navi-
gation of tiny robotic platform with limited computational
recourses.
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Appendices

A. Pseudo-Code Bug Algorithms

The pseudo-code for Com, Com1, Bug2, Alg1 and Alg2,
is listed in Algorithm A.1, A.2, A.3, A.4 and A.5
respectively. T stands for target and sWF is a variable
that determines if the wall-following is right- (sWF=1)
or left-sided (sWF=-1). rlocal stand for local sensor mea-
surements, which can be either contact- or range-sensors.

xglobal stands for the global position estimate of the Bug
Algorithm. d(H,T )prev stands for the previous distance of
the hit-point to target and d(xglobal, T ) stands for the cur-
rent distance from BA to target. listhp stand for a list of
previously encountered hit-points. v is the control output
for the forward velocity of the robot and cv is the fixed
velocity constant. ω is the control output for the heading
of the robot in rad/s and cω is a fixed rate constant, to
control the speed of the robot’s turns.

Algorithm A.1 The pseudo-code for the state-machine
of Com.

Init: state = ”forward”, sWF

Require: cv , cω , xglobalrlocal, listhp
function Com

if state is ”forward” then
v ← cv
ω ← 0
if Obstacle is hit then

state← ”wall following”

else if state is ”wall following” then
[v, ω]← Wall Following(cv , cω , sWF , rlocal) . See B.2
if Way towards T is free then . Based on rlocal

state← ”rotate to target”

else if state is ”rotate to target” then
v ← 0
ω ← cω
if Heading BA same as direction T then

state← ”forward”
return v, ω

Algorithm A.2 The pseudo-code for the state-machine
of Com1.

Init: state = ”forward”, sWF = 1
Require: cv , cω , rlocal

function Com
if state is ”forward” then

v ← cv
ω ← 0
if Obstacle is hit then

d(H,T )← d(xglobal, T )
state← ”wall following”

else if state is ”wall following” then
[v, ω]← Wall Following(cv , cω , sWF , rlocal) . See B.2
if Way towards T is free and d(xglobal, T )¡d(H,T ) then

state← ”rotate to target”

else if state is ”rotate to target” then
v ← 0
ω ← cω
if Heading BA same as direction T then

state← ”forward”
return v, ω
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Algorithm A.3 The pseudo-code for the state-machine
of Bug2.

Init: state = ”forward”, sWF = 1
Require: M − line,cv , cω , xglobalrlocal

function Com
if state is ”forward” then

v ← cv
ω ← 0
if Obstacle is hit then

state← ”wall following”

else if state is ”wall following” then
[v, ω]← Wall Following(cv , cω , sWF , rlocal) . See B.2
if M − line is hit and BA is closer to T then

state← ”rotate to target”

else if state is ”rotate to target” then
v ← 0
ω ← cω
if Heading BA same as direction T then

state← ”forward”
return v, ω

Algorithm A.4 The pseudo-code for the state-machine
of Alg1.

Init: state = ”forward”, sWF = 1, , listHP =[ ]
Require: M − line,cv , cω , xglobalrlocal

function Com
if state is ”forward” then

v ← cv
ω ← 0
if Obstacle is hit then

listHP ← [listHP , xglobal]
state← ”wall following”

else if state is ”wall following” then
[v, ω]← Wall Following(cv , cω , sWF , rlocal) . See B.2
if xglobal is in listHP then

state is ”change local direction”

if M − line is hit and BA is closer to T then
state← ”rotate to target”

else if state is ”rotate to target” then
v ← 0
ω ← cω
if Heading BA same as direction T then

state← ”forward”
else if state is ”change local direction” then

v ← 0
ω ← cω
sWF = −1
if BA has rotated 18o then

state← ”wall following”
return v, ω

Algorithm A.5 The pseudo-code for the state-machine
of Alg2.

Init: state = ”forward”, sWF = 1, listHP =[ ]
Require: cv , cω , rlocal

function Com
if state is ”forward” then

v ← cv
ω ← 0
if Obstacle is hit then

sWF = 1
d(H,T )← d(xglobal, T )for
listHP ← [listHP , xglobal]
state← ”wall following”

else if state is ”wall following” then
[v, ω]← Wall Following(cv , cω , sWF , rlocal) . See B.2
if xglobal is in listHP then

state is ”change local direction”

if Way towards T is free and d(xglobal, T ) < d(H,T ) then
state← ”rotate to target”

else if state is ”rotate to target” then
v ← 0
ω ← cω
if Heading BA same as direction T then

state← ”forward”
else if state is ”change local direction” then

v ← 0
ω ← cω
sWF = −1
if BA has rotated 18o then

state← ”wall following”
return v, ω

B. Wall Following

B.1. Calculation Real Distance from Wall

a b

c

β
h

Figure B.20: Visualization of the triangle configuration for the
derivation.

In Fig. B.20, the configurations of the solved triangle
is solved, where we want to calculate h (height triangle)
with the triangle sides of a and b and the angle β. c is the
triangle side that will be unknown, so a formula will be
derived that will only use a, b and β.

The geometrical equations used to achieve the ranges
are the triangle area formula:

A =
c · h

2
(B.1)

, the SAS triangle rule:

A =
a · b · sinβ

2
(B.2)

, the cosine-rule:

c =
√
a2 + b2 − 2 · a · b cosβ (B.3)
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with A is the area of the triangle.

Substitute A in Eq. B.2 for the right side of Eq. B.1,
and solve for h:

h =
a · b · sinβ

c
(B.4)

Now substitute c in Eq. B.4, for the right side of Eq. B.3,
which results in the following equation:

h =
a · b sinβ√

a2 + b2 − 2 · a · b cosβ
(B.5)

B.2. Pseudo Code Wall Following

The procedure of the wall-following behavior is listed
in this appendix in Algorithm B.1 and B.2. TsWF is
a variable that determines if the wall-following is right-
(sWF=1) or left-sided (sWF=-1), d(x,O⊥) is the current
distance to the robot calculated perpendicular from the
wall and dref is the preferred distance from the wall in
meters and td is the threshold to determine if the robot
near dref . rs and rf are the side and range sensor’s mea-
surement in meters and β is the angle between them. If
sWF=1, then rs is the right range sensor and if sWF=-1,
then rs is the left range sensor. v is the control output
for the forward velocity of the robot and cv is the fixed
velocity constant. ω is the control output for the heading
of the robot in rad/s and cω is a fixed rate constant, to
control the speed of the robot’s turns.

Algorithm B.1 The procedure of the wall-following be-
havior.

Init: state = ”rotate to align wall”
Require: sWF , d(x,O⊥), dref , rs, rf , cv , cω , β
β = 60 deg
function Wall Following

if state is ”rotate to align wall” then
v ← 0
ω ← −1 · sWF · cω . Turn away from the wall
if rs ≈ rf · cos(β) then

state← ”wall following and aligning”

if rf = OR then
state← ”rotate around corner”

else if sWF is ”wall following and aligning” then
v ← cv
ω ← Wall Following and Aligning() . See B.2
if d(x,Omin) < dref then

state← ”rotate to align wall”

if rf is OR then
state← ”rotate around corner”

else if state is ”rotate around corner” then
v ← cv
ω ← sWF · v/dref . Wide turn, radius = dref
if rs ≈ rf · cos(β) then

state← ”wall following and aligning”

if d(x,Omin) < dref then
state← ”rotate to align wall”

return ω

Algorithm B.2 The procedure of keeping the heading of
the FootBot aligned with the wall during wall following.

Require: sWF , d(x,O⊥), dref , rs, rf , cw, β
function Wall Following And Aligning

if |dref − d(x,O⊥)| > −td ) then . If too far from dref
if dref − d(x,O⊥) > td then . If too far from wall

ω = sWF · cω . Turn towards the wall
else . If too close to wall

ω = −sWF · cω . Turn from the wall

else if |dref − d(x,O⊥)| < td then . If close to dref
if rs > rf · cosβ then . Fine tune alignment

ω = sWF · cω . Turn towards the wall
else

ω = −sWF · cω . Turn from the wall

else . Do not adjust the turn
ω = 0

return ω

C. Statistical Tests

C.1. Bootstrapping Bug Algorithms

In Fig. 12, the resulting performance values per bug
algorithm was shown. Here, both the success rate and
the trajectory length are subjected to a bootstrapping
test, to evaluate whether the bug algorithms belong to
the same distribution (null-hypothesis). Table C.2 con-
tains the boostrapping tests from the data presented in
Fig. 12(a) and Table C.3 for Fig. 12(b).

Com Com1 Bug2 Alg1 Alg2
Com 1 1 0 0 1
Com1 1 1 0 0 1
Bug2 0 0 1 1 0
Alg1 0 0 1 1 0
Alg2 1 1 0 0 1

Table C.2: Bootstrapping results on the trajectory length of the
evaluated bug algorithms with a sample size 10000. The value ”1”
means that the null-hypothesis (the evaluated data comes from the
same distribution) holds, while ”0” means it is rejected.

Com Com1 Bug2 Alg1 Alg2
Com 1 0 0 0 0
Com1 0 1 1 1 0
Bug2 0 1 1 1 0
Alg1 0 1 1 1 0
Alg2 0 0 0 0 1

Table C.3: Bootstrapping results on the success rate of the evaluated
bug algorithms with a sample size 10000. The value ”1” means
that the null-hypothesis (the evaluated data comes from the same
distribution) holds, while ”0” means it is rejected.

C.2. Correlation Analysis Odometry Noise

In order to evaluate whether an relationship exists be-
tween the increasing odometry noise and the degenera-
tion of the performances of the bug algorithms, the data
presented in Fig. 14 are subjected to regression analysis.
Table C.5 contains the logistic regression analysis with a
R2 value, from the trajectory length data presented in
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Fig. 14(a) and Table C.4 contains the logistic regression
analysis with a pseudo-R2 value, from the success rate
data presented in Fig. 14(b).

Com Com1 Bug2 Alg1 Alg2
Slope 8.081 13.642 13.561 11.857 12.523

Intercept 2.752 2.724 3.152 3.522 2.654
R2 0.076 0.189 0.217 0.173 0.161

Table C.4: Linear regression evaluation of the trajectory lengths
against the measurement noise, including the intercept, slope and
R2 value per bug algorithm.

Com Com1 Bug2 Alg1 Alg2
Slope -1.240 -3.100 -3.860 -3.480 -3.110

Intercept 0.587 0.800 0.779 0.706 0.847
R2 0.035 0.189 0.343 0.323 0.198

Table C.5: Logistic regression evaluation of the success rate against
the measurement noise, including the intercept, slope and (psuedo)
R2 value per bug algorithm.

C.3. Correlation Analysis Recognition Failures

In order to evaluate whether an relationship exists be-
tween the increasing failing recognition rate and the de-
generation of the performances of the bug algorithms Alg1
and Alg2, the data presented in Fig. 16 are subjected to
regression analysis. Table C.7 contains the logistic regres-
sion analysis with a R2 value, from the trajectory length
data presented in Fig. 16(a) and Table C.6 contains the
logistic regression analysis with a pseudo-R2 value, from
the success rate data presented in Fig. 16(b). Table C.9
contains the logistic regression analysis with a R2 value,
from the trajectory length data presented in Fig. 16(c) and
Table C.8 contains the logistic regression analysis with a
pseudo-R2 value, from the success rate data presented in
Fig. 16(d).

Alg1 Alg2
Slope 0.5472 0.1722

Intercept 2.4302 1.8843
R2 0.0112 0.0020

Table C.6: Linear regression evaluation of the trajectory lengths
against the False Positive recognition rate, including the intercept,
slope and R2 value per bug algorithm.

Alg1 Alg2
Slope -0.1443 -0.0014

Intercept 0.9105 0.9418
R2 0.4652 0.7773

Table C.7: Logistic regression evaluation of the success rate against
the False Positive recognition rate, including the intercept, slope and
(psuedo) R2 value per bug algorithm.

Alg1 Alg2
Slope 0.1873 1.0584

Intercept 3.2478 2.2733
R2 0.0000 0.0006

Table C.8: Linear regression evaluation of the trajectory lengths
against the False Negative recognition rate, including the intercept,
slope and R2 value per bug algorithm.

Alg1 Alg2
Slope 0.0577 0.1010

Intercept 0.8018 0.9192
R2 0.3668 0.7171

Table C.9: Logistic regression evaluation of the success rate against
the False Negative recognition rate, including the intercept, slope
and (psuedo) R2 value per bug algorithm.

C.4. Correlation Analysis Distance Sensor Noise

In order to evaluate whether an relationship exists be-
tween the increasing distance measurement noise and the
degeneration of the performances of the bug algorithms
Alg1 and Alg2, the data presented in Fig. 18 are sub-
jected to regression analysis. Table C.11 contains the lo-
gistic regression analysis with a R2 value, from the trajec-
tory length data presented in Fig. 18(a) and Table C.10
contains the logistic regression analysis with a pseudo-R2
value, from the success rate data presented in Fig. 18(b).

Com1 Alg2
Slope 0.0501 -0.0075

Intercept 2.5783 2.4204
R2 0.0019 0.0001

Table C.10: Linear regression evaluation of the trajectory lengths
against the distance measurement noise, including the intercept,
slope and R2 value per bug algorithm.

Com1 Alg2
Slope -0.0557 -0.0225

Intercept 0.8682 0.9283
R2 0.2412 0.5583

Table C.11: Logistic regression evaluation of the success rate against
the distance measurement noise, including the intercept, slope and
(psuedo) R2 value per bug algorithm.
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