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Abstract

In this paper we propose a new method for solving the path planning problem in a

static environment to find an optimal collision-free path between starting and goal

points. First, the grid model of the robot’s working environment is constructed, and

then the potential value of the grid cells is calculated based on the new proposed po-

tential function. This function is used to guide the robot to move toward the desired

goal, it has the lowest value at the goal position and the value is increased as the robot

moves further away. Second, we developed an efficient method, called the Bound-

ary Node Method, to find the initial feasible path. In this method, the robot is sim-

ulated by a nine-node quadrilateral element, where the centroid node represents the

robot’s position. The robot moves in the working environment toward the goal with

eight-boundary nodes based on the potential value of the boundary nodes. The initial

feasible path is generated from a sequence of waypoints that the robot has to traverse

as it moves toward the goal point without colliding with any obstacles. However, the

proposed method can generate the path safely and efficiently, but the path is not op-

timal in terms of the total path length. Therefore, in order to construct an optimal or

near-optimal collision-free path, an additional method, called the Path Enhancement

Method, is developed. Finally, the cubic spline interpolation is adopted to generate a

continuous smooth path that connects the starting point to the goal point. The proposed

method has been tested in several working environments with different degrees of com-
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plexities. The results demonstrated that the proposed method is able to generate near-

optimal collision-free path efficiently. Moreover, we compared the performance of the

proposed methods with the other path planning methods in terms of path length and

computational time. The results revealed that the proposed method can solve the robot

path planning problem more efficiently. Finally, in order to verify the performance of

the developed method for generating a collision-free path, experimental studies were

carried out on the real robot.

Keywords: Robot Path Planning, Path Optimization,

Simulation Model, Autonomous Mobile Robot, Potential

Function, Boundary Node Method, Path Enhancement Method

1. Introduction

The aim of path planning is to find a collision-free path for a mobile robot to move

from a starting point to a goal point in a given working environment based on certain

optimization criteria, such as, the walking distance, the walking time, the energy con-

sumption, and so on [1, 2, 3]. It is expected that the robot reaches the final destination5

point safely through the shortest walking path within the minimum computational time.

Path planning has been widely applied in many robotic applications to perform various

tasks that humans could not accomplish in several domain such as nuclear facilities [4],

for space exploration [5], for rescue mission, landmines and enemies in war field [6].

In addition, path planning approaches are useful for repeatable tasks in static environ-10

ments where optimality is essential (e.g. industrial applications) [7]. These factors

make the path planning an interesting and challenging subject for researchers [6].

The path planning problem started around the sixties, but the interest in the path

planning area for mobile robot grew after the work of authors in [8] after which many

methodologies have been proposed [2, 9]. The existing methods are mainly categorized15

into classical and heuristic path planning [6, 2]. The classical methods include cell de-

composition, potential field method, subgoal network and road map [10]. They involve

finding a set of defined steps to search for a path starting from an initial position to a

goal position. In classical methods only deterministic actions are considered [11, 10].
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Table 1: Abbreviations used in this study

Notation Description

BNM Boundary Node Method

PEM Path Enhancement Method

IFP Initial Feasible Path

C Workspace

Cobs Space occupied by obstacles

Cfree Free Space, Cfree = C–Cobs

Cs Start Point, Cs(xs, ys) ∈ Cfree

Cg Goal Point, Cg(xg, yg) ∈ Cfree

CBGC Boundary Grid Cells, CBGC ⊂ Cobs

Cr Robot Position, Cr(xr, yr) ∈ Cfree

p1(t) Current Location, p1(t) = [x1(t) ; y1(t)]

p2(t) Updated Location, p2(t) = [x2(t) ; y2(t)]

sy Variation Potential Value between p(4) and p(6)

sx Variation Potential Value between p(2) and p(8)

pbest Best Node Position

d Distance between the centre and the edge of the obstacle, d = 0.5unit

e Motion Directions, e(u), (u = 1...8)

w Set of waypoints
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However, it has been found that the classical methods have some disadvantages such as20

the high computational cost, trapping into local minima, and high time complexity in

high dimensions [6, 9, 1]. As classical search methods fail to find exact solutions, many

heuristic methods have been proposed, i.e. Genetic Algorithm (GA) [12, 7], Particle

Swarm Optimization (PSO) [6], Artificial Neural Networks (ANNs), Ant Colony

Optimization (ACO) [9, 13], and Fuzzy Logic (FL) [9]. Surveys works in [1, 13]25

showed that the heuristic path planning methods are computationally more efficient

in terms of path distance, obstacle avoidance, and elapsed time [9]. Heuristic meth-

ods attempt to find a good solution to the path planning problem in a short amount

of time, but these methods are not guaranteed to provide an optimal solution [11, 10].

The combinatorial path planning methods in continuous space can solve many path30

planning problem and construct optimal solution efficiently [10, 14, 15, 16, 17].

Many of the existing methods for robot path planning are able to find a path for

the robot, but in most of the cases, the quality of the generated path is not accurate

enough or their efficiency is not sufficient [18]. Researchers have always been seeking

for a better solution to improve the performance of the existing path planning methods.35

A list of goals that researchers of several earlier works have pursued is the following:

improve the accuracy [19, 5, 20], improve the efficiency [21, 18], increase safety [4,

5, 22], increase the capability [23], reduce the processing time [24, 25], overcome the

non-reachable goal problem [26], pass through narrow passages [27], overcoming the

local-trap problems, and improve the quality of planned paths [18]. However, several40

important gaps and limitations still need to be addressed, as outlined in the following:

1. In several works, the computational time is still too high because the process of

a large number of unnecessary points. Moreover, the search for an optimal path

might not succeed [2].

2. In many previous studies, the considered environments are relatively too simple45

and unusual for testing the efficiency of the proposed method [28, 29]. Obvi-

ously, the path planning problem in a complex environment can be very difficult

and it is still a challenging issue.

3. As the range of a robot’s application is expanding over time, the complexity
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of the path planning problem and working environment are increasing as well.50

For this reason, it becomes much more difficult to find an optimal path within a

reasonable amount of time [2].

4. In computational complexity theory, path planning is classified as a non - deter-

ministic polynomial time problem NP-complete, and the required computational

time grows exponentially as the complexity of the path-planning problem in-55

creases [9].

5. There are many methods that use random operation to produce a set of solutions

for each independent run. Then, in order to find the optimal, all of these differ-

ent solutions are selected, combined and replaced. This process requires a lot

of computational time, therefore, reducing the variation of the final solution is60

important. [2].

Based on the limitations and research gaps, as previously explained above, we in-

vestigate a novel off-line path planning method for a mobile robot in a two-dimensional

(2D) static environment. In the developed method, that we called the Boundary Node

Method (BNM ), the robot is simulated by a nine-node quadrilateral element, where65

the centroid node represents the robot’s location and it moves with eight-boundary

nodes in the working environment. The robot is exploring the environment with the

help of the node’s potential value at each location, where the potential value is calcu-

lated based on the proposed potential function. In this method, we have considered

only 8-generated grid points that are overlapping with the eight-boundary node, rather70

than considering all the generated points which lead to less computational time. More-

over, the proposed method is capable of generating an efficient path for a mobile robot

safely and quickly and it can also overcome the local minima problem. We also devel-

oped an additional method, that we called the Path Enhancement Method (PEM ), to

construct an optimal path by reducing the number of waypoints (w) and path length.75

The term BNM has already been used in one of the meshless boundary integral

equation methods that combine the Moving Least squares (MLS) interpolation with

the Boundary Integral Equations (BIEs) to solve boundary value problems in potential

theory and engineering.
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To evaluate the contribution of the proposed approach, a comparison study has been80

conducted between the proposed method and the other path planning methods, namely,

PSO,GA,A−Star, and Artificial Potential Field (APF ). The comparison results are

presented and discussed in subsection 5.3. The PSO algorithm is widely used in path

planning problems [19, 29, 23] as it is fast and simple [29], easy to implement [30],

and a powerful means [14] to solve mobile robot navigation problems [23]. Moreover,85

A − Star algorithm is an effective and direct method to search paths [22], which

was used for many path planning applications [31], and it is mainly employed on an

environmental grid [20]. In addition, GA is known as a robust optimization method

among the existing approaches for robot motion planning problem [18]. By taking

advantage of its strong optimization ability, the GA has been widely used in previous90

study to generate an optimal path [32]. The potential field method is a fast [31, 29,

13], simple [31, 26], easy to implement [31] method, and it has good results for path

planning [13]. The disadvantages of artificial potential field method are related to the

local minima problem that it can incur [29, 31, 26].

Therefore, the main contributions of this paper can be summarized in the following95

points:

1. The proposed method, BNM , is capable of finding the initial feasible path

(IFP ) for a mobile robot without colliding with any obstacles even if the com-

plexity of the environment is increased.

2. The proposed method uses an optimization technique based on the lowest poten-100

tial value to accelerate the robot to find the path safely and quickly in reasonable

time.

3. An additional method, PEM , is developed to find an optimal or near optimal

path from the IFP by reducing the number of waypoints and the overall path

length.105

4. The proposed method does not work through random operations and there is no

uncertainty in generating points, which leads to finding the final solution for the

problem without variation in solution.

5. The proposed method generates a safe path for a mobile robot to navigate in a
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complicated environment within a relatively short computational time.110

6. The concept involved in the proposed method is simple and can be applied in a

grid environment efficiently.

7. The computational time required to solve path planning problem by usingBNM

does not increase significantly with the increase of the environment’s complexity.

8. The comparison between the developed approach and other path planning meth-115

ods reveals that the BNM can solve the path planning problem effectively and

efficiently in terms of path computational times and path length.

The remainder of this paper is structured as follows: Section 2 includes background

work within the domain of mobile robot path planning. Section 3 introduces the path

planning problem in a static and completely known environment. In Section 4, the120

details of the novel method and potential function are described with several illustra-

tive examples. In Section 5, the application results of the developed method is pre-

sented and discussed for several working environments with different complexity. It

also presents and discusses the comparison results between BNM and the other path

planning method. The experimental study is presented in Section 6. Final conclusions125

and prospective future research are provided in Section 7.

2. Related Work

The path planning problem has attracted many researchers’ attention due to the

uncertainties, complexities and real-time nature of the problem [28], and it has been a

very active area of research over the last few decades. In the literature, the problem of130

path planning for mobile robots has been widely discussed and various solutions and

approaches have been proposed to solve it. For example, the authors in [2] proposed a

new methodology to solve the path planning problem in two steps. First, they generate

the IFP based on the surrounding point-set (SPS), which refers to a set of points that

surround the obstacles. Then, they applied the path improvement algorithm to get the135

optimal path by using the outcome of the first step. As stated in [2], this method has

a low-level of randomness that reduces the variation of solutions, and also this method

is able to generate points in narrow or small spaces in the map. Another method is the
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Bacterial Potential Field (BPF ), developed by [15] to compute an optimal path for a

mobile robot in a real-world scenario with static and dynamic obstacles. As reported140

in [15], the path planning with the BPF allows a robot to navigate in an autonomous

way without being trapped in local minima.

Furthermore, there are a number of researchers who combined algorithms to im-

prove path planning performance. For example, the authors in [14] presented a hybrid

meta-heuristic GA − PSO algorithm for mobile robot navigation to find an optimal145

path between starting and ending point in a grid environment. The proposed algorithm

avoids time complexity and premature convergence in conventional GA and PSO al-

gorithms. The hybrid GA− PSO is used to generate the IFP , then a cubic B-spline

technique is applied to construct a near-optimal collision-free path. To reduce the com-

plexity of robot path planning, authors in [33] proposed a hierarchical path planning150

method by integrating fuzzy theory and genetic algorithm. To solve path planning

problem, researchers in [34] suggested another method named SACOdm Based on

Simple Ant Colony Optimization Meta-Heuristic (SACO −MH). One of the main

contributions of SACOdm is the inclusion of memory capabilities to the artificial ants

to prevent stagnation. Another contribution of this method is the use of the fuzzy155

cost function to evaluate the best path. An additional methodology has been proposed

in [16] by integrating the Artificial Bee Colony (ABC) algorithm with the evolutionary

programming algorithm. In this method ABC algorithm has been studied and applied

to generate a feasible path, then the feasible path is enhanced by using an evolutionary

programming algorithm.160

Additionally, many researchers built on top of existing methods to improve their

performance and to overcome their limitations. In fact, authors in [22] proposed an im-

proved version of A− Star algorithm to overcome inherent drawbacks of the original

A−Star. One of the main improvements of the proposed method is that the local path

is planned before the next search in the current node’s neighbourhood. A − Star al-165

gorithm calculates heuristic function’s value at each node on the work area and checks

adjacent nodes in order to find the optimal solution with zero probability of collision.

However, its time complexity is too high. To overcome this problem, [25, 24] intro-

duced a number of improvements to the A − Star algorithm to reduce the compu-

8



tational time and to increase the overall performance. Another improvement is the170

minimization of the resulting path length by reducing the number of local paths. With

the aim of reducing the chances of collisions between robot and obstacles, researchers

in [20] presented a new approach of path planning technique, where they assumed that

the virtual obstacle’s size increased approximately (2n + 1) times the size of the cell

in the workspace. The capabilities of GA for solving the path planning problem for175

mobile robots in static and dynamic environments have been investigated by several

researchers, who have extended the method. For example, the authors in [12] proposed

a new fitness function for GAs whereas authors in [21] proposed Knowledge-based

GA and authors in [18] proposed an adaptive GA. Furthermore, [35] presents the new

variant of GA using the binary codes through matrix. Calculation of artificial poten-180

tial values is another solution to obtain a collision-free path. This method was first

used [36] for a collision-free robot motion planning problem. This method is based on

attraction and repulsive values which are considered two fields produced by the target

point and obstacles, and the robot is considered as a moving object in these fields. The

robot moves toward the target based on the negative slope of the potential function.185

The problem with this approach is that the robot can get stuck in local minima of the

potential field [18]. Consequently, various techniques have been proposed to avoid

the minima, i.e. authors in [37] tried to solve the problem by using harmonic poten-

tial functions around obstacles. In order to solve the problem of non-reachable goals

with obstacles nearby (GNRON ) in potential field method, a new repulsive potential190

function is proposed by [26]. In order to overcome the local minima and heavy compu-

tational time for robotic path planning, probabilistic sampling-based algorithms such as

the rapidly-exploring random tree (RRT ), and the probabilistic roadmap (PRM ) al-

gorithms are introduced due to their remarkable practical performance and strong the-

oretical properties [38, 39]. Such algorithms work by computing multiple distributed195

random points in the free workspace and connect them to construct a tree or graph, af-

ter that a search method is used to find a path [22]. In RRT , the most important factor

that affects the overall efficiency of path planning is how to select a tree to extend or

connect. In the literature, the Rapidly-exploring Random Trees (RRT ) algorithm has

been widely used. [40] proposed a novel learning-based multi-RRTs (LM − RRT )200

9



approach for robot path planning in complex environments with narrow passages. As

stated in [40], this approach can guarantee the efficiency of global path planning and

enhance the local space exploration ability of each tree. The investigation of the short-

est path with the minimum time required for the global path planning is carried out

in [23] by using Modified PSO. Authors in [41] has made a comparison between be-205

tween PSO and Q-learning, a Reinforcement Learning-type algorithm. For the single

robot case, they showed that the final performance obtained with Q-learning approach

is very similar to the one obtained with PSO. Some optimal path planning algorithms

are presented in [27] for navigating mobile robot among obstacles and weighted re-

gions. These algorithms can search an optimal path and also intelligently rotate the210

robot configuration to pass through narrow passages.

Researchers provided great effort for real application to solve path planning prob-

lem for mobile robots, and they proposed many new methods. For example, the authors

in [7] presented preliminary results of the application of two-Kinect cameras system on

a two wheeled indoor mobile robot for off-line optimal path planning and execution.215

To solve path planning problem for rovers, authors in [5] presented a new algorith-

mic improvement. In this study, they proposed OUM − BD over the Ordered Up-

wind Method (OUM ) to include a bi-directional search. They stated that the proposed

method OUM − BD is faster than the existing OUM . Authors in [6] proposed a

multi-objective path planning algorithm based on improved PSO for robot navigation220

where the robot often involves various danger sources, such as a fire in a rescue mis-

sion, landmines and enemies in the war field. For emergency evacuation simulation,

authors in [19] proposed a new path planning approach. In this approach, the Ex-

tended Social Force Model (ESFM ) is combined with the improved ABC algorithm

to improve the efficiency of crowd evacuation. Another approach called Grid-Based225

Random Tree Star (GB −RRT ) has been developed by [4] to provide minimum dose

path for occupational workers in nuclear facilities in complex environments. The prob-

abilistic roadmap (PRM ) method has been applied by [42] to optimize the walking

path, and to reduce the radiation exposure of the staff in a radioactive environment

of nuclear facilities. A research study revealed that in the radioactive environment of230

nuclear facilities, the proposed method has a good effect on path-planning, and it can
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make a route in a very short time.

3. Problem formulation

In this section, we state the path planning problem, that is moving the robot from a

starting position and tracking it through all the intermediate waypoints until it reaches235

the goal position in a two-dimensional environment with static obstacles. The robot

does not have to collide any obstacles and must optimize the path from starting position

to the goal position.

Let us consider a 2D workspace C = R2 for a mobile robot, the region of space

occupied by obstacles is denoted by Cobs, and the obstacle-free region is represented240

by Cfree = C – Cobs. The continuous workspace is divided into square grid cells.

The grid cells have integer coordinates in the form C(x, y) ∈ C, with 1 ≤ x ≤ n, and

1 ≤ y ≤ m. A given cell can either correspond to a navigable area C(x, y) ∈ Cfree or

to a space occupied by obstacles C(x, y) ∈ Cobs. Each grid cell C(x, y) in Cfree has

a potential value E(x, y) ∈ E, which is calculated according to the potential function.245

The boundary grid cells of the workspace are also considered as obstacles. Grid cells

are represented by CBGC ⊂ Cobs. The robot position in the workspace is denoted

by Cr(xr, yr) ∈ Cfree, and the starting point Cs(xs, ys) ∈ Cfree and the goal point

Cg(xg, yg) ∈ Cfree. We assume that all the information related to the workspace is

known in advance, as well as the obstacles which are assumed to be fixed, meaning250

that they do not change while the robot moves toward the target. For such a reason, the

proposed method is known as off-line path planning, and generates the entire path to

the goal before the motion begins.

In the proposed method, the robot is simulated by a nine-node quadrilateral element

p(q), (q = 1...9). The centroid node p(5) is considered as the robot’s location and255

the other nodes (p(1 → 4)&p(6 → 9) represent the eight-boundary nodes which are

distributed uniformly around the robot’s location, as shown in Figure 1a. The robot

moves forward and changes its direction based on the potential values and features of

boundary nodes. The potential value E(q), (q = 1...9) for the robot and boundary

nodes are equivalent to the potential value of the corresponding generated points in the260

11



workspace. All the visited waypoints w, starting from Cs and ending at Cg , represent

the obtained initial feasible path IFP . Figure 1 (b) shows the motion directions, and

Figure 1 (c) shows the exploration location in the workspace.

Figure 1: A nine-node quadrilateral element (a) along with its motion directions (b) and exploration location

in the workspace (c).

4. Proposed method

This section describes the proposed method used in the presented study to find the265

optimal or near optimal collision-free path. The proposed method consists of four main

steps:

1. Construct a 2D grid model of the robot’s working environment, and then cal-

culate the potential value of the grid cells based on the new proposed potential

function. This function has the lowest potential value at Cg and the potential270

value is increasing as the robot moves further away.

2. Develop an efficient method, BNM , to generate the IFP for a mobile robot.

3. Develop an additional method, PEM , to construct an optimal or near optimal

path from IFP , (as the obtained IFP is not optimal path in terms of the total

path length).275

4. Generate a continuous smooth path that connects the starting point to the goal

point by using cubic spline method.
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Figure 2 shows an overview of the four steps above mentioned. In the next subsec-

tions we will detail each of the four steps.

4.1. Modeling of the workspace280

In the proposed method, all the grid cells of the given workspace meet the following

equation:

C =

n∑
x=1

m∑
y=1

C(x, y) (1)

where n and m represent, respectively, the width and height of the workspace, and

C(x, y) represents the grid cells in the workspace. After constructing the workspace

model, the potential value of each grid cell is calculated based on the new proposed

potential function, as explained in the following paragraphs.

4.1.1. Potential Function PF285

This section presents a new proposed potential function to calculate the potential

value of grid cells in the workspace C. The procedure of calculating the potential value

E(k), with (1 ≤ k ≤ N ) and N is the number of grid cells (N = n ×m) based on

the proposed potential function is illustrated in Algorithm 1. Two examples of the new

proposed potential function are shown in Figures 3a and 3b. In these figures, the cell’s290

colour represents the potential value, i.e. the blue cell corresponds to cells with the

lowest potential value whereas the yellow cell corresponds to cells with the highest

potential value. As shown in the figures, the shape of the potential function is conic

and the global minimum of the total potential is located at the goal position. Because

the lowest potential value of the goal point, it attracts the robot.295

In Algorithm 1, the computed E(k) represents the potential value of each grid cell

C(h, k), with (h = 1...2), and (k = 1...N) in the workspace C. The minimum po-

tential value is formulated at the goal point Cg(xg, yg). The distance between the start

point Cs(xs, ys) and the goal point Cg(xg, yg) is represented by D, where the slope of

a straight line D is denoted by m. The distance between the goal point Cg(xg, yg) and300

surrounding point C(h, k) in the workspace is represent by dp(1, k).
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Used as input

Calculate the potential
value E of each cell

in the grid model
(using Algorithm 1)
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Position Cg
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Figure 2: Flow diagram of the proposed method.
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Algorithm 1 The calculation of potential value of grid cells in the workspace.
1: Inputs:

Cg and C(h, k), (h = 1...2), and (k = 1...N)

2: Initialize:

E(k)← 0, (k = 1...N)

3: D = sqrt((xs − xg)2 + (ys − yg)2)

4: m = ((ys − yg)/(xs − xg))

5: c = (ys −m ∗ xs)

6: ll = sqrt(m2 + b2), (b = −1)

7: for k = 1 to N do

8: dp(1, k) = sqrt((C(1, k)− xg)2 + (C(2, k)− yg)2)

9: L(1, k) = m× C(1, k) + b× C(2, k) + c

10: dl(1, k) = |L(1, k)|/ll

11: E(k) = sqrt(dl(1, k)2 − dp(1, k)2)

12: end for

Figure 3: The potential value of grid cells in the workspace in 3D view with contour plot. The size of the

workspace is 50× 50, and the Cg is located at a) (40, 45) and b) (25, 25).
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Figure 4: 2D model of the robot’s workspaces.

4.1.2. Obstacles Representation

After constructing the workspace model for a mobile robot, a number of static

obstacles are distributed at different locations in the workspace. To reduce the com-

plexity of the proposed method, we assume that the obstacles form a set of square cells305

(1 × 1 unit). The centre of the obstacle’s cells are denoted by a matrix Cobs(h, l),

with (h = 1, 2), and (l = 1...O), where O represents the number of obstacles. The

distance d between the centre and the edge of the obstacle is constant, d = 0.5 unit.

As the robot might move very close to the obstacle, they should keep a certain margin

for safety. In this study, to avoid the possibility of overlapping the paths traced by the310

robot with obstacle boundary, we have created a safety zone around the obstacles.

An example of three different workspace scenarios with different obstacle layouts

are shown in Figure 4. The characteristics of these three scenarios are illustrated in

Table 2. The workspaces shown in Figure 4 are divided into square grid cells, where

each cell is considered as either an obstacle Cobs or a non-obstacle Cfree. The poten-315

tial value of the grid cells in the Cfree is calculated based on the proposed potential

function, as illustrated in Algorithm 1. The grid cells of the workspace use a different

colour to differentiate between Cfree and Cobs, where the black cells represent Cobs,

and the coloured cells represent the potential value in the Cfree. The safety zone is

represented by a number of gray square grid cells of the same size (1×1) square unit320

around the obstacles.
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Table 2: Characteristics of three different workspace scenarios of example.

Workspace No. Cs(x, y) Cg(x, y) Workspace [cells] Obstacles [cells]

1 (5,5) (38,45) 2226 770

2 (5,5) (38,45) 2226 345

3 (5,5) (65,105) 7303 904

For the first (see Figure 4a) and second (see Figure 4b) designed scenario, the

obstacles represent about 34.6% and 15.5% of the workspace, respectively. In the

third scenario (see Figure 4c), a more complex environment with a higher number of

obstacles of different size is considered, and here the obstacles represent about 12.4%325

of the workspace. After constructing the workspaces with obstacles and calculating the

potential value of the grid cells, the robot’s path needs to be determined.

4.2. Proposed method BNM

The BNM method consists of three steps:

1. Simulate the robot,330

2. Exploration process, and

3. Obstacle avoidance

4.2.1. Simulate the robot

In the simulated model, the nodes are denoted by p(q), (q = 1...9), and their lo-

cations are formulated by Equation 2. At iteration t, the current location of nodes335

denoted by p1(t). The x, y coordinates of the nodes’ location represent by two vectors

x1(t) = (x11, x12, ..., x19) and y1(t) = (y11, y12, ..., y19), respectively. Therefore, the

current location of nodes p1(t) is formed by vertically concatenating x1(t) and y1(t),

p1(t) = [x1(t); y1(t)].

p(q) =


x, y q=5

(x+ vx, y), (x, y + vy), (xvx, y), (x, yvy) q = 2, 4, 6, and 8

(x+ vx, y + vy), (xvx, y + vy), (xvx, yvy), (x+ vx, yvy) q = 1, 3, 7, and 9
(2)
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where x and y represent the coordinate of the robot location pr. Moreover, vx340

and vy represent the horizontal and vertical distances between pr and boundary nodes,

vx = vy = 1 unit. The boundary nodes p1 can only move in eight-possible directions

e(u), (u = 1...8) (see Figure 1b), which we will explain in the next subsection.

4.2.2. Exploration process

In each iteration t, the current location of the robot and boundary nodes move in one

particular direction. The new updated location of nodes p2(t) are calculate according

to the following equations:

x2(t) = x1(t) + ∆x (3)

y2(t) = y1(t) + ∆y (4)

p2(t) = [x2(t); y2(t)] (5)

where x2(t) and y2(t) represent the coordinate of the new updated nodes’ location.345

The values of ∆x and ∆y are computed by using Algorithm 2. This algorithm is

used to find the new updated location p2(t) of the current location of nodes p1(t). In

this algorithm, the value gx and gy represent the distance between the current location

of the robot pr(xr, yr) and the goal point Cg in x and y directions, respectively. The

variables sx and sy represent the variation of the potential value between p(2)&p(8)350

and between p(4)&p(6), respectively, and the value of sx and sy are calculated by

using Equation 6 and 7.

sx(t) = E(p1(1, 8), p1(2, 8))− E(p1(1, 2), p1(2, 2)) (6)

sy(t) = E(p1(1, 6), p1(2, 6))− E(p1(1, 4), p1(2, 4)) (7)

∆x and ∆y have the same sign as the variation of the potential value (both positive

or both negative). The coefficients α and β are constant, and these two coefficients will

influence the convergence behaviour. The distance between pr(t) and Cg is decreasing355

step by step until the robot reaches the global minimum at the goal position.

The proposed method uses an optimization technique based on the lowest potential

value to accelerate the robot to find the path and yield to fast convergence. Among all
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Algorithm 2 Compute the values of ∆x and ∆y

1: Inputs:

Cg , pr(t)

2: E(q), (q = 1...9)← E

3: sx, sy ← Equation 6 and 7

4: gx = xr(t)− xg
5: gy = yr(t)− yg
6: if sx ¡ 0 then

7: compute gx = −1 ∗ gx
8: end if

9: if sy ¡ 0 then

10: compute gy = −1 ∗ gy
11: end if

12: if gx = 0 then

13: compute ∆x = 0 and ∆y = β ∗ gy
14: else if gy = 0 then

15: compute ∆x = α ∗ gx and ∆y = 0

16: else

17: compute ∆x = α ∗ gx and ∆y = β ∗ gy
18: end if
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boundary nodes, the node with the lowest potential value is chosen as the best position

and denoted by pbest. At each iteration t, the robot update its position to the best360

position pbest. The boundary nodes, their position and potential value, guide the robot

to move toward the goal location and help the robot to avoid obstacles, which we will

discuss in the next section.

4.2.3. Obstacle Avoidance

In the workspace that contains no obstacles, the robot will reach the goal point365

along a straight line from any starting point. As obstacles exist, the robot interfere

with obstacles when the distance between the robot and the obstacles is less than the

distance d. Therefore, the robot and boundary nodes require to avoid obstacles and to

change their moving direction by selecting a new position in the Cfree.

To explain the obstacle avoidance, consider an example shown in Figure 5. The370

boundary nodes p(1 → 4) and p(6 → 9) are generated around the robot position p(5)

by using Equation 2. As shown in the Figure 5a, the red object represents the robot, and

the blue objects represent the boundary nodes. At iteration t, the robot and boundary

nodes are changing their positions from the current position (see Figure 5a) to the new

updated position (see Figure 5b) by using Equations 3, 4, and 5. As a result, the nodes375

p(7), p(8), and p(9) interfere with the obstacles (see Figure 5b). Therefore, the robot

needs to investigate the workspace to find next position without colliding obstacles. In

this case, the robot will move in y-direction either to upward or to downward direction.

The motion direction depends on the value of sy (see Figure 5c). The robot moves

backward when sy(t) is negative, and it moves forward when sy(t) is positive.380

Furthermore, in order to demonstrate how the robot avoids the obstacles and changes

its motion direction with the help of boundary nodes, consider an example shown in

Figure 6. As illustrated in Figure 6a and 6b, in the iterations t = 1− 4, the robot starts

to move from Cs and it moves forward toward the goal point from p1(t) to p2(t) using

Equations 3, 4, and 5. At each iteration, all obstacles in the working environment are385

examined for possible collisions with the direct path from p1(t) to p2(t). As the robot

moves toward the goal point Cg in the iteration t = 5 − 6, nodes p(1), p(2), and p(3)

interfere with obstacles (see Figure 6c). This implies that the robot can only move in
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Figure 5: Obstacle avoidance in a static environment using BNM .

the y-direction, either upward (when sy is positive) or downward (when sy is negative).

The next position of the robot must be in upward direction, because the value of sy is390

positive (E(6) > E(4)). The same procedure is repeated for the iteration t = 7 − 10

by shifting the robot upward until the robot passes the block of obstacles, as shown in

Figures 6d and 6e. For the iterations t = 11− 16, the BNM method directs the robot

to move forward (see Figures 6f and 6g) until the robot reaches its final destination

point at the Cg (see Figure 6h).395

Suppose that the long horizontal set of obstacles block the robot path as demon-

strate in Figure 7a. As the robot moves toward the goal point, nodes p(1), p(4), and

p(7) interfere with obstacles. Therefore, the robot needs to change its motion direc-

tion along the x-direction to avoid the obstacles. The motion direction depends on the

value of sx. The robot moves to the right when sx(t) is positive, and it moves to the400

left when sx(t) is negative. In this case, the nodes at p(8) and p(2) have the same

level of potential value E(8) = E(2). This implies that the variation of the potential

value between p(2) and p(8) is equal to zero sx = 0. To solve this problem, the robot

moves along both direction (see Figure 7b). As shown in the figure, nodes p(7), p(8),

and p(9) move one step to the left and nodes p(1), p(2), and p(3) move one step to the405

right at the same time. Two temporary sets, which can be described as a ”waiting list”,

of visited grid cells on the left and right-side are stored. As the simulated robot reaches

the end of obstacles in left-side earlier (see Figure 7c), then theBNM method chooses
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Figure 6: Demonstration of robot exploration in a two dimensional environment using BNM .

Figure 7: Workspace contains long horizontal set of obstacles that block the path of the robot.

the stored set of the left-side and disregards the stored points of the right-side.

In order to solve the local minima problem, we introduced an algorithm (see Al-410

gorithm 3). This algorithm executes a sequence of steps that pulls the robot out of a

local minimum. In order to illustrate the steps required by the robot to come out of

a local minimum Algorithm 3 is used, for instance the workspace with a U -shaped

obstacle as shown in Figure 8. As shown in Figure 8a, the robot starts to move at

position (3, 15) toward the goal point at (23, 3). Similarly, in Figure 8b, the robot415

moves from (23, 15) to (3, 3). The robot uses two different modes while moving in

the simulated environment, namely the ”normal mode” and the ”local minimum recov-

ery mode”. In the normal mode, for iteration (t)t=1,..,6, as the robot moves from the

point p1(t) toward the point p2(t), the line between p1(t) and p2(t) does not intersect
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with the obstacles (see step (1) Figure 8). In order to check the feasibility of the path420

represented by each line segment between corresponding points in p1(t) and p2(t), we

create a new row matrix (chk(q),(q=1...9)). The value of each element of the row matrix

is equal to ”0” or ”1”. At iteration t, for the 1st element (q = 1), if the line between

the first node of the simulated model in p1(t) and p2(t) intersects obstacles, then the

value chk(q) = 1, otherwise chk(q) = 0. The same procedure is then repeated for the425

2nd element (q = 2), 3rd element (q = 3) until the last element (q = 9). In the

normal mode, the values of chk(q),(q=1...9) are equal to ”0”, and the robot travels with

the help of Algorithm 4. In the recovery mode, the robot switches to Algorithm 3, as

shown in steps (2 → 9) in Figure 8. The proposed method gives the highest priority

to the obstacle avoidance processes and the lowest priority to the potential value. In430

t = 7, as the robot moves forward from p1(t) to p2(t), the line segment connecting

corresponding nodes (3, 6, and 9) intersects the obstacles (see Figure 8). In this case

the values of chk(3),chk(6), and chk(9) are equal to ”1”, then the robot moves to the

right (see Figure 8a) or to the left (see Figure 8b) with the help of the Algorithm 3.

Once the robot comes out from a local minimum, it can move smoothly again by using435

Algorithm 4 (see step (10)). In the step(10) the BNM method gives the highest pri-

ority to the potential value until the robot reaches the goal point. As it can be seen in

Figure 8, the robot is not blocked by the U - shaped obstacles, it always finds the path

(if it exists) to reach the final destination point.

440

The proposed potential function is similar to the attractive potential field in the

sense that both guide the robot to move toward the desired goal location, but differ in

calculating the potential value E (see Algorithm 1), where the potential value E(1,k) is

calculated by using Equation 8.

E(1,k) = f(Cg, C(h,k)) (8)

As illustrated in the figure, in the step (1) the robot starts to move toward the goal445

until it collides with obstacles. When the simulated robot detects a collision, the posi-

tion of the interfered points in the boundary nodes is computed by using Equation 9.
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Algorithm 3 local minima problem
1: Inputs: Cobs, sx, sy, p1(t), p2(t)

2: Check line segments between p1(q),(q=1...9)(t) and p2(q),(q=1...9)(t) for feasibility

3: If line between p1(q)(t) and p2(q)(t) interfered Cobs then chk(q) = 1 otherwise

chk(q) = 0

4: Construct matrix chk(q),(q=1...9)

5: while sum(chk) > 0 do

6: if chk(1), chk(2), and chk(3) = 1 then

7: p2x(t)=p2x(t)-c1, c1 is constant

8: if sy > 0 then p2y(t)=p2y(t)+c2 otherwise p2y(t)=p2y(t)-c2

9: repeat steps 2, 3, and 4

10: update p1y(t)← p2y(t)

11: store p5 in a way-points w list

12: end if

13: if chk(1), chk(4), and chk(7) = 1 then

14: p2y(t)=p2y(t)-c2, c2 is constant

15: if sx > 0 then p2x(t)=p2x(t)+c1 otherwise p2x(t)=p2x(t)-c1

16: repeat steps 2, 3, and 4

17: update p1x(t)← p2x(t)

18: store p5 in a way-points w list

19: end if

20: if chk(7), chk(8), and chk(9) = 1 then

21: p2x(t)=p2x(t)+c1

22: if sy > 0 then p2y(t)=p2y(t)+c2 otherwise p2y(t)=p2y(t)-c2

23: repeat steps 2, 3, and 4

24: update p1y(t)← p2y(t)

25: store p5 in a way-points w list

26: end if

27: if chk(3), chk(6), and chk(9) = 1 then

28: p2y(t)=p2y(t)+c2

29: if sx > 0 then p2x(t)=p2x(t)+c1 otherwise p2x(t)=p2x(t)-c1

30: repeat steps 2, 3, and 4

31: update p1x(t)← p2x(t)

32: store p5 in a way-points w list

33: end if

34: end while

35: return p1(t), p2(t), w
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Figure 8: Simulation results of local minima problem solution using the proposed algorithm for a simple

environment with U -shape obstacle.

p(t,h) = [x2(t); y2(t)], p(t,h) ∈ R2 : p(t,h) = (pr ∩ Cobs) (9)

The new updated location of nodes p2(t) is calculated according to Equations 10

and 11, to avoid obstacles, as follow:

x2(t) = x1(t) + f(E(1,k), p(t,h), p1, p2, Cobs) (10)

y2(t) = y1(t) + f(E(1,k), p(t,h), p1, p2, Cobs) (11)

For the step (2) to step (9), the proposed method gives the highest priority to the450

obstacle avoidance processes and the lowest priority to the potential value. Afterwards,

in the step(10) the BNM method gives the highest priority to the potential value until

the robot reaches the goal point. As it can be seen in Figure 8 the robot is not blocked in

the U - shape obstacles, it always finds the path (if it exists) to reach the final destination

point.455

In this study, the BNM method is used to find IFP for a mobile robot to move

from Cs to Cg in the workspace without colliding with any obstacles. The IFP is

generated from a set of waypoints w that the robot visits before reaching the final

destination point. For better clarity, the waypoints are connected into a continuous

path. The line segment that connects two waypoints in sequence is represented by460

Pl,l+1, and the length of all line segments that connect all waypoints sequentially to

each other is representing the length of IFP . A complete path IFP is formed by
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concatenation of all inter-line segments Pl,l+1, 1 ≤ l ≤ w − 1 as follows: IFP =

[P1,2, P2,3 . . . , Pw−1,w]. The main steps to find IFP for a mobile robot by using the

proposed method is summarized in Algorithm 4.465

According to Algorithm 4, the robot starts to move at the point Cs(xs, ys) toward

the goal point Cg(xg, yg). The current nodes’ location p1(t) of all nodes p(q), (q =

1...9) at iteration t is formulated by Equation 2, where the x and y coordinate of

the robot location pr at the first iteration coincide with the xs and ys of the start

point Cs(xs, ys). The node with the lowest potential value among all boundary nodes470

is chosen as the best position and it is denoted by pbest, where the potential value

E(q), (q = 1...9) of nodes is computed by using Algorithm 1. For iteration t, the new

updated location of nodes p2(t) = [x2(t); y2(t)] is calculated by Equations 3, 4 and 5.

The variation of the potential value sx and sy is calculated by using the Equations 6

and 7. Afterwards the line segments between p1(t) and p2(t) check for feasibility.475

So, if collision is not found, then a new set of E(q), (q = 1...9) and pbest need to

be calculated, as previously explained. Subsequent, the current location p1(t) updates

to the new location p2(t), and the robot pr(t) updates its position to the best posi-

tion pbest. The proposed method stores the robot’s location pr(t) in a waypoints w

list. On the other hand, if the line segments between p1(t) and p2(t) collides with ob-480

stacles, another updated location p2(t) needs to be found, as previously explained in

Section 4.2.3. This procedure will continue untill the mobile robot reaches the final

destination point at Cg(xg, yg) or the maximum number of iterations is reached.

Time complexity is the computational complexity that estimates the run-time of an

algorithm. In the developed method, the computational time to find a set of waypoints485

w of the IFP can be calculated by summing the time needs for each line from 8 to 18

in Algorithm 4. The time complexity of the developed method BNM can be analysed

as following: when the size of simulated model is q(q = 9), the number of iterations

is M , the problem size is N (N = n×m), and the number of iterations needed by the

robot to pass the block of obstacles is M1.490

1. In step 2, the time complexity of computing p1(q), (q = 1...9) is T1 = O(q).

2. In step 3, the time complexity of computing E(k), (k = 1...N) is T2 = O(N).
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Algorithm 4 BNM
1: Inputs:

Cs, Cg , Cobs, and C(x, y), (x = 1...n, y = 1...m), maximum

iteration number M
2: Initialize:

p1 ← Equation 2, x = xs, y = ys

3: E(k), (k = 1...N)← Algorithm 1

4: E(q), (q = 1...9)← E

5: pbest← minimum E(q)

6: sx, sy ← Equation 6 and 7

7: while (xr 6= xg or yr 6= yg within a M ) do

8: p2(t)← Equation 3, 4, and 5

9: sx, sy ← Equation 6 and 7

10: Check the line segment between p1(t) and p2(t) for feasibility

11: if p(t) interfered withCobs then

12: p2(t)← ObsticleAvoidance

13: end if

14: E(q), (q = 1...9)← E

15: pbest← minimum E(q)

16: p1(t)← p2(t)

17: pr(t)← pbest

18: pr(t) in a way-points w list

19: end while

20: IFP ← way-points w list

21: Popt ← Algorithm 5

22: U ← Equation 12

23: End
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3. In steps 4-6, the time complexity of calculating E(q), pbest, sx, and sy , is T3 =

O(q).

4. In steps 4-6, 8-9, the time complexity of calculating p2(t) is T4 = O(M ∗ q).495

5. In step 10, the time complexity of collision checking the line segment between

p1(t) and p2(t) for feasibility, can be done by T5 = O(M ∗N ∗ q).

6. In steps 11-13, in case the line between p1(t) and p2(t) collides with obstacles,

the computing time spent in these is considerable longer, so the time complexity

of these steps is T6 = O(M ∗N ∗M1 ∗ q).500

7. In steps 14-18, the time complexity of determining the new set of E(q), (q =

1...9) and pbest, together with updating p1 and pr, and store pr in a way-points

w list is T7 = O(q).

The total time complexity of the developed method is: T = T1 +T2 +T3 = T4 +T5 +

T6+T7 T = O(q)+O(N)+O(q)+O(M∗q)+O(M∗q∗N)+O(M∗N∗M1∗q)+O(q)505

= O(N ∗M ∗M1)

The obtained IFP for a mobile robot is a safe path, however, it is not a shortest path

between Cs and Cg . In order to reduce the overall path length, a new method called

path enhancement method PEM is developed, as we will explain in the following

subsection.510

4.3. Path Enhancement Method PEM

This section introduces the PEM method to generate the shortest path (see Fig-

ure 9b) from IFP (see Figure 9a). The PEM method is used to reduce the number

of waypoints of the IFP between Cs and Cg obtaining an optimal or close-to-optimal

path. As shown in Figure 9, the waypoints of the IFP are represented by red circle515

objects, and the obtained shortest path is represented by a thick red line. In order to

explain the basic idea of PEM , consider an example shown in Figure 10.

In this example, the robot starts to move from the starting point and passes through

all the intermediate waypoints until it reaches the goal point. As illustrated in Fig-

ure 10b, the IFP consists of 14 waypointsw, and they are connected by line-segments.520

In the figure, a line segmentU has two end points, u1 and u2. For the first line segments
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Figure 9: Example of path planning for a mobile robot. (a) The obtained solution of IFP by using BNM ,

where the sequence of the red circle objects is represents the IFP . (b) The shortest path found by using

PEM , where the solid red line represents the shortest path.

Figure 10: Construction of the shortest-path from 14 waypoints in the 2D workspace, where the waypoints

are marked with the red circle objects. (a) PEM is used to find the shortest path between start and goal

point. (b) IFP is generated by using BNM . (c) The shortest line-segment path (U) found by using PEM

and the smooth path constructed by using spline method.
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U1, the starting position of u1 coincides at the Cs. In order to determine the starting

position of u2, the PEM method connects u1 with w(j), (j = 1...J), J = 14 itera-

tively. First, u1 is connected with the first waypoint w(1), then the line between these

two points is checked for feasibility. If a collision is not found, then u1 is connected525

to w(2). Afterward the line between u1 and w(2) is checked for feasibility. If the line

does not collide with any obstacles, then u1 is connected to w(3), and this procedure

continues in the same way until j = 12. When j = 12, u1 is connected to w(12); in

this case the line between these two points collides with obstacles, as shown in Fig-

ure 10a. Therefore, u2 of the first line segment is placed in w(11). For the second line530

segment U2, the left-hand end u1 is coincides at u2 of the first line segment. In order

to find u2 of the second line segment, the PEM connect u1 with w(j), (j = 12...14),

iteratively. Therefore, u1 is connected withw(12), w(13), andw(14) one after another,

and the lines between u1 and these points are check for feasibility. As shown in Fig-

ure 10a, these line segments did not collide with obstacles. Therefore, u2 of the second535

line segment is placed in Cg . The total length of the shortest path U is calculated by

summing the length of all the line segments U(i) in the path between Cs and Cg , as

follows:

U =

I∑
i=1

(sqrt(u1x(i)− u2x(i))2 + (u1y(i)− u2y(i))2) (12)

where I represents the number of the line segment, which is equal to 2 in this

example. u1x(i), u2x(i), u1y(i), u2y(i) represent the coordinates of the line segment540

U(i). The general procedure of PEM is illustrated in Algorithm 5.

4.4. Path smoothing using interpolation technique

The path we obtained so far may contain sharp turns. This goes against many

real-world applications where smooth paths are preferred [43]. Moreover, the robot

may not be able to make a sharp turn due to its momentum [10, 14]. Finally, the cubic545

spline interpolation is adopted to generate a continuous smooth path that connects the

starting point to the goal point. The spline method is one of the most efficient curve
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Algorithm 5 PEM method
1: Inputs:

Cobs, and w(j), (j = 1...J)

2: j ← 1

3: while j ≤ J do

4: u2 = w(j)

5: check the line Ui for feasibility between u1 and u2

6: if U(i) collide with Cobs then

7: store u1, u2 = w(j − 1)

8: u1 ← w(j − 1)

9: end if

10: j ← j + 1

11: end while

12: insert Cs and Cg to the beginning and to the end of the new waypoints list.

interpolating methods which has many applications in robotics, signal processing, and

computer graphics [18, 14].

From the Figure 10c, consider the generated shortest path by using PEM . The550

path consists of two line segments U1 and U2 between Cs and Cg in the form of X

and Y vectors, whereX=[x1 x2 x3] and Y =[y1 y2 y3]. We use the cubic spline

interpolation to calculate the spline for three waypoints (w = 3). Therefore, a new

vector t of about 200 points is generated between the starting point at (x1, y1) and the

goal point at (x3, y3). Vectors of interpolated values xsp and ysp are calculated based555

on equations xsp=Spline(tn, x, t) and ysp=Spline(tn, y, t), where tn = [1 2 3].

As illustrated in the Figure 10c, the constructed path passes smoothly through the way-

points thus eliminating the sharp turn.

5. Simulations

In this study, the proposed methods are implemented in MATLAB and run on560

a laptop with Intel(R) core(TM) i5-2450M CPU 2.5GHz 6GB RAM . The perfor-

mances of the developed method have been tested on many different workspace sce-
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narios with different obstacle layouts. In all the tested scenarios, the workspace size

and the number of obstacles scattered in the workspace have been varied. Additionally,

the starting Cs and the goal Cg points have been positioned in different locations in565

the free space Cfree. An example of three workspace scenarios are shown in Figure 4.

The proposed method is examined to find an optimal or near optimal path from Cs to

Cg . The simulation results of BNM and PEM are presented in Sections 5.1 and 5.2,

respectively. Additionally, the performance of the proposed method is compared with

the other path planning methods in Section 5.3. Then, the proposed method is applied570

to the multi-robot path-planning problem, and the results presented in Section 5.4.

5.1. Simulation results of BNM

This section presents the results of the BNM method for generating the IFP

between Cs and Cg for all the workspace scenarios shown in Figure 4. The achieved

result of the IFP is represented by a set of waypoints w(j), (j = 1 → J). Each new575

position of waypoint w(j + 1) is allocated after the current waypoint position w(j) on

the IFP , where J represents the time in which the robot is reaching the goal point.

The simulation results for all the tested scenarios are presented in Figure 11, and

the summary of the obtained results is provided in Table 3. From the figure, it is ob-

served that the obtained IFP allows the robot to move fromCs toCg without colliding580

with any obstacle in the workspace. The waypoints of the path are represented by red

circle objects and for better clarity, these waypoints are connected into a continuous

path. As it can be seen from the results, the BNM method is able to overcome the

local minima problem. From Table 3, we can clearly see that the developed method

provides the collision-free path for the robot in short time, in particular for the high585

complex environment shown in Figure 11c. As presented in the third scenario, the total

computing time to find a IFP is less than 1.1 second.

The results show that theBNM method has been well applied to generate the IFP

for a mobile robot, and also this method has achieved good results in terms of safety

and short computational time. However, the generated path is not optimal in terms of590

the total path length. In order to reduce the overall path length, a new method called

PEM is developed as explained in Section 4.3, and the results are presented in the
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Figure 11: The simulation results to generate IFP for all three workspace scenarios using BNM .

Table 3: The total computational time and path length of the IFP and final path by using BNM and PEM

Workspace Total Computational Time [s] Total Path Length [unit]

No. IFP Final Path IFP Final Path

1 0.955601 1.043110 112.9662 83.4301

2 0.896196 1.004691 110.1285 81.0895

3 1.100025 1.138494 201.3783 146.3850
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Figure 12: The simulation results to generate an optimal or near-optimal path for all three workspace scenar-

ios using PEM .

following subsection.

5.2. Simulation results of PEM

This section presents the obtained results of the PEM method to find optimal or595

near-optimal path for the three workspace scenarios. The best-obtained results are

presented in Figure 12, and the results of computational time and path length for all the

scenarios are provided in Table 3. As shown in the Figure 12, the PEM method can

find the collision-free path that covers the least number of waypoints, where the solid

red lines represent the best solution found so far. Additionally, Table 3 revealed that600

the total path length for all the three designed workspaces is significantly reduced, and

the percentage of enhancement of the path length for all the three scenarios are 26.2%,

26.4% and 27.3%, respectively.

Obviously, the geometrical complexity of the workspace is the main factor affect-

ing the computational time. However, the results show that the computational time605

required to obtain the IFP and the final path by using BNM&PEM is not increased

significantly with the growing complexity of the workspace. For example, the size of

the workspace is increased 3.2, times and the number of obstacles are increased 2.6

times from the second (see Figure 12b) to the third scenario (see Figure 12c), accord-

ingly the total computational time to find the IFP and the final path is increased only610

by about 1.5 and 1.4 times, respectively (see Table 3). On the other hand, in the second
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Figure 13: The simulation results to generate a smooth path by using spline method for all three workspace

scenarios.

(see Figure 12b) and first (see Figure 12a) scenario, the required computational time

to find the IFP and the final path is increased by 6.6% and 3.8% respectively, as the

number of obstacles increased by 123.2% for the same workspace. This is because,

for each iteration t during the search process, all obstacles in the workspace are exam-615

ined for possible collisions with the direct path from the current p1(t) to updated p2(t)

nodes’ location.

In the simulations results presented in Figure 12, we observe that the proposed

method generates a path consisting of straight lines between waypoints with sharp

turns. In real applications when the robot follows a path in the workspace, it may620

not be able to make a sharp turn and also it is not the safest path for the robot. In

order to improve the path with respect to the robot dynamics, the proposed method

applied MATLAB cubic spline to construct a continuous smooth path that connects

the starting point to the end point for all three designed workspaces, and the results are

presented in Figure 13.625

The results demonstrate that the spline method can be used to generate a continuous

smooth path to eliminate sharp turns. On the other hand, the cumulative length of the

smooth paths shown in Figure 13 are longer than the cumulative length of the line-

segment path presented in Figure 12, and the length of the paths are increased by 7%,

4.4%, and 4.5% for all three scenario, respectively.630
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Figure 14: The simulation results to generate a smooth path by using PCHIP for all three workspace

scenarios.

The aim of the cubic spline method is to generate a smooth path for an initial fea-

sible path that connects the starting point to the goal point. However, in some cases,

the constructed smooth path can bring the robot close to the safety zone around the

obstacles or the robot collides with the safety zone, which is undesirable in practice.

To avoid the possibility of overlapping the paths traced by the robot with safety zone,635

additional waypoints can be inserted between the original waypoints until no safety

zone or obstacles were found along the resulting path, as explained [44]. Alterna-

tively, Piecewise Cubic Hermite Interpolating Polynomial (PCHIP ) can be used to

construct a continuous smooth path, as illustrated in [7, 45]. The PCHIP is like

cubic spline interpolation, but PCHIP interpolation ensures a shape-preserving in-640

terpolation and avoiding the overshoots and oscillations that could arise from spline

interpolation. The generated path from the X and Y vectors of the waypoints w is a

zigzag line; we generate a new vector xi of about 1000 points from start point to goal

point. yi = PCHIP (X,Y, xi) returns a vector of interpolated values yi containing

elements corresponding to the elements of xi. Resulting xi versus yi give the smoothed645

path. The obtained results of smoothed paths by using PCHIP is shown in Figure 14.

The length of the paths are increased by 4.4%, 2.4%, and 2.6% for all three scenario,

respectively. We can see the difference between the interpolation results produced by

PCHIP and cubic spline in Figures 13 and 14.
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In the proposed approach, the grid-based method is used to create a workspace650

environment. In this method, the workspace environment is divided into a number

of small square grid cells of the same size (1 × 1 unit). Each grid cell can either

correspond to a navigable area or to a space occupied by obstacles. Different obstacle

shapes can be generated, such as circular or non-convex obstacles, by approximating

the shape of the obstacles and dividing it into square grid cells. The completeness of the655

obstacles’ shape depends on the resolution of the grid environment. Figures 15a and e

show two examples of different workspace scenarios. In these scenarios, the workspace

consists of (50×50) grid cells, and the number of the obstacles in the workspace is 312

and 316 grid cells, respectively. The startingCs and goalCg points are positioned in the

free space Cfree at (5,5) and (45,45), respectively. The proposed method is examined660

to find an optimal or near optimal path from Cs to Cg . The simulation result of the

BNM method for generating the IFP between Cs and Cg is presented in Figures 15b

and f . From the figures, it is observed that the obtained IFP can successfully drive the

robot toward the goal while avoiding obstacles in the highly complex environment. The

robot location is represented by red circles object at each iteration. The obtained results665

of the PEM method to find optimal or near-optimalpath are presented in Figures 15c

and g. As shown in the figures, the PEM method can find the short path, where the

solid red lines betweenCs andCg represent the best solution found so far. Additionally,

the generated path from the PEM is smoothed by using the cubic spline method and

the result are presented in Figures 15d and h.670

The proposed method can easily be extended to include altitude as a third coordi-

nate to solve the path planning problems in three-dimensional (3D) workspace. The

method was implemented with several 3D scenarios and the results were found to be

satisfactory. An example of the workspace scenario is presented in Figure 16. The

workspace is discretized into uniform cubic grid cells (1× 1× 1 unit), and the gener-675

ated path is a sequence of cubic cells in a 3D grid model.

5.3. Comparison results

This section presents the performance evaluation of the BNM&PEM method

in comparison with PSO, A − Star, and APF . Therefore, a simple example of a
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Figure 15: Examples of grid cells with obstacles (a and e) simulation result of BNM (b and f ), PEM (c

and g) and cubic spline method (d and h)

Figure 16: The simulation result of the BNM (a) and PEM (b) to solve the path planning problems in

three-dimensional (3D) workspace.
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Table 4: A summary of the obtained results of the computational time and path length by using BNM ,

PSO, A− Star, and APF .

Method Total Computational Time [s] Total Path Length [unit]

BNM 0.82 53.49

PSO 1.51 57.70

A− Star 2.57 57.11

APF 0.66 61.00

2D workspace is designed as shown in Figures 17. The size of the workspace is set680

to 43 × 68, where the space occupied by obstacles Cobs consists of 1078 grid cells

and the obstacle-free space Cfree consists of 1846 grid cells. After constructing the

workspace with obstacles, all four methods namely BNM&PEM , PSO, A− Star,

and APF are used to find the shortest path between Cs at (8, 10) and Cg at (32, 56).

The obtained results of BNM&PEM , PSO, A− Star, and APF are shown in Fig-685

ures 17a, 17b, 17c, and 17d, respectively. A summary of the obtained results of the

computational time and path length is provided in Table 4. By comparing the results

presented in Table 4, it can be seen that the proposed method is able to find the shortest

path within less than one second, and it requires less than 55% and 32% of the com-

putational time to find shortest path by using PSO and A − Star, respectively. In690

terms of the total path length, the shortest path achieved by BNM&PEM is about

7.2% and 6.3% shorter than the path length generated by PSO and A− Star, respec-

tively. In this workspace, the computational time required to find the shortest path by

using APF is lower by 20% compare to BNM&PEM . In contrast, the shortest path

achieved by BNM&PEM is 12% shorter than the path length generated by APF .695

The PEM method can also be used to optimize the paths obtained by using PSO,

A − Star, and APF as shown in Figures 17b, 17c, and 17d, respectively. The best-

obtained results are presented in Figures 18b, 18c, and 18d, respectively. As shown

in the figures, the PEM method can find the collision-free path that covers the least

number of waypoints, where the solid red lines represent the best solution found so far.700

The results revealed that the length of the paths obtained from PSO, A − Star, and
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Figure 17: The simulation results of the BNM&PEM (a), PSO (b), A − Star (c), and APF (d) to

solve the path planning problem in two-dimensional (2D) workspace.

Figure 18: Simulation results for generating an optimal or near-optimal path for BNM (a), PSO (b),

A− Star (c), and APF (d) using PEM method.

APF reduced by 7.6%, 5.1% and 9.9%, respectively. Furthermore, the cubic spline

interpolation is used to generate a continuous smooth path that connects the starting

point to the end point bu using BNM , PSO, A−Star, and APF , and the results are

presented in Figures 19a, 19b, 19c, and 19d, respectively.705

In order to make an extra comparison and to demonstrate the ability of BNM for

solving robot path planning problem in the workspaces that have previously been used

in [32, 46, 18, 47], a 2D workspace is created as shown in Figure 20. The size of the

workspace is set to 67 × 67, where the space occupied by obstacles Cobs consists of

1520 grid cells and the obstacle-free space Cfree consists of 2969 grid cells. After710

constructing the workspace with obstacles, the proposed method is used to generate a

IFP (Figure 20a), shortest path (see Figure 20b), and smooth path (see Figure 20c)

from the Cs at (64, 4) to the Cg at (4, 64). The obtained computational results of the
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Figure 19: Simulation results for generating an optimal or near-optimal path for BNM (a), PSO (b),

A− Star (c), and APF (d) using cubic spline method.

Figure 20: The simulation result of the BNM (a), PEM (b), and cubic spline (c) method for solving robot

path planning problem in the workspace that is previously have been used in [32, 46, 18, 47].

BNM and an improved GA is provided in Table 5. By comparing the obtained results

of BNM with an improved GA in the previous studies (see Table 5), it is observed715

that the computational time of the proposed method is remarkably reduced.

The comparison results demonstrate the effectiveness and efficiency of the pro-

posed method for solving robot path planning problem. For the comparison test, a

simple workspace scenario has been selected because the required time to find optimal

or near-optimal path grows exponentially as the complexity of the path-planning prob-720

lem increases (see Section 1, point 4) even in some circumstance the path planning

methods cannot find a feasible path, whereas the proposed method BNM solve these

problems.

In order to validate the proposed method BNM&PEM , and compare its perfor-

mance with the A − Star, PSO, and GA, a 2D environment of the static robot’s725
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Table 5: The total computational time required to find shortest path using BNM and improved GA.

Method Total Computational Time [s]

Improved GA Ref [46] 1.03

Improved GA Ref [18] 4.07

Improved GA Ref [32] 1.68

Improved GA Ref [47] 0.85

BNM 0.964

workspace is created. The size of the workspace is set to 60 × 60, and the space oc-

cupied by obstacles Cobs consists of 136 grid cells. Thereafter, all methods are imple-

mented simultaneously to find a feasible path for 1000 independent runs. At each time

in this test, the starting point Cs, the goal point Cg , and obstacles are placed randomly

in the working environment, each random placement of the obstacles led to different730

workspace layout. Two measures of evaluation are used for comparison among path

planning methods: the length of the obtained feasible path as well as the execution

time of the method. The mean and the standard deviation (Std) of the computational

time and the path length are calculated and presented in Table 6. The results shown in

the table reveal that the proposed method achieved the best solution within a reason-735

able computational time. Moreover, the mean value of the computational time to find

a feasible path is decreased significantly compared with other path planning methods.

In comparison with PSO and GA, the proposed method showed noticeable improve-

ment in terms of the path length. Additionally, the mean value of the path length

obtained by the proposed method is smaller than that obtained with PSO and GA by740

%11.73 and %7.3, respectively. However, the mean value of the path length generated

by BNM&PEM is slightly larger than that obtained with A − Star by %2.21. The

PSO method had the least variance of the computational time, and GA better than the

other method in terms of variance of the path length. The comparative study shows

that heuristic algorithms did not yield optimal results, and the results agree with [48].745

The graphical representation of the simulation results of all methods is illustrated in

Figure 21.
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Table 6: Mean and standard deviation of the computational time and path length for 1000 independent runs

to find feasible path using proposed method with PSO, GA, and A− Star,

Methods Computational Time, CT [s] Path Length, PL [unit]

Methods MeanCT StdCT MeanPL StdPL

PEM 0.0142 0.0072 30.7710 15.9340

A− Star 0.0489 0.0640 30.0907 14.6124

PSO 0.0217 0.0052 34.3788 15.2495

GA 0.1188 0.2122 33.0144 11.1463

Figure 21: Performance of final evaluations for 1000 independent runs to find feasible path using proposed

method with PSO, GA, and A − Star, the obtained results for the path length data presented in (a) and

the computational time data presented in (b).
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5.4. Path planning of a Multi-robot system

In this section, the implementation of the proposed method for collision avoidance

in multi-robot systems is presented. We conducted different simulations with different750

multi-robot system parameters, i.e. the number of robots, the initial and goal positions

for each robot, and the positions of static obstacles. Figures 22 shows an example of

the simulation results for a multi-robot system, in which there are 4 robots, 4 different

start Cs and goal Cg positions corresponding to each robot, and 304 static obstacles.

The problem formulation is to determine the path of each robot in the simulated en-755

vironment by avoiding the collision with static obstacles and other moving robots in

the system. Each robot moves from a starting position Cs, through all the intermediate

waypoints w until it reaches the goal position Cg . Each robot uses the BNM to find

IFP to move from Cs to Cg in the workspace without colliding with any obstacle (see

Figures 22a and d). IFP is generated from a set of waypoints w that the robot visits760

before reaching the final destination point. Then for each robot, the PEM method

is used to reduce the number of waypoints of the IFP between Cs and Cg to obtain

an optimal or close-to-optimal path (see Figures 22b and e). Finally, the cubic spline

interpolation is applied to construct a continuous smooth path that connects the starting

position to the goal position (see Figures 22c and f ). The simulation results show that765

all robots reached to their final destination positions successfully without any collision

with either static obstacles or other robots.

6. Experimental results

In this section, a real robot is employed to test the performance of the developed

method BNM&PEM and illustrate how the robot can navigate along a collision-free770

path. An e-puck robot, shown in Figure 23a, is used for the experimental test, and the

experimental set-up shown in Figure 23b. First, the developed method is used to gen-

erate a collision-free path to direct the robot to move among the static obstacles from

the starting point Cs toward the goal point Cg as shown in Figure 24a. As illustarted

in the figure, the waypoints w are represented by red circle objects, and the obtained775

shortest path is represented by a thick red dashed-line. The obtained shortest path by
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Figure 22: The simulation results for the multi-robot path planning problem.

BNM&PEM consists of the waypoints, w(j), (j = 1...J), J = 5, whose x, y coor-

dinates are known with respect to the simulated environment. Based on the generated

data of the obtained path, the e-puck robot motion data is determined. Next, the e-

puck robot is connected to the computer via Bluetooth and the generated motion data780

are transmitted to the robot via a toolbox eP ic(v2.1.2), where eP ic(v2.1.2) is used to

control e-puck in MATLAB. Let w1x and w1y be the centroid coordinates of the first

waypointw1 of the generated path, andw2x andw2y those of the centroid of the second

waypoint w2. Then, the orientation of the robot is calculated in MATLAB by using

atan2(w2y-w1y , w2x-w1x). Subsequently, in order to move the e-puck robot towards785

the second waypoint w2, the angle of the w2 with respect to the robot is calculated.

Thereafter, the e-puck robot starts to move from w1 to w2 and so on until it reaches the

goal point. Figures 24(b → f ) show the robot’s positions at different locations in the

robot’s working environment during the experimental test. The test results demonstrate

that the proposed method is able to generate the shortest path to direct the e-puck robot790

to final destination point.
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Figure 23: The robot used in the experiment (a) and the experimental set-up (b)

7. Conclusions and Future Works

In this paper a novel off-line path planning method called Boundary Node Method

is developed for solving the path planning problem of a mobile robot in a two-dimensional

working environment. The developed method is used to find collision-free path for a795

mobile robot through a sequence of way-points that the robot has to traverse from the

starting point to the goal point without colliding with any obstacles. The concept in-

volved in the developed method is simple and can be applied in a grid environment

efficiently. Additionally, this method does not work through random operations and

there is no uncertainty in generating points, which leads to finding the final solution800

for the problem without variation in solution. Moreover, this method uses an opti-

mization technique based on the lowest potential value to accelerate the robot to find

the path safely and quickly in reasonable time. The simulation results show that the

Boundary Node Method can successfully find an initial feasible path, and generates a

safe path for a mobile robot to navigate in a complicated environment within a rela-805

tively short time. And also the computational time required to find shortest path does

not increase significantly with the increase of the environment’s complexity. Further-

more, the results have verified that the boundary node method solves the local minima

problem effectively. An additional method that we called Path Enhancement Method,

has been applied on top to build an optimal or close-to-optimal collision-free path by810
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Figure 24: The simulation and experimental results. (a) the simulation results to generate IFP by using

BNM&PEM . (b) to (f) locations of the e-puck robot at different waypoints in the robot’s working

environment.
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reducing the number of waypoints and the overall path length. In order to validate

the performance of the developed method in comparison with existing path planning

methods, several different scenarios with different complexity have been tested. The

comparison reveals that the Boundary Node Method can solve the path planning prob-

lem effectively and efficiently in terms of the computational times and the path length.815

Finally, the cubic spline method has been used to generate a continuous smooth path

that connects the starting point to the end point.

The developed method is used to solve the multi-robot path planning problem, and

the simulation results showed that the developed method effective and useful for colli-

sion avoidance in multi-robot systems. Additionally, the performance of the developed820

method for generating a collision-free path is tested on a real robot. The experimental

test shows that the proposed method is able to generate shortest path, and direct the

real robot to the final destination point.

In the future work, we will address a number of research issues related to au-

tonomous navigation of mobile robots in unknown environments, where the deployed825

robot does not have full knowledge about its environment. Another possible direction

will explore an extension to the proposed method in order to deal with a dynamic scene.
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