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Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy

bDepartment of Software and Computer Engineering,
Polytechnique Montréal, Québec, Canada
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Abstract

Effective exchange of information in multi-robot systems is one of the grand

challenges of today’s robotics. Here, we address the problem of simultaneously

maximizing the (i) resilience to faults and (ii) area coverage of dynamic multi-

robot topologies. We want to avoid the onset of single points of failure, i.e.,

situations in which the failure of a single robot causes the loss of connectivity

in the overall network. Our methodology is based on (i) a three-fold control law

and (ii) a distributed online optimization strategy that computes the optimal

choice of control parameters for each robot. By doing so, connectivity is not only

preserved, but also made resilient to failures as the network topology evolves. To

assess the effectiveness of our approach, we ran experiments with a team of eight

two-wheeled robots and we evaluated it against the injection of two separate

classes of faults: communication and hardware failures. Results show that the

proposed approach continues to perform as intended, even in the presence of

these hazards.
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1. Introduction

In this paper, we consider the problem of achieving resilience in a system

composed by multiple robots using a wireless network to exchange data and

coordinate towards a common goal. Resilience was defined in [1] as a property

“about systems that can bend without breaking. Resilient systems are self-5

aware and self-regulating, and can recover from large-scale disruptions”. In this

paper we consider the effect of single robots’ failures and unreliable communi-

cation on the overall performance of the multi-robot system: resilience is then

represented by how gracefully the performance of the overall system decreases,

in the presence of such failures.10

A key ingredient for achieving resilience to failures is redundancy: the pres-

ence of multiple entities that can achieve a task leads to the possibility of suc-

cess, even with the failure of a limited number of such entities. This is a trait

of swarms and multi-robot systems, where the overall capability of the system

is achieved as the combination of the capabilities of single robots. However,15

having a large number of robots per se does not imply redundancy (and thus

resilience). In fact, situations may exist in which even a single robot has a

critical role, and its failure renders the completion of a task impossible.

For instance, in groups of heterogeneous robots each robot has different capa-

bilities (with regard to sensing, mobility, actuation, etc.). If all the capabilities20

are required, then task completion can become impossible as soon as one of

the robots stops working. This issue can be effectively mitigated by replicating

capabilities across the swarm [2].

Nevertheless, even in the context of completely homogeneous groups, critical

robots may still exist. To cooperate and achieve shared objectives, robots need25

to exchange information. This is possible only when the graph that represents

the communication topology among the robots is connected. Connectedness

is particularly critical when considering groups of mobile robots with limited-

range communication capabilities, since the topology of the network changes as

the robots move. Hence, constraints need to be imposed on the robots’ motion30
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in such a way that connectivity is preserved.

This problem has been extensively studied in literature, and several proce-

dures for connectivity preservation have been proposed [3, 4, 5, 6, 7, 8, 9]. These

strategies typically start from the assumption that the communication graph is

initially connected and they guarantee the preservation of this property as the35

system evolves. However, those strategies generally do not consider robot fail-

ures. As a consequence, pathological situations often exist in which, based on

the current topological configuration of the network, failure of a single node

leads to the disconnection of the network, and the creation of two (or more)

isolated sub-networks. The presence of such critical nodes completely defeats40

the inherent redundancy of homogeneous multi-robot systems.

In [10], the authors propose a control strategy to address this problem using

a decentralized heuristic method to estimate the presence of potentially fragile

configurations. Based on this method, the authors propose a solution to mitigate

such fragile configurations: adjusting the topology exploiting a robust control45

law that blends with other control objectives assigned to the multi-robot system.

This method was implemented on a real multi-robot system in [11], where

the performance is evaluated considering an area coverage task, in the presence

robotic failures and imperfect communication. The method proposed in [11] is

a linear combination of different control laws and its overall performance heav-50

ily depends on the choice of weights, namely the gains (or hyper-parameters)

assigned to each single control law. In [11], we exploited an offline optimization

algorithm to automate the choice of such parameters, using preliminary exper-

imental data. The main drawback of this solution is the fact that the optimal

parameter choice is affected by the specific topology under consideration, thus55

making the offline process sub-optimal.

In this article, we experimentally evaluate the methodology proposed in [12]—

an online optimization strategy that allows the multi-robot system to compute

an optimal set of parameters during its mission, based on the current knowl-

edge of the topology of the network. Our starting points are (i) the control60

law proposed in [10]—to improve the robustness of an initially connected multi-
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robot topology—and (ii) the different fault-injection protocols descried in [11].

We combine and extend our previous work [12] to provide the following con-

tributions: (i) simulations to compare, evaluate, and justify the choice of a

scalarizing function for our multi-objective problem; (ii) real-life experiments65

with eight robots (K-team Khepera IV) and the injection of transient faults in

the communication infrastructure; and finally (iii), real-life experiments with

up to eight robots and the injection of permanent faults in the form of sudden,

independently distributed hardware breakdowns. Results show that the pro-

posed approach continues to perform as intended, even in the presence of such70

hazards.

The rest of this paper is organized as follows: Section 2 contextualizes our

work among several other related contributions from recent years; we present

background theory regarding network properties in Section 3; we discuss the

multi-robot system model under evaluation in Section 4; and Section 5 outlines75

the proposed control architecture. Then, its integration with an online optimiza-

tion strategy is described in Section 6, and we discuss our simulation results. In

Section 7, we introduce our real-life robotic set-up, our experimental campaign,

and we comment the obtained results . Finally, Section 8 concludes the article.

Appendices A and B discuss about our choice of a scalarizing function and two80

fault-injection modes, respectively.

2. Related work

Swarm robotics is a research field that lies at the intersection of robotics

and multi-agent systems and deals with large collections of relatively simple

and mostly homogeneous, autonomous robots. Swarm intelligence [13], in par-85

ticular, investigates the coordinated behaviours of these multi-agent systems,

while swarm engineering [14] provides tools and methodologies to mimic them.

In a recent perspective on Science Robotics, Yang et al. [1] listed the current

“grand challenges” of robotics: these challenges include many of the issues we

address in this work: “robot swarms”, “exploration in extreme environments”,90

4
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and “abilities to adapt, to learn, and to recover and handle failures”. The grow-

ing interest of the research community for swarms and multi-robot systems has

led to the introduction of many swarm-specifics tools, including simulators [15],

programming languages [16, 17, 18], and design patterns [19, 20]—several of

which we exploited in preparing this contribution.95

When considering swarms, where each agent is a rather constrained sens-

ing and computing platform, connectivity—and the ability for the robots to

exchange information—is an important enabling property. Akram and Dagde-

viren [21] used Steiner trees to address the “movement assisted connectivity

restoration problem” and discovered it to be NP-Hard. Feng and Hu [22]100

studied connectivity-preserving rendez-vous accounting for battery levels and

communication costs. Their proposed approach required to split the original

task into sub-problems. Mosteo et al. [23] investigated the multi-robot routing

problem under communication constraints and compared multiple algorithmic

approaches (including greedy, TSP-based, and auction-based, ones), yet only105

through numerical simulations.

In the literature, connectivity maintenance methodologies draw inspiration

from many different fields and theoretical frameworks. A large body of work

belongs the area of wireless sensor networks (WSNs). These systems share sev-

eral point of contact with networked multi-robots but differ mostly in the way110

they contemplate the mobility and reconfigurability of their nodes—often rel-

egated to the design-time. Li et al. [24] review methodologies to compute the

optimal density of the relay nodes in a WSN to ensure connectivity. Ghosh and

Das [25] address the problem of WSN deployment to maximize coverage while

maintaining connectivity. Jourdan and de Weck [26] apply a multi-objective115

Genetic Algorithm (GA) to optimize the layout of WSN, while Kulkarni and Ve-

nayagamoorthy [27] investigate the use of Particle Swarm Optimization (PSO).

El-moukaddem et al. [28] study WSN with mobile nodes that can be used to

optimize connectivity (without modifying the underlying network topology).

Narrowing our scope to multi-robot research, Friedman et al.[29] used Ant120

Colony Optimization for the “sometimes conflicting goals of fast travel time

5
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and good network performance”. Krupke et al. [30] proposed a heuristic, multi-

component control law allowing robots to follow multiple leaders without break-

ing the robotic network. Panerati et al. [31] described the recursive creation of

robotic chains using situated communication and a distance gradient. Banfi125

et al. [32] used Integer Linear Programming to optimally redeploy “a team of

mobile robots acting as communication relays”. The work of Majcherczyk et

al. [33] aimed at constructing a logical tree topology and compared the per-

formance of its outwards and inwards creation. Much of the work described

up to this point, however, implements either centralized or heuristic, best ef-130

fort approaches. For the sake of scalability and theoretical soundness, we base

this work on algebraic connectivity, instead. In spectral graph theory, algebraic

connectivity is a proxy measure for the connectedness of a network. Algebraic

connectivity, despite representing a global property of a graph, can be estimated

in distributed fashion using the Laplacian matrix of a graph.135

Bertrand and Moonen [34] showed that the distributed computation of the

second smallest eigenvalue of a Laplacian (i.e. algebraic connectivity, λ2, or just

λ) and associated eigenvector (i.e. the Fiedler vector) can be achieved using the

power iteration method and normalization based on “cooperative diffusion”.

Sahai et al. [35] proposed a “wave propagation”-based approach and local fast140

Fourier transforms to compute all eigenvalues and local components of each

eigenvectors of a graph. Di Lorenzo and Barbarossa [36] presented a stochastic

power iteration method that allows each node to estimate algebraic connectivity

and use it to adapt its own transmission power. Poonawala and Spong [7] stud-

ied the decentralized estimation of algebraic connectivity in strongly connected145

networks. Finally, Khateri et al. [9] compared local connectivity maintenance

approaches (preserving all the initial links) and global connectivity maintenance

approaches (preserving algebraic connectivity) to conclude that the first can be

quicker and simpler yet the latter allow to cover larger workspaces.

Several approaches to improve inter-robot communication effectively exploit150

control strategies that maximize algebraic connectivity as a way to preserve

connectedness. Ji and Egerstedt [8] proposed multiple nonlinear feedback laws

6
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based on the Laplacian of a graph to solve the rendez-vous and formation-control

problems while ensuring connectedness. De Gennaro and Jadbabaie [37] used an

exponential decay model to characterize communication links and a potential-155

based control law that maximizes λ2 through the supergradient method. Sim-

ilarly, Yang et al. [3] and Sabattini et al. [4] implemented decentralized, power

iteration-based estimation of λ2 and gradient-based control. Robuffo Giordano

et al. [38] enriched this class of control methodologies with the collision avoid-

ance of static obstacles. Gasparri et al. [6] brought it to real-life experimentation160

with up to four robots. Yet, most of these works overlook certain subtleties re-

quired for robust real-world implementations, e.g., the presence of hard and soft

errors, or adversarial behaviors.

In their review of fault-tolerance for robot swarms, Winfield and Nem-

brini [39] pointed out (i) motor failures and (ii) communications failures as165

hazard types number one and two (in a list of six). Robotic hardware failures

and unreliable communication are, in fact, the non-idealities that we inject in

our experiments (see Section B). Spanos and Murray [40] originally proposed

a locally computable robustness metric called “the geometric connectivity ro-

bustness” and their work mostly revolved about modelling it in the context of170

a purely mathematical framework. Cheng and Wang [41] proposed a hierarchy-

based method to “re-organize robot teams that require connectivity when robots

fail”. Using hierarchical graphs, however, can increase the approach’s fragility

towards the leaders’ failures. Hollinger and Singh [42] took a completely different

road and proposed a methodology that does not enforce continual connectivity175

but, rather, only periodic connectivity. Despite the real-world experiment and

encouraging performance, this problem still turns out to be NP-Hard. In an-

other alternative approach to a similar problem, Caccamo et al. [43] proposed a

communication-aware motion planner “with autonomous repair of wireless con-

nectivity”. Yet, this work relies on the existence of fixed-location access points.180

Finally, it is worth mentioning the work of Gil et al. [44] as they observed that

networks and multi-robot systems can be gravely disrupted by the Sybil attack

and implemented a new algorihtm to sense spoofers using the physics of wireless

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



signals.

The contribution in this article stems from the theoretical work in [45, 10, 46]185

about the simultaneous control of connectivity (through λ2) and robustness (of

the multi-robot network towards faults). In [11, 47], we originally validated the

control law in real robots and in presence of faults through the manual screening

of many control gains combinations. In [12], we showed that the selection of

these control gains can be delegated to autonomous, online optimization. Yet,190

we did not investigate the interplay of this level of autonomy with the error

models in [11], in this work, we finally fill the gap. We do so by carrying the

control and algorithms presented in [12] into the real robotic setup of [11]—

including two types of fault-injection.

3. Preliminaries: network properties195

Consider an undirected graph G, where V (G) and E (G) ⊂ V (G)×V (G) are

the vertex set and the edge set, respectively. Moreover, let W ∈ RN×N be the

weight matrix: each element wij is a positive number if an edge exists between

nodes i and j, zero otherwise. Since G is undirected, then wij = wji.

Let L ∈ RN×N be the Laplacian matrix of graph G and D = diag
(
{ki}

)
200

be the degree matrix, where ki is the degree of the i-th node of the graph, i.e.,

ki =
N∑
j=1

wij . The (weighted) Laplacian matrix of the graph is then defined as

L = D −W .

The Laplacian matrix of an undirected graph G exhibits some remarkable

properties regarding its connectivity [48]. Let λi, i = 1, . . . , N be the eigenvalues205

of the Laplacian matrix, then:

• The eigenvalues are real, and can be ordered such that 0 = λ1 ≤ λ2 ≤
. . . ≤ λN .

• Define now λ = λ2. Then, λ > 0 if and only if the graph is connected.

Therefore, λ is defined as the algebraic connectivity of the graph: in a210

weighted graph, λ is a non-decreasing function of each edge weight.

8
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The algebraic connectivity is a good estimator of how well a graph is con-

nected. While global connectivity is a Boolean property of a graph, larger values

of λ indicate that the removal of more edges can be tolerated before a disconnec-

tion to occur. However, it cannot express the robustness of the graph topology215

to failures of elements with regard to connectivity maintenance, i.e., how much

a graph can tolerate losing edges or vertices without fragmenting.

The robustness to failures is related to some topological properties of the

interconnected graph, mainly the degree distribution. Some nodes play impor-

tant roles in the topology formation, they are called central nodes. These nodes220

are crucial to the network communication and their failure will likely have a sig-

nificant effect on the overall network connectivity. Therefore, the evaluation of

the impact of central node failures on the network connectivity provides means

to assess its robustness to failures.

In this direction, the robustness level proposed in [45] relies on the concept225

of betweenness centrality (BC) [49] for evaluating the network robustness. BC

establishes higher scores for nodes that are contained in most of the shortest

paths between every pair of nodes in the network. Thus, removing nodes ac-

cording to their BC ranking—from highest to lowest values—might quickly lead

to network fragmentation. The definition of the robustness level is:230

Definition 1 (Robustness level [45]). Consider a graph G with N nodes.

Let [v1, . . . , vN ] be the list of nodes ordered by descending value of BC. Let ϕ <

N be the minimum index i ∈ [1, . . . , N ] such that, removing nodes [v1, . . . , vi]

leads to fragmentation, that is, the graph including only nodes
[
vϕ+1, . . . , vN

]

being disconnected. Then, the network robustness level of G is defined as:

Θ(G) =
ϕ

N
(1)

The robustness level thus defines the fraction of central nodes that need to

be removed from the network to obtain a disconnected network. Small values

of Θ(G) indicate that failures of a small fraction of nodes may fragment the

network; consequently, increasing Θ(G) means increasing the resilience of the

9
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network to failures. We observe that Θ(G) is only an estimation of how far the235

network is from getting disconnected w.r.t. fraction of nodes removed. In fact,

it might be the case that different orderings of nodes with the same BC produce

different values of Θ(G).

From a local perspective of robustness assessment, a heuristic to estimate the

vulnerability of a node by means of the information acquired from its 1-hop and240

2-hop neighbors was proposed in [45]. The vulnerability level takes into account

the strength of a node’s local connections: a node exhibiting weak local ties is

more vulnerable to failures, whereas faults in its neighborhood may compromise

its communication with the largest connected component of the network.

We summarize this vulnerability assessment as follows: let d(v, u) be the

shortest path between nodes v and u, i.e., the minimum number of edges that

connect nodes v and u. Subsequently, define Π(v) as the set of nodes that are

at a minimum distance of at most 2-hops from v:

Π(v) = {u ∈ V (G) : d(v, u) ≤ 2} (2)

Moreover, let |Π(v)| be the cardinality of Π(v), and Π2(v) ⊆ Π(v) be the set of

2-hop neighbors of v that comprises only nodes whose shortest path from v is

exactly equal to 2-hops, namely:

Π2(v) = {u ∈ V (G) : d(v, u) = 2} (3)

Larger values of d would lead to exponentially larger computational require-245

ments that cannot be unjustified for an approximated approach.1

Now let Pathβ(v) ⊆ Π2(v) be the set of v’s 2-hop neighbors that are reach-

able through at most β paths, namely:

Pathβ(v) = {u ∈ Π2(v) : L(v, u) ≤ β}, (4)

1This heuristic was first proposed in [45] and validated in different scenarios, including

network sizes, topologies, failure methodologies, model parameterization. The performance of

information acquired from the 2-hop neighborhood was demonstrated to perform well not only

for evaluating but also for mitigating the vulnerability of networks with respect to connectivity.

10
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where L(v, u) is the number of the shortest 2-hop paths between nodes v and

u. Notice that β defines the threshold for the maximal number of paths be-250

tween a node v and each of its u neighbors that are necessary to include u

in Pathβ(v). Thus, setting a low value for β allows identifying fragile 2-hop

neighbors connections.

Hence, the value of |Pathβ(v)| is an indicator of the magnitude of node

fragility w.r.t. connectivity, and the vulnerability level of a node regarding255

failures is given by Pθ(v) ∈ (0, 1):

Pθ(v) =
|Pathβ(v)|
|Π(v)| (5)

We will hereafter use β = 1, in order to identify 2-hop neighbors that are

connected by a single path, which can represent a critical situation for net-

work connectivity in scenarios of failures. A larger value of Pθ(v) increases the

probability of a robot to set itself as vulnerable, thus improving its robustness.260

4. System model and problem formulation

We assume a team of N mobile robots that are able to communicate with

each other within a communication radius R, resulting in a communication

topology represented by an undirected graph G.

Let the state of each robot be its position pi ∈ Rm, and let p =
[
pT1 . . . p

T
N

]T ∈
RNm be the state vector of the multi-robot system. Let each robot be modeled

as a single integrator system, whose velocity can be directly controlled:

ṗi = ui (6)

where ui ∈ Rm is a control input.265

For each robot, the control input has to be designed so that a global objective

can be accomplished. As a proof of concept, in the rest of the paper, we will

refer to a scenario in which the robots are controlled to spread in a given area

while avoiding collisions. However, the proposed methodology can be easily

extended to other coordinated control objectives [47].270
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It is worth noting that coordinated objectives can be achieved only if in-

formation can be exchanged among the robots, that is, if the communication

graph is connected and the robots keep this property as the system evolves.

However, when considering real robotic systems, failures can not be neglected:

robots may stop working unexpectedly and become unable to collaborate.275

In this paper we combine three control laws, aiming at the achievement of

a common objective (area coverage, in our case) while ensuring the collision

avoidance and connectivity maintenance for the communication graph. The

combination of the different control laws aims at maximizing a global perfor-

mance index. This index defines a trade-off between the area actually covered280

by the robot and the level of connectivity of the communication network.

Note that connectivity is only guaranteed in free-fault environments because

failures have an unpredictable nature and cascading failures can seriously dam-

age the system connectivity. On the other hand, the mechanism for resilience

improvement was demonstrated to be able to postpone or avoid network frag-285

mentation, including cases where failures are concentrated over short time spans

[10].

5. Overview of the control architecture

Referring to the kinematic model in Equation (6), in the following, we con-

sider each robot to be controlled by means of a control input defined as the

superposition of three different terms, that is:

ui = σiu
c
i + ψiu

r
i + ζiu

d
i (7)

The components of the control inputs are defined as follows:290

• The term uci ∈ Rm represents the connectivity preservation control input.

The role of this control input is to enforce that, if the communication

graph is initially connected, then it will remain connected as the system

evolves.

12
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• The term uri ∈ Rm represents the topology resilience improvement control295

input. This term aims at minimizing the impact of failure on the network

connectivity by avoiding topological configurations that could induce a

disconnection in the communication graph in case of failure of one or

more robots.

• The term udi ∈ Rm represents the desired control action. This encodes300

the coordinated objective that the multi-robot system needs to achieve.

In this paper, we consider the objective to be the uniform coverage of a

given area.

• The hyper-parameters σi, ψi, ζi ≥ 0 represent linear combination gains.

They define the relative importance of the separate control laws.305

It is worth noting that the overall behavior of the multi-robot system is

defined by the way in which each individual control action is defined and by

how they are combined. Indeed, a different choice of the linear combination

gains leads to a different behavior of the multi-robot system.

In the following subsections, we introduce the individual control actions310

which are considered for implementation in the rest of the paper.

5.1. Connectivity preservation

The connectivity preservation control term uci is designed, as in [4], to ensure

that the value of the algebraic connectivity λ never goes below a given threshold

ε > 0. As in [4], the following energy function can be used for generating the

decentralized connectivity maintenance control strategy:

V (λ) =





coth (λ− ε) if λ > ε

0 otherwise.
(8)

The control law is designed to drive the robots to perform a gradient descent

of V (·), which ensures preservation of the graph connectivity. Considering the

robot model introduced in (6), the control law is defined as follows:

ui = uci = −∂V (λ)

∂pi
= −∂V (λ)

∂λ

∂λ

∂pi
. (9)
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We observe that the connectivity preservation framework can be enhanced to

consider also additional objectives. In particular, as shown in [38], the concept

of generalized connectivity can be utilized to simultaneously guarantee connec-315

tivity maintenance and collision avoidance with environmental obstacles and

among the robots.

5.2. Topology resilience improvement

The topology resilience improvement control term uri is designed—in accor-

dance with the methodology defined in [46, 10]—to drive the robots toward an320

improved resilience of the interconnection topology. Based on the concept of

vulnerability level introduced in (5), this control strategy aims at increasing the

number of links of a potentially vulnerable node i by driving it towards the

barycenter of the 2-hop neighbors that are in Pathβ(i), thus decreasing its dis-

tance to them and eventually creating new edges in the communication graph.325

It is important to note that, if properly defined, Pathβ(i) contains the i’s 2-hop

neighbors with fragile connections.

Considering the robot model introduced in (6), the control law is defined as

follows:

uri = ξi
xiβ − pi∥∥∥xiβ − pi

∥∥∥
α, (10)

where xiβ ∈ Rm is the barycenter of the positions of the robots in Pathβ(i) (see

Equation (4) for its computation) and α ∈ R+ is a scalar coefficient setting the

velocity magnitude of each robot2.330

Parameter ξi takes into account the vulnerability state of a node i, i.e., ξi = 1

if node i identifies itself as vulnerable or ξi = 0 otherwise. As in [46, 10], we set

as vulnerable those robots i exhibiting high values for Pθ(i): then, ξi is defined

2Pathological situations may exist in which (10) is not well defined, namely when pi = xiβ .

However, this corresponds to the case where the i-th robot is exactly in the barycenter of its

weakly connected 2-hop neighbors: in practice, this never happens when a robot detects itself

as vulnerable.

14

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



as follows

ξi =





1 if Pθ(i) > r

0 otherwise,
(11)

where r ∈ (0, 1) is a random number drawn from a uniform distribution, i.e.,

if Pθ(i) > r, then the i-th robot considers itself as vulnerable. It is worth

remarking that, according to (5), each robot can evaluate its vulnerability level

in a decentralized manner.

5.3. Area coverage and collision avoidance335

To control the robot to evenly spread over a given area while avoiding colli-

sions, we propose to use the well-known control strategy based on the Lennard-

Jones potential [14]. At distance x from its origin, the potential equation is:

PLJ = ι

((
δ

x

)a
− 2 ·

(
δ

x

)b)
(12)

When considering robot i and multiple neighboring robots j’s (∈ N (i)), this

entails that the desired control action equations can be written as:

udi = −ι
∑

j∈N (i)



(
a · δa
xa+1
ij

)a
− 2 ·

(
b · δ
xb+1
ij

)b
 (13)

where parameters ι and δ define the potential function shape and xij is the

inter-robot distance between i and j. Exponents a and b are set to 4 and 2. For

the sake of collision avoidance, we set δ to be larger than the communication

range of the robots.

6. Optimized control strategy340

This section presents the methodology that we used to perform the online

optimization of control gains σi, ψi, ζi introduced in Equation (7). The goal is

to allow each robot to identify the most appropriate set of parameters as the

system evolves.
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The ideal performance is defined starting from the desired global behaviour,

that is, achieving the largest area coverage while keeping a high level of con-

nectivity. For this multi-objective problem, we define the following scalarizing

function:

fobj(t) = λ2(t)A(t) (14)

where λ2(t) is the algebraic connectivity of the communication graph at time345

t, and A(t) is the value of the covered area at time t (see also Appendix A for

discussion on alternative implementations of Equation (14)).

The choice of this scalarizing function is motivated by the fact that we are

dealing with a multi-objective problem comprising two performance metrics with

different domains and straightforward way to avoid an adaptive normalization350

scheme is to consider the metrics’ product [50]. We also observe that the intent

of our work is to optimize the control law for algebraic connectivity λ and area

coverage A only. The robustness component ur does not represent an objective

per se but rather a hint to the multi-robot system to make it more robust and

resilient once faults (imperfect communication and robotic failures) are injected.355

Since (14) depends only on the actual position of the robots and not directly

on the control gains, the predicted value of the scalarizing function at the next

time step is considered in the formulation of the optimization process. Let

consider the j − th robot in the team, the solution of the constrained optimal

control problem:

max
σ, ψ, ζ

fobj(t+ ∆t)

s.t. pi(t+ ∆t) = pi(t) + ui(t)∆t

ui(t) = σuci + ψuri + ζudi

σ, ψ, ζ ≤ Ωmax

‖ui‖ ≤ umax
i = 0, ..., N − 1

(15)

returns the optimal set of gains σj , ψj , ζj . pi(t) represents the position of the

i − th robot in the team available to robot j. With this knowledge, robot j

computes ui(t), namely, the control input of the i− th robot. Euler’s method is
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then used to estimate the future positions of the robots in the team pi(t+ ∆t),

exploiting the starting positions pi(t), the control inputs ui(t) and the step time360

∆t. Ωmax represents the maximum value of the gains while umax represents

the maximum control input. With a simplifying assumption, each robot in the

team solves the optimization problem under the hypothesis that all the robots

will move using the same set of gains.

6.1. Optimization algorithms365

We are now left with the task of selecting an optimization methodology

that can allow us to find the ideal combination of the gains σ, ψ, ζ such that

the objective function introduced in (14) is maximized. We observe that the

scalarizing function we selected (according to the considerations made in Ap-

pendix A) is the product of nonlinear functions, that is, algebraic connectivity370

λ2 (the computation of the eigenvalues of the Laplacian matrix is nonlinear)

and area coverage (the sum of the non-overlapping portions of the disks around

each robot).

Consequently, we searched among optimization methods that are not too

computationally expensive but also well suited for such nonlinear problems. We375

evaluated the following approaches [51]:

• Grid search optimization provides a uniform and homogeneous screening of

the parameters space. The main advantage of this method is the accuracy

of the solution, which can be freely refined if one is not constrained by the

computational time requirements.380

• Random search optimization. A probabilistic search does not require the

gradient of the objective function and can tackle non-continuous or non-

differentiable objective functions. The optimal set of parameters is found

by probing the domain space with a uniform probability distribution.

Heuristic and random search algorithms can provide a lower computa-385

tional burden at the cost of relinquishing guarantees of optimality.
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• The augmented Lagrangian optimization algorithm is especially suited

for constrained optimization problems, it requires to (i) first penalize the

objective function, (ii) translate the constrained optimization problem into

a series of unconstrained problems, and then (iii) adds a term designed390

to mimic a Lagrange multiplier and improve precision and convergence

speed. The algorithm uses the gradient of the objective function. In the

case of Equation (14), numerical differentiation is exploited.

6.2. Implementation and evaluation

As we want to compare the optimization algorithms from Subsection 6.1395

both in terms of quality of the solution and computational requirement, we

implemented the following simulated experiments. Eight robots are placed in a

squared arena. Positions of all the robots are shared with all the other robots.

As we are in a non-fully connected network, we use a consensus mechanism—

i.e., virtual stigmergy [19]. Using this shared knowledge, each robot computes400

the components of the control input of every robot in the team (uci , u
r
i and udi

in Equation (7)).

We define as Op ∈ Z+ the optimization period and Gp ∈ Z+ the number of

generated points. Every Op control steps, every robot optimizes and updates

its own set of gains to be used in (7) as follows:405

1. A maximum of Gp gains—tuples 〈ψ, σ, ζ〉—are generated by the optimiza-

tion algorithm (one of those described in Subsection 6.1).

2. For each tuple, the robots (i) predicts the positions of all other robots at

the subsequent time step integrating (7) and (ii) evaluate the objective

function introduced in Equation (14).410

3. The gains returning the greater evaluation of Equation (14) are selected

(note that, due to asynchronicity, imperfect communication, and the ran-

dom nature of one of the proposed optimization approaches, there could

be different gains for different robots, as shown in Figure 4).

The optimization period Op is set by the user for all the optimization meth-415

ods. The number of generated points Gp can be set by the user for the grid
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search optimization and for the random search optimization algorithms. For the

augmented Lagrangian optimization algorithm, the value of Gp is determined

by the convergence criteria of the algorithm itself.

These steps were implemented using the Buzz scripting language [16], and

simulations were run using the multi-physics environment of ARGoS [15]. We

evaluated the performance of the three optimization methodologies in a network

of eight two-wheeled robots and we compared it against the same robot team

using constant gains. We screened the Cartesian product (i.e., all combinations)

of the following gain assignments:

ψ = {0, 1, 2} σ = {0, 1, 2} ζ = {0, 1} (16)

420

The results of these simulations are summarized in Table 1 and Figure 1,

which presents the evolution of the objective function (14) as the experiments

progress. The three colored lines represents, respectively, the objective function

values obtained by each of the optimization algorithm, while the black line with

the grey shadow represent the average value and standard deviation of the ob-425

jective function provided by the screened set of constant gains. Unsurprisingly,

the value of the objective function is typically greater when using an optimiza-

tion method (with respect to constant gains). Figure 1 also shows that random

search optimization performs significantly on-par or better than other methods.

This result can be explained by the fact that the search space [0, 10]3 is not430

highly dimensional nor particularly complex. As the computational require-

ments of a random search are generally modest, we choose it as the preferred

optimization algorithm for the rest of this work. We then performed a sec-

ond set of simulations to investigate how the choice of the hyper-parameters

Gp and Op influences the optimization performance. We run simulations for435

Gp = {250, 400, 2200, 4000} and Op = {1, 10, 50}.
The results obtained from these simulations are presented in Figure 2. We

observe that different parameter choices provide similar and often comparable

results, as quantified by the objective function. Hence, we reckon that the opti-
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Algorithm
Objective Topology Computational

function evolution time

Augmented lagrangian = = =

Random search ↑ = =

Grid search ↓ = ↓

Table 1: Comparative summary of the optimization algorithms described in Subsection 6.1

mization algorithm can be effectively run using a limited number of generated440

points (i.e. Gp = 250) and sporadic optimization (i.e. Op = 50) to reduce

the computational requirements without hurting the overall performance of the

multi-robot team. Having selected random optimization with Op = 50 and

Gp = 250, we run an extensive simulation campaign whose results are reported

and discussed in section 6.3445

0 125 250 375 500
0

2

4

6

Iteration

f o
b
j

Static Gains Aug. Lagrangian Opt.

Grid Search Opt. Random Search Opt.

Figure 1: Objective function evolution comparison: static gains versus optimized gains when

using augmented Lagrangian, random, and grid searches. For the Grid search optimization and

for the Random search optimization algorithm, Op and Gp are set to 1 and 4000 respectively.

For the augmented Lagrangian optimization algorithm, the value of Op is set to 1 while Gp

is determined by the convergence criteria.

Eighty additional simulations were also performed in order to assess scalabil-

ity of online optimization when the number of robots in the team changes. We

performed simulation with 3,4,6 and 8 robots, Op ∈ {1, 50} and Gp ∈ {250, 400}.
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0 125 250 375 500
0

2

4

6

Iteration

f o
b
j

Gp: 4000 Op: 1 Gp: 2200 Op: 1 Gp: 400 Op: 1 Gp: 250 Op: 1

Gp: 4000 Op: 10 Gp: 2200 Op: 10 Gp: 400 Op: 10 Gp: 250 Op: 10

Gp: 4000 Op: 50 Gp: 2200 Op: 50 Gp: 400 Op: 50 Gp: 250 Op: 50

Figure 2: Evolution of the objective function fobj (throughout the course of a 500-

iteration simulation) when using random search optimization. Comparison of different hyper-

parametrizations in terms of number of generated points Gp and optimization frequency Op.

6.3. Simulations results and discussion450

The results obtained performing the first simulations illustrated in section

6.2 are summarized in Figure 3, that shows the evolution of the main metrics

3, and Figure 4, that shows how the gains σi, ψi, and ζi evolve on-board each

robot. Simulations were performed in a Fault-Free scenario and introducing the

two fault-injection presented in Appendix B.455

As expected, in the Fault-free scenario the objective function increase during

the simulation while the algebraic connectivity and the covered area reach a

trade-off. A good performance can also be observed for the robustness point

of view, that increases over time also if it is not considered in optimization.

This is mainly due to the presence of the term uri in the control law. Similar460

3Note that the second and third column of Figures 3 and 4 present results contemplating

the fault-injection protocols introduced in Appendix B.
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Fault-free Faulty Comm. Robot Failures

0.0

1.0

2.0

λ

2.0

3.0

4.0

A
(m

2
)
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0.0

0.4

0.8

Θ
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Iteration
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Figure 3: Scalarizing/objective function fobj , algebraic connectivity λ, area coverage A (in

m2), and robustness Θ in different simulations scenarios (fault-free, with faulty communi-

cation, and with hardware failures). Simulations were repeated 30 times, over 500 ARGoS

simulator iterations, in each fault-injection scenario. The orange line and teal shadow report

average and standard deviation, respectively.
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0.0

5.0

10.0

σ

Fault-free Faulty Comm. Robot Failures

0.0

5.0

10.0

ψ

Robot 1 Robot 2 Robot 3 Robot 4
Robot 5 Robot 6 Robot 7 Robot 8

100 250 400
0.0

5.0

10.0

ζ

100 250 400

Iteration

100 250 400

Figure 4: Evolution of control law (7) gains σ, ψ, and ζ, for each of the 8 robots, in different

simulations scenarios (fault-free, with faulty communication, and with hardware failures), for

a fixed starting configuration. Simulations were run over 500 ARGoS simulator iterations, in

each fault-injection scenario. Optimization was based on the random search approach using

Op = 50 and Gp = 250.

Optimization # of Robots

Parameters 3 4 6 8

Op = 1, Gp = 400 126, 132 373, 231 642, 444 928, 420

Op = 50, Gp = 400 146, 157 466, 300 714, 389 938, 430

Op = 1, Gp = 250 149, 160 454, 289 721, 462 982, 509

Op = 50, Gp = 250 132, 144 471, 344 828, 502 759, 284

Table 2: Percentage (%) increase of the objective function fobj value between the start and the

end of 500-iteration simulations. The values show the average value and standard deviation

of multiple simulations varying the optimization hyper-parameters (the rows) and the number

of robots (the columns) in the team.
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performances can also be appreciated for both the fault-injection scenario. In

particular, we can observe a decrease in the objective function in the case of

robot failures, associated to the decrease in the number of robots in the team.

The same considerations are confirmed by the low value of ζ and the high value

of σ and ψ for all the simulation and for all the faults scenario. The results465

obtained for the scalability simulation campaign are reported in table 2 that

reports the average value and the standard deviation of the percentage increase

of the objective function value between the start and the end of the experiment.

One can observe larger percentage increases as the number of robots goes up.

This is expected since the number of robots leads to an inevitable increase470

in the covered area, while the absolute value of algebraic connectivity is not

significantly affected by the number of robots for teams of this size. Nonetheless,

Table 2 show how the optimizer performs as intended independently of the

number of robots in the team and its hyper-parameters.

7. Experimental validation475

Transitioning from simulation to real robots can be challenging and results in

performance degradation, especially with resource constraint hardware [11]. To

demonstrate the portability of the proposed online optimization, and to analyze

how hardware limitations affect the choice of the optimization parameters (i.e.,

the generated points Gp and optimization period Op), we used an actual dis-480

tributed multi-robot system to test our methodology. The robot team consists

of eight two-wheeled differential-drive K-Team Khepera IV shown in Figure 5.

Each robot is equipped with an 800MHz ARM Cortex-A8 and the linux-based

Yocto operating system4.

A camera-based tracking system consisting of four OptiTrack5 Prime13 cam-485

eras (see Figure 5), and the blabbermouth6 communication software are com-

4https://www.k-team.com/mobile-robotics-products/khepera-iv
5https://optitrack.com/products/prime-13/specs.html
6https://github.com/MISTLab/blabbermouth
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bined to emulate range and bearing sensors for each robot. The communication

infrastructure is based on traditional Wi-Fi and, integrating the information

from the camera-based positioning system, we emulate communication ranges

up to a fixed distance R = 60cm (analogue to the setup used in [11]). All in-490

formation on-board each robot is in local coordinates. OptiTrack sends to every

robot the positions of its neighbors in its own local coordinates. The messages

that robots send to each other also use the robots’ own coordinate system (and,

thus, they have to be transformed on board each receiving robot).

Figure 5: One of four OptiTrack Prime 13 cameras and one of eight K-Team’s Khepera IV

robots (ø= 14.0 cm, h = 6.0 cm) used for the experimental setup in Section 7.

The optimization procedure described in Section 6.2 is embedded into the495

Khepera IV-specific virtual machine bzzkh47 that is used to execute the Buzz

byte code of each robotic controller. Using the parameters studied in simulation

as a starting point, we determined the optimization times ∆t for the on-board

processing at the varying of Gp. We obtain ∆t’s of 8′41′′, 46′47′′ and 84′23′′

as runtimes for 400, 2200 and 4000 generated points Gp, respectively. That500

is, with increasing Gp, ∆t increases linearly and ranges from minutes to hours.

Considering these computational demands, it is sensible to run the online op-

timization on the Khepera IV every Op = 50 steps with a Gp of 250 points

(∆t ∼ 2′). Simulations and experimental validation iterate over a fix number

of control steps. The duration of each experiment is set to 500 and 300 such505

iterations, respectively, and every experiment was repeated starting from four,

randomly selected initial poses. Due to the potentially varying processing times

on each robot, the team of Khepera IVs operates asynchronously.

7https://github.com/MISTLab/BuzzKH4
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7.1. Experimental results and discussion

The results obtained combining the robotic set-up described in Section 7 and510

the two fault-injection protocols presented in Appendix B are shown in Figure 6.

The three columns of Figure 6 refer to the three different fault scenarios: the

absence of faults (left), the injection of faults in the communication layer (cen-

tre), and the injection of faults in the robotic hardware (right). The four rows

present the evolution of different metrics, namely the scalarizing function fobj ,515

algebraic connectivity λ, area coverage A, and robustness Θ. Each plot displays

an average value (the orange line) and a standard deviation (the teal shade)

computed over the repeated experiments conducted from different initial poses.

The leftmost column in Figure 6 presents our baseline performance for the

optimized control law. The fault-free results resembles, in fact, those in [11]—520

where the choice of gains 〈ψ, σ, ζ〉 was surrendered to manual screening. Once

again, we can observe a natural trade-off between the values of λ, Θ and A.

The most notable result in Figure 6 certainly comes from the central column.

Here, we clearly see how static gains [11] and online optimization produce very

different results. In [11], we had noted that the presence of faulty communi-525

cation could lead the robots to favour λ over A, resulting in more compact

formations. In Figure 6, this behaviour is remarkably not present and—albeit

deteriorated w.r.t. the fault-free scenario—both λ and A increase over time. In

fact, the online adjustment of the control gains appears to facilitate the balance

between the two objectives. Finally, in the rightmost column, we observe that,530

in presence of hardware failures, A is predictably and inevitably weakened. Yet,

both λ and Θ can be driven up by the proposed approach (note that the larger

absolute values are justified by the fact that they refer to progressively smaller

networks, with less than eight robots).

Table 3 summarizes the results of nine two-tailed, paired t-tests between535

the initial and final distributions of metrics fobj , λ, and A using the data from

Figure 6. These suggest that the samples for all three metrics have distribu-

tion with different means, i.e., the proposed approach drives them towards the

desired topology, even in of the presence of faulty communication. The results
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Figure 6: Scalarizing/objective function fobj , algebraic connectivity λ, area coverage A (in

m2), and robustness Θ in different experimental scenarios (fault-free, with faulty communica-

tion, and with hardware failures), as observed by the OptiTrack tracking system. The orange

line and teal shadow report average and standard deviation, respectively. The dashed black

line shows the performance (from [11]) of static gains 〈ψ : 1, σ : 2, ζ : 1〉.
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Figure 7: Comparison of trajectory traces in simulations and real-life experiments for different

fault-injection scenarios (fault-free, with faulty communication, and with hardware failures).

in the presence of robotic failures, on the other hand, are not equally clear-540

cut. We performed the same t-tests using the data from Figure 3 to confirm

that simulations with robotic failures lead to significantly different means for all

three metrics. Finally, Figure 7 compares the trajectory traces of the robots in

simulations and experiments in the different fault-injection scenarios.

8. Conclusions545

In this article, we experimentally evaluated the methodology proposed in [12]

(i.e., the online optimization of resilient multi-robot networks) against faults.

Our starting points were (i) the control law proposed in [10]—to improve the
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Fault-free Faulty Comm. Robot Failures

fobj 0.1127 0.3979 0.9419

λ 0.0952 0.2870 0.3135

A 0.0445 0.0493 0.0005

Table 3: Two-tailed, paired t-tests between initial (t = 0s) and final (t = 2000s for the fault-

free scenario, 1500s for the faulty communication and robot failures scenarios) distributions

of the data from figure 6. Smaller values indicates that one should be more inclined to reject

the null hypothesis (of the samples coming from distributions with equal mean). The same

t-tests for the data from Figure 3 all returned values ∼ 0.

robustness of an initially connected multi-robot topology—and (ii) the different

fault-injection protocols descried in [11]. We combined and extended all of our550

previous work to provide the following contributions: (i) simulations to compare,

evaluate, and justify the choice of a scalarizing function for our multi-objective

problem—that is, the simultaneous maximization of algebraic connectivity and

area coverage; (ii) real-life experiments with eight robots (K-team Khepera IV)

and the injection of transient faults in the communication infrastructure; and555

finally (iii), real-life experiments with up to eight robots and the injection of

permanent faults in the form of sudden, independently distributed hardware

breakdowns. The new experiments reveal that the proposed control strategy is,

in fact, effective in improving coverage, connectivity, and robustness of a robot-

team. Unlike static hyper-parameterization [11], online optimization proved to560

be effective in balancing conflicting goals in the presence of faulty communica-

tion. In the upcoming future, we intend to extend our work on connectivity and

fault-tolerance even further to account for more sophisticated exploration strate-

gies such as the use a “Voronoi tessellation”-based coverage contribution [47], a

full-fledged distributed path planner, and study the existence of formal guaran-565

tees on robustness and connectivity maintenance for specific implementations

of the ud control contribution.
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A. Alternative scalarizing functions

To evaluate the impact and effectiveness of our scalarizing function choice765

on the overall system performance, we also run multiple simulations using the

following arithmetic combinations of the two performance metrics:

1. The product of the performance metrics λ2 and A:

fobj = λ2(t) · A(t) (17)

2. The sum of the performance metrics λ2 and A:

fobj = λ2(t) +A(t) (18)

3. The normalized sum of the performance metrics (with λ2−tar. and Atar.
set to 2.0 and 5.0, respectively, after preliminary evaluation):

fobj = λ2(t) · λ−12−tar. +A(t) · A−1tar. (19)

We remark that this list is clearly non-exhaustive: one could, for example intro-

duce many more sophisticated scalarizing functions, such as one that evaluates

as a step function for λ2 and linearly (or quadratically) for A.770

All simulations started from the same initial pose, involved eight robots,

and used hyper-parameters Op = 50 (the frequency of the optimization) and

Gp = 400 (the size of the search space). These values are meant to closely

resemble the experimental setup (Op = 50, Gp = 250) without risking Gp being

too small to find interesting solutions (this is, nonetheless, proven not to be775

the case in Section 7). In Figure 8, we report the evolution of all relevant

metrics—i.e., fobj(t), λ2(t), and A(t).

These results show that the scalarizing function in Equation 18 leads to

larger values of area coverage A but unfairly penalize algebraic connectivty λ2.

This is motivated by the fact that, in our scenario, the domain of performance780

metric A(t) is typically larger than the domain of λ2(t). The results achieved

with the scalarizing function in Equation 19 are comparable to those obtained

when using the one in Equation 17. Equation 19, however, entails an additional
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Figure 8: Evolution the performance metrics A, λ and the scalarizing function fobj , when op-

timization (i.e., a random search with Op = 50, Gp = 250) is led by each of the three different

implementation proposed in Appendix A. These results document the different performance of

fobj (and the two optimization objective λ and A) when using different scalarizing functions

(Equations (17)-(19)) and support our choice of using (17) in the rest of the article.

layer of complexity as it requires to run preliminary experiments to estimate

the values of λ2−tar. and Atar..785

As our final goal is the evaluate the performance of autonomous, online

optimization in the presence of faults, we opted to use Equation 17 as our

preferred scalarizing function—following Dijkstra’s opinion that complexity can

pose a risk to reliability [52].

B. Fault injection790

In this section, we outline the models and procedures that we used to inject

faults within our simulations and experimental setup. Faults are meant to

demonstrate manufacturing imperfections and other non-idealities afflicting the
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physical world [53]. We use fault-injection to offer a more difficult challenge to

the proposed control and optimization methodology.795

In [53], faults are bipartite into two classes with respect to time duration:

permanent and transient faults. Permanent faults perpetually affect a system

since the time of their first occurrence. Transient faults can present themselves

and then and disappear over time. In reliability engineering, probability dis-

tributions are typically used to model the initial time and the arrival times of800

permanent and transient faults, respectively [54].

Inspired by [39] and similarly to what we did in [11], we established pro-

tocols to inject two types of faults: (i) packet drop in the communication

infrastructure—representative of transient/soft errors—and (ii) failures in the

robotic hardware—representative of permanent/hard faults. The two following805

subsections detail these protocols.

B.1. Unreliable communication

Unreliable communication is implemented as the casual loss of certain pack-

ets/messages sent from one robot to another. Simulations and experiments with

this sort of fault-injection replicate scenarios in which the robots’ performance is810

distressed by faulty radios and/or environmental conditions (e.g., the presence

of elevated electromagnetic interference).

We model the drops of messages as independent phenomena happening on

each communication link, at a given rate. The likelihood of a message be-

ing dropped is described by a Bernoulli trial with probability mass function

pmfBern:

pmfBern(sent, p) =





1− p if sent = >

p if sent = ⊥
(20)

Table 4 reports the values of p in different phases of simulations lasting 500

iterations while Table 5 reports the values of p in different phases of experiments

lasting ∼40’. To practically implement this model, we modified the software815

layer used to emulate point-to-point communication, i.e., blabbermouth.
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it: 0–100 100–200 200–300 300–400 >400

p: 0.0 0.2 0.4 0.6 0.8

Table 4: Values of the packet drop rate over the development of each simulation

t: 0”–320” 320”–640” 640”–960” 960”–128’0’ >1280”

p: 0.0 0.2 0.4 0.6 0.8

Table 5: Values of the packet drop rate over the development of each experiment

B.2. Faulty robotic hardware

Robotic hardware failures intend to reproduce what would happen after the

sudden disappearance of a drone flying within a swarm. In our fault-injection

protocol, robots’ failures happen independently and according to their mean-

time-to-failure (MTTF). A robot’s lifetime can be modeled using a probability

distribution [55]. In our simulations/experiments, as we did in [11], we use an

exponential cumulative distribution function CDFexp is:

CDFexp(t, β) = 1− e− 1
β t (21)

Hence, the MTTF equals the expected value: E[X] = β. In practice, the in-

jection of robotic failures was implemented as follow: An initial grace period is

granted for all robots. After the grace period ends, each robot’s lifetime is regu-820

lated by an independent exponential distribution with MTTF of 300 iterations

for simulations and ∼16’ for experiments (60% of the simulation/experiment

duration).

The occurrences of the failures—kept unaltered through all the experiments

for each initial configuration—are summarized in Table 6 for simulations and825

in Table 7 for experiments. After a hard failure, a robot stops moving and

communicating, in the simulation case, or it is physically removed from the

arena in the experimental case.
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Robot id: 2 3 4 0 7

Failure iteration: 232 247 322 375 397

Table 6: Robots’ identifiers and failure iterations for simulations

Robot id: 3 6 2 1 9

Failure time: 7’14” 8’20” 9’45” 15’26” 18’29”

Table 7: Robots’ identifiers and failure times for experiments
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