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Abstract— We propose a means of omni-directional contact
detection using accelerometers instead of tactile sensors for
object shape estimation using touch. Unlike tactile sensors, our
contact-based detection method tends to induce a degree of
uncertainty with false-positive contact data because the sensors
may react not only to actual contact but also to the unstable
behavior of the robot. Therefore, it is crucial to consider
a robust shape estimation method capable of handling such
false-positive contact data. To realize this, we introduce the
concept of heteroscedasticity into the contact data and propose
a robust shape estimation algorithm based on Gaussian process
implicit surfaces (GPIS). We confirmed that our algorithm not
only reduces shape estimation errors caused by false-positive
contact data but also distinguishes false-positive contact data
more clearly than the GPIS through simulations and actual
experiments using a quadcopter.

I. INTRODUCTION

Capturing the shapes of objects is an essential issue in
many areas of autonomous control such as infrastructure
inspection and environmental monitoring. In particular, to
inspect a 3D construction whose shape is not available
a priori, shape estimation is required for inspection path
planning, using the data acquired from the available sensors.

In this paper, we considered a large 3D construction which
was subjected to estimation using a quadcopter, as shown
in Fig. 1(a). While most 3D reconstruction efforts using
quadcopters have relied on vision sensors, they are noisy
and suffer from occlusion. In previous studies, tactile sensing
was used to supplement the vision-based sensing and thus
improve the shape estimation [1]–[3].

Most touch-to-sense approaches, including grasping [4]–
[6] and manipulation [7]–[9], have explicitly assumed that
contact occurrence is correctly detected by a tactile sensor.
However, such an assumption may not always be realistic.
Given that it is difficult to determine, in advance, which parts
of the robot will touch the construction, a number of sensors
should be mounted on the quadcopter in an omnidirectional
configuration. However, this may be unfeasible in terms of
the robot’s payload, cost, or power consumption.

We explored an alternative approach to the estimation of
the shape of an object by touch without the need for tactile
sensors. That is, we considered the use of an accelerometer
that is commonly incorporated into a quadcopter to detect
the occurrence of physical contact in any direction. This
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(b) Observed data and flight trajectory

Fig. 1: (a) 3D construction. (b) Observed contact data and
flight trajectory of quadcopter. The circles, black dots, gray
dots, and gray lines represent internal points, contact points,
external points, and the flight trajectory of the quadcopter,
respectively.

approach would avoid the issues associated with payload,
cost, and power consumption. However, contact detection
tends to be uncertain relative to when tactile sensors are
being used. Unfortunately, the accelerometer may react not
only to actual contact with the construction but also to
unstable behavior induced by gusts of wind, collisions with
other agents, etc. As a result, false-positive contact data
could be combined with normal contact data, as shown in
Fig. 1(b). Therefore, when using this approach, it is crucial
to incorporate a robust shape estimation method capable
of handling such false-positive contact data. Note that, in
the present study, we focused on false-positive contact data
because false-negative contacts have little influence on the
accuracy of the shape estimation.

Our approach to the estimation of the object shapes by
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means of touch without the use of tactile sensors involves
the use of a robust shape estimation algorithm based on GPIS
[10]–[14], that is, robust GPIS. While the GPIS assumes that
the observations of contact data follow a normal distribution
with a constant variance, our GPIS introduces heteroscedac-
ity into each item of contact data. Thus, we can prevent
incorrect shape estimates produced by false-positive contact
data.

To demonstrate the effectiveness of our approach, we
constructed an experimental system using a quadcopter,
using its built-in accelerometer for contact detection. We
confirmed that our approach is better than GPIS for a 3D
construction when using a quadcopter.

The contributions of the present study can be summarized
as follows:
• the proposition of an approach for object shape estima-

tion by touch with an omni-directional contact detection
using accelerometers (without tactile sensors).

• the reduction in shape estimation errors caused by false-
positive contact data.

• the clear detection of false-positive contact data when
applying our algorithm.

The remainder of this paper is organized as follows:
Section II introduces related works, then Section III describes
the shape estimation problem caused by false-positive contact
data. Section IV introduces the mathematical formula for
the GPIS and robust GPIS method, then Section V shows
the effectiveness of our algorithm as demonstrated by nu-
merous simulations. Section VI introduces the constructed
experimental system and shows a few of the results of the
experiments performed with the quadcopter. Finally, Section
VII concludes the paper.

II. RELATED WORK

Previous studies addressing 3D reconstruction using quad-
copters have usually used vision sensors [15]–[17]. Other
studies have used lidar sensors [18], [19] or a combination
of vision and lidar sensors [20], [21]. However, these sensors
sometimes cannot be used in harsh environments, in which
diffused reflection occurs. To overcome this shortfall, several
works [1]–[3] have employed tactle sensing to supplement
the vision-based sensing. Therefore, we considered a prob-
lem whereby we estimated a 3D construction by using a
touch-to-sense approach.

Several recent studies have addressed shape estimation
using deep learning. Wu et al. [22] and Dai et al. [23]
proposed the use of 3D-CNN for shape estimation, and
Varley et al. [24] proposed a novel grasping framework based
on the architecture in [23]. Watkins-Valls et al. [25] proposed
an architecture that incorporates depth images and tactile
information to improve shape estimation in occluded regions.
Through experiments using different types of 3D object
shapes, they confirmed improvements in shape estimation
errors and in the success rate of grasping compared with
the GPIS. While these studies obtained impressive perfor-
mance in shape estimation, all except for Lundell et al. [26]
are based on the deterministic model. Therefore, it is not

straightforward to apply this architecture to a model where
there is estimation uncertainty and different kinds of noise. In
contrast, the GPIS handles this better by representing object
shapes in a GP model. Therefore, we focus on the use of
GPIS to deal with false-positive contact data.

Other studies have focused on the use of GPIS for shape
estimation using uncertain measurements obtained by mul-
tiple sensor modalities. Caccamo et al. [11] and Mahler
et al. [12] combined visual data with haptic measurements
using GPIS. In addition, using the basic framework of GPIS,
Dragiev et al. [13] employed a combination of laser and
tactile sensing while Gerardo-Castro [14] used a combination
of lasers and radar.

Basically, most of the GPIS methods are based on a
homoscedastic GP, in which the distribution of observations
is assumed to follow a normal distribution with a constant
variance. However, this assumption may be unsuitable for
application to cases involving some outliers because both
normal and outlier data are handled equally.

To overcome this issue, several authors proposed het-
eroscedastic GPs (HGPs), for which the variation in the
input or output noise is considered to be non-uniform. Kuss
et al. [27] and Jylanki et al. [28] proposed a robust GP,
which is a HGP that assumes that the noise variance is data-
dependent. McHutchon et al. [29] proposed a GP with input
noise (NIGP). This is a HGP that assumes that the noise
variance differs for each input dimension. Lazaro-Gredilla et
al. [30] proposed a variational heteroscedastic GP (VHGP),
which is a HGP that assumes that the noise variance is input-
dependent. Among the available HGPs, we found that the
robust GP is particularly suitable for our purpose given that
it provides us with the uncertainty of data.

Among practical research using a robust GP as a math-
ematical model, Martinez-Cantin et al. [31] proposed ro-
bust Bayesian optimization for active exploration of optimal
policy parameters in a humanoid robot walking under the
condition that there exist outliers of rewards caused by
perturbations. While our methodology used a common robust
GP as a mathematical model, it differs from the methodology
in [31] in terms of shape reconstruction and false-positive
contact detection when considering the uncertainty for each
item of contact data.

III. TOUCH-BASED OBJECT SHAPE ESTIMATION USING
ACCELEROMETERS

This section introduces the shape estimation problem
considered in the present study. The goal of the present study
was to estimate the shape of an unknown object placed in a
given exploration region Q ∈ R3.

In [10], an implicit surface is used to describe the shape of
an object by means of a real-value shape potential function.
Based on this shape potential function, we can determine
whether each point is located on the surface of, inside,
or some distance from the object. As described in [13],
we defined the observation of a shape potential value yi
(i = 1, · · · , n) at the observed point xi ∈ R3 as
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Fig. 2: Event detection and contact detection based on
acceleration. When physical contact occurs, the acceleration
becomes larger than a threshold (dashed line), such that
the measurement y will be zero. In this case, false-negative
contact data can be detected when the quadcopter collides
with an object at low speed. Moreover, false-positive contact
data are detected when the quadcopter becomes unstable and
the acceleration exceeds the threshold.

yi =


0, xi on the surface

1, xi outside the surface

−1, xi inside the surface.

In this study, the shape of the object is computed offline.
Moreover, we assumed that the position of the quadcopter
is accurate. This assumption holds true when using high-
precision positioning systems such as motion capture systems
or RTK-GPS.

A. Observation model

Observations were obtained by detecting events. An illus-
tration of this event detection when using an acceleration is
shown in Fig. 2. In this example, an event takes the form
of the quadcopter colliding with the object or becoming
unstable. If an event occurs and the acceleration becomes
larger than the threshold, yi is labeled as being zero. When
physical contact occurs, false-negative contact data can occur
when the quadcopter collides with the object at low speed.
Moreover, false-positive contact data are detected when the
quadcopter becomes unstable.

As shown in Fig. 2, it is difficult to determine the threshold
so that the number of false-negative and false-positive contact

0 1

Student's t

Normal

physical

contact data

p(y)

false-positive

contact data

y

Fig. 3: Comparison of Student’s t- and normal distribution.

data will be zero. Although the number of items of false-
positive contact data could be reduced by constructing more
sophisticated classifiers, it is unrealistic to classify false-
positive contact data with a 100 % accuracy rate for objects
made of any material. Therefore, in the present study, we
explored another approach by assuming that the generation
of false-positive contact data is unavoidable.

B. Distribution of observations

With GPs, we are required to assume the distribution of
observations. With homoscedastic GPs, the distribution is
assumed to follow a normal distribution, as defined by

N (yi | fi, σ2) =
1√

2πσ2
exp

[
− (yi − fi)2

2σ2

]
,

where fi and σ2 represent the shape potential function and
the noise variance with a constant value, respectively. This
distribution may be unsuitable for application to our problem;
contact data with false-positive samples cannot be explained
by such a light-tailed distribution, owing to the nature of the
false-positive contact data and its representation with three
natural numbers (-1/0/1). Thus, it may be unsuitable for use
with false-positive contact data.

Therefore, we introduce the Student’s t-distribution for the
observations, given by

T (yi | fi, λ, ν) =
Γ(ν+1

2 )

Γ(ν2 )

(
λ

πν

) 1
2
[
1 +

λ(yi − fi)2

ν

]− ν+1
2

,

where ν, λ and Γ represent the degree of freedom, a scale
parameter and gamma function, respectively. As shown in
Fig. 3, false-positive contact data can be explained with
a greater degree of probability, owing to its heavy-tailed
distribution.

IV. METHODOLOGY

In this section, we describe our robust shape estimation
with false-positive contact data. We start with a brief intro-
duction of GPIS, and then discuss the issues associated with
the method. Moreover, we propose a robust GPIS method by



modifying the distributions of the observations made with the
GPIS method.

A. GPIS

In a GPIS framework, the shape potential function f is
modeled by GP regression for a given data set D = {xi, yi}
(i = 1, · · · , n). In the GPIS, a prior of the shape potential
functions f := [f(x1), · · · , f(xn)]T is assumed to follow
a normal distribution: p(f | x) = N (f | 0,K), where
x := [x1, · · · , xn]T, and K ∈ Rn×n is the training data
covariance matrix. Moreover, the probability of observations
y := [y1, · · · , yn]T is given by the normal distribution with
constant variance: that is, p(y | f) = N (y | f, σ2I). Upon
combining these probabilities, the posterior of the shape
potential function is given by

p(f | D) =
N (y | f, σ2I)N (f | 0,K)

p(y | x)
, (1)

for which the marginal likelihood
∫
N (y | f, σ2I)N (f |

0,K)df in Eq. (1) can be computed analytically as described
in [32], [33]. Moreover, the predictive mean and variance
can be computed as

µ(x∗) = kT(x∗)(K + σ2I)−1y, (2)
σ2(x∗) = k(x∗)− kT(x∗)(K + σ2I)−1k(x∗), (3)

where k(xi, xj) is the covariance between the observed
points xi and xj , i, j ∈ {1, · · · , n}, k(x∗) is the covariance
vector between all the observed points xi (i = 1, · · · , n)
and the test point x∗, K has entries Kij = k(xi, xj), i, j ∈
{1, · · · , n}. An estimate of the object’s shape is obtained by
finding those points x∗ where µ(x∗) ≈ 0 in Eq. (2).

Because all the diagonal terms of σ2I in Eqs. (2) and
(3) have the same value, false-positive contact data have
the same influence on the predictive distribution as normal
data. An issue, however, is whether the distribution of the
observations is assumed to conform to a normal distribution
with constant variance.

B. Proposed method

In this subsection, we propose a robust GPIS with false-
positive contact data based on the GPIS method.

To realize this, we used the Student’s t-distribution as the
distribution of the observations, given by

p(y | f) = T (y | f, λ, ν). (4)

Given the prior of the shape potential functions with a
normal distribution, p(f | x) = N (f | 0,K), the posterior of
the shape potential function is given by

p(f | D,ψ, λ, ν) =
T (y | f, λ, ν)N (f | 0,K)

p(y | x,ψ, λ, ν)
, (5)

where ψ represents the hyperparameters in the covariance
matrix K.

In the same way as in the GPIS method, an estimate
of the object’s shape can be obtained from the posterior
mean. However, the marginal likelihood

∫
T (y | f, λ, ν)N (f |

0,K)df in Eq. (5) cannot be computed analytically. Thus, we

conform to the variational approximation for GP regression
with the Student’s t-distribution, as described in [27].

The Student’s t-distribution in Eq. (4) is a scale-mixture
of an infinite number of normal distributions, given by

T (y | f, λ, ν) =

∫ ∞
0

N (y | f, σ2)InvΓ(σ2 | α, β)dσ2, (6)

where α = ν/2 and β = ν/2λ represent the shape
and inverse scale parameter, respectively. The Student’s t-
distribution becomes heavy-tailed when α becomes small or
β becomes large, as described in Appendix. Since outliers
are more likely to occur from a heavy-tailed distribution, it is
suitable to explain false-positive contact data. As described
later, these parameters are optimized such that the estimated
shape best fits the observed data. Moreover, as α becomes
small or β becomes large, the noise variance, σ2, becomes
large with high probability, as described in Appendix.

Using Eq. (6), we approximate the posterior in the factor-
ized form given by p(f,σ2 | D,ψ,θ) ≈ q(f)q(σ2), where
θ := [α, β]T and σ2 = [σ2

1 , · · · , σ2
n]T. The approximate

posterior of f and σ2 is given by

q(f) = N (f | m,A), (7)

q(σ2) =

n∏
i=1

InvΓ(σ2
i | α̃i, β̃i), (8)

where m and A represent the mean and covariance of q(f),
and α̃i and β̃i represent the shape and inverse scale for each
item of data i (i = 1, · · · , n), respectively. If we could
approximate the posterior in an analytically tractable form,
we could estimate an object’s shape from its posterior mean.

To realize this, we introduce the KL divergence between
the approximation and the posterior distribution, given by

KL(q‖p) =

∫
q(f)q(σ2 )ln

p(f,σ2 | D,ψ,θ)

q(f)q(σ2 )
d fdσ2 .

The KL divergence is minimized using an expectation max-
imization (EM) algorithm [34]. In the EM algorithm, the
approximate posterior and parameter values are updated by
repeating the two steps. In the expectation step (E-step), m,
A in Eq. (7), α̃i and β̃i in Eq. (8) are iteratively updated
to minimize the KL divergence for given parameters θ and
ψ. In the maximization step (M-step), performed after each
E-step, θ and ψ are iteratively updated to minimize the KL
divergence for fixed q(f) and q(σ2). The EM algorithm iter-
ates the E- and M-steps until the KL divergence converges.
Details of the method used to derive the update laws can be
found in [27].

After the variational approximation, the mean and variance
of the approximate posterior are computed as

µ(x∗) = kT(x∗)(K + Σ)−1y, (9)
σ2(x∗) = k(x∗)− kT(x∗)(K + Σ)−1k(x∗), (10)

where Σ represents a diagonal matrix with entries Σii =
β̃i/α̃i (i = 1, · · · , n). Since the diagonal terms of Σ in
Eqs. (9) and (10) differ from each other, we can introduce
heteroscedacity into each item of contact data.



Algorithm 1 : Robust GPIS

Inputs: xi, yi (i = 1, · · · , n), θ, ψ, x∗
Initialization: x∗ s.t. µ(x∗) ≈ 0, ui (i = 1, · · · , n)

Initialisation : set α̃i ← 1, β̃i ← 1, θ and ψ to random
positive values.

1: /* procedure for robust GP
2: Compute K from x and ψ
3: E-step:
4: repeat
5: m, A, α̃i and β̃i are iteratively updated for fixed
6: parameters θ and ψ using Eqs. (5.34)-(5.36) in [27].

7: until KL(q‖p) converges
8: M-step:
9: repeat

10: θ and ψ are iteratively updated for fixed parameters
11: m, A, α̃i and β̃i using Eqs. (5.39)-(5.43) in [27].
12: until KL(q‖p) converges
13: Compute µ(x∗) and σ2(x∗) using Eqs. (9) and (10).
14: /* procedure for 3D shape reconstuction
15: Estimate object shape by finding those points x∗ that

satisfy µ(x∗) ≈ 0.
16: /* procedure for false-positive contact detection
17: Estimate the uncertainty of data i from Eq. (11)

The object shape is reconstructed by finding those points
x∗ that satisfy µ(x∗) ≈ 0 in Eq. (9). As β̃i/α̃i becomes large,
the contact data i has little influence on µ(x∗). Therefore,
such contact data has little influence on the shape estimates.

Finally, we present the false-positive contact detection.
After the variational approximation, we can obtain the un-
certainty of data i, given by

ui = β̃i/α̃i. (11)

The noise variance, σ2, in Eq. (6) becomes large with high
probability as ui becomes large. Therefore, we can judge the
uncertainty for each item of contact data using Eq. (11).

The main steps used in the shape estimation and false-
positive contact detection are shown in Algorithm 1.

V. SIMULATION

We conducted numerous simulations with 2D objects to
confirm the reduction in the shape estimation errors and the
false-positive contact detection when applying our algorithm.

A. Experimental setup

We prepared three different object shapes, as shown in Fig.
4. The contact points were set on the edges at intervals of
0.01 [m], as shown in Fig. 5(a) and (c), while they were set
on the circumference at an interval of 3[deg] in Fig. 5(b). The
internal and external points were randomly set in the given
region Q := {(x1, x2) | (−3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3)}.
To consider the false-positive contact data, we replaced the
external points with a pair of outliers of contact and internal
points with a 2% chance. The outlier of the internal point
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Fig. 4: 2D object models used in simulation experiments. All
fifures are in units of m.

(a) Square (b) Circle

x
�

x
�

(c) Cross

Fig. 5: Data acquired in one of the simulations. The circles,
black dots, and gray dots represent internal points, contact
points, and external points, respectively.

was randomly set within a certain distance 0.1 [m] from the
outlier of the contact point.

We performed 50 simulations for each object shape. The
parameters used in the simulations are listed in Table I. The
parameters used in the GPIS methods were set by trial and
error. The test data were set on a grid with an interval of
0.02 [m].

B. Shape estimation error

One of the 50 simulations is shown in Fig. 6. As shown
in the figure, the object shapes could be roughly captured
using the GPIS. At the same time, however, surfaces were
incorrectly estimated around a few of the outliers, located

TABLE I: Simulation conditions

Variable Symbol Value

Number of observed points n 5.9×102

Number of test points nt 9.1×104

Initial value of variance of Gaussian kernel - 0.252

Initial value of shape parameter α 2.0

Initial value of inverse scale β 4.0



sufficiently far from the object. The predicted shape potential
values (colored contours) show that the mean values became
negative around the outliers, which indicates that the predic-
tive distributions were greatly influenced by the outliers.

In contrast, a surface was not incorrectly estimated around
the outliers when using the robust GPIS, as shown in Fig.
6. Considering the uncertainty values, those values around
the outliers became remarkably large compared with those
around the normal data. As a result, the predicted shape
potential values around the outliers were sufficiently greater
than zero, indicating that the outliers had little influence on
the predicted mean values.

To evaluate the accuracy of shape estimation using the
GPIS methods, we introduce metrics for determining the
shape estimation error (i.e., the difference between the es-
timated shape and the true shape). Using Eqs. (2) and (9),
we selected the test point i = {1, · · · , ns} whose mean value
µ(xi) is almost equal to zero (−0.01 < µ(xi) < 0.01), where
xi is the position of the test point i. After computing the
minimum distance di between the test point i and the surface
of the true shape, we computed the mean error of the distance
di, defined by

e =
1

ns

ns∑
i=1

di. (12)

The results obtained with the t-test for the 50 simula-
tions used to compare the robust GPIS with the GPIS are
listed in Table II. These results reveal significant differences
between the robust GPIS and the GPIS in terms of the
shape estimation errors, since the p-values are all less than
0.01. Therefore, for all the prepared objects, our algorithm
produced smaller shape errors than the GPIS.

C. False-positive contact detection

This subsection shows the clear detection of false-positive
contact data when applying our algorithm. With the robust
GPIS, the uncertainty of the data around the outliers became
remarkably large compared with those around the normal
data, as shown in Fig. 6.

Here we introduce metrics for evaluating the false-positive
contact detection. While the robust GPIS can estimate the un-
certainty of data, the GPIS cannot directly do so. Therefore,
we regard the predicted variance at each observed data as
the uncertainty of the data. To define the clarity of the false-
positive contact detection for each outlier o, we define the
metrics given by

Qo =
1

no

∑
j∈Ro

uj

/
uo, (13)

where uo, Ro and no represent the uncertainty of the data
o, the neighborhood region within certain distance do from
the outlier o, and the number of the normal data within the
region Ro, respectively. In the simulations, we set do = 0.50
[m], which is equal to the length and width of the quadcopter
used in the experiment.

Similar to the evaluation of the shape estimation error, we
performed a t-test for the 50 simulations by comparing the

TABLE II: Results of t-tests comparing the GPIS and the
robust GPIS with respect to shape estimation error. The
degree of freedom is 98 in all cases. (∗∗: p < 0.01)

p-value

Square 7.7E-11∗∗

Circle 7.7E-9∗∗

Cross 1.2E-9∗∗

TABLE III: Results of t-tests comparing the GPIS and the
robust GPIS with respect to false-positive contact detection.
(∗∗: p < 0.01)

p-value

Square 1.4E-104∗∗

Circle 2.5E-111∗∗

Cross 8.3E-121∗∗

robust GPIS with the GPIS. The results listed in Table III
reveal significant differences between the robust GPIS and
the GPIS in terms of false-positive contact detection, since
the p-values are all less than 0.01.

Therefore, for all the prepared objects, our algorithm could
detect false-positive contacts more clearly than the GPIS.

VI. EXPERIMENT

In this section, we will demonstrate the use of the algo-
rithm through experiments using a quadcopter, specifically,
a Parrot AR.Drone 2.0. We introduce the experimental con-
figuration and conditions, as well as the omni-directional
contact detection using the accelerometers implemented in
the experiment. We then present the experimental results.

A. Experimental configuration and conditions

The position of the quadcopter was observed using an
OptiTrack Prime 17W motion-capture system (Natural Point,
Inc., Corvallis, OR) operating at 200 Hz. In the experi-
ment, the ground-truth shape of the 3D object is obtained
by placing markers at the vertexes of the polygons that
compose the object surfaces. Moreover, the object shape is
considered in the ground-fixed coordinate system. Therefore,
translation and rotation were not considered when comparing
the estimated shape with the true object shape.

The acceleration and attitude were measured using
mounted sensors operating at 200 Hz. The quadcopter was
controlled using a personal computer (PC) with an 8-core
Intel Core i7 (2.80 GHz) processor, 32 GB of RAM,
and a joystick (Extreme 3D Pro, Logitech, Inc., Lausanne,
Switzerland). The measurement data and control signals were
exchanged between the PC and the quadcopter via WiFi
communication.
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Fig. 6: Estimated shapes of 2D objects (left), predicted mean (center), and uncertainty of data (right) when applying the
GPIS methods. The dashed lines, black dots, and circles represent the real object shapes, outliers of contact points, and
outliers of internal points, respectively.



TABLE IV: Experimental conditions

Variable Symbol Value

Threshold of contact detection [G] - 0.6

Thickness parameter [m] din 0.1

Number of observed points n 2.7×103

Number of test points nt 5.4×105

Initial value of variance of Gaussian kernel - 0.252

Initial value of shape parameter α 2.0

Initial value of inverse scale β 4.0

The exploration region Q is given by

x ∈ Q := {x | −4 ≤ x1 ≤ 4,−2 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 2},

where x1, x2, and x3 represent the longitudinal, transverse,
and vertical axes, respectively.

We controlled the quadcopter using the joystick, which
allowed us to collect as much contact data as possible in Q
at 25 Hz while collecting non-contact data as uniformly as
possible at 0.5 Hz. The limitations imposed by the battery
capacity forced us, for each experiment, to perform five
flights of 8 min each.

To validate the effectiveness of our algorithm, we gener-
ated some ground truth outliers by applying a gust of wind
in some regions. We conducted two flights with artificial
pertubations and prepared two observed data sets combined
with the other four flights without artificial pertubations. The
initial values for the hyperparameters used with the GPIS
methods are listed in Table IV.

B. Omni-directional contact detection using accelerometers

This subsection introduces omni-directional contact detec-
tion based on the acceleration of the quadcopter. Based on the
measured acceleration, the shape potential value is obtained
using

yi =


0, if ‖B âi‖ > a0

1, otherwise

,

where B âi and a0 represent the acceleration of the robot
in the body-fixed coordinate system B and the positive
threshold to detect the transition state from non-contact to
contact, respectively.

The flowchart of the contact detection is shown in Fig.
7. If yi is equal to zero and its true value y∗i is equal to
one, the data i is the false-positive contact data. If yi is
equal to one and y∗i is equal to zero, the data i is the false-
negative contact data. The occurence of these data depend
on the the threshold a0. If a0 is set too low, false-positive
contact detection can occur easily since sudden acceleration
and deceleration can be detected as false-positive contacts. In
the opposite case, false-negative contact detection can occur.
In this paper, we focus on the false-positive contacts since
the false-negative contacts have much less influence on the
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Fig. 7: Flowchart of omni-directional contact detection. n+
and n− represent the number of contact and external points
and the number of internal points, respectively.

false-positive contacts. We searched for the minimum value
of a0 by trial and error, considering that the number of false-
positive contacts is as small as possible.

Furthermore, the outward normal vector on the surface is
estimated by

n̂i =


E âi
‖E âi‖ , if yi = 0

0, otherwise

, (14)

where E âi represents the acceleration of the robot in
the ground fixed coordinate system E. Acceleration with
mounted sensors is observed in the body-fixed coordinate
system B, such that E â in Eq. (14) is converted from
E âi = R(φ̂)R(θ̂)R(ψ̂)B âi, where R, φ̂, θ̂, and ψ̂ represent
the rotation matrix, and the measured values of the roll, pitch,
and yaw angle, respectively.

Using the center of gravity of the robot and the estimated
normal vector, we approximated a contact position xc, as
shown in Fig. 8. Consider a circumscribed cylinder to the
quadcopter with the radius r and the height h. If one of the
planar components of the estimated vector n̂i is largest, the
contact position is calculated by xci = xi − rn̂i. Otherwise,
the contact position is calculated by xci = xi − hn̂i.

Because the internal points of the object cannot be ob-
tained directly from the contact, we estimate the position of
the internal point xin, as shown in Fig. 8. Only if y(x) = 0,
the position of the internal point and its potential value
are calculated as xin = xc − dinn̂(x) and y(xin) = −1,
where din represents the thickness parameter determined
by the minimum thickness of the object. The training data
was produced by merging the contact, external, and internal
points while the test data was set on a grid with an interval
of 0.05 [m].
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Fig. 8: Estimation of contact and internal points. When the
robot collides with the object, a contact point (colored dot)
is estimated using the center of gravity (cross), the estimated
vector (arrow) and the circumscribed cylinder to the robot.
The internal point (circle) is estimated on the extension line
through the center of gravity of the robot and the contact
point.

C. Shape estimation error

The results of shape estimation when applying the GPIS
methods are shown in Fig. 9.

As shown in Fig. 9(a), the shape of the 3D construction
could be roughly captured when applying GPIS. However,
surfaces were generated at points sufficiently far from the
construction. The predicted mean values of the shape poten-
tial function were all zero around the outliers. In contrast,
the robust GPIS was able to avoid the incorrect generation
of surfaces around the outliers, as shown in Fig. 9(b). This
result indicates that the predicted mean values of the shape
potential function were sufficiently greater than zero around
the outliers.

Furthermore, the shape estimation errors computed by Eq.
(12) when applying the GPIS methods are listed in Table V.
The results indicate that the use of the robust GPIS incurred
smaller errors than the GPIS.

D. False-positive contact detection

This subsection focuses on the results of false-positive
contact detection when applying the GPIS methods.

The distribution of the uncertainty of data, shown in Fig.
9(a), indicates that the uncertainty around the outliers was
as small as that around the normal data with the application
of GPIS. In contrast, we can confirm that the uncertainty
around the outliers in Fig. 9(b) could be distinguished very
clearly when our algorithm was applied.

To evaluate the false-positive contact detection of the GPIS
methods, we evaluated false-positive contact detection for
each outlier using Eq. (13). In the experiment, we regarded
any detected contact points which were 0.5 meters or more
from the object as being outliers. This value was equivalent
to the length and width of the quadcopter.

TABLE V: Mean error of the estimated shapes

Algorithm GPIS Robust GPIS

Experiment#1 0.10 m 0.07 m

Experiment#2 0.12 m 0.07 m

TABLE VI: False-positive contact detection

Algorithm GPIS Robust GPIS

Mean values 0.96 0.045

The mean values for eight outliers in the two experiments
are listed in Table VI. The results show that the mean value
obtained when applying the GPIS were almost equal to
one, which indicates that the GPIS could not distinguish
between the outliers and the normal data. In contrast, the
mean values were much smaller than one, which indicates
that our algorithm could very clearly distinguish the outliers
from the normal data.

E. Discussion

In this subsection, we discuss the usefulness of the false-
positive contact detection. Consider active object exploration
[35]–[38] with false-positive contact data. In this problem,
the outliers might degrade any prediction, resulting in in-
efficient exploration since robots might excessively explore
some areas around the incorrect surfaces. Moreover, false-
negative contacts could degrade the efficiency of the object
exploration although they were not considered in the present
study. If contacts were not detected at the surface, the GPIS
methods could predict that no surface exists around the false-
negative contacts. As a result, those locations were difficult
to sample when applying Bayesian optimization [39]. To deal
with this issue, we can remove the outliers based on our false-
positive contact detection. To apply our algorithm to active
object exploration, we should reduce the amount of observed
data using a sparse Gaussian process regression methods as
described in [40], [41].

Our future work will aim to improve the contact localiza-
tion in our experimental system. In a more complex scenario
such as some concave formations, multiple contacts might
occur at different locations on the quadcopter. In such a
situation, contacts are detected around the inside part of
the corners because the current system estimates only one
contact position at any one time using the resultant force of
multiple contacts. As a result, the estimated shape around the
corner tends to be rounded. To overcome this issue, more
precise contact localization should be implemented using
the methods described in [42], [43]. In addition, we should
extend our contact detection to handle multiple contacts, as
proposed by Sommer et al. [44].

In this study, we assumed that the position of the quad-
copter is accurate. However, in real environments, it is
necessary to consider the uncertainty of localization in the
shape estimation. To address this issue, we aim to eliminate
the assumption by combining the GP model with the input



(a) GPIS (b) robustGPIS

Fig. 9: Estimated shapes (top), predicted mean (middle), and uncertainty of data (bottom) when applying the GPIS methods to
a 3D construction. The circles and bold lines represent the false-positive contact data and the true object shape, respectively.
The cross-sections are placed in order to visualize the distribution of each value.

noise proposed by Girard et al. [45].
It would be interesting to combine our contact detec-

tion with sensor modalities other than an accelerometer.
Moreover, we could explore applications other than shape
estimation when using vision sensors.

VII. CONCLUSION

In this paper, we have proposed an approach for ob-
ject shape estimation based on touch with omni-directional
contact detection using accelerometers. Because our contact
detection method tends to induce a degree of uncertainty due
to the presence of false-positive contact data, we proposed
a robust shape estimation method capable of handling such
false-positive contact data. We confirmed that our algorithm
could reduce shape estimation errors caused by false-positive
contact data through simulations and actual experiments
using a quadcopter. Moreover, our algorithm could dis-

tinguish false-positive contact data more clearly than the
GPIS, suggesting that false-positive contact detection which
is possible with our proposed algorithm can be useful for
other applications, such as active object exploration.
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APPENDIX

This appendix introduces how the parameters α and β
affect the Student’s t- and inverse gamma distributions in Eq.
(6). The Student’s t-distribution for different combinations
of α and β is shown in Fig. A.1. Based on the results, the
Student’s t-distribution gets heavy-tailed when α becomes
small or β becomes large.

The inverse gamma distribution is given by

InvΓ(σ2 | α, β) =
βα

Γ(α)
(σ2 )−(1+α) exp

(
− β

σ2

)
.

The inverse gamma distribution for different combinations
of α and β values is shown in Fig. A.2. From the result, the
noise variance, σ2, becomes large with high probability as
α becomes small or as β becomes large.
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Fig. A.1: Student’s t-distribution
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Fig. A.2: Inverse gamma distribution
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