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Abstract

Similar to humans, robots benefit from interacting with their environment through a number of different sensor modalities, such as
vision, touch, sound. However, learning from different sensor modalities is difficult, because the learning model must be able to
handle diverse types of signals, and learn a coherent representation even when parts of the sensor inputs are missing. In this paper,
a multimodal variational autoencoder is proposed to enable an iCub humanoid robot to learn representations of its sensorimotor
capabilities from different sensor modalities. The proposed model is able to (1) reconstruct missing sensory modalities, (2) predict
the sensorimotor state of self and the visual trajectories of other agents actions, and (3) control the agent to imitate an observed
visual trajectory. Also, the proposed multimodal variational autoencoder can capture the kinematic redundancy of the robot motion
through the learned probability distribution. Training multimodal models is not trivial due to the combinatorial complexity given
by the possibility of missing modalities. We propose a strategy to train multimodal models, which successfully achieves improved
performance of different reconstruction models. Finally, extensive experiments have been carried out using an iCub humanoid
robot, showing high performance in multiple reconstruction, prediction and imitation tasks.
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1. Introduction

Several studies have revealed that the ability of humans to
make predictions is not only essential for motor control, but
it is also fundamental for high level cognitive functions in-
cluding action recognition, understanding, imitation, mental re-
play, and social cognition [1]. Improving the ability of robots
to make predictions is a promising direction to enhance their
skills, not only on motor control and prediction of their own
body, but also on fostering the understanding of others’ ac-
tions. Well-established learning systems for motor prediction
and control [2, 3, 4] are built on internal models, namely for-
ward and inverse models. The former provides a prediction
of the state of the agent given the current state and an action,
while the latter provides a mapping in the opposite direction:
given a target state and the current state, it retrieves the action
to bring the system from the current state to the target. Assum-
ing existing similarities between agents, the internal model used
to predict one’s own actions can be instrumental to predict the
(visual) consequences of someone else’s actions [4, 5]. The as-
sumption of the existence of similarities between agents poses
a challenge in robotics, known as the correspondence problem
[6, 7, 8]. This paper does not address this problem. Instead,
we assume that the robot has access to visual information from
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an egocentric point of view. A solution to address general sce-
narios where the spatial perspective that the robot acquires of
its own and of others’ actions is different has been proposed
for example in [9, 10]. However, in this work it is assumed
that agents share the same perspective (the same assumption is
generally made in similar applications [11, 12]).

While several studies have focused on predicting outcomes
of actions of the agent (e.g. learning a forward model) or ac-
tions of others (e.g. human trajectories from images or videos)
[13, 14, 15], in this paper the goal is to learn a model of the
self that can be applied to predict and imitate the visual per-
ception of another agent from an egocentric point of view. The
proposed architecture is based on a self-learned model, which
is built, trained and updated only using the experience accu-
mulated by the agent. The advantage of self-learned models is
that they can be used without specific prior knowledge about
the robot, for example its morphology or predefined forward
and inverse models. This information might be unavailable in
some cases, such as in soft robotics or after a mechanical dam-
age. Self-learned models can enable robots to learn on their
own how to behave in those circumstances [16, 17]. However,
one of the major obstacles in using self-learned internal models
to predict motion of others is the intrinsic difference between
the available data. While the model is learned and exploited by
the agent using a whole range of available sensory modalities,
only the visual information is available when observing some-
one else’s motion. In this paper, we overcome this challenge by
implementing a model which is able to retrieve the missing sen-
sory information and motor commands needed for mimicking
and predicting the visual trajectories of another agent’s action.
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Figure 1: Overview of the learning architecture. The self-learned model can be used to reconstruct missing data, make predictions, control the
robot’s motion. When observing others, only the visual information is available. The model learned can reconstruct the multimodal state of the
robot, including the proprioceptive, visual, tactile, sound and the motor commands data, from partial information (left). The model can also be
used to make predictions in the futures, by feeding reconstructed data back to the model (center). Finally, the model can generate motor commands
that can be issue directly to the robot’s joints to imitate others’ visual trajectories (right).

As a result, the main contribution of this paper is a learning
architecture that uses a multimodal variational autoencoder in
a versatile manner to (1) reconstruct missing sensory modal-
ities, (2) predict the sensorimotor state of self and the visual
perception of another agent from an egocentric point of view,
and (3) imitate the observed agent’s visual trajectory. This ar-
chitecture represents a unified representation of the traditional
forward and inverse model leveraging their synergy to imple-
ment functions that are fundamental for autonomous systems.
An overview of the proposed learning architecture is shown in
Fig. 1.

Variational autoencoders [18, 19] have recently emerged as
one of the most popular approaches for unsupervised learning
of complex distributions of data. One of their key character-
istics is that they can model the probability distribution of the
reconstructed data and its distribution in the latent space. In this
paper, we extend a traditional variational autoencoder model to
reconstruct the probability distribution of non-observed modal-
ities (e.g. joint positions and velocities) given observed modal-
ities (e.g. visual position of the end-effector). Using probabil-
ity distributions is particularly important in the case of robotics
applications, as it allows the system to take into account the re-
dundancy of the system. Typically, several joint positions lead
to the same end-effector position, and such relationships can be
captured by the learned conditional probability distribution. An
important aspect of this work is also the training strategy used
to learn this model. Specifically, we propose to train the model
to reconstruct the input even when only part of it is available,
by adopting a denoising approach. Our experiments, presented
in Section 4, show that this method allows for the improved
performance on the task at hand of various alternative models
too.

The paper is organized as follows: the multimodal variational

autoencoder implementation is introduced in Section 3. Exper-
iments have been performed by using a humanoid iCub robot
and results are reported and discussed in Sections 4 and 5, re-
spectively.

2. Related work

Learning internal models in robotics. Learning algorithms
have proven to be an effective means of building internal mod-
els for robots. Learning strategies achieve flexibility and adapt-
ability in building robots’ kinematic and dynamic models, by
incorporating uncertainties and nonlinearities, as well as dy-
namical changes due to wear, and in limiting the influence of
specific engineered settings. Many approaches to learn con-
trollers for robots have been proposed, including for example
reinforcement learning [20, 21] and learning by demonstration
[22, 23]. Various implementations have been proposed, such
as Gaussian processes [24, 25], neural networks [26, 27] and
more recently deep neural networks [28, 29]. The majority of
these studies have focused on learning controllers, where the
goal is to learn a policy or an inverse model in order to generate
motor commands given a target input. Typically, learning for-
ward models has been less investigated in traditional robotics
because they can be directly defined based on the kinematic
structure of the robot. However, learning such models is fun-
damental to implement a prediction model for robots to be able
to make predictions not only on their own actions but also of
others’ actions.

Forward and inverse models learning is a general approach to
allow robots to learn new skills. Forward models generate state
predictions from current state and action, while inverse mod-
els generate actions from states. These two capabilities enable
robots to perform predictions, “mental simulation”, planning,
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and control [2, 3, 4]. In developmental robotics, such models
are acquired by designing learning mechanisms to let a robot
build its own perceptive and behavioral repertoire. The focus is
to investigate the acquisition of motor skills from sensorimotor
interaction with the environment [30]. As a result, the devel-
opmental approach aims to endow robots with all the learning
capabilities that may be necessary to build rich and flexible sen-
sorimotor representations [31]. Several studies have addressed
the problem of learning internal models from sensorimotor data
through exploration strategies, including for example learning
of visuomotor models [32, 33], learning of dynamics models
[34], and learning from multiple sensory signals and possible
partial information [35, 33, 36]. Internal models (forward and
inverse models) are usually learned separately [2, 3, 4]: the for-
ward model is used to make predictions, and the inverse model
is used for control. The method proposed in our paper instead
achieves these two capabilities in conjunction. This can be a
valuable asset, for example in terms of number of parameters
used (one network instead of multiple ones). Our proposed ap-
proach also provides a compact yet powerful model that can
achieve satisfactory performance on both prediction and control
tasks. One powerful way to learn internal models is imitation,
considered a fundamental part of learning in humans and used
as a mechanism of learning for robots [37]. The ability to pre-
dict someone else’s movements inherently incorporates the ne-
cessity of understanding others’ motion, being able to simulate
it by developing learning as well as imitation skills. A vast liter-
ature exists in the robotics domain addressing imitation, in par-
ticular the paradigm of learning by imitation [38, 39, 40], and
the related correspondence problem [6, 7, 8] arising from the
structural (kinematic/dynamic) differences between a demon-
strator and a learner agent. Imitation can happen at different
levels, such as at the action level, or at the effect level [41]. Re-
cently, advances on motion analysis and estimation have been
proposed [13, 14, 15], and these techniques have also been ap-
plied to humanoid robot motion learning through sensorimo-
tor representation and physical interactions [42]. In this paper,
we use a trajectory level imitation, as an instrumental example
of application of our proposed multimodal learning approach.
Also, although the correspondence problem has an important
role in the context of learning by imitation, we refer the reader
to the relevant literature to solve this problem, and we focus the
paper on the multimodal learning approach instead.

Multimodal learning. In the fields of sensor fusion and pattern
recognition, several works have addressed the problem of learn-
ing representations from multiple sources, e.g. text and audio
or text and images [43, 44]. In [45], a multimodal deep learn-
ing approach was proposed, able to cope with data of different
types, such as visual and audio data, with cross-modal learn-
ing and reconstruction. Some work on multimodal learning in
robotics was proposed in [46, 47]. Recent literature has started
to address the challenging problem of learning from multiple
data sources, using variational inference models (e.g. varia-
tional autoencoders). Among others, two recent works have
shown great potential: the joint multimodal VAE [48], and the
product-of-experts-based multimodal VAE [49]. The former

learns a joint distribution between two modalities, but trains
a new inference network for each multimodal subset, which is
generally impractical and arguably intractable. The latter uses a
product-of-experts inference network and a sub-sampled train-
ing paradigm to solve the multimodal inference problem. Al-
though these methods have been shown to achieve good results
in domains such as image processing and text-to-vision tasks,
they do not address the problem of multimodal learning from
different sensors on a real robot. Such domain is fundamentally
different since the data collected by the robot while acting are
generally noisy time series of unscaled and heterogeneous data.
The main contributions of our work compared to [48, 49] are
the application domain and the ability of our method to gener-
ate actions. Our work is the first, to the best of our knowledge,
to use a multimodal formulation of variational autoencoders on
a real robotic domain. While in [48, 49] the addressed do-
mains are purely self-supervised learning applications, not in-
volving actions or control tasks, in this work we successfully
use a multimodal VAE model to go beyond self-supervision
and achieve imitation, prediction and control tasks. In [50],
an architecture based on deep networks was proposed to make
a humanoid robot iCub learn a task from multiple perceptual
modalities (namely proprioception, vision, audio). While the
method proposed in that paper learns the cross-modal relation-
ships between sensory modalities, it is not able to deal explic-
itly with missing information. On the contrary, the architecture
that we propose here can successfully retrieve missing modal-
ities and use them to both predict and control motion. Finally,
[11, 12] have applied deep autoencoders to make a robot pre-
dict others’ actions through predictive learning, showing how
a robot can use a self-acquired model to make predictions of
others’ goals. In those works, the sequences of signals used for
learning are given through kinesthetic teaching. On the con-
trary, in this paper we use a fully autonomous exploration for
the robot to acquire its own sensorimotor data. Furthermore,
the variational autoencoder that we propose in this paper is a
more general and versatile model for robots to not only predict
self and others’ motion, but also to perform imitation tasks. It
also presents one major advantage compared to the model pro-
posed in [12], namely the ability to capture the redundancy of
the robotic system.

3. Methodology

3.1. Multimodal variational autoencoder

A variational autoencoder (VAE) [18, 19] is a latent variable
generative model. It consists of an encoder that maps the in-
put data x into a latent representation z = encoder(x), and of
a decoder that reconstructs the input from the latent code, that
is x̂ = decoder(z). Encoder and decoder are neural networks,
parameterized by θ and φ, respectively. The lower-dimensional
latent space where z lives is stochastic: the encoder, denoted as
qφ(z|x) outputs a probability density, generally (as also in our
case) a Gaussian distribution. The latent representation z can
then be sampled from this distribution. The decoder is denoted
as pφ(x|z): it gets as input the latent representation z of the input,
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and outputs parameter of a distribution representing the recon-
structed input. The variational autoencoder model can also be
written as pθ(x, z) = p(z)pθ(x|z) where p(z) is a prior, usually
Gaussian, and pθ(x|z) is the decoder.

The information bottleneck given by mapping of the input
into a lower-dimensional latent space yields to a loss of infor-
mation. The reconstruction log-likelihood log pφ(x|z) is a mea-
sure of how effectively the decoder has learned to reconstruct
an input x given its latent representation z. The training goal is
then to maximize the marginal log-likelihood of the data. Be-
cause this is intractable [19], the evidence lower bound (ELBO)
is instead optimized, by leveraging the inference network (de-
coder), qφ(z|x), which serves as a tractable distribution. The
ELBO is defined as:

ELBO(x) , Eqφ(z|x)
[
λlogpθ(x|z)

]
− βKL

[
qφ(z|x), p(z)

]
(1)

where KL[p, q] is the Kullback-Leibler divergence between dis-
tributions p and q, while λ [49] and β [51] are parameters bal-
ancing the terms in the ELBO. The ELBO is then optimized via
stochastic gradient descent, using the reparameterization trick
to estimate the gradient [18, 19]. In practice, since the main
focus of this study is the reconstruction capability of the model,
we chose β = 0, and only consider the reconstruction loss to
train our architecture, noticing improvements in the reconstruc-
tion performance obtained.

In this paper, we extend standard variational autoencoders to
multimodal sensorimotor data. Our multimodal VAE is formed
of multiple encoders and decoders, one for each sensory modal-
ity. Each encoder and decoder is an independent neural net-
work, not sharing weights with other modalities’ networks. The
latent representation is however shared: each encoder maps its
input (one sensory modality) into the shared code z, as depicted
in Fig. 2. Each decoder then reconstruct its particular output
(one sensory modality) from the shared code. The main differ-
ence that characterizes the multimodal learning approach com-
pared to a standard VAE is that the sub-networks can be used to
process each modality, and shared layers can be used to learn
cross-modal relations (see Fig. 2).

The λ parameters are here used to balance losses from dif-
ferent sensor modalities. In order to put more emphasis on
modalities described by fewer dimensions (e.g. the tactile and
sound modalities), we compute independent loss values for
each modality (m) and weight them according to their dimen-
sionality (Dm), that is λm = 1/Dm. Then the sum of the in-
dependent reconstruction loss terms is optimized. The scaling
factor given by the dimensionality of each modality allows us
to balance the importance of each modality when combining
them in the optimization step. That is, when optimizing the re-
construction loss, the λ weights allow to take into account that
each modality and each corresponding unimodal sub-network
have different dimensions. This approach helps learning even
the most difficult parts of the state space, such as discrete or
binary dimensions of the sensory space (see tactile example in
Figure 3).

This type of variational model presents various advantages
in a robotic framework. First, the ability of variational autoen-
coders to learn the distribution of a dataset in latent space is a
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Figure 2: Multimodal Variational Autoencoder used in this work.
The input layer is composed by multimodal sensorimotor data. Each
modality is encoded and decoded by separate autoencoders (shown
with different colors). A shared layer (in light blue, in the center) al-
lows to learn a shared representation among different dimensions. This
architecture is trained with complete as well as partial data (see Ta-
ble 1). Each uni-modal autoencoder can be trained separately, allow-
ing for single modality learning. The cross-modality representations
are also learned through the shared layer. The output of the network
consists of the mean and variance of the reconstruction of each differ-
ent data part. Details about the parameters of the network included in
this figure are further explained in Appendix. N-ReLU represents a
fully connected layer with N neurons and using the ReLU activation
function. N-ReLU x2 indicates that 2 N-ReLU layers are created in
parallel, one to encode the mean and the other to encode the variance
of the output distribution.

powerful feature to generate a shared representation of the dif-
ferent modalities. For instance, the latent representation can
be used to learn relationships and dependencies present in the
sensorimotor experience of robots. This can be leveraged to
generate new artificial perception by sampling from the latent
distribution in the latent space. Second, this shared latent rep-
resentation also allows the robot to reconstruct missing modal-
ities. For example, if data from a sensor is unavailable, this
model can be used to model the probability distribution of the
data that should be observed from this sensor conditioned on the
data from other sensors of the robot. Finally, their ability to pre-
dict probability distributions is fundamental to take into account
the redundancy of complex robots, such as the iCub humanoid
robot used in this study. With this property, the model can cap-
ture the fact that for a given end-effector position, several joint
configurations are possible.

Details of the network implemented and used in this work are
reported in Appendix B.

4



3.2. Training the Multimodal Variational Autoencoder
An important contribution of this work is the training strat-

egy used to learn the proposed model. We propose to train
the model to reconstruct the input even when only part of it is
available, by adopting a de-noising approach. While in the fol-
lowing paragraphs the proposed training approach is presented
relative to the multimodal variational autoencoder introduced
earlier, this strategy is generic, and can be applied to other ar-
chitectures, such as the reconstruction model proposed in [50]
as demonstrated by the experimental results. In the Experiment
section, we show that the proposed training strategy allows to
improve performance on the task at hand of various alternative
models.

The training dataset contains multimodal sensorimotor data
collected during a self-exploration phase. Data are captured
from different sensors of the robot, such as the position of the
hand in the robot’s visual space, tactile and sound data, and pro-
prioception (joint positions) from the motor encoders. In par-
ticular, the position of the hand in the visual space is extracted
by considering the center point of a tracking window around the
moving hand. All data are then normalized to take values in the
range [−1, 1]. More details regarding the data acquisition and
the database are presented in Section 4.1.

Time series data from the self-exploration dataset recorded
are shown in Fig. 3. Denote by ut the vector of ve-
locity commands issued at time t, qt the vector of joint
positions (proprioception), vt the vector of the visual po-
sition, pt the tactile signal and st the sound signal at
time t. Note that other modalities can also be included.
The input of the architecture is a multi-dimensional vector
yt = [qt,qt−1, vt, vt−1,pt,pt−1, st, st−1,ut,ut−1], which contains
both data from time t and t − 1 to capture the temporal rela-
tionship between the different modalities.

The network is trained on both complete and partial sam-
ples of the training dataset collected during the robot self-
exploration. To do so, the original dataset is augmented with
samples that require the network to reconstruct the missing
modalities given only one of them. This is realized by duplicat-
ing the dataset, while using a flag value (namely the arbitrary
value -2, which is outside the range of any sensorimotor signal
after normalization) to denote the non-observable modalities.
The training dataset follows the structure in Table 1 to enable
the network to perform predictions and reconstruction in mul-
tiple conditions of missing information. More specifically, the
augmented training set is formed by concatenating the original
complete set of data collected during motor babbling and nor-
malized to values between -1 and 1, with mutilated versions of
itself. The final dataset is then (1) the complete data at time t
and t − 1, concatenated to (2) data including only time t − 1,
concatenated to (3) data including only proprioception at time
t − 1 and vision at time t and t − 1, concatenated to (4) data
including only vision at t and t − 1. At each training step, a
batch is randomly sampled from the augmented dataset and fed
to the multimodal VAE model. The batch may contain only par-
tial data, but the training objective forces the network to try to
reconstruct the target complete sensorimotor state (i.e. yt). Be-
cause the model is trained using the combination of complete

Table 1: Training dataset structure: original dataset (1) augmented
with samples that only include partial data (2-3-4). Each row corre-
spond to a dataset of 7380 datapoints. Colored cells indicate that the
corresponding modality is present in the dataset. For the cases (2-3-4),
missing modality data (cells in gray) is replaced with values −2. The
datasets (1), (2), (3), and (4) are concatenated. The proposed model is
trained on the augmented dataset, that is the concatenation of the four
(1-2-3-4).

(1) qt qt−1 vt vt−1 pt pt−1 st st−1 ut ut−1
(2) - qt−1 - vt−1 - pt−1 - st−1 - ut−1

(3) - qt−1 vt vt−1 - - - - - -
(4) - - vt vt−1 - - - - - -

and partial data as described above, the latent representation is
shaped in such a way that it is robust to missing data; similarly,
the sub-networks weights are learned to also be robust to miss-
ing inputs.

3.3. One model for multiple tasks

One of the major assets of our proposed model is its versa-
tility, that is the possibility of using the same learned model
to achieve different goals. In this section, we present how the
learned multimodal variational autoencoder can be deployed to
achieve three different objectives:

1. reconstructing missing data;
2. predicting the robot’s own sensorimotor data and visual

trajectories from other data sources (e.g. other agents,
other datasets);

3. controlling the robot in an online control loop.

In these three cases, the training, structure, and parameters of
the neural network remain the same: the learned model and
network used for learning do not change even when different
sets of input are available. We argue that this is a key aspect
of our method: one single model can be trained and learned to
capture a comprehensive internal model from multimodal data,
and to cope even when part of this data is not available. Details
for each of the aforementioned functions that the model can
achieve are given in the remaining part of the section.

3.3.1. Reconstructing missing data
Similar to denoising autoencoders, the proposed multimodal

VAE is trained to reconstruct missing data. Missing modalities
are set to −2 (as explained in Section 3.2), while the network
outputs the probability distribution of the reconstructed inputs.
This is fundamental to address the problem at the origin of this
work, that is the ability to predict the visual trajectory of others
taken from egocentric visual information by relying on internal
models of the self. In such an application, an agent learns inter-
nal representations of its sensorimotor space, in particular re-
lating motor actions with multimodal sensory effects [4, 5, 52].
However, when observing someone else performing an action,
only the visual information is available. The agent, which re-
lies on full information from all its sensors, must then be able to
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retrieve the missing information and interpret the observed mo-
tion in relation with its own internal representations. The archi-
tecture proposed in this paper allows robots to achieve this by
reconstructing the missing sensorimotor information; for exam-
ple reconstructing joint configuration, touch, sound and motor
information from observations of the visual input, or time step
t from observations at time t − 1.

3.3.2. Predicting the robot and others’ visual trajectories
While data from all sensory modalities is available to the

agent when learning the models, only the visual input, from
an ego-centric perspective is available when observing others.
This implies that only data referring to the visual input are avail-
able in y (see (4) in Table 1: this part of the augmented dataset
only contains visual data at time t and t−1; training on this part
of the dataset allows the network to learn to predict the missing
modalities from only visual information).

In this respect, the reconstruction of missing modalities de-
scribed above plays a key role. The neural network can act as a
forward model to predict the next sensorimotor state yt+1 from
the current state of the agent yt (see line (2) in Table 1: this
part of the augmented dataset only contains data at time t − 1;
training on this part of the dataset allows the network to learn
to predict the next time step when only the previous observa-
tion is available). However, when observing someone else, the
current state of the agent is not fully available, as only vision
information can be observed. To perform predictions the net-
work needs to infer future sensorimotor states given the current
one first. We first feed the model with yt−1, and let the model
reconstruct yt; then we feed the obtained reconstructed signal yt
as if it was the t−1 observation, and let the network reconstruct
the missing part, that is yt+1. In summary, the network first re-
constructs the current sensorimotor perceptions of the observed
agent and then uses these reconstructed perceptions to predict
the next state of the agent.

3.3.3. Controlling the robot in an online control loop
In addition to the abilities of the architecture to reconstruct

and predict the visual trajectories of other agents’ motion, the
learned model can be used as a controller for the robot. In par-
ticular, we show how the model can be placed in a control loop
to regulate the sensory state of the robot given a target state.
This approach can be used in imitation learning scenarios, for
instance, where the robot imitates a target trajectory. In our sce-
nario, the robot observes someone else’s visual trajectory from
an egocentric point of view and uses the learned model to repli-
cate such trajectory.

The control loop is depicted in Fig. 1 (rightmost diagram).
Notably, the joint and visual configurations (qt−1, vt−1) of the
robot are fed back to the network in order to provide the cor-
rect current state at each time. This prevents the network from
drifting during the online cycles of the control loop, due to the
dependencies between different input modalities. For example,
moving to areas of the sensory space that lie far from the train-
ing space have increased uncertainty. This condition is made
more severe by the multimodal nature of the data, which come

independently from diverse sensors. The feedback loop imple-
mented to provide the network with the real current data from
the robot helps prevent the accumulation of errors in different
state dimensions.

It is also important to emphasize that using the learned net-
work as a controller for the robot is not a trivial application,
since the network itself represents a model of the robotic sys-
tem. The ability of the network to produce motor commands is
then key to achieve a controller behavior, but this is not suffi-
cient to implement an effective controller. It is important to pro-
vide the network with all the sensory information that can help
the model to learn the kinematics and dynamics of the system,
in particular the sensory states at two consecutive time steps.
This is key for the network to build meaningful representations
of the robot kinematics and dynamics, and in turn to generate
sensible motor commands.

4. Experiments

4.1. Experimental setup

We have demonstrated our proposed approach using a hu-
manoid iCub robot. In our scenario, the robot is interacting
with a piano keyboard. The architecture is trained using data
collected from the robot through experience, by performing
pseudo-random self-exploratory movements (motor babbling).

Then, the robot uses the learned architecture to (1) recon-
struct missing sensory modalities, (2) predict its own sensori-
motor state and predict visual trajectories of another agent from
an egocentric point of view, and (3) imitate the observed agent
’s trajectories.

During the experiments, the iCub robot moves it’s right arm,
while keeping its head still to a fixed position. Four joints of
one of the robot’s arms are used during motor babbling. The
joints’ positions (q0, ..., q3) are acquired from the motor en-
coders attached to each joint2. Visual information encoding
the position of the hand in the 2D visual field of the robot is
acquired from the robot’s eye cameras (using a resolution of
320 × 240 pixels for the image frames), with coordinates xR, yR

and xL, yL for the right and left eye, respectively. This is ob-
tained by tracking the hand of the robot using OpenCV features
and computing the mean of the tracked feature points, thus ob-
taining the two coordinates in the 2D frames. This approach is a
coarse representation of the visual information available to the
robot. An alternative is to extract visual information directly
from pixels using a convolutional neural network (CNN). On
the other hand, the coarse approximation obtained with the sim-
ple visual tracker was sufficient to develop the experiments pre-
sented in the following paragraphs, and we let the implemen-
tation of the CNN as future work. A binary one-dimensional

2The initial joints configuration of the robot’s arm is q0=-35 deg, q1=35
deg, q2=0 deg, q3=50 deg (with q0, ..., q3 corresponding to the shoulder pitch,
roll, yaw, and elbow flexion, respectively), the wrist is fixed in the standard
neutral position, the index finger extended in the neutral position and the rest
of the fingers folded. The joint configuration of the robot’s head is the standard
neutral one, except for the first two joints of the neck which are turned 12
degrees rightwards and downwards.
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Figure 3: Data from self-exploration. Joint positions are recorded
from the motor encoders, visual positions (4D) are acquired from the
RGB cameras of the robot’s eyes, random sinusoidal velocity com-
mands are issued to the arm joints to perform motor babbling.

tactile signal is acquired from the robot’s artificial skin, which
consists of a network of taxels (“tactile pixels”). More specifi-
cally, the 60 tactile signals acquired from the robot’s hand skin
are normalized, averaged and binarized using an empirically
fixed threshold. The result is a one-dimensional signal that
is equal to 1 when a contact is perceived (i.e. when the av-
erage of the signals is above the fixed threshold), or 0 other-
wise. Sound data is acquired from the piano keyboard, in the
form of a one-dimensional vector containing the MIDI infor-
mation related to the key played. MIDI is a symbolic repre-
sentation of musical information incorporating both timing and
velocity for each note played, which is thus associated to a spe-
cific integer number. The commands sent to the robot’s motors
(u0, ..., u3) to perform autonomous self-exploration (motor bab-
bling) are velocity references. No prior knowledge is assumed
on the robot’s kinematic or dynamic structure. The choice of
using velocity commands aims to keep this prior knowledge
to a minimum by avoiding to rely on the inverse kinematic of
the robot. However, our method can accommodate other im-
plementation choices, such as position or torque control. Self-
exploration is realized by performing motor babbling on one
of the robot’s arm. Random sinusoidal motor commands are
sent to the motors as velocity commands defined for each joint
j as u j(t) = α j sin(2πωt), where the amplitudes α j are sam-
pled for each joint at each cycle from a uniform distribution
U(−ū, ū), and the frequency ω is fixed so that each cycle starts
and terminates at zero (i.e. null velocity). Normalization is fi-
nally applied to all data to obtain signals in the range [−1, 1].
The dataset collected from motor babbling contains 7380 data
points, corresponding to approximately 30 minutes of explo-
ration. This dataset is then augmented in order to train the net-
work, as explained in the previous section.

The input fed to the network is a 28-dimensional vector, in-
cluding two four-dimensional joint position vectors (qt,qt−1),

two four-dimensional visual position vectors (vt, vt−1), two
one-dimensional tactile vectors (pt,pt−1), two one-dimensional
sound vectors (st, st−1), and two four-dimensional motor com-
mands vectors (ut,ut−1).

We performed extensive evaluation tests of our proposed
method. Three different datasets have been used: test data from
the robot self-exploration, data from a RGB-D camera of a hu-
man playing a piano keyboard, and data from a RGB-D camera
of the Imperial-PRL KSC Dataset3 (data used in [53] to validate
kinematic structure correspondences methods). To demonstrate
our proposed method in practice, we show that the iCub robot is
able to leverage its prediction capability to plan its own actions
to imitate a human on the piano keyboard.

More details about the datasets used (including number of
datapoints and training specifications) are provided in Ap-
pendix A.

4.2. Architecture structure

The network implemented4 consists of five unimodal sub-
networks, for the proprioceptive (joint positions), visual, tactile,
sound and motor modalities, respectively. The encoders, one
for each unimodal sub-network, consist of two fully connected
layers, while the decoders consist of three fully connected lay-
ers. For the proprioception, visual and motor networks, the two
encoder layers consist of 40 and 20 units, respectively, and the
three decoder layers consist of 40, 8 and 8 units. For the tactile
and sound networks, the two encoder layers consist of 10 and
5 units, respectively, and the three decoder layers consist of 10,
2 and 2 units. The ReLU activation function is used through-
out the network for each layer. The difference in the number
of units is to take into account that tactile and sound data are
two-dimensional vectors, while the other modalities consist of
eight-dimensional vectors. The outputs of all the unimodal en-
coders are concatenated to feed into the shared network, which
consists of a two-layer encoder with 100 and 28 units, and a
two-layer decoder with 100 and 70 units 5.

4.3. Sensorimotor data reconstruction

In this section, we present experiments that demonstrate the
performance of the proposed system to reconstruct sensorimo-
tor data from complete and from partial observations, that is
when all inputs are available and when only a subset of modal-
ities is available. The experiments show that the proposed ar-
chitecture can effectively reconstruct the data in all cases.

The Multimodal Variational Autoencoder is first trained us-
ing datapoints explored during motor babbling. The dataset col-
lected during babbling is split into a training dataset and a test
dataset. As described in Section 3, the network is trained on
both complete and partial data of the training set.

3Dataset available at www.imperial.ac.uk/PersonalRobotics
4Tensorflow [54] has been used for the implementation of the Multimodal

Variational Autoencoder.
5 The source code and the dataset used for this experiment can be down-

loaded at github.com/ImperialCollegeLondon/Zambelli2019_
RAS_multimodal_VAE.
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The iCub arm’s joint 
angles used in the 
experiments.Complete data always available from vision

Redundancy: the same visual information can be obtained with different configurations and motor commands

Uncertainty increases  
with incomplete data 
(orange lines),  
particularly on tactile  
and sound modalities.

Figure 4: Reconstruction results of multimodal data: proprioception (q0, ..., q3), vision (xL, yL, xR, yR), motor commands (u0, ..., u3), touch and
sound. Blue lines show the reconstructed data given complete input (case 1 in Table 1), and orange lines show the reconstruction results with partial
input (case 4 in Table 1). Shaded areas represent the variance of the predicted Gaussian distribution of the reconstructed signals. The multimodal
variational autoencoder is able to reconstruct the visual position accurately. Reconstruction results on the joint and motor spaces display the
effect of the redundancy of the robot’s arm: the same visual position can be reconstructed using diverse configurations, and applying diverse
motor commands. Reconstruction errors occur simultaneously on different degrees of freedom, according to the robot’s kinematic structure. The
redundancy effect is particularly evident for the second and third joints (q1, q2). A representation of the degrees of freedom of the iCub arm is
depicted in the lower-right picture.

In order to evaluate the reconstruction ability of the net-
work, we first assess whether the encoding and decoding of the
variational autoencoder manage to retrieve complete input data
(when all the modalities are present). Then we tested the model
on the reconstruction of missing modalities, using only the vi-
sual information as input.

The experiments conducted showed that the learned network
achieves considerable results in terms of reconstruction and be-
yond that in terms of capturing the complexity of the system.
The network is able to provide an estimate of the input recon-
structed even when the majority of the modality dimensions is
missing. Importantly, the model is also able to provide a mea-
sure of the uncertainty due, for example, to the redundancy of
the system. Results of the reconstruction obtained using the
multimodal variational autoencoder are shown in Fig. 4. This
figure shows the reconstruction results on the joints, motor, tac-

tile, sound and visual spaces, obtained with both complete and
partial input data. The data used for this experiment belongs to
the dataset collected from the robot self-exploration phase, but
have not been used during the training of the model. It is possi-
ble to note that while the reconstruction of the visual signals is
very accurate, the reconstruction of the joints’ positions and of
the motor commands presents a peculiar behavior. In particular,
reconstruction errors occur simultaneously for diverse joints. A
closer analysis of these results shows that these joints are actu-
ally related in the kinematic structure of the robot: one joint can
compensate or contribute for the movements of the other joint.

The results shown in Fig. 4 demonstrate how this redun-
dancy is captured by the multimodal variational autoencoder,
thus demonstrating the power of this type of network on such
difficult tasks. More specifically, the multimodal variational au-
toencoder is able to learn the general sensorimotor structure un-
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Table 2: Mean squared error percentages for each dimension of the
multimodal reconstructed signal on test data.

Rec. complete data Rec. partial data
q 0.46% [0.45; 0.48]% 1.39% [1.37; 1.44]%
v 0.05% [0.04; 0.07]% 0.05% [0.03; 0.06]%
p 2.35% [1.74; 3.66]% 9.42% [9.07; 10.44]%
s 3.35% [0.70; 4.18]% 3.95% [3.35; 4.18]%
u 1.29% [0.67; 1.60]% 2.32% [2.29; 2.37]%

derlying the robot’s movements rather than single trajectories
or single motion sequences. In other words, a robot learns that
there can be diverse configurations to achieve a target (for ex-
ample a visual target). For instance, it can be seen that for q1
and q2 the variance of the reconstruction is particularly large.
This comes from the fact that several joint configurations can
explain the visual information provided to the architecture. We
note that the true data to be reconstructed remains most of the
time within the confidence range of the reconstruction.

The results obtained show another interesting capability of
the learned network, namely the ability of learning a forward
kinematics only using 2D images from the robot’s cameras,
while not having direct access to the depth information of the
3D position of the hand in the robot’s operational space. This
allows the system to avoid the use of stereo vision algorithms
(with the related calibration and matching issues), while having
the possibility to rely on the on-board 2D RGB cameras.

The mean squared errors of the reconstructed sensorimotor
signals on test data for each modality have been computed to
provide a quantitative account of the network performance. In
Table 2, we report the error scores obtained both when com-
plete and partial data are provided to the network. Note that the
error scores achieved with partial data are comparable to those
obtained when feeding complete data to the network, with the
only exception of the touch modality, which remains a chal-
lenge due to its binary nature. This shows that the performance
of the network is generally not degraded significantly when the
input data consists only of partial data (i.e. vision only). This
also shows that the network has successfully learned not only
a direct reconstruction of each single modality but also cross-
relations between the modalities and the way to reconstruct one
of them provided only visual data are available.

The values reported in Table 2 show the accuracy of the pro-
posed method. The values are reported with percentages (rel-
ative to the dataset ranges) to enable direct comparison across
the modalities. However, to better appreciate them, consider
that the 0.46% and 1.39% mean squared errors in joint space
correspond to mean errors of 1.29 and 2.24 degrees in joint an-
gles respectively. Similarly, the 0.05% mean squared error in
vision space corresponds to an average error of about 1.85 pix-
els in the original image frames and mean squared errors of
1.29% and 2.32% in the motor commands represent an average
error of 2.16 and 2.89 degrees per second.
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Figure 5: Prediction results using the learned model to predict the
visual trajectories (with coordinates xL, yL, xR, yR) of the robot’s own
motion (a representative part of the trajectories is depicted). Solid
black lines represent the real data (part of the test database), while
blue lines represent the predicted mean and the shaded light blue areas
the predicted variance (uncertainty) of the model. In each plot, on the
horizontal axes are the time steps, while on the vertical axes are the
magnitude (normalized) of each of the four dimensions of the visual
state.

4.4. Predict own sensorimotor states and visual trajectories of
others

In this section, we present experiments which demonstrate
the ability of the proposed architecture to predict the robot’s
own sensorimotor state and to predict visual trajectories of
another agent from an egocentric point of view. These ex-
periments show that the proposed architecture can effectively
predict future states by using the multimodal representations
learned during training. Condition (2) in Table 1 was critical
to achieve this behavior. The prediction tasks requires the net-
work to infer future sensorimotor states given the current one
(see case (2) in Table 1). This is realized by feeding the inferred
missing time step (i.e. the time step t) back to the network as
the new time step t − 1, letting the network infer the new time
step t, which is in fact the prediction at t + 1.

First, we have evaluated the proposed architecture using test
data from the robot’s own data collected from motor babbling.
Results of the predictions of the visual trajectories obtained on
data explored during motor babbling are shown in Fig. 5. The
mean squared prediction error score obtained on this experi-
ment is 0.21% (corresponding to less than 4 pixels). The data
on which the experiment is carried out is the test database, that
is a part of the data from the robot’s self-exploration which was
not used for training the model. These results show that the net-
work is able to effectively make accurate predictions by first re-
constructing missing data from visual positions only, and then
iterating the process for a second time in order to achieve the
next step prediction.

We have also tested the architecture on multi-step ahead pre-
dictions. At each time step, the predicted next state is used as
the input of the network to predict an additional step ahead.
This process can be repeated as long as necessary. The results
in Fig. 6 show that the model is capable of predicting the vi-
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Figure 6: Prediction over multiple time steps using the learned model
to predict the visual trajectories (with coordinates xL, yL, xR, yR) of the
robot’s own motion (a representative part of the trajectories is de-
picted). Solid black lines represent the real data, while blue lines rep-
resent the predicted mean.

sual trajectory of the on-going swing of the robot (the starting
state of the prediction being 2 time steps after the beginning
of the swing). The predicted trajectory (in blue) matches ac-
curately the ground truth trajectory (in black) for more than 20
time steps. The prediction accuracy at 50 time steps is 0.42%
(less than 5 pixels). Then, the model converges to a stable pe-
riodic swing pattern which differs from the actual trajectory of
the robot. Note that obtaining stable long-term predictions with
this type of approach is a challenging problem: this approach
tends to diverge quickly because of the accumulation of error;
also, note that it is expected the model to be unable to predict
the movements of the robot after the first swing, as each swing
is independent.

Then we evaluated the architecture on data collected from the
observation of other agents. Using the multimodal variational
autoencoder trained on data of the robot itself, the robot is able
to make predictions also of others’ motion trajectories in the
visual space. When observing others, the robot has access to
the visual information only, from its egocentric point of view.
The learned model is then used to retrieve the motor commands
(together with the other missing sensory modalities) that would
enable the robot to reproduce the trajectory observed to per-
form mental simulation of the observed action. Experiments
were carried out using two different datasets. The first test
dataset consists of movements of a human playing a piano key-
board, that was recorded by the authors using a RGB-D camera
(Fig. 7a). The second test dataset is part of the Imperial-PRL
KSC Dataset (data used in [53] to validate kinematic structure
correspondences methods). It contains kinect data of a human
moving his hands (represented in Fig. 7b). The 3D visual posi-
tions of these two datasets were then translated into 2D data by
using two of the three available dimensions. This corresponds
to a coarse approximation of the projection of the 3D trajecto-
ries onto the two cameras of the robot.

While the first dataset is similar to the self-exploration
dataset in terms of scenario and application, the second one is
significantly different, involving the free motion of the human

Left
hand
motion

Elbow

Left
shoulder

Neck

Torso

Right
shoulder

(a) Human piano playing.

Left
hand

motion 

(b) Imperial-PRL KSC Dataset.

Figure 7: (a) Kinect data of a human upper-body movements while
playing a piano keyboard with one hand. (b) Kinect data from the
Imperial-PRL KSC Dataset. The trajectory of the left hand vPRL has
been used as test dataset.
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Figure 8: Predictions of others’ trajectories. Solid black lines repre-
sent the real data, while blue lines represent the predicted mean and
the shaded light blue areas the predicted variance (uncertainty) of the
prediction model. Prediction of human playing a piano keyboard (left)
and prediction of the left hand motion vPRL (right).

arms, which are not confined within the scope of a keyboard.
The first test dataset allows us to demonstrate that the robot can
effectively reconstruct and predict another agent’s performing
a sequence of motions that is similar to those performed in the
motor babbling phase by using the learned internal models. The
second test dataset allows us to demonstrate that the robot is
able to reconstruct and predict visual trajectories of others’ mo-
tion using the learned models also when the type of motion is
significantly different from the data acquired by the robot from
self-exploration.

Results are shown in Fig. 8: the left plot shows the prediction
performance on the kinect data collected from a human playing
a piano keyboard (see Fig. 7a), and the right plot shows the
prediction performance on the kinect data from the Imperial-
PRL dataset (specifically on vPRL , see Fig. 7b). The correspond-
ing mean squared error scores obtained are 0.64% and 0.69%
(corresponding to about 6 to 7 pixels) for the two datasets, re-
spectively. The results achieved demonstrate that the proposed
architecture obtains predictions of visual trajectories of others’
motion by only making use of internal models of self.

4.5. Imitate the observed agent’s trajectories

In this section, we present experiments that demonstrate the
ability of the proposed architecture to use the learned multi-
modal representations to control the robot to imitate an ob-
served agent ’s visual trajectories. Condition (3) in Table 1
was critical to achieve this behavior. The experiments pre-
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sented here show that the robot can successfully follow demon-
strated/target visual trajectories, only using the learned multi-
modal representations.

The learned model can be used in a control loop (rightmost
diagram in Fig. 1). By deploying the learned model as a con-
troller, it is possible to implement, for example, imitation tasks,
where the robot needs to track trajectories in the sensory space.
The learned model is able to reconstruct the motor commands
necessary to achieve reference trajectories. The retrieved mo-
tor commands can then be issued to the robot’s motors. For
this experiment, we have used two datasets: target trajectories
from motor babbling, and data observed from the human play-
ing two keys on the piano keyboard. The first dataset consists
of trajectories from the part of the babbling dataset that has not
been used for training the network. This test dataset thus con-
tains data that have not been seen by the network before, though
they are similar to the data used for training. In particular, the
associations between positions in the sensory space and corre-
sponding values of the velocity motor commands are similar.
The second dataset is more challenging, particularly because
it may contain visual positions that were not contained in the
training set, and this can in turn lead to combinations of the
multimodal dimensions of the input that the network was never
presented before. The objective is for the robot to imitate the
observed target trajectory. The target trajectory is used as ref-
erence and fed to the network in place of vt, while the current
visual position of the robot and the current joint configuration
of the robot (vt−1 and qt−1) are fed back to the network. All the
other modalities are considered missing, in particular the motor
commands that are produced by the network online after each
new observation.

In the first experiment, we have compared the proposed
method with the Cartesian controller available on the iCub. The
stereo vision system of the iCub is used to determine the 3D po-
sition in the Cartesian space associated with 2D visual inputs.
This information is then used by the Cartesian controller to
reach the target positions. Results obtained on the first dataset
are represented in Fig. 9. The trajectories depicted in this fig-
ure are, consistently with the visual data used throughout this
article, those captured from the robot’s first person view. It can
be noted that our proposed method generates a trajectory that
is more accurate than the one from the built-in Cartesian con-
troller. It is important to note that the visual information avail-
able to the Cartesian controller is the same used by the proposed
method, hence the calibration of the cameras together with the
whole experimental setup is in common. This observation al-
lows us to conclude that the proposed method overall surpasses
the built-in controller in performing the task. The mean squared
error score achieved by the proposed model on this task on the
four-dimensional visual data is only 0.48% (corresponding to
an error of less than 6 pixels), a very low value considering
the resolution of the image (320 × 240 pixels) and the preci-
sion of the visual data encoding the hand position throughout
the experiments. The built-in Cartesian controller achieved a
less accurate tracking of the reference visual trajectory, with a
mean squared error score on the four-dimensional visual data
of 1.07%, that is more than double the error achieved with the

Reference traj.
Cartesian ctrl.
Proposed

Figure 9: Results of the imitation task realized by using the built-in
Cartesian controller (yellow line) and the learned model (green line)
to control online the robot’s movements. The proposed method out-
performed the built-in model, achieving a more accurate tracking of
the reference visual trajectory (gray line). The left plot shows the 2D
visual position representation of the reference and executed trajecto-
ries, while the right plots show the corresponding temporal profiles of
the positions (x and y coordinates). For clarity of the representation,
only the trajectories acquired from the left eye camera of the robot are
depicted, while similar results were obtained from the right camera.

proposed method. This difference is likely related to the fact
that the reference data comes from the OpenCV tracker used
to detect the 2D position of the hand in each image, which are
probably not a perfect representation of the 3D position of the
hand. This is likely causing the stereo-vision module to produce
inaccurate target positions for the built-in Cartesian controller.
Thus, we hypothesize that this succession of inaccuracies leads
to a less accurate reproduction of the trajectory. Nevertheless, it
is interesting to see that our proposed model manages to gener-
ate a better trajectory, while using the same data and without the
need of the prior knowledge contained in the built-in Cartesian
controller.

The experiments on the second dataset are also instrumental
to show that the proposed method allows a robot to use data ob-
served from another agent and imitate them. Results of 3 repe-
titions of this task are represented in Fig. 10. The mean squared
error score achieved on this task on the four-dimensional visual
data is 0.13% (corresponding to an average of only 3 pixels er-
ror in the image frames). The visual trajectory executed by the
robot and represented in Fig. 10 closely tracks the trajectory
demonstrated. The robot is able to replicate the trajectory and
successfully hit the two keys that were played by the demon-
strator. It is possible to note that the results on the y coordi-
nate are more accurate than those obtained on the x coordinate.
This reflects the structure of the actions performed during the
exploration, which are used for training the model. While the
exploratory movements spanned a wide range on the vertical
direction, a smaller part of the space was explored on the hor-
izontal direction. We hypothesize that the bias observed in the
network performance is related to the fact that the data acquired
through the motor babbling exploration were also biased and
constrained within a limited portion of the operational space.
This limited, biased exploration allowed a more efficient data
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Figure 10: Results of the imitation task on the data collected from
a human playing a piano keyboard. The proposed method (colored
lines) allows the robot to effectively track the reference visual trajec-
tory (black line). The left plot shows the 2D visual position represen-
tation of the reference and executed trajectories, while the right plots
show the corresponding temporal profiles of the positions (x and y co-
ordinates). For the clarity of the representation, only 3 of the repeti-
tions performed on the task are represented, and only the trajectories
acquired from the left eye camera of the robot are depicted (analogous
results where obtained from the right camera).

collection for the scope of the experiments and tasks described
in this paper. We discuss this point further in Section 5.

4.6. Results summary

In summary, the proposed method achieves accurate recon-
struction and prediction; moreover, it is able to generate control
signals to imitate visual trajectories consistently and accurately.
We report in Table 3 a summary of the quantitative results ob-
tained and described in the previous subsections. The proposed
method achieved low prediction errors across the different tasks
considered: the model was able to predict with errors that can
be considered negligible with respect to the state and action
spaces (e.g. less than 2 degrees angles for joint positions, less
than 6 pixels in the vision space).

4.7. Comparison with other methods

An important aspect of this work is that the training proce-
dure can be applied to other neural network architectures with
reconstruction capabilities. The augmentation of the dataset
with different arrangements of missing modalities enables the
construction of a single model capable of executing several
tasks. In order to illustrate the possibility of applying this train-
ing procedure to other networks, and to compared the accuracy
of the proposed model, we have tested several other architec-
tures:

(i) Vanilla VAE: a standard VAE model (e.g. [18]) trained in
a denoising fashion on the dataset without missing modal-
ities, by using a probability of 30% to set some values of
the inputs to 0.

(ii) Vanilla VAE trained with our proposed training method,
on the augmented database.

(iii) The multimodal architecture proposed in [50]. This archi-
tecture learns a shared latent representation and classifica-
tion of the inputs, and can be used to reconstruct missing
modalities. It is trained as (i), which is also the approach

Table 3: Accuracy scores summary: low prediction error is achieved
on all the considered tasks, as only small discrepancies to the reference
are measured.

Task
Accuracy
(percentage scores, relative to the dataset ranges)

Reconstruction

Joint pos.: 0.46% (≈ 1.29 degrees)
Vision: 0.05% (≈ 1.85 pixels)
Touch: 2.35%
Sound: 3.35%
Motor c.: 1.29% (≈ 2.16 degree per sec.)

Reconstruction
from partial data

Joint pos.: 1.39% (≈ 2.24 degrees)
Vision: 0.05% (≈ 1.85 pixels)
Touch: 9.42%
Sound: 3.95%
Motor c.: 2.32% (≈ 2.89 degrees per sec.)

Prediction
of self motion

Single step: 0.21% (< 4 pixels)
Multi-step: 0.42% (< 5 pixels, after 50 time steps)

Prediction
of others motion

Piano playing: 0.64% (≈ 6 pixels)
Imperial-PRL-KSC: 0.69% (≈ 6 pixels)

Imitation
Motor babbling: 0.48% (≈ 5 pixels)
Playing keys: 0.13% (≈ 3 pixels)

Method
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Figure 11: Visualization of performance scores (prediction error) of
the proposed method and other methods. Our training strategy clearly
improves performance of reconstruction methods, including Vanilla
VAE and the model proposed in [50]. Our method performs equally
or better than the alternatives in the complex fully sensorimotor state
estimation task.

proposed by the authors. The implementation of this archi-
tecture is based on the source code provided by its authors.
The sizes of the different fully connected layers have been
selected to match those of our proposed architecture.

(iv) The multimodal architecture proposed in [50] trained with
our augmented database.

(v) Two independent models, namely a forward and an inverse
models, implemented by feed-forward neural networks.

Implementation details of the different architectures are
given in Appendix B. We considered three representative cases
for comparison, namely:

• prediction of the current sensory state from the previous
one (case 2 of Table 1); this case corresponds to the for-
ward model function;
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Table 4: Accuracy of different architectures on the tasks presented in
this paper. The training and evaluation of the different models have
been replicated 10 times. The results are presented in the form of
percentages indicating: median [first quartile; third quartile].

Method
Prediction of
sensory state

(forward model)

Prediction of
motor command
(inverse model)

Prediction of
full sensorimotor state

in imitation case

Our 1.13% [0.96; 1.22]% 2.31% [2.28; 2.34]% 1.52% [1.45; 1.67]%

Vanilla VAE 19.37% [12.48; 35.39]% 22.65% [12.47; 49.08]% 8.43% [6.86; 9.16]%

Vanilla VAE
+ our training method 1.75% [1.63; 1.82]% 3.31% [3.24; 3.73]% 1.76% [1.72; 1.81]%

Model from [50] 2.36% [2.07;2.61]% 5.72% [5.66; 5.77]% 3.56% [3.22; 3.71]%

Model from [50]
+ our training method 1.09% [1.06; 1.12]% 3.03% [2.91; 3.06]% 1.45% [1.43; 1.47]%

Indep. forward
and inverse models 0.51% [0.49; 0.53]% 0.24% [0.23; 0.26]% 3.39% [3.04; 3.64]%

• prediction of the motor commands from the visual infor-
mation only (case 4 of Table 1); this case corresponds to
the inverse model function;

• prediction of the whole sensorimotor state from the exter-
nal visual information and the current joints configuration
(case 3 of Table 1); this case corresponds to the imitation
scenario.

Fig. 11 provides a visual representation of the performance
comparisons in terms of prediction error. Table 4 summarizes
the MSE scores obtained by the models compared. From the
results presented in Table 4, we are able to draw the following
conclusions. First, the proposed training strategy consistently
improves the performance of the considered models, allowing
a drop of the MSE scores to approximately half of the origi-
nal scores in the case of the model from [50], and to a frac-
tion of it in the case of the vanilla VAE. Also, the proposed
multimodal VAE outperforms a vanilla VAE model: we argue
that this is because the proposed multimodal model can learn
both modality-specific and cross-modality features thanks to
the modular structure of the encoder/decoder and the joint prob-
ability distribution learned in the latent encoding.

The comparison with the two independent forward and in-
verse models demonstrates that the proposed architecture per-
forms better because it can fulfill the two functions (of for-
ward and inverse model) simultaneously. In this comparison,
the predictions from the forward model are used for the “for-
ward model” case, and the prediction from the inverse model
are used for the “inverse model” case, respectively. To achieve
the third case (imitation case) the forward and inverse mod-
els must feed each other in order to produce the whole sen-
sorimotor state from the visual and proprioception information:
first, the inverse model must be applied to get the motor com-
mands which are then used by the forward model to produce the
sensory state prediction. Despite each individual model being
(almost) perfectly suited for its own function (note the lowest
scores achieved), the combination of the two to achieve imita-
tion results does not achieve the best performance on the imi-
tation case. On the contrary, the proposed architecture outper-
forms this baseline.

5. Discussion

The results presented in this study show that a robot can
learn to predict the visual trajectories of another agent from an
egocentric point of view by exploiting only self-learned inter-
nal models. In this study, it has been argued that one of the
main challenges in achieving predictions of others only based
on internal models of self is the difference of the available data:
while the whole set of sensorimotor data is available when the
robot is acting and exploring, only visual information is avail-
able when the robot observes another agent. This motivated
the proposed strategy to reconstruct and infer the missing infor-
mation. In particular, the proposed training strategy has shown
crucial to improve models performance, and the proposed varia-
tional autoencoder allowed a robot to learn probability distribu-
tions among different sensorimotor modalities which captures
the kinematic redundancy of the robot’s motions.

The choice of the variational autoencoder was motivated by
its capability of modelling data uncertainty, through a learned
posterior distribution represented by the mean and the variance
of a Gaussian distribution. The multimodal formulation, more-
over, allows us to combine different representations of differ-
ent types of data into a single distribution (the learned poste-
rior distribution), that gracefully merges the different sources
of information. In addition, the encoder-decoder structure of
the variational autoencoder is ideal for reconstruction and self-
supervised learning purposes, hence a perfect fit for the ob-
jective of this work: that is to reproduce (reconstruct, predict,
generate) signals during inference, after training on exploration
(self-collected) data. The choice of a variational autoencoder
model instead of a classical autoencoder also allowed us to
leverage the advantages of generative models. Variational au-
toencoders model the input data by means of a distribution,
generally (as in our case) a Gaussian distribution, defined by a
mean and a variance. This allows to capture a more general and
flexible underlying structure of the data compared to other mod-
els (such as standard autoencoders or encoder-decoder mod-
els). In our case, the distribution is action-conditioned since
part of the input includes the motor commands. This means
that the posterior distribution learned during training captures
the correspondences between actions and sensor observations,
and learns that some observations actually correspond to dif-
ferent actions. This is shown in Figure 4: despite the fact that
joint q2 does not follow the prescribed trajectory, the visual tra-
jectory (as well as tactile and acoustic ones) is actually tracked
accurately. This is because the same visual position of the hand
can be achieved by a number of different joint configurations
(redundancy). The fact that the variance of joint q2 is signifi-
cantly bigger than the variance of the other joints supports this
claim, because it represents the uncertainty of this particular
joint motion.

The proposed approach can be enhanced by enforcing the
variational autoencoder to learn a latent space of a certain shape
from which inputs can be sampled in a more meaningful man-
ner, to generate synthetic sensorimotor data. Although we let
the exploration of this direction for future work, we believe this
is a strong and promising characteristic of the chosen model in
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the context of multimodal learning. Another key characteris-
tic of the proposed multimodal variational autoencoder is that
this model can learn both modality-specific and cross-modality
features thanks to the modular structure of the encoder/decoder
and the joint probability distribution learned in the latent en-
coding.

A limitation of the current implementation is the dependence
of the reconstruction accuracy on the explored sensorimotor
space. In particular, it is possible that combinations of sensory
states reached during an imitation task are far from the training
set of states used in the training of the network. In this case
the network “guesses” motor commands by sampling from the
learned distribution, but the reconstruction accuracy is usually
poor due to the lack of samples resembling the observed new
sensory state.

The problem of generalizing to unexplored regions of the
space is indeed a very interesting and still largely unsolved
problem in robotics as well as in exploration methods in other
domains (e.g. machine learning, reinforcement learning, multi-
task learning, etc.). One possibility to improve our current
method would be to enlarge the exploration space to include
a larger region of the multimodal space (e.g. bigger areas of
Cartesian/join space). This would come with the problem of
having to acquire larger number of data and thus making learn-
ing of the model slower. A possible direction is the implemen-
tation of more sophisticated exploration strategies, for instance
curiosity-based strategies [55, 56], or to exploit the generative
nature of the model as mentioned earlier.

Finally, in this paper, we designed the tasks in a way that the
robot and the human are both capable of executing it. It would
be interesting in future works to investigate how to identify and
address the situation when the task cannot be fulfilled by the
robot.

6. Conclusion and Future Work

This work takes inspiration from cognitive studies showing
that humans can predict others’ actions by using their own inter-
nal models [5]. Following this direction, we have implemented
a new architecture that allows a robot to predict visual trajecto-
ries of other agents’ actions by using only self-learned internal
models. In this paper, we introduced a strategic training ap-
proach and a multimodal learning architecture that allow a robot
to (1) reconstruct missing sensory modalities, (2) predict the its
own sensorimotor state and predict visual trajectories of another
agent from an egocentric point of view, and (3) imitate the ob-
served agent ’s trajectories. This versatility represents a major
advantage of the proposed approach, that can thus be applied in
different applications to address different objectives (e.g. pre-
diction, control, etc.). This architecture leverages advantages
of developmental robotics and of deep learning, and has been
evaluated extensively on different datasets and set-ups.

In future work, we will investigate how to leverage the gen-
erative capabilities of the network, and how this method can be
combined with more advanced exploration strategies (such as
curiosity-based strategies) in order to acquire a self-perception
database that covers the robot and environment states as much

as possible [55, 56]. The presented method will also be com-
bined with perspective taking mechanisms [9, 10] to enable pre-
diction of future states from different viewpoints.
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Appendix A. Datasets and training

The motor babbling dataset contains 7380 datapoints (corre-
sponding to approximately 30 minutes of exploration). The tra-
jectory taken from the Imperial-PRL KSC dataset contains 25
datapoints (corresponding to approximately 45 seconds). The
VAE is trained on the motor babbling data augmented train-
ing set, for 80000 epochs, with learning rate of 0.00005, and a
batch size of 1000 samples. At each training step, a batch is
randomly sampled from the augmented training set and fed to
the network to train. The augmented training set is formed by
concatenating the original complete set of data collected dur-
ing motor babbling and normalized to values between -1 and
1, with mutilated versions of it: Table 1 shows how the aug-
mented dataset is formed: (1) complete data at time t − 1 and t,
concatenated to (2) data including only time t−1, concatenated
to (3) data including only proprioception at time t − 1 and vi-
sion at time t and t − 1, concatenated to (4) data including only
vision at t and t − 1. For the cases (2-3-4), the missing data
is replaced with the value −2 (which is outside of the normal-
ized range [−1, 1] used for the collected data). Each dataset was
split with a 80:20 ratio between training and testing datapoints.
Given the size of the dataset, the model can overfit to the train-
ing set. Nonetheless, because the training dataset was collected
by using pseudo-random movements (i.e. not specific to a par-
ticular task to be performed), the network is able to generalize
to different types of motion.

Appendix B. Parameters of the architectures

Multimodal Variational Autoencoder (proposed architecture)
joint positions visual tactile sound motor commands input layer

8 dims 8 dims 2 dims 2 dims 8 dims
40-ReLU 40-ReLU 10-ReLU 10-ReLU 40-ReLU Modality encoders
20-ReLU 20-ReLU 5-ReLU 5-ReLU 20-ReLU

concatenation
100-ReLU Shared encoder

28-ReLU x2 Latent space
100-ReLU Shared decoder
70-ReLU

slicing into 20, 20, 5, 5, 20 dimensions respectively
40-ReLU 40-ReLU 10-ReLU 10-ReLU 40-ReLU Modality decoders

8-ReLU x2 8-ReLU x2 2-ReLU x2 2-ReLU x2 8-ReLU x2 Reconstructed data

N-ReLU represents a fully connected layer with N neurons and
using the ReLU activation function. N-ReLU x2 indicates that
2 N-ReLU layers are created in parallel, one to encode the mean
and the other to encode the variance of the output distribution.
The network has been trained for 80k epochs with the Adam
optimizer and a learning rate of 0.00005. The training took
approximately 5 hours on a single GPU (Nvidia GTX-1080).
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Structure of the compared approaches:
VAE Forward Model Inverse Model
all modalities input layer all modalities at t-1 input layer Sensory state at t-1 and t input layer

28 dims 14 dims 20 dims
100-ReLU Encoders 14-tanh 100-tanh
100-ReLU 10-linear output layer 100-tanh

28-ReLU x2 Latent space 4-linear output layer
100-ReLU Encoders
100-ReLU

28-ReLU x2 Reconstructed data

The implementation of the comparison architecture from [50]
is based on the source code provided by the authors and repli-
cate most of its parameters. Only differences are the number
of modalities (set to 5), the number of parameters (set to 100),
and the number of classes (set to one as classification is not
considered here).
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