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a b s t r a c t

Inferring and representing three-dimensional shapes is an important part of robotic perception.
However, it is challenging to build accurate models of novel objects based on real sensory data,
because observed data is typically incomplete and noisy. Furthermore, imperfect sensory data suggests
that uncertainty about shapes should be explicitly modeled during shape estimation. Such uncertainty
models can usefully enable exploratory action planning for maximum information gain and efficient
use of data. This paper presents a probabilistic approach for acquiring object models, based on visual
and tactile data. We study Gaussian Process Implicit Surface (GPIS) representation. GPIS enables a non-
parametric probabilistic reconstruction of object surfaces from 3D data points, while also providing
a principled approach to encode the uncertainty associated with each region of the reconstruction.
We investigate different configurations for GPIS, and interpret an object surface as the level-set of
an underlying sparse GP. Experiments are performed on both synthetic data, and also real data sets
obtained from two different robots physically interacting with objects. We evaluate performance by
assessing how close the reconstructed surfaces are to ground-truth object models. We also evaluate
how well objects from different categories are clustered, based on the reconstructed surface shapes.
Results show that sparse GPs enable a reliable approximation to the full GP solution, and the proposed
method yields adequate surface representations to distinguish objects. Additionally the presented
approach is shown to provide computational efficiency, and also efficient use of the robot’s exploratory
actions.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Humans and animals sense environments via multiple sen-
sory modalities. It has been shown that both visual and haptic
modalities provide strong contributions to human perception of
objects [1–3]. Furthermore, it has been shown that visual and
haptic 3D shape information are integrated by humans in a sta-
tistically optimal way, and bimodal perceptions of 3D shapes
are more accurate than those based on either vision or touch
alone [3]. Inspired by these findings, we study how robots can
complement visual information with tactile sensing, to achieve
more robust perception of 3D object shapes. Since camera views
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currently with Peltarion.

and tactile samples typically provide incomplete and noisy infor-
mation, we believe that it is important that inferred 3D shape
models also encode the uncertainties associated with these shape
estimates. We therefore propose a method to acquire 3D object
models probabilistically, in a computationally efficient way. We
demonstrate our method with empirical experiments, with data
obtained from two different robotic manipulator platforms when
interacting with a variety of different benchmark object types and
shapes, using visual and tactile sensors.

Acquiring object shape information is important in numer-
ous robotics applications, e.g. for grasp and motion planning [4,
5], which in turn may rely on estimating an object’s pose [6].
However, in autonomous service-robot scenarios where novel
objects are encountered, 3D object models are often unavailable
a priori. Various approaches have been proposed for estimating
object shapes. One approach [7] is to rely on the assumption
that many objects (especially in structured, man-made environ-
ments) have symmetries. Assumptions of symmetry can be used

https://doi.org/10.1016/j.robot.2020.103433
0921-8890/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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to complete 3D models from partial visual observations, by find-
ing the best symmetry plane and reflecting the observed points
accordingly. However symmetry assumptions do not hold for
many objects, e.g. the handle on a mug, or rubble in a disaster-
response scenario, or robotic handling of hazardous waste [8–10].
Alternatively, instead of relying on data from one view only,
surface reconstruction can be performed by exploring the object
from various view directions [11]. For example, a robot may move
an object in front of a depth camera (or move its camera relative
to stationary object), prioritizing surface regions that maximize
the information gain while minimizing the movement cost. Such
systems can be improved by incorporating an additional sen-
sory modality. For example, tactile samples, from an occluded
region of an object, can be used to augment a partial point-
cloud view of the surface nearest to a depth camera. This way,
an initial hypothesis based on a symmetry assumption can be
refined after grasping the object, given tactile and proprioceptive
data from fingers which contact the object. Model refinement
can then become iterative, e.g. using an extended Kalman filter
approach [12].

Extracting shape information is challenging mainly due to
the fact that sensory data can be incomplete and noisy. Fur-
thermore, a key aspect in modeling shape information is the
surface representation that allows for efficient action selection.
In this context, Gaussian process (GP) is a promising modeling
framework to encode information about object shape [13,14].
It provides parametrization of uncertainty, which adds crucial
descriptiveness to the representation of object shapes. This is
especially useful for tasks such as robotic grasping, facilitating
more informed planning to have a good trade-off between ex-
ploration and exploitation, i.e. choosing more certain object areas
that would lead to successful grasp configurations or choosing
where to explore the object in less certain areas. Therefore GPs
have been shown to be effective for various types of applications
such as guiding motions for exploring objects, reconstructing
surfaces and mapping incomplete and occluded regions [13,15,
16]. For these applications, a surface representation based on
GPs, Gaussian Process Implicit Surface (GPIS), has been used, as
uncertainty in GP formulation enables making decisions about
where to explore next. Many recent works use the standard full
GPIS formulation for surface representation, e.g. through an active
touch strategy to reduce surface geometry uncertainty by using
one robot finger equipped with a tactile sensor [17], focusing
on sliding paths instead of touch locations [18], or following
a classification approach to guide the exploration [19]. Hence,
explorative action selection can be performed by considering
the trade-off between the uncertainty in the surface estimation
and the corresponding travel cost [11,20]. However usually these
works either rely on unimodal data (visual or tactile) or suffer
from computational complexity of full GP formulation. In this
paper, we present a computationally efficient GPIS formulation
applied to real-world bimodal sensory data (visual and tactile) for
surface modeling.

In our previous work, [15] we built GPIS models based on
actively exploring objects, using visual and tactile sensing, where
a surface is induced by the level-set of a continuous function
estimated via GP regression. The proposed framework focused on
identifying most uncertain surface areas to prioritize for tactile
exploration. After building first surface hypothesis via visual data,
the surface estimation was further improved by gradually adding
tactile information, refining object models initially learned from
visual points. This paper presents a number of extensions of the
previous work. Differently from the aforementioned approaches
we focus on computationally efficient probabilistic representa-
tions of real sensory data from visual and tactile observations of
objects.

Our formulation builds on the GPIS representation. GPs al-
low to combine prior beliefs about object shape properties with
knowledge from observations in a principled manner while mod-
eling inherent uncertainties. The GP prior is controlled by the
choice of covariance (or kernel) function, which provides struc-
ture incorporating our prior knowledge of the shape of the sur-
face, e.g. thin-plate covariance function [15,21]. Another approach
is to use shape primitives to define geometric object priors [22],
or non-stationary kernels for reconstruction of 3D surfaces [23].
We study how different kernel functions affect object surface rep-
resentation. Kernels are parameterized by hyperparameters [24]
which determine the prior knowledge encoded in the kernel.
Different methods have been proposed to find hyperparame-
ters, e.g. maximization of the marginal likelihood [24]. How-
ever this becomes slower to compute as the size of the solution
space grows, commonly creating a trade-off between modeling
uncertainty and computational speed. To circumvent the com-
putational complexity associated with learning using GPs, we
optimize a variational lower bound on the marginal likelihood
using the approach presented in [25]. This alternative sparse GP
formulation has a much lower computational demand and allows
surface modeling even when raw data is relatively large.

Main contributions and differences to our previous work [15]
can be summarized as follows:

• We use sparse Gaussian processes for surface reconstruc-
tion, which results in approximate solutions with less com-
putational time in comparison to standard GPIS, while pre-
serving accuracy.

• We investigate different configurations for GPIS, e.g. differ-
ent kernel choices, and optimize model parameters through
variational learning, rather than choosing manually as in
[15], and present extensive evaluations and analysis of the
results. For evaluating reconstruction quality, we apply i.a.
a clustering method to assess how well the reconstructions
group into semantically meaningful classes of objects.

• The method is evaluated both using synthetic (perfectly
smooth and generally complete surfaces) and real data from
two different robotic platforms.

2. Methodology

This section briefly introduces our approach for modeling
and understanding shape using probabilistic representations. We
present the description of the outline of the system used to
extract shape information from raw data, as well as the data sets
used for evaluating the system.

2.1. System outline

The proposed system outline is illustrated in Fig. 1. There are
two main steps in the system: surface reconstruction from 3D
data points obtained from visual and haptic sensors and cluster-
ing of these surface models. The visual and haptic measurements
are pre-processed by centering, normalizing and finally enhanc-
ing the data with topological information, in the form of points
added inside and outside object point clouds. We use GP as
a Bayesian prior, which expresses the beliefs about the latent
function we aim to model, before any data is taken into account.
Hence we select a kernel function to form the covariance and
induce the smoothness of the GP prior. It follows that param-
eters are optimized [25] by means of maximizing a variational
lower bound to the exact log marginal likelihood, using the L-
BFGS-B [26,27] algorithm. The sparse GP posterior distribution is
further derived, whose mean serves as basis to extract a level-
set, using the Marching Cubes algorithm [28]. The level-set in its
turn induces the object implicit surface, which is represented by
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Fig. 1. The system outline for sparse Gaussian process implicit surfaces for object shape modeling.

Table 1
The Princeton ModelNet objects from four different categories: apples, bottles, pots and ducks.

a triangular mesh. For further theoretical details about GPs and
kernel functions refer to Section 3.

In order to tackle object clustering, firstly local features are
extracted from the mesh. We particularly exploit principal cur-
vatures,2 [29,30], which are representations that relate to the
grasping actions the object can afford [15]. Later distances are
measured through the kernel two-sample test [31], based on the
objects’ local feature representations. These distances are further
translated into similarity measures through a Gaussian kernel.3
Finally spectral clustering and embedding [32] are undertaken to
discriminate objects, based on the similarity measures.

2.2. Data sets

Our study employs data from different sources, as a means to
collect various insights about 3D shape modeling. With this in
mind, two essential data types are evaluated:

• A synthetic public data set, called Princeton ModelNet data
set [33], with object point clouds from different object cat-
egories and

2 We follow the method in [29] but adapt the estimation of normal vectors
as in [30].
3 The similarity measure wi,j between object i and j is calculated as wi,j

=

exp
(

−(di,j)2

2σ2
w

)
, where di,j and σw = 0.05 stand for the distance measure and the

width of the Gaussian kernel, respectively.

• A real sensory data set, which includes samples from [15], as
well as samples acquired from a PR2 robot. The object point
clouds contain measurements from both visual and tactile
sensors.

The Princeton ModelNet data set [33] contains a clean collec-
tion of 3D CAD models for objects in various categories, which
are publicly available. The corresponding labels were obtained by
Princeton researchers via Amazon Mechanical Turk service and
are provided freely. Objects from four categories are used in the
experiments: apples, bottles, pots and ducks. We choose example
categories that range from simple to more complicated in shape,
in order to demonstrate how our method performs on objects
with different surface characteristics, curvatures and scales of
shape variation. These objects range from comparatively regular
shapes, such as spherical and cylindrical objects as in apples and
bottles, to more irregular shapes with many concavities and sharp
edges, e.g. pots and ducks.

The raw data for each object is a point cloud, i.e. a collection
of positions in the 3D space. Table 1 displays, for each object,
the corresponding name, CAD model and number of data points.
The object names are used throughout the rest of this work as
a means to refer to each object. As one can see in Table 1, the
number of points in the point clouds varies considerably: the
most scarce cloud has 832 points, while the densest has 6879
points. The figures of the CAD models in Table 1 are obtained
from [34].



4 G. Zarzar Gandler, C.H. Ek, M. Björkman et al. / Robotics and Autonomous Systems 126 (2020) 103433

Table 2
Details about the objects utilized in the experiments using the robot with KUKA arm and Schunk hand [15] (left) and a PR2 robot
(right).

Fig. 2. The experimental robot platform from [15]. (a) KUKA arm with a Schunk
hand is located on the left, while Kinect camera is on the right (modified
from [15]). (b) The Schunk hand in detail, with the thumb opposing the other
two fingers. There are two tactile pads in each finger with 14 × 6 and 13 × 6
cells. The red regions correspond to tactile readings from the sensor cells where
hypothetical contacts are sensed. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

The real sensory data utilized in the experiments, in Table 2,

includes the data used in [15]. The data was collected using a

setup composed of a fixed Kinect stereo vision camera and an
industrial KUKA arm (6 degrees of freedom) with a Schunk hand
(7 degrees of freedom), which was equipped with three fingers.
The fingers had pressure sensitive tactile pads and the object to
be explored was placed on a table, as in Fig. 2a. Fig. 2b shows
example tactile readings from the Schunk hand. During explo-
ration the fingers were closed until contacts were sensed. More
detailed information regarding the experimental robot platform
can be found in [15].

The data itself consists of a collection of 3D point coordi-
nates, i.e. a point cloud. Data collection was performed through
a perceptually-guided procedure, which is explained below. For
each object, firstly a point cloud was recorded from the visual
sensor. Then the robotic hand was guided to touch the objects
at different locations to gather tactile observations. The goal was
to progressively refine the surface reconstructions by guiding the
hand toward surface points for which the predictive variance was
large, in order to explore the most uncertain surface regions and
decrease uncertainty. This procedure considered an action space
defined by 6 different heights and 9 different approaching angles.
Through this procedure at most 54 tactile readings were recorded,
complementing the original visual data. For some objects fewer
touches were applied, due to their lower heights. Data from both
sensors were defined in the same frame, thanks to the calibration
performed on the arm–hand configuration with respect to the
camera system, with a precision of few millimeters [15].
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Fig. 3. The experimental PR2 robot platform. (a) The PR2 robot and (b) an
illustration of tactile pads containing 5 × 3 cells on each finger.

The objects belong to three different basic shape categories,
namely boxes, cylinders and spray bottles. The objects from these
categories were chosen as they were of varying shapes and large
enough to be compatible with the robotic hand, so that the
objects were not too small or large for the hand to acquire rea-
sonable tactile data. The Schunk hand has relatively large tactile
pads, a 13 × 6 array on each distal link and a 14 × 6 array on each
proximal link, with each tactile cell corresponding to a spatial
resolution of 3.5 mm. Due to the size and spatial resolution of the
tactile pads and the preshape pose of the hand (Fig. 2b), tactile
readings (3D points) may fail to capture fine details on a surface,
e.g. small concavities which are of finer scale than the relatively
coarse taxels.

As one can see in Table 2, the number of points in the sen-
sory point clouds varies considerably: taking into consideration
all visual and tactile readings, the most scarce cloud has 3594
points, while the densest has 14572 points. The ground-truth
point clouds for each object are derived from high resolution
scans using a turntable setup, and are denser than point clouds
captured by the robots’ lower resolution depth cameras. Since the
ground-truth scans from a turntable often have missing points
in the top and bottom surfaces of objects, additional points are
added in those areas to correct and complete the ground-truth
models.

The real sensory data in Table 2 also includes visual and tactile
observations acquired using a PR2 robot, shown in Fig. 3a. The
robot hand – equipped with two fingers and tactile pads such as
in Fig. 3b – was guided to touch the objects at different locations
to gather tactile observations. The action space was defined by
9 different heights (with a spacing of 2 cm) and 7 different
approaching angles (approaching objects from angles between
−60 degrees and +60 degrees with a spacing of 20 degrees). Thus
at most 63 tactile readings were recorded, complementing the
original visual data. Note once more that for some objects fewer
touches were applied. Differently from the Princeton ModelNet
data set, the real sensory data set contains considerably noisy
measurements, both from the visual and the tactile sensors.

3. Sparse Gaussian process implicit surfaces

3.1. Preliminaries

The problem tackled by this work is, in essence, a regression
problem. Consider the function f (x), where x = [x1, x2, x3]T
represents an input location and f : R3

→ R. The mapping f
is unknown – it is a latent function – and all one can observe
is a data set S = {(xi, yi)|i = 1, . . . , n} with input locations
xi ∈ R3 and corresponding noisy observations yi ∈ R. We define

X = [x1, . . . , xn]T ∈ Rn,3 and y = [y1, . . . , yn]T ∈ Rn. The relation
between function values and corresponding noisy observations is
considered to be:

yi = f (xi) + ϵi, (1)

where ϵi ∼ N (0, σ 2
n ) are noise terms that are independent and

identically distributed. They are assumed to follow a zero-mean
Gaussian distribution with variance σ 2

n .
A GP is a stochastic process, i.e. a collection of (infinitely) many

random variables, any finite number of which is jointly Gaussian
distributed [24]. A GP can also be interpreted as a distribution
over functions f (x),

f (x) ∼ GP(0, k(x, x′)), (2)

where x, x′
∈ R3, the GP mean is zero and the GP covariance is

k(x, x′), i.e. a kernel function k : (R3,R3) → R.
Consider x∗ to represent some new input test point outside

the set S and X∗
∈ Rn∗,3 a concatenation of n∗ such test points.

The distribution of f∗ = [f (x∗

1), . . . , f (x
∗

n∗ )]T can be derived from
the joint distribution of y and f∗, and is given by

p(f∗|y,X,X∗) ∼ N (µ∗,Σ∗),where
µ∗ ≜ E[f∗|y,X,X∗

]

= K (X∗,X)[K (X,X) + σ 2
n I]

−1y,
Σ∗

= K (X∗,X∗)

− K (X∗,X)[K (X,X) + σ 2
n I]

−1K (X,X∗),

(3)

where K (X,X) ∈ Rn,n, K (X∗,X∗) ∈ Rn∗,n∗

and K (X,X∗) ∈ Rn,n∗

are
filled with elements k(xi, xj), k(x∗

i , x
∗

j ) and k(xi, x∗

j ) respectively,
for i denoting a row index and j, a column index. Thus K (X∗,X) =

K (X,X∗)T .

3.2. Gaussian process implicit surface

GP regression is applied to estimate a continuous latent func-
tion f , which in this context should reveal, for each point in the
3D space, whether it is part of the object or not. In order to
achieve this, we need to define how f should vary in the 3D
domain, i.e.: f (xi) = 0 for xi on the object surface, f (xi) > 0 for xi
outside the surface and f (xi) < 0 for xi inside the surface. There-
fore, through this topological constraint, the zero-valued level of
f induces an implicit surface (f is set to zero without loss of
generality). This is materialized by adding topological information
to the system, i.e. the set S is enhanced with added points both
inside and outside the object: points inside and outside the object
are mapped to y = −1 and y = 1, respectively. As the implicit
surface is induced by the zero-valued level of f , input sensory
observations are mapped to y = 0. Since f is represented by a
GP, the implicit object surface is called Gaussian Process Implicit
Surface (GPIS) [13], which allows to fuse uncertain data from
sensors in a probabilistic shape estimate.

3.3. Variational sparse Gaussian process

Probably the most significant limitation of GPs is how its
computational demand scales with n (the data size): the asso-
ciated complexity is O(n3) [24], which is prohibitive in terms
of computational time and storage for large data sets. Therefore
sparse approximate methods have been developed in the litera-
ture [24,25,35,36]. Most of these methods are associated with a
computational cost of O(n(nu)2), for nu

≪ n. They adopt nu pairs
of auxiliary input–output variables, which are called inducing
variables, denoted as xui ∈ R3 and f ui ∈ R, for i = 1, . . . , nu.

Approximate sparse approaches that fit into the framework
presented by [35] explicitly replace the covariance matrix K (X,X)
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using a low-rank approximation, which is ultimately equivalent
to modifying the GP prior. However this is not an optimal way to
approximate the exact GP, because it does not minimize any dis-
tance between the exact GP and its approximate counterpart [25].
Differently we employ an explicit approximation with respect to
the exact GP posterior (in Eq. (3)), referred as q(f∗|X∗).

Consider q(fu) ∼ N (µq(fu),Σq(fu)) to be a free variational
Gaussian distribution, which will in general be different from
the true posterior counterpart, i.e. q(fu) ̸= p(fu|y), where fu =

[f (xu1), . . . , f (x
u
nu )]

T . The posterior distribution q(f∗|X∗), that ap-
proximates the distribution in Eq. (3), is given by [25]

q(f∗|X∗) ∼ N (µq(f∗|X∗),Σq(f∗|X∗)),where

µq(f∗|X∗)
= K (X∗,Xu)K (Xu,Xu)−1µq(fu),

Σq(f∗|X∗)
= K (X∗,X∗)

− K (X∗,Xu)K (Xu,Xu)−1K (Xu,X∗)

+ K (X∗,Xu)K (Xu,Xu)−1Σq(fu)

K (Xu,Xu)−1K (Xu,X∗),

(4)

where Xu
∈ Rnu,3 is a concatenation of all inducing inputs.

Eq. (4) defines the general form of the sparse posterior GP, with
complexity O(n(nu)2).

A principled procedure to determine the variational parame-
ters – the parameters of the variational distribution q(fu) and the
inducing inputs Xu – is [25]: to minimize the Kullback–Leibler
(KL) divergence from the exact joint posterior p(f, fu|y,X) to the
corresponding joint variational approximation q(f, fu|X), where
f = [f (x1), . . . , f (xn)]T . This is given by the following objective
function:

min KL(q(f, fu|X) ∥ p(f, fu|y,X)). (5)

The minimization in Eq. (5) is equivalent to the maximization
of a variational lower bound of the exact log marginal likelihood.
Thus the lower bound can be maximized by analytically solving
for the optimal choice of the parameters µq(fu) and Σq(fu), given
by [25]:

q(fu) ∼ N (µq(fu),Σq(fu)),where

µq(fu)
=

1
σ 2
n
K (Xu,Xu)

[
K (Xu,Xu)

+
1
σ 2
n
K (Xu,X)K (X,Xu)

]
−1K (Xu,X)y,

Σq(fu)
= K (Xu,Xu)

[
K (Xu,Xu)

+
1
σ 2
n
K (Xu,X)K (X,Xu)

]
−1K (Xu,Xu).

(6)

By optimizing the variational lower bound with respect to the
inducing inputs Xu, which are also considered free variational pa-
rameters, we find the optimal inducing inputs Xu for each object.
The same is done for optimization of kernel hyperparameters and
the variance of the Gaussian noise σ 2

n . Finally, the approximation
q(f∗|X∗) in Eq. (4) is employed with the fitted parameters from
Eq. (6) as a proxy for the posterior, to perform inference.

3.4. Kernel functions

Kernel functions are key elements when solving regression
problems through GPs, because they determine the properties of
the functions considered for inference, such as smoothness and
stationarity [24]. In this work 3 kernel functions are investigated:
squared-exponential (SE), Matérn (MA) and thin-plate (TP) kernel
functions.

The SE function is isotropic and gives rise to infinitely differ-
entiable functions. It commonly has two hyperparameters: the
variance (sometimes called intensity) σ 2 and the lengthscale l.
It models well the smoothness characteristics of various random
processes and can be expressed as

kSE(x, x′
|θSE

= {σ 2, l}) = σ 2 exp
[
−

1
2l2

∥x − x′
∥
2
]
. (7)

The Matérn class (MA) of kernel functions is also isotropic,
but induces functions with finite differentiability. It has the fol-
lowing hyperparameters: the variance σ 2, the lengthscale l and
an additional parameter ν. As ν → ∞, the Matérn function
converges to the SE. It includes not only the SE, but a large class
of kernel functions, and proves very useful for applications due to
this flexibility [37]. When ν = 5/2, the Matérn function (MA52)
is given by [24]:

kMA52(x, x′
|θMA52

= {σ 2, l})

= σ 2

(
1 +

√
5
∥x − x′

∥

l
+

5
3

∥x − x′
∥
2

l2

)

exp

[
−

√
5
∥x − x′

∥

l

]
. (8)

More recently the thin-plate (TP) kernel function has become
a popular choice for GPIS estimation [15,21,22]. It is again an
isotropic function and it has R as its only hyperparameter. It is
set to R = max ∥x − x′

∥, for x, x′
∈ R3. This means that R is

the maximum Euclidean distance between input points. The TP
kernel function can be expressed as

kTP (x, x′
|θTP

= {R}) = 2∥x − x′
∥
3
− 3R∥x − x′

∥
2
+ R3. (9)

Kernel functions can be combined in various different ways
[38, p. 296]. Addition is one out of many possible operations to
create new valid kernel functions. This work applies addition of
kernel functions, which is described in Section 4.1.

4. Experiments

In this section we firstly present various aspects concerning
the design choices of our solution and secondly explain how our
experiments are divided.

4.1. Design choices

Data pre-processing. This involves centering, normalizing (scal-
ing),4 as well as enhancing the data with topological information,
for every object. We start by addressing the data centralization.
The raw data of synthetic objects is centered according to the
mid-range center point, for every 3D coordinate. This performs
well, because the synthetic data set virtually does not contain
noise. The center of real sensory objects is however set to be the
centroid of the visual points,5 since a centroid is a safer measure
of central location and therefore more suitable for noisy measure-
ments. Finally, as described in Section 3.2, topological information
needs to be incorporated, to enable the system discriminate the
interior from the exterior of an object. This is done by adding
to the original point cloud some points inside and outside the
object, i.e. by augmenting the raw data with additional points.
One internal point is added on the center, which is matched to
the output value y = −1, while the external points are matched

4 Only the data from synthetic objects is normalized, since these objects are
originally in different scales.
5 Visual points are the baseline observations for real sensory objects.
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Fig. 4. A demonstration of how topological information is embedded in the
model for objects from (a) the synthetic data set (bottle1) and (b) the real
sensory data set from [15] (cyl1). Green points represent external points, while
the red point is an internal point located on the center. In (b), black points stand
for visual (for a better visualization, they were randomly sampled) and purple
points for tactile measurements. One yellow point is added as an additional
surface point, located on the bottom of the object and under the centroid, for
all objects belonging to the real sensory data set. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

to y = 1. For objects belonging to the synthetic data set, 50
external points are randomly sampled from a centered sphere,
whose ray is 10% larger than the distance between the center and
the farthest surface point. For real sensory data, points are added
on the borders of the object scene, which is characterized by the
volume of a centralized cube with edge length 260 mm. Since
these points are fixed (as apposed to randomly sampled), only 26
points are added. All objects are assumed to fit inside the object
scene. Fig. 4 depicts how topological information is embedded
in the model, for a synthetic object (bottle1) and a real object
from [15] (cyl1).

White kernel function. The choice of kernel function is further
investigated in the experiments. For every choice, a compound
function is employed, i.e. a white kernel function is added to each
kernel. The white kernel function is described as

kW (x, x′
|θW

= {σ 2
W }) = σ 2

W δx,x′ , (10)

where δx,x′ is the Kronecker delta function. A fixed variance σ 2
W

is adopted, which is empirically chosen and takes value 10−5 for
objects in the synthetic data set and 2 × 10−1, for real sensory
data set. It has been experimentally noticed that a white kernel
helps to guarantee a minimal noise level in the model. As argued
by [36], a white kernel function guards against overfitting, by
incorporating the prior assumption that random fluctuations can
happen even in very smooth underlying functions, especially
since data is finite, incomplete, and possibly noisy.

Optimization procedure and constraints. The employed optimiza-
tion algorithm is in the family of quasi-Newton methods. It
is called L-BFGS-B [26,27], a limited-memory approximation of
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm that
can handle simple bound constraints on variables. Its memory
requirement makes it well suited for optimization problems with
a large number of parameters, such as the current problem. The
optimized parameters include the kernel hyperparameters, vari-
ational parameters – i.e. the inducing inputs – and the Gaussian
noise variance associated to the likelihood — the latter initial-
ized to 10−1 in all experiments. Two bounded constraints are
defined. The inducing inputs are bounded within the object scene,
i.e. the smallest centralized cube that encloses the augmented
pre-processed data. Additionally the hyperparameter of the thin-
plate kernel function is constrained to be at least as large as

the diagonal of the object scene. This last condition is necessary
to guarantee positive semi-definiteness of the kernel function.
Finally, as explained in Section 3.3, the objective function to be
minimized is the KL divergence from the exact joint posterior
over the latent function values to the variational approximation
of it, as in Eq. (5). This is equivalent to maximizing a variational
lower bound of the exact log marginal likelihood.

Sampling from the posterior. Following the optimization proce-
dure, the approximate joint posterior is calculated, as in Eq. (4).
We sample query points inside the object scene, forming a 51 ×

51×51 uniform grid. We further define a grid composed by mean
values of the GP posterior for every query point, which serves
as input to the Marching Cubes algorithm [28], i.e. to derive the
implicit surface.

4.2. Exploration and exploitation

The experiments are undertaken in two different phases: the
first phase aims at exploring different model scenarios and better
understanding the problem at hand, while the second phase
focuses on exploiting the best possible reconstructions from the
given observations.

The objects from the synthetic data set are especially useful
during the first phase, since the data is considered to be clean [33]
– which eases interpretation – and generally smaller. A smaller
data set is an advantage in this case, because it enables full GP
inference for comparative analysis. Finally the objects from the
synthetic data set have more varied and challenging shape char-
acteristics, which is especially interesting from the perspective of
kernel selection.

4.2.1. Phase 1: Exploration
The exploration phase includes three experiments. The first

one investigates three different kernel functions – squared expo-
nential, Matérn and thin-plate functions – their prior assumptions
and how they affect surface reconstruction. We conclude that the
thin-plate kernel function best provides the structure to recon-
struct various shapes. The second experiment shows how close
sparse GP approximations are from full GP predictions. This is
done by comparing object surfaces reconstructed through both
full and sparse solutions. Finally the last experiment investigates
how the variational lower bound of the exact log marginal like-
lihood varies with the number of inducing variables, in order to
decide the number of inducing variables in the modeling scenario.

All the mentioned experiments are undertaken with Princeton
ModelNet objects, particularly one object per category (apple1,
bottle1, pot1 and duck1). The last experiment exceptionally in-
cludes analysis on objects from the real sensory data set as well,
to verify design choices.

4.2.2. Phase 2: Exploitation
The second phase of experiments investigates the quality of

object reconstructions, acquired from the robots’ sensory obser-
vations, by utilizing the model design chosen in the first phase.
Two experiments are included. The first experiment analyzes
surface reconstructions adding tactile data and benchmarks our
method against two baseline methods. We use two state-of-the-
art baseline methods from the literature, which differ signifi-
cantly in terms of their modeling approaches. The first baseline
method [15] represents objects through a GPIS model, as does
our method. In contrast, the second baseline method [39] per-
forms shape completion by learning a general mapping, from
incomplete to dense 3D point clouds, by training a deep neu-
ral network. Our method exploits the GPs ability to provide
a measure of uncertainty (the variance of the GP posterior),
and use this as a tool for active perception. Therefore, the first
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Fig. 5. Surface reconstruction for (a) apple1, (b) bottle1, (c) pot1 and (d) duck1
using different GPIS configurations. The first column displays the raw data
(observations) for each object, while the second, third and fourth columns
display the reconstruction results obtained with kernel functions SE, MA52 and
TP, respectively.

experiment also includes analysis of how the surfaces evolve,
when touches are strategically chosen to occur on the surface
regions with highest uncertainty. The second experiment assesses
reconstructions by evaluating how well objects from different
categories are distinguished, based on features extracted from the
reconstructed surfaces. These experiments reveal the usefulness
of GPIS representations for surface reconstruction, even when
very few touches are included, i.e. when data is sparse. We utilize
all objects from both synthetic and real sensory data sets in these
experiments.

5. Evaluation

This section introduces different evaluation tools employed to
assess results.

5.1. Triangular mesh with associated uncertainty

We represent surfaces by triangular meshes. Besides providing
visualizations of the 3D meshes, we visualize, for every vertex, the
associated uncertainty in the estimation, based on the standard
deviation from the approximate GP posterior in Eq. (4). Red
color depicts surface regions where the standard deviation is
the highest for the given object, i.e. regions where the surface
reconstruction is the most uncertain. On the other hand, blue
color depicts regions where the standard deviation is the lowest
for the given object, i.e. in these regions the estimation is the most
confident.

5.2. Distances to ground truth

We evaluate reconstructions by directly comparing the geom-
etry of the reconstructed surface to the ground-truth surface. In
this context, we firstly perform registration between the point
cloud defined by the vertices of the mesh output by the March-
ing Cubes algorithm (source cloud) and the ground-truth point

Fig. 6. Probabilistic Occupancy Maps for (a) apple1, (b) bottle1, (c) pot1 and (d)
duck1 using different GPIS configurations. The first, second and third columns
display the maps obtained with kernel functions SE, MA52 and TP, respectively.

cloud (reference cloud). The registration is performed through
the Iterative Closest Point algorithm [40]. After alignment the
mean-square distance between the source and reference clouds
is calculated, as well as the Hausdorff distance [41]. The last one
deems two clouds as close to each other in case every point of
either cloud is close to some point of the other cloud, i.e. the
Hausdorff distance is defined as the greatest of all Euclidean
distances from a point in one cloud to the closest point in the
other cloud. These measures serve as a means to evaluate how
similar the estimated surface is to the true object surface.

5.3. Probabilistic occupancy map

The Probabilistic Occupancy Map (POM) [42] is an additional
evaluation tool we employ, to assess the quality of generated
surfaces. POMs are useful representations of uncertainty about
occupied and unoccupied space from incomplete observations.

Notice that, according to the convention adopted in Sec-
tion 3.2, the probability of a point x∗ being occupied – i.e. of
belonging to the object interior – is given by

p(f (x∗) < 0) = p(f ∗ < 0), (11)

which is calculated by the cumulative distribution function of a
Gaussian with mean and variance defined in Eq. (4), evaluated at
zero. Note that the variance corresponds to the diagonal of the
covariance matrix in the given equation.

Since the input data is three-dimensional, POMs are originally
maps in 3D space. For evaluation purposes, here POMs are how-
ever defined on a specific plane. The 2D POM thus displays a map
with the probability of having a point occupied by the object, for
every point on a defined grid. The plane is chosen to be vertical
and to split the object into equal halves. We define a grid with
51 × 51 points. Additionally the maps depict the probabilities
in terms of colors, with red meaning high occupancy probability,
and blue meaning low occupancy probability. Finally the maps
are slightly smoothed, for a clearer visualization.

5.4. Spectral clustering and embedding

Based on principal curvatures [29,30] from object meshes,
we compute pairwise similarities between objects, as explained
in Section 2.1. By relying on the top eigenvectors of a matrix
derived from these pairwise similarities, spectral clustering and
embedding [32] perform non-linear dimensionality reduction. For
clustering the objects, we use k-means algorithm on the gener-
ated low-dimensional space, whose dimensionality in this case
is equal to the number of clusters. Spectral embedding (also
known as Laplacian Eigenmaps) enables visualization of clustered
objects. As high-dimensional features can be very difficult to
analyze, the core motivation to employ spectral embedding in
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Fig. 7. The (a) mean-square and (b) Hausdorff distances for reconstructed
surfaces, using the kernel functions SE, MA52 and TP.

this work is to learn – in an unsupervised fashion – a manifold of
the features defined in two dimensions only. Such a representa-
tion is easily plotted, offering visual insights about the similarity
between the reconstructed surfaces of analyzed objects.

6. Results

We run optimization routines until convergence, for each ob-
ject.6 Given the kernel function and all GP parameters, deriving
the approximate posterior and the triangular mesh (typically
required online) took in total 5.09 s, for the object with the
largest point cloud (box3 in the real sensory data set from [15],
with 14572 points), and 4.76 s, for the object with the smallest
point cloud (apple2, from the synthetic data set, with 832 points).
Regarding the time to learn the GP parameters, it took 1 min for
the smallest point cloud and 30 min for the largest point cloud.
While the latter is a significant time, it is important to notice that
the largest point cloud is atypically large – in comparison to the
other objects – and would yield an unfeasible learning routine for
full GP formulation.

Below we address the results we obtained in each experiment
described in Section 4.2.

6.1. Phase 1: Exploration

In the first experiment phase, we explore different model con-
figurations to find best settings to be used in the next experiment
phase.

6.1.1. Kernel functions
This experiment analyzed how different GPIS configurations

affected the surface reconstruction. Three configurations were

6 All computational operations, including optimization of parameters and
sparse GP inference, were carried out on a PC with 8 GB of RAM memory and
processor Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz with 4 cores.

Fig. 8. Surface reconstruction for (a) apple1, (b) bottle1, (c) pot1 and (d) duck1
using GPIS with full and sparse GPs. The first column displays the raw data
(observations) for each object, while the second and third columns display the
reconstruction results obtained with full and sparse GPs, respectively.

considered and characterized by different kernel functions: the
squared exponential kernel (SE), the Mateŕn class with ν = 5/2
(MA52) and the thin-plane kernel (TP).

Fig. 5 displays the reconstructed surfaces, with associated
predictive uncertainties, while the associated POMs can be seen
in Fig. 6. The different configurations were also analyzed in terms
of distances between point clouds. Fig. 7 displays two graphs
with the mean-square and Hausdorff distances between vertices
of the triangular mesh and the ground-truth point cloud, for the
analyzed kernel functions.

For every choice of kernel function, a compound function was
employed, i.e. a white kernel function was added to each kernel.
We employ σ 2

W = 10−5 for the GPIS configuration with TP. For
configurations with SE and MA52, we explore different values
for σ 2

W – 10−5, 10−4, 5 × 10−3, 10−3, 10−2 and 10−1 – and only
the best reconstruction result (based on distance measures and
visual inspection) for each object is considered. Additionally, the
kernel hyperparameters were initialized in the following way:
the SE and MA52 variances were initialized as 0.5, while the
lengthscales, as 2.3. The TP hyperparameter R was initialized with
the length of the diagonal of the object scene.

As Figs. 5, 6 and 7 show, in general the estimated object
surfaces vary considerably for different kernel choices. The SE was
not able to satisfactorily capture object surfaces with sharp-edged
contours, producing smooth surfaces, since this kernel function
is infinitely differentiable and therefore tends to model well the
smoothness characteristics of random processes. The apple is
the only object that was well reconstructed by SE, since it has
originally a very smooth surface.

The MA52 presented better results, as it was able to output
better surface reconstructions, capturing more surface details.
Note for instance how the POM for the pot is significantly more
reliable for MA52 than for SE. We believe that, since MA52
is more generalized and less differentiable (two-times differen-
tiable), it is able to model a more varied set of shape character-
istics.

GPIS with TP in turn demonstrated to capture shape infor-
mation in the most reliable way, among the 3 analyzed GPIS
configurations. This can be noticed in Fig. 5: a great amount of
surface details is captured, such as sharp-edged contours. Fig. 6
displays more confident POMs for TP, i.e. the TP reconstructions
are more accurate in terms of occupancy probabilities as well.
Furthermore, Fig. 7 suggests that the GPIS with TP generates
reconstructions that are in general closer to the ground-truth
object, in comparison to SE and MA52. Given the positive re-
sults achieved with TP, the GPIS configurations employed in the
remaining of this work use kernel function TP.

Finally it can be noticed that some details – such as the bottle
cap, pot handle, pot pipe, pot lid’s nob and duck’s beak – may
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Fig. 9. Probabilistic Occupancy Maps for (a) apple1, (b) bottle1, (c) pot1 and (d)
duck1 using GPIS with full GP (left) and sparse GP (right).

Fig. 10. The (a) mean-square and (b) Hausdorff distances for full and sparse GP
reconstructions.

not be well represented, even by GPIS with TP. Fig. 6 displays
this phenomenon, as POMs decrease the occupancy probability
on these regions. We believe that the topological information
provided to the model plays an important role and we plan to
improve the way we include topological information (Section 4.1)
as a future work.

6.1.2. Sparse and full Gaussian processes
This experiment was performed as a means to compare sparse

and full GPIS formulations. We remind the reader that the sparse
GP we employ has a variational formulation, which implies that
optimization of the GP parameters attempts to approximate the
full GP solution directly.

Figs. 8 and 9 display the reconstructed surfaces and the POMs,
respectively. It can be noticed from Fig. 8 that surface recon-
structions with full GPs are more confident, i.e. the predictive
standard deviation is lower. This is expected, since the sparse
representation is an approximation to the full representation and
therefore should be more uncertain. The POMs in both configu-
rations in Fig. 9 look very similar. However, a closer look reveals

Fig. 11. The variational lower bound of the exact log marginal likelihood, for
different numbers of inducing variables, using the (a) synthetic data set and (b)
real sensory data set from [15].

that the POMs for sparse solutions display less precise contours,
as if the borders of the objects are smoother. This relates to the
previous comment, i.e. by inducing sparsity one generates a more
uncertain probabilistic representation. Nevertheless, the mean-
square and Hausdorff distances between vertices of the triangular
mesh and the ground-truth point cloud, in Fig. 10, show that
estimations given by full and sparse solutions are very similar,
which confirms that the sparse GP well approximates its full
counterpart. We continue employing sparse GPs throughout the
remaining experiments.

Finally it was noticed that the learned variance of the Gaussian
noise was generally very low (smaller than 10−7) for full GP
solutions. We believe that this explains some surface artifacts
given by full GPs, e.g. as on the reconstructed duck (especially
on the duck’s face). We observed that this phenomenon can be
corrected by setting a higher variance for the white kernel σ 2

W .

6.1.3. Number of inducing variables
Through this experiment we could observe how the variational

lower bound of the exact log marginal likelihood evolved with the
number of inducing variables, for objects in the synthetic data
set and real sensory data set from [15]. From the later data set
we use objects box2, cyl2 and spray2.7 Fig. 11 summarizes the
findings. Solid lines represent the variational lower bounds, while
dashed lines represent the exact solutions, obtained by full GP
inference. The bound gets tighter as the number of inducing vari-
ables increases, even though the gaps are different for different
objects.

We agree that, as long as the bound decreases, our reconstruc-
tions are better. However, we noticed that this fact does not aid us

7 The data from objects box2, cyl2 and spray2 are small enough to enable
full GP inference.
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Fig. 12. Surface reconstruction for (a) apple2 and apple3, (b) bottle2 and bottle3,
(c) pot2 and pot3 and (d) duck2 and duck3. The first and third columns display
the raw data (observations) for each object, while the second and fourth columns
display the reconstruction results for the respective objects.

to choose an appropriate number of inducing variables, because
we can only perceive the improvements on a relative scale, not
on an absolute scale. This is a general limitation of variational
methods.

Given this limitation and in order to choose the number of
inducing variables to our problem, we performed experiments
with 250, 350, 450 and 750 inducing variables. The time it takes
to learn GP parameters and derive the approximate posterior
increases with the number of inducing variables. We noticed that,
compared to setting 350 inducing variables, setting 450 and 750
inducing variables increases the time to learn GP parameters by
more than 50% and more than 100%, respectively, averaging over
objects box2, cyl2 and spray2. Therefore, for the evaluations in
this work, we set the number of inducing variables to 350, which
enables good reconstruction results without offering a significant
computational burden (as shown by the computational times
reported in the beginning of Section 6). Finally, we decided to
initialize the inducing inputs by sampling surface points and
taking all external and internal points as well (as explained in
Section 4.1).

6.2. Phase 2: Exploitation

Based on the insights collected in the first phase of experi-
ments, we expand our analysis to a wider range of objects in
terms of surface reconstructions and object clustering.

6.2.1. Surface reconstruction
Firstly we analyzed the outcomes of surface reconstruction for

different objects. These findings were derived for all evaluated
data sets and are addressed below.

Princeton modelnet synthetic data set. Fig. 12 summarizes how
the remaining objects in the synthetic data set are reconstructed.
The generated triangular meshes resemble the original objects.
However we notice artifacts on some surface representations,

Fig. 13. Probabilistic Occupancy Maps for (a) apple2 and apple3, (b) bottle2 and
bottle3, (c) pot2 and pot3 and (d) duck2 and duck3.

Fig. 14. Surface reconstruction and POMs for (a) box1, (b) box2, (c) box3,
(d) cyl1, (e) cyl2, (f) cyl3, (g) cyl4, (h) spray1, (i) spray2 and (j) spray3,
objects in the real sensory data set from [15]. The first column displays the
raw data (observations, where black and purple colors stand for visual and
tactile data points, respectively) for each object, the second column displays
the reconstruction results and the third column, the POMs.

particularly on regions with details, such as bottle caps, as illus-
trated in Fig. 13, which shows that the occupancy probabilities
are usually not high on such regions. In particular, the raw data
from bottle3 is incomplete in some regions. Note in Fig. 12b how
the input points are scarce on the side of the bottle, with virtually
no data point on a large area. Therefore, the standard deviation
is high on the surface region where data is scarce. Additionally,
the POM for bottle3 in Fig. 13b presents uncertain edges, justified
by the lack of data points, in comparison to the POM for bottle2,
which has a more complete point cloud.

Real sensory data set. Fig. 14 displays how the objects in the real
sensory data set from [15] are reconstructed, for boxes, cylinders
and spray bottles. Note that, in comparison to the objects in the
synthetic data set, here the estimations are coarser. This is justi-
fied by the great amount of noise in the data. Notice additionally
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Fig. 15. Shape completion as proposed by [39], for (a) box1, (b) box2, (c) box3, (d) cyl1, (e) cyl2, (f) cyl3, (g) cyl4, (h) spray1, (i) spray2 and (j) spray3 , objects in
the real sensory data set from [15]. The top and bottom rows are derived from the pre-trained models PCN-CD and PCN-EMD, respectively.

Fig. 16. The (a) mean-square, (b) Hausdorff and (c) Chamfer distances for shape
completion as proposed by [39] and for reconstructions undertaken according
to the method in [15] and our method.

that the POMs are less certain about where the object contours
should lie.

We compare our approach to two baseline methods, [15]
and [39]. The latter uses encoder–decoder deep neural networks
to perform shape completion on point clouds in a coarse-to-
fine fashion, by training the networks on pairs of partial and
complete point clouds derived from the ShapeNet [43] data set.

To train these networks, more than 30000 objects from 8 differ-
ent categories (airplane, cabinet, car, chair, lamp, sofa, table and
vessel) were used. To calculate a loss function that operates on
point clouds, [39] employs two permutation-invariant functions
for point sets, introduced by [44]: the Chamfer and Earth Mover’s
distances. In particular, the loss function is the sum of two sepa-
rate terms that measure quality of coarse and fine outputs. Two
pre-trained networks are introduced, namely PCN-CD and PCN-
EMD. While both employ the Chamfer distance to assess the fine
output, PCN-CD and PCN-EMD differ on the choice of function for
the coarse output assessment: Chamfer distance for PCN-CD and
Earth Mover’s distance for PCN-EMD. We fed the visual and tactile
points of objects in the real sensory data set from [15] to the two
pre-trained networks of [39], and show the resulting point clouds
in Fig. 15, which contain 16384 points each.

We computed the mean-square, Hausdorff and Chamfer dis-
tances between vertices in the output triangular meshes (for [15]
and our method), the output complete point clouds (for [39])
and the ground-truth point clouds. We include the symmetric
Chamfer distance in this analysis, as it is used in [39]. Fig. 16
displays the results. In comparison to [39], our method always
yields smaller Hausdorff distances. In terms of mean-square dis-
tance, our method gives often better results than [39] for sprays
and cylinders, but not for boxes. Based on Chamfer distance, our
method leads to better results mostly for spray bottles. Taking
a closer look, note that our method in general performs better
among objects with few symmetry planes and more irregular
shapes, such as spray bottles, while [39] is better at completing
the shape of most objects which have multiple symmetry planes.
This suggests that the neural network appears to have implic-
itly learned to make symmetry assumptions based on the used
training set. Note that, despite offering good shape completion for
some objects, e.g. the sharp-edged boxes, a significant limitation
of [39] is that the methods do not directly generate a continuous
watertight surface, and do not describe topology. Additionally,
our approach offers a useful feature for active exploration of
unknown surfaces, based on uncertainty being encoded in our
estimated shape models. The distance metrics for [15] and our
method are mostly similar. This indicates that the sparse GP
formulation of our method (in contrast to the full GP of [15]) with
optimized parameters (in contrast to empirically selected param-
eters of [15]) yields sufficient approximations and competitive
quality in surface reconstruction.

Additionally, we compared the computational times to derive
the posterior and the triangular mesh, using the sparse and full GP
formulations, for all objects in the real sensory data set from [15].
We observed that for sparse GPs the computational times are at
least 4 times shorter than for full GPs. Finally, we perform surface
reconstruction on additional objects whose data was collected
using a PR2 robot. Fig. 17 shows the results for boxes, cylinders
and bottles.

Besides the presented reconstruction results using full tactile
data, we analyzed how the surfaces evolve when touches are
dynamically selected on the surface area for which information
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Fig. 17. Surface reconstruction for (a) box1, (b) box2, (c) box3, (d) cyl1, (e)
cyl2, (f) cyl3, (g) cyl4, (h) bottle1, (i) bottle2 and (j) bottle3, objects in the
real sensory data set collected using a PR2 robot. For each object, the raw data
(observations, where black and purple colors stand for visual and tactile data
points, respectively) is displayed on the left, while the reconstruction results are
displayed on the right.

gain is maximum. GPs provide an inherent measure of prediction
uncertainty (the variance of the GP posterior), which we use
to increase information gain for every selected touch. The real
sensory data set from [15] is used to perform this analysis. We
start by calculating the reconstructed surface for every object,
using its visual data points only. Then the best action to be
taken next is selected from a discrete action space defined by the
vertical position (6 different heights) and the approaching angle
(9 different angles). The vertical position and the approaching
angle are computed with respect to the centroid of the current
model. For each possible action, the closest point to the tactile
sensor pads is calculated on the triangular mesh. Finally, the
action selected is the one for which the GP posterior variance is
maximum, for all tactile pads. After acquiring the tactile readings,
the surface is updated and the best next action is repeatedly
identified through the same routine.

Fig. 18 displays the reconstructed surfaces of objects box1, cyl1
and spray1, when only visual data is used, after the first, second
and third touch actions are performed and, finally, after full tactile
data is acquired. Note that the surfaces change drastically already
when few touch actions are performed. Particularly note that the
surfaces after 3 touches get roughly similar to the final surfaces,
despite using less tactile readings. This shows that our method
for surface reconstruction offers quick convergence of triangular
meshes, when touch actions are optimally chosen to increase
information gain.

6.2.2. Object clustering
Spectral clustering was based on pairwise similarities between

sets of principal curvatures calculated from object meshes. The
lower-dimensional representations for each object were fed to
the k-means algorithm, which was run 100 times with different
initializations. The final result corresponds to the best output of
all runs in terms of inertia (or within-cluster sum-of-squares).

The spectral clustering and embedding can be seen in Fig. 19.
Notice how the 2D embeddings separate the different categories
in the 2D space. Particularly in Fig. 19a the spectral clustering

Fig. 18. Surface reconstructions for (a) box1, (b) cyl1 and (c) spray1, created
with increasing number of touch actions, which were selected based on the
surface area with maximum variance of GP posterior. From left to right: 0, 1, 2,
3 and finally all touches are considered.

discriminates the objects correctly for 10 out of 12 objects (apple2
and bottle1 are incorrectly classified). Notice that, if the number
of clusters is decreased to t = 3 (Fig. 19b), the pots and ducks
are agglutinated in one single cluster. In this case, it can be said
that the cluster with apples represents round objects, the cluster
with bottles represents general cylindrical objects, while the one
with pots and ducks have a more diverse set of curvatures.

The spectral clustering and embedding for real sensory data
can be seen in Figs. 19c, 19d and 19e. Particularly Fig. 19c dis-
plays clustering and embedding performance after the third touch
action was performed, for every object in the real sensory data
set from [15]. Note that, even though only 3 touches were per-
formed, all objects can already be distinguished correctly, since
information gain is maximized for every touch. This confirms
that convergence of the principal curvatures for the proposed
method is fast, enabling efficient active tactile exploration for
perception of shape. For comparison, Fig. 19d displays the spec-
tral clustering and embedding using full tactile data for every
object. Finally Fig. 19e reflects the same analysis on the real
sensory data set from the PR2 robot, using full tactile data. On
the whole, it can be concluded that the significant presence of
noise in the real sensory data (especially in the data collected
using a PR2 robot) did not prevent the clustering algorithm from
distinguishing the objects from different categories. This is hence
a confirmation that the representation from noisy data, obtained
through GPIS based on sparse GP with variational formulation,
preserved meaningful shape attributes.

7. Conclusion

We presented a comprehensive evaluation of probabilistic rep-
resentations to capture shape information from visual and tactile
data. Unlike deterministic models for surface reconstruction, our
models imply a distribution over surfaces and parameterize the
predictive uncertainty, which provides crucial information about
object shape. We evaluated our approach by comparing the esti-
mated surfaces with the ground-truth surfaces and by clustering
objects based on acquired models. A comparative analysis with
the results from [15] was also provided, which showed that the
proposed approach does not reduce the quality of resulting mod-
els, even though we adopt an approximate method with induced
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Fig. 19. Spectral embedding in 2D with spectral clustering in colors, for objects
in the (a, b) synthetic data set, real sensory data set (c, d) from [15] and (e)
from a PR2 robot. The number of clusters is set as (a) four clusters and (b, c, d,
e) three clusters. In particular, the embedding and clustering (c) after 3 touches
is compared to the ones (d) after exhaustive tactile exploration. Note from (c, d)
that optimal clustering performance is achieved after 3 touches already. The axes
correspond to the first and second components of the 2D representation [32].

sparsity. Additionally, we benchmarked our method against a
state-of-the-art baseline method [39]. We showed that our ap-
proach provides comparable results in general. However, our
approach generates better reconstructions, more closely resem-
bling ground truth, for most objects that are less symmetrical
and more irregular in shape. Finally, we showed that our surface
estimates converge fast, demonstrated by analyzing surfaces and
clustering performance. This fast convergence is due to: (i) se-
lecting touch actions for efficient haptic exploration, to maximize
information gain, based on the variance of the GP posterior;
(ii) our use of a sparse GPIS formulation. Hence, by optimizing
information gain for every touch action, we provide a framework
that minimizes the number of touches necessary to extract useful
shape information about objects.

We plan to extend our work to use acquired models for grasp
and manipulation planning, to improve the framework by extend-
ing it to learn models per shape categories and by enhancing
the data with surface normals, that provide further topological
information. We also plan to use heteroscedastic noise in our
modeling, which will enable us to have different noise levels
for different modalities. Another interesting future direction is
to use geometric priors and other kernel functions, such as non-
stationary kernels, which can help the model adapt better to
surfaces whose smoothness varies for different locations.
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