
DeepGoal: Learning to Drive with driving intention
from Human Control Demonstration

Huifang Ma1, Yue Wanga,1,∗, Rong Xionga,1,∗, Sarath Kodagoda2, Li Tang1

a38 Zheda Road,Zhejiang 310027, China

Abstract

Recent research on automotive driving developed an efficient end-to-end learning

mode that directly maps visual input to control commands. However, it models

distinct driving variations in a single network, which increases learning complex-

ity and is less adaptive for modular integration. In this paper, we re-investigate

human’s driving style and propose to learn an intermediate driving intention

region to relax difficulties in end-to-end approach. The intention region follows

both road structure in image and direction towards goal in public route planner,

which addresses visual variations only and figures out where to go without con-

ventional precise localization. Then the learned visual intention is projected on

vehicle local coordinate and fused with reliable obstacle perception to render a

navigation score map widely used for motion planning. The core of the proposed

system is a weakly-supervised cGAN-LSTM model trained to learn driving in-

tention from human demonstration. The adversarial loss learns from limited

demonstration data with one local planned route and enables reasoning of multi-

modal behavior with diverse routes while testing. Comprehensive experiments

are conducted with real-world datasets. Results show the proposed paradigm

can produce more consistent motion commands with human demonstration, and

indicates better reliability and robustness to environment change. Our code is
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available at https://github.com/HuifangZJU/visual-navigation.

1. Introduction

In recent automotive driving research, deep learning tries a revolutioniz-

ing way for vehicle control, which directly maps raw pixels from camera image

to steering commands in an end-to-end manner[1][2][3]. End-to-end(end2end)

approach seeks to avoid steps of building an explicit environment model in

conventional approach, which include mapping, localization, planned routening

and motion planning, etc. Instead, it optimizes driving variations for percep-

tion, planning and reasoning in a single network to maximize overall control

performance[1]. In contrast to conventional approach, data for training end2end

networks can be collected with relative ease way, i.e., driving around and record-

ing human demonstration control.

However, end2end approach faces with the problem of learning very complex

mapping in a single network, which needs intensive supervision to handle huge

driving variations. Moreover, it prevents intermediate fusion of visual informa-

tion with other range finder sensors that help much to avoid obstacles. This

raises security concerns, as a small error in vision can induce severe consequence

for driving in high frequency control loop. Despite these drawbacks, current re-

search often focuses on end2end setting because it allows to look into plenty of

challenges. Some recent methods incorporate additional route planner as learn-

ing input[4][5][6], such as a routed map or a directional instruction, as shown

in the top half part of Fig. 1. The planned route captures longer-term motion

rules and helps to choose a correct direction upon reaching a fork. It is beneficial

and brings performance promotion. Yet the network still lacks transparency of

how the planner acts on various driving variations.

In order to address the challenges in end2end approach, we focus on learning

an explainable representation following the manner of how human drives with

route planner. Humans may rely on the planned route in public softwares

to figure a direction towards goal, then use visual cues like road semantics
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Figure 1: Comparison of proposed paradigm with end-to-end model for automotive driving.

to reason where to drive. With the goal-directed area in mind, they perform

flexible vehicle control in relating to different driving scenarios. The specific

control rules may change, e.g., to follow a lane in urban road nets or to mind

unexpected obstacles in campuses. However, a goal-directed visual region is

always formed based on the local road situation, which keeps an overall sense of

driving direction for vehicle control. We denote this region as driving intention.

We think this longer-term driving intention region is effective and infor-

mative to improve end2end approach, which addresses only visual variations

and solves where to go without conventional precise localization and mapping.

Therefore, we define the pipeline as shown in the bottom half part of Fig. 1.

An encoder-decoder structure is adopted to learn the aforementioned driving

intention from image perception and a route planner. We follow the work in [5]

and resort to the planned route in public available navigation softwares from

GPS localization. The driving intention region is then projected onto a local

navigation score map with range finder data fused to increase reliability. Such

a navigation score map encoded with goal-directed information can be directly

used for next motion generation, which is also able to explicitly consider more

specified motion variations.

To avoid manual definition and annotation of driving intention on image,

we devote to learning from human demonstration. Specifically, human control

a vehicle to move and follow a planned route towards goal. Then for each image

perception, its traversed area in the near ground satisfies current driving inten-

tion and can be projected on the image plane as supervision. The challenge lies
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in that the demonstration driving only covers a single direction for each fork

and cross, while routes planned to different directions can be provided during

test. The driving intention is valid only if it holds rationality in regards to

the pair of visual observation and local planned route. Thus, we consider the

learning task is not pixel-level imitation but structural reasoning, and develop

a weakly-supervised model of cGAN-LSTM network utilizing adversarial loss

function. The network learns to generate a ‘fake’ driving intention region which

is hard to be distinguished from the ‘real’ region maneuvered by human. Then

the generated result is punished as a whole to implicitly learn road semantics,

planning intention as well as their correlation. Besides, time continuity is con-

sidered with a LSTM unit for performance enhancement. The outline of our

method is provided in Fig. 2.

In the experiment, a straightforward motion generation method is imple-

mented in a DWA(Dynamic Window Approach)[7] manner for comparison with

end2end system. The proposed pipeline is validated through real-world datasets

including previously unseen scenarios to demonstrate generalization performance.

Experiments show our approach achieves better performance than state-of-the-

art end2end approach and demonstrates improvements in reliability and robust-

ness. To summarize, our main contributions are twofold:

• An innovate learning-based automotive driving system is developed. The

system learns from low-cost GPS-level route planner and images to achieve

goal-directed driving intention without precise localization. It eases prob-

lem complexity for end2end models and can be efficiently integrated for

modular motion planning.

• A weakly supervised and adversarial learning method is developed through

learning from demonstration, the core of which is a cGAN-LSTM network

trained with limited single-modal demonstration data. The model is en-

hanced with time continuity and can be generalized to achieve multi-modal

behavior when facing new scenarios.

The remainder of the paper is organized as follow: Section 2 reviews the
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related works on learning-based approaches for automotive driving. Section 3

illustrates details of the proposed system architecture. Section 4 presents the

experimental results, and Section 5 draws a conclusion.

2. Related Work

Conventional pipeline of vehicle control includes mapping, localization, path

planning and motion planning. The result of localization, i.e. a reference path

or a goal in vehicle local coordinate, and the result of path planning, i.e. a grid

map with(out) semantics, are fed into motion planing to generate final control

command. The system is thus sensitive to environment change and calls for a lot

of work to improve performance on separate modules. In this section, we give a

brief review of two learning-based systems aimed at improving the conventional

automotive driving, each following a different approach to the system design:

the end2end approach and the intermediate recognition approach.

End-to-end approaches. Recently, end2end method learned from human demon-

stration becomes popular in automotive driving. The intrinsic merit is that the

performance of intermediate stages in conventional system architecture may not

be aligned with the ultimate goal, namely, the control of the vehicle. With this

idea, [1] firstly proved powerful ability of CNN to steer a vehicle directly from

vision input. Codevilla, et,al.[2] then proposed to learn the driving model to

compute motion command via conditional imitation learning, which incorpo-

rates high-level command input to consider the repeatability of imitation learn-

ing. The work in [4] collected control commands from existing local planner

(Dynamic Window Approach[7]) and proposed a two-stage approach to relax

prior knowledge for localization. This relies on the path-planning results, as the

form of navigation is to learn expected motion commands using a residual neu-

ral network. The work in [5] adopted 360-degree surround-view cameras along

with planned routes information from commercial maps to learn an end2end

driving model. Their work has utilized GPS signals as well as public map to
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generate steering angles and speeds based on a RNN. As reported in their eval-

uation, it has unavoidably incorporates human intervention. The work in [8]

proposed to estimate a variational network to get a full probability distribution

over the possible control commands; however, when combined with specific nav-

igation indicators, they still solve an accurate form of certain control command.

Compared with this category, our work relies on similar input while achieves

intermediate representation in robot local coordinate without relying on precise

geometric transformations. We consider the problem space of end2end control

learning is more complicated than ours, as the motion states of the vehicle are

coupled with the visual understanding.

Intermediate Recognition approaches. Another group of works focus on CNN

based recognition tasks to facilitate automotive driving. One category is fol-

lowing the scene parsing problem to recognize common traffic elements in an

image, such as vehicles, pedestrians and cyclists detection [9, 10, 11, 12, 13, 14].

Another idea goes a step further towards vehicle direct usage, including regres-

sion of distance to other cars[15], recognition of traversable region[24][16], or

road attributes prediction[6], etc. The work in [15] intended to find an interme-

diate traffic semantics by regressing distances to the lanes as well as other road

users.Tang et al, [16] applies mapping techniques to achieve weakly supervised

learning of traversable regions. Wang et al, [17] proposed an on-line learning

mechanism to deal with the appearance change of traversable region without

referring to the massive data. In [18], a model to infer road layout and vehicle

relative pose is developed given imagery from on-board cameras, utilizing the

public Google Street View and OpenStreetMap. The work in [6] proposed in-

termediate affordances to facilitate driving, including both vehicle relative pose

to the road and recognition of traffic signs, while the human-defined affordances

may not be adaptive to different driving scenarios. These works have eventually

yielded an intermediate representation for vehicle control, while may still needs

further reasoning for motion control. And some of the learned perception result

still rely on accurate pose estimation from conventional approach.
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3. Methods

Figure 2: Outline of our approach. A cGAN-LSTM model is utilized to learn driving inten-

tion from human demonstration with local planned route. While testing, the model generates

corresponding driving intentions following both local routes and road structures. The driv-

ing intention is then integrated with concurrently collected laser data and rendered into a

navigation score map. Based on this, we generate motion by scoring candidate driving curves.

This section introduces the proposed driving paradigm in detail. The system

architecture is shown in Fig. 2, blue box shows the procedure of learning from

human demonstration and green boxes show the test application. The core of

the system is a cGAN-LSTM network, which takes front-view image and local

planned route from public navigation software as input. The model learns to

generate a goal-directed driving intention region on the road area to indicate

supposed future control. When testing in strange scenarios with different local

planned route, the model is able to generate corresponding driving intentions

towards different directions. For motion generation, the driving intention is then

projected on vehicle near ground and integrated with concurrent laser perception

to render a navigation score map. Finally, we implement a straightforward

method to generate control command by scoring candidate driving curves. The

specific illustrations of each step is provided in the following parts.

3.1. Weakly-Supervised driving intention learning

3.1.1. Network design

We frame the intention learning as a structure reasoning process to follow

both road situation in image and planning intention in local planned route.
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Since human demonstration only covers a single direction for each fork and

cross while routes planned to different goals can be provided during test, we

do not treat the learning as a pixel-level imitation and regression. Instead, we

adopt the recent GAN[19] model which utilizes adversarial loss to generate and

evaluate the network output as a whole. GANs consist of a generator and a

discriminator. The fake output from generator is trained to be similar with the

real data so as to cheat the discriminator. Thus, the generator eventually learns

to produce an overall reasonable result following the distribution in provided

dataset. We implement a network structure of cGAN-LSTM specifically for

driving intention generation, the model structure is provided in Fig. 3.

Figure 3: Model architecture of cGAN-LSTM. Front-view images combined with local planned

routes are fed into a UNet structure to generate goal-directed driving intentions. The middle

of the UNet is inserted with a LSTM-unit to incorporate time continuity. The predictions are

then concatenated with input images to go through the discriminator.

The network structure has referred to the work in [21], which follows the

design of conditional GAN[20] and utilizes a UNet[22] as generator. As implied,

UNet is an encoder-decoder structure with skip connections to keep lower-stage

features. We use less layers in our case since the generation task does not need

to recover complete textures of the image. Our model treats both the image

and the planned route as prior conditions. The two inputs together with the

generated driving intention are fed into the discriminator for evaluation. Since

the intentions are continuous in both time and space domain during driving, a

LSTM(Long Short-term Memory) unit is inserted after the last encoder layer to

capture series relation, which at the same time guarantees minimum parameter

increase.
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Let’s consider k−1 steps of the former visual perception, the sequential input

images are denoted as I[t−k+1,t] and the corresponding local planned routes are

denoted as R[t−k+1,t], for each time t. We expect to learn a visual driving

intention towards goal, denoted as Vt, at current image. Thus, the problem is

formulated as G : {I[t−k+1,t], R[t−k+1,t]} → Vt. Since previous approaches have

found it beneficial to mix the GAN objective with a more traditional loss, such

as L1 distance[21], the objective function is the sum of two weighted loss for the

considered k steps:

L = argminGmaxD

t−k+1∑
t

LcGAN (G,D) + λLL1(G) (1)

where λ is the weight parameter.

The first item is the standard cGAN objective function:

LcGAN (G,D) =EIt,Rt,Vt
[logD(It, Rt, Vt)]+

EIt,Rt
[log(1−D(It, Rt, G(It, Rt)))]

(2)

and the second item is a patch-wise L1 distance from generated intention to the

provided real driving intention:

LL1(G) = EIt,Rt,Vt
[||Vt −G(It, Rt)||1] (3)

The cGAN-LSTM model ensures generated intention to consider both cur-

rent road structure in image perception and different intentions in local planned

routes. It has implicitly learned their inherent correlation by adversarial training

and can be generalized to allow for different driving intentions when confronting

new scenarios.

3.1.2. Data preparation

To achieve the learning of driving intention, we need to provide data of

image perception, local planned route as well as annotation of driving intention

region. More importantly, their correlation needs to be specifically established.

This part illustrates how we make the data ready for training network and

performing comprehensive experimental evaluation.
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Local planned route We devote to follow human’s manner which uses

public navigation softwares to get local planned route with GPS signal. Thus

one possibility is to enable the communication between vehicle to such a APP

during demonstration. Nevertheless, the interface to real-time synchronized

view of local planned route is not make public for research usage. Besides, the

model performance under different GPS localization errors needs to be carefully

considered and experimentally evaluated. This may lead to substantial workload

for on-line data collection and rendering. Therefore, we develop an off-line route

rendering method, which makes use of the spatial alignment between public map

and vehicle demonstrated trajectories. The procedure is shown in Fig. 4.

Figure 4: Procedure to get off-line local planned routes.

Given public map data from Baidu Map3, the global route R is annotated

in a similar manner to that the navigation software uses, as shown with the red

line in Fig. 4(a). Then, the route R is discretized to route points Rd in Fig.

4(b). After human demonstration driving along the global route, we obtain the

vehicle poses as shown with blue dots in Fig. 4(c), denoted as Tr.

The spatial alignment from vehicle pose to the routed public map is now the

task of aligning two sets of planar points Rd and Tr. Here, we use the DTW

(dynamic time warping)[23] algorithm which is commonly adopted in the time

domain to warping time series data:

DTW (Tr, Rd) = min
1

K

√√√√ K∑
k=1

wk (4)

3https://map.baidu.com/
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where K is the warpping length, and wk = (i, j)k is the warping weight between

Tr to Rd.

The step-by-step optimization objective is:

γ(i, j) = w(Tr(i), Rd(j)) +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (5)

where γ is the accumulated series distance. Specifically, a geometric warping

criterion is adopted in our scenario, and w is defined as the euclidean distance

from projected vehicle pose to the center route point:

w(Tr(i), Rd(j)) = ||(Tr(i)), Rd(j)||2 (6)

The aligned result is shown in Fig. 4(d). By assigning the heading direction

of each road, we can crop desired local planned route under various experiment

settings. The vehicle pose used for data preparation is calculated with the

conventional localization approach in our previous work[16].

Driving intention annotation. We annotate driving intention region from

human demonstration, which projects vehicle traversed area under specified

local planned route on current image, as shown in Fig. 5.

Figure 5: Driving intention annotation. Left: vehicle projected poses; Right: annotated

driving intention region.

Human control a vehicle to move and follow a specified route towards goal.

For each image, vehicle future poses in the near ground are first projected on

the image plane. Then the poses are dilated with vehicle width to indicated

current driving intention. The annotation certainly satisfies planning intention

in the planned route and road semantics in image. This idea is similar to the

drivable region annotation work in [24]. However, they do not differentiate

region directions and further do not learn its relation with the planned route.
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The other region on the image are then similarly labeled with obstacle and

unknown[24] utilizing the projection of concurrently collected laser perception.

3.1.3. Training

We consider four time steps to train the cGAN-LSTM network: 0.9s in the

past, 0.6s in the past, 0.3s in the past, and the current frame, similar to the

experiment setting in [5]. As the straight road sections are much longer than

the turning sections, the straight perceptions are down-sampled to around one

sixth to keep a same quantity with that of turning perceptions.

For parameter optimization, we firstly train a basic-model of cGAN without

LSTM unit, following the common procedure of one gradient descent on D

and then one step on G. The basic model network is trained with stochastic

gradient descent(SGD) at a learning rate of 0.0002, and momentum parameters

of β1 = 0.5, β2 = 0.999. We train basic model to 200 epochs with a batch size of

12. Then cGAN-LSTM model is fine-tuned based on the pre-trained parameters

of basic model, and the encoder part of UNet is fixed to keep a stability of the

network. The cGAN-LSTM model is trained additionally around 20 epochs. At

inference time, the generator net runs in exactly the same manner as during the

training phase.

3.2. Motion generation with driving intention

The learned driving intention preserves a learned region which is highly adap-

tive to fuse with other sensors and motion variations to ensure vehicle safety.

Considering vehicle usually runs on smooth roads, we make an assumption that

the road area in the near front of vehicle can be modeled with a flat plane.

Thus, driving intention learned to follow road structure in image plane can be

projected on robot local coordinate with camera calibration parameters. Then

local driving projection is then integrated with concurrent laser perception to

render a navigation cost map, based on which, a motion generation method is

implemented by scoring candidate driving curves. The procedure is shown in

Fig. 6.
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Figure 6: Motion generation with learned driving intention. (a) Projection of visual driving

intention with laser perception integrated; (b) Navigation score map modeled with Gaussian

kernel; (c) Candidate driving curves with their score labeled; (d) Final control command

generated with the driving intention.

The white grids(0.5m×0.5m) in Fig. 6(a) shows projected driving intention

in vehicle local ground. The black grids indicate the obstacle perception for

concurrent laser data. To consider neighboring influence, driving intention grids

are assigned with positive Gaussian kernels and obstacle grids are assigned with

negative Gaussian kernels, which forms the navigation score map used for motion

generation, as shown in Fig. 6(b).

In order to keep the task tractable, we chose to generate motion in an DWA

manner, i.e., to produce candidate driving commands and estimate the best one.

Following the work in [1][8], we present the steering command as driving cur-

vature, denoted as 1
r , where r is the turning radius in meters. Since the vehicle

constantly adjust its control based on visual perception, it is reasonable to as-

sume that vehicle keep a uniform motion during a short time clip. Resultantly,

vehicle future trajectory can be modeled with a curve in the local navigation

score map.

Specifically, the 90◦ space ahead of vehicle is divided into different number of

direction sections in relating to different requirement for control precision. We

then generate a same number of candidate driving curves whose curvatures range

evenly form [−0.2, 0.2], as shown in Fig 6(c) which is an example of generating

seven candidate curves. Each curve can be estimated with a score based on the

navigation score map. Then the final command is the curve with the highest
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score, indicating direction towards goal, as implied in Fig. 6(d). The motion

generation is straightforward while efficient to show its usage and compare with

end2end approach, the incorporation of more specified motion variations is the

future work.

4. Experiments

This section reports the experiment results of the proposed approach, in-

cluding experiment set up, performance of driving intention generation, and

performance of motion generation compared with the state-of-the-art end2end

approach.

4.1. Data sets

Experiment data is collected with a real vehicle running in our campus, which

has been extensively adopted in conventional automotive driving research[25, 26,

27]. The data collection route is shown in the left of Fig.7. Blue line shows the

training route with a length of 1.2km. Red line shows the test route with a

total length of 4.8km. The overlap sections of the two routes basically runs in a

bi-directional manner. The vehicle used for data collection is shown in the right

side of Fig.7, which is a four-wheeled mobile vehicle equipped with a ZED stereo

Camera, a Velodyne VLP-16 laser scanner and a D-GPS. Only images from the

left camera of ZED are used with a resolution of 314×648 pixels. The training

data involves 21 times of demonstration driving at different time over three days,

covering varying weather/illumination conditions. Each demonstration driving

contains ∼7000 frames of observation. The test data contains ∼25000 frames of

observation.

4.2. Intention generation result

We first present the result of driving intention generation. Since the rep-

resentation of driving intention region is a novel contribution in our work, we

propose two new criteria along with the common used IOU for quantitative

evaluation.

14



Figure 7: Data collection route and experiment vehicle.

Evaluation Metrics. As shown in Fig. 8, dark gray represents the demon-

strated human driving and light gray grids shows the predicted intention. Green

dots and red dots show the center line of the two intentions respectively. Based

on these representation, we employ three criteria for visual goal-directed inten-

tion evaluation. The first is IOU, intersection over union between prediction and

human demonstration. The second is cover rate, ratio of predicted central line

falling inside demonstrated intention region, which is measured as the percent-

age of green dots falling in the dark gray region. And the last is ∆yaw, angle

difference of driving directions between prediction and human demonstration in

image plane. The driving direction is measured as the angle between central lie

and horizontal line.

Human driving
Model prediction

∆𝒚𝒂𝒘 = ∠ − ∠

Figure 8: Illustration of visual evaluation. The dark gray shows the future control of human

demonstration and the light gray grids imply model prediction. Red dots and green dots show

the center lines of human driving and model prediction respectively, which have been both

downsampled for better visualization.
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4.2.1. Network performance

We test the visual result with two models of cgan basic and cgan lstm. The

cgan basic model does not include a LSTM unit. The result is presented in

Table 1.

Table 1: PERFORMANCE OF DRIVING INTENTION GENERATION

Model iou% cover rate% ∆yaw

cgan basic 62.06 95.9 13.71

cgan lstm 78.01 98.9 9.05

From the table we can see, cgan lstm outperforms cgan basic for all the three

criteria. The LSTM unit has shown its effectiveness to model time continuity

and shape the driving intentions. The cover rate of both models has exceeded

95%, which implies the predicted intention basically follows the road structure,

as the human demonstration region is certainly on the road area. The model of

cgan lstm has achieved more improvement on the IOU which is 78.01%, and the

∆yaw which is around 9 degrees. A higher IOU value implies more similarity to

human demonstration. However, we do not seek a one-hundred-percent result,

since the driving intention is not defined with an explicit boundary and there

can be some pixel-level shape variations. In this situation, ∆yaw shows more

importance for direction measurement. We consider 9-degree is a favorable

value, since the case in Fig. 8 has a 11-degree different in ∆yaw, where the

predicted intention is structural close to human demonstration. More qualitative

results from cgan lstm are presented in Fig. 9.

The first row of Fig. 9 presents some cases for driving on straight roads. The

straight road is relatively easy task for intention generation. And the mainly

challenge lies on the recognition of obstacles, as shown in the last figure of

this row. It provides an example when confronting with a pedestrian which is

annotated with a yellow box. The generated intention has turned to a more

central direction than that of human demonstration. Thus, it causes lower
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Figure 9: Visual results from cGAN-LSTM. Green, red and blue colors represent prediction,

human demonstration and their intersection respectively. The local planned routes are shown

in the top left corner of the image and the evaluation figures are annotated in the top right

corner of the image. The intention boundaries are fitted with splines in these figures.

criteria values.

The last two rows show some cases for left turns and right turns respectively.

The proposed model has generated correct driving intentions following various

local road situations. For the turning classes, we see more shape changes to

that of human demonstration. The result satisfies the design of adversarial loss,

which focus more on the structural rationality rather than pixel-level imitation.

Besides, the yellow box in the second row indicates a cyclist where the predicted

intention has also avoided. Therefore, the proposed model seems to show an

ability of avoiding dynamic obstacles on the road without explicit annotation.

4.2.2. Robustness to Localization errors

We assume to utilize public navigation softwares from GPS signal. As the

GPS signal commonly provides rough localization results, this section discusses

the model performance under different localization errors. In order to achieve

it, we have randomly added horizontal and vertical offsets when rendering local

planned route, as illustrated in Section 3.1.2. The random offset goes into three

levels, easy, moderate and hard, with each level corresponds to a localization

error of 0m ∼ 1m, 1m ∼ 2.5m, and 2.5m ∼ 5m. The result is presented in

Table 2

As can be seen in the table, the two models have basically achieved a stable
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Table 2: ROBUSTNESS TO LOCALIZATION ERRORS

minor(0m∼1m) moderate(1m∼2.5m) hard(2.5m∼5m)

Model iou c% ∆yaw iou c% ∆yaw iou c% ∆yaw

basic 61.8 96.2 13.9 61.6 95.8 14.2 61.5 95.9 14.2

lstm 76.5 98.4 9.9 76.1 98.3 10.3 75.9 98.4 10.5

abbreviations: basic(cgan basic), lstm(cgan lstm), c%(c rate%)

performance given different level of route offsets. To compare with the result

from center-view routes in Table 1, only ∆yaw/deg has a slight increase with

the growing of localization errors, while the other two criteria have remained

in a similar value to the previous result. The model has shown robustness to

potential localization errors. Moreover, it verifies the proposed pipeline can

get a local reference path towards goal without common requirement to precise

geometric localization. Some visual result from cgan lstm with different level

of route offsets are shown in Fig. 10. The offset in local planned route does not

have a severe influence for intention generation, as the annotated route clearly

conveys an overall sense of direction within visible range.

(a) (b) (c) (d) (e)

Figure 10: Robustness to localization errors. From top to bottom: minor(0m∼1m),

moderate(1m∼2.5m) and hard(2.5m∼5m) errors. Green, red and blue colors represent the

prediction, human demonstration and their intersection respectively.
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4.2.3. Discussion : multi-modal behavior

Annotation from human demonstration only validates a single driving in-

tention with pre-defined local planned route, while multi-modal behaviors are

presented when approaching intersections and open areas. For a further qualita-

tive evaluation, three fake planned routes are made to test the model, which are

intuitively viewed as {go-straight, turn-right, turn-left}. These planned routes

are all used to generate driving intentions on the test image perceptions, and

Fig. 11 provides some visual result from a direct network output.

Figure 11: Multi-modal driving behaviors with different road types. From top to bottom:

one-way straight road, T-junction road, and cross area. Green color shows the original output

from the network.

The three rows show the road types of straight, T-junction and cross re-

spectively. The local planned routes are shown in the top right conner on the

first row. For the first two classes, there are local planned routes that may not

be allowed on current road situation. In this case, the model can still generate

reasonable intentions following road structure. While for the last class, where

all planned routes can be performed, the model generates driving intentions

accordingly. Here, we did not use a spline to fit the intention boundary, which

better shows the direction difference on network outputs for different planned

routes.

Fig. 12 has specifically presented a group of images when facing a moving car

with different planned routes. The result is visually compared with the model

of pix2pix[21] which does not include planned routes for intention generation.
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When there are dynamic obstacles appear in front of the road, the proposed

model accordingly adjust the intention generation, which further implies the

weakly-supervised model has learned to avoid obstacles without explicitly an-

notation.

(a) (b) (c) (d) (e)

Figure 12: Multi-modal driving behaviors when facing a moving car. Green, red and blue

show the result from cGAN-LSTM, pix2pix and their intersection respectively. The intention

boundaries are fitted with splines in these figures.

4.3. Motion generation result

To show the effectiveness of proposed driving intention on motion generation,

a straightforward method is performed by scoring candidate driving curves. For

comparison to end2end approach, we implement the network structure in [5],

which generates direct control commands with public planned route. Model

in [5] outputs driving commands as velocity and angular speed. We calculate

driving curvature as ct = wt

ct
, for each time t referring to [8]. As for the ‘ground

truth’ from human demonstration, the actual trajectory curvature is calculated

for comparison.

Evaluation Metrics. To quantitatively evaluate the system performance,

we compute the motion prediction accuracy for different control precisions. The

definition of true positive is illustrated in Fig. 13.

The black dials implies different motion resolutions, for which the proposed

method generates a same number of candidate motion commands, as shown

with the gray curves. Green grid indicates final model prediction and red grid
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candidate commands

human demonstration
prediction

Figure 13: Evaluation criterion for motion generation. Gray curves show the candidate driving

commands in relation to the control precision. Green curve indicates the command with a

highest score in the navigation score map. And red color shows the ground truth maneuvered

by human demonstration.

indicates human demonstration. Then the prediction accuracy is measured with

the grid distance ∆g from model prediction to human demonstration:

accuracy =

∑T
t=0 [|predt − humant| ≤ ∆g]

T

where T is the total step of test dataset. [·] equals to 1 if the formulation

inside is true, otherwise equals to 0. For comprehensive evaluation, we provide

quantitative results of three settings of ∆g = {0, 1, 2} under control resolutions

for 3 to 23. The resolution of 3 means the prediction only distinguish the

direction from right, left to straight. And a resolution of 23 represents a control

precision of less than 4◦.

4.3.1. Model performance

We have tested our two models of cgan basic and cgan lstm to compare with

end2end[5] method. The results with different motion resolutions are shown in

Fig. 14.

The three figures present accuracy on complete test route, long straight test

route, and turning route respectively. For an overall accuracy measurement,

cgan lstm achieves better performance than end2end method under most set-

tings and shows better robustness to different control resolutions. When the

control resolution goes up, cgan lstm also generates more candidate curves for
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(a) Overall accuracy (b) Straight road accuracy (c) Turning roa accuracy

Figure 14: Motion prediction performance. Green, blue, and red represent the performance

of cgan lstm, cgan basic and end2end respectively. For each individual model result, color

from light to dark represent a grid distance 0,1,2 for ∆g.

a careful search to better fit for the driving intention. This shows the benefit to

separate driving variations on perception from that on motion in the proposed

system. The visual driving intention is highly adaptive to different motion re-

quirements, regardless of specific control precision in the demonstration driving,

as the intention region explicitly considers local road situation and leaves a room

for a second motion module to follow.

In contrast, end2end approach learns a numerical mapping from visual input

to output. Thus, end2end outputs a same result for different control resolutions,

and shows steady decrease when the evaluation gets more strict. For the perfor-

mance on separate straight class and turning class, advantage of the proposed

model is more significant for the turning road sections which is more challenging

due to the complex road situation. A more intuitive comparison of error rates

along test route between cgan lstm and end2end are provided in Fig. 15.

As the figure shows, end2end method have more errors when vehicle ap-

proaching turning road sections. We consider the reason may be the numerical

difference of demonstration control when facing a same turning class. A big turn

requires a small control curvature and a small turn may require a big control

curvature. Besides, human may change the driving command during turning

for obstacle avoidance. This also increases the intra-class variation for similar

perceptions. Thus, it may be difficult for end2end training to consider both

variations in perception and planning. In contrast, for the long straight road
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(a) cGAN-LSTM (b) End-to-end

Figure 15: Error rate density along the test route. The results come from a control resolution

of 7-grid. Different colors represent different error levels, and the blue the better.

section, most commands stay near-linear and unchanged for a long time, which

can be efficiently learned by both models. Some visual result from the proposed

system is shown in Fig. 16.

4.3.2. Discussion : robustness to time delay

For the design of end2end approach, motion generation is correlated with

environment understanding. This makes the system has a strong reliance to

real-time vision prediction. However, the vision processing alone is prone to

be disturbed and the GPS signal for local planned route can be lost due to

occlusions. Thus, it can be a critical ability to generate valid motion when

visual result is delayed. In this section, we investigate the motion generation

ability when there are different level of time delays for visual prediction. The

results are shown in Fig.17 and Fig. 18 for end2end method and the proposed

method respectively.

The figures show sequential prediction curvatures along a section of test

route. The discrete dots represent actual data points, which are fitted with

smooth lines to indicate variation trend. End2end approach outputs direct

driving commands without intermediate knowledge retainment. Thus, during
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Figure 16: Motion generation result compared with human demonstration. For each case, top

figure shows the visual result and bottom figure shows the generated motion on navigation

score map. Green and red colors represent the model prediction and human demonstration

respectively.

time delay, it has no choice but to keep the former motion command without

human intervention. This is reflected on the extended dashed lines for motion

generation in Fig. 18.

Nevertheless, for the proposed method, driving intention prediction is sep-

arated with the motion generation. The learned intention has a certain area

on the ground plane, which can be used for motion reference in multiple steps.

Thus, driving intention in one frame can be efficiently integrated with follow-

ing obstacle perception, and be used to render a new navigation score map for

motion generation. As can be inferred in Fig .17, cgan lstm model is able to

generate new commands when there are temporary missing of vision predictions.

This is reflected on the similar level of dispersion on the data points. Compared

with the real-time visual prediction, most prediction errors for cgan lstm ap-

pear as big curvatures. It is caused by planning circle actions for vehicle when it
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Figure 17: Comparison of end2end method with human demonstration when visual prediction

is delayed. From top to bottom: no time delay, 1s delay, and 2s delay. Blue color indicates

the model prediction and red color denotes human demonstration. The dots denoted actual

data points, which are fitted to a smooth line to show the prediction tendency.

almost passed the retained intention area. In this case, the area around vehicle

position has the biggest scores and the model tend to give the largest curva-

ture to stay nearby. Therefore, the longest time that the proposed method can

handle depends on the valid area from driving intention projection and the spe-

cific driving speed of vehicle. Some visual results for a delay of 1.8s are in our

experiment shown in Fig.19

For the proposed approach, the first frame generates a visual driving inten-

tion according to local planned route, which is rendered into a navigation score

map with laser perception integrated. Then for the following frames, the nav-

igation score maps are integrated from the driving intention in the first frame

and the laser perceptions in the subsequent frames. To indicate vehicle move-
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Figure 18: Comparison of proposed method with human demonstration when visual prediction

is delayed. From top to bottom: no time delay, 1s delay, and 2s delay. Green color indicates

the model prediction and red color denotes human demonstration. The dots denoted actual

data points, which are fitted to a smooth line to show the prediction tendency.

ments inside the retained driving intention area, we also plot vehicle previous

poses with discrete red dots as shown in the figure. The short transformation of

local coordinates can be approximately estimated by map registration of laser

perception or the integration of motion command.

In summary, the proposed method separates driving variations of visual un-

derstanding to motion generation. Compared with end2end approach, it demon-

strates better prediction performance and robustness to time delay.

5. CONCLUSIONS

In this paper, we developed an innovative learning model for automotive

driving research with an intermediate driving intention learned from image
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Figure 19: Robustness to time delay. The time difference between consecutive frames is

δt = 0.3s. Green, blue, and red colors indicate motion generation results of cGAN-LSTM,

end2end, and human demonstration respectively. The red points in the navigation score map

indicates vechile previous pose.

perception and publicly available route planer. The driving intention can be

efficiently encoded into a navigation score map which is able to directly gen-

erate motion. In this way, the variations on motion is separated with that on

visual understanding, which increases modular flexibility and reliability com-

pared with end2end approach. The key of the system is a cGAN network in-

serted with LSTM unit to learn from human demonstration. The adversarial

loss enables a weakly-supervised training manner, which leverages limited single-

modal demonstration data to achieve generalization on multi-modal behavior in

strange scenarios. Experiments indicates driving intention generation is robust

to errors on vehicle global pose and shows more attributes of reliability and

adaptability for consideration of real applications. Our future work will incor-

porate more detailed obstacle modeling modules, which further narrows the gap

for real application.
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