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controllers [13, 14] and impedance adaptation algorithms via 
gait velocities [15]. The interaction force/torque between the 
exoskeleton and human lower limb has also been used to 
estimate the subject’s participation level during gait 
rehabilitation. Jezernik et al. [8] developed gait pattern 
adaptive algorithms to online optimize the reference 
trajectory of the gait orthoses based on the patient’s walking 
capability. Impedance adaptive controllers based on 
interaction force/torque measurement have also been 
reported in [9, 10]. The adaption algorithms presented in [8] 
and [10] rely on the models of the exoskeleton and/or the 
biomechanical properties of the human limb attached. The 
complexity of modeling work and the possible modeling 
inaccuracy make such controllers less practical in clinical 
scenarios. 

Fuzzy logic provides an option for controlling 
complicated or nonlinear systems with uncertainties. Fuzzy 
logic controllers are developed based on system behaviors 
and usually do not require models of the systems. Benefitted 
from such properties, they have been widely used in the field 
of rehabilitation robotics, where the human factor is 
commonly regarded to be difficult to model accurately. 
Chang et al. [16] reported an adaptive self-organizing fuzzy 
sliding mode (SM) trajectory control system for a PM driven 
two-degree-of-freedom serial robot manipulator. Xie and 
Jamwal [17] developed an iterative fuzzy controller for a 
pneumatic muscle (PM) driven parallel ankle rehabilitation 
robot. Besides trajectory tracking control, fuzzy logic has 
also been utilized to control impedance/admittance 
magnitudes of various robotic rehabilitation systems. Tran et 
al [15] developed a fuzzy logic-based variable impedance 
controller for a lower limb exoskeleton. Different fuzzy rules 
have been developed for the stance and swing phases to 
achieve optimized control results. Yang et al. [18] 
implemented a fuzzy logic tuner for the impedance controller 
of a cable-driven upper limb rehabilitation robot. Ayas and 
Altas [19] applied fuzzy logic adaptive admittance control to 
a parallel ankle rehabilitation robot. The fuzzy impedance 
adaptation controllers reported in [15, 18] only utilized 
kinematic data as inputs to the fuzzy logic. The admittance 
controller in [19] only used the interaction force as the input. 

The GAREX platform (shown in Fig.1) and the detailed 
MIMO sliding mode control system that enables both task-
specific gait training and the control of the joint compliance 
have been introduced in [20]. The controllable compliance 
allows the control of the assistance level provided by the 
exoskeleton. To realize the assist-as-needed control strategy, 
a specific algorithm is essential to assess the active 
participation or effort of wearers and adapt the amount of 
assistance accordingly. We sought to establish a fuzzy logic 
compliance adaptation (FLCA) controller to achieve this 
purpose. A fuzzy logic compliance adaption controller 
benefits this nonlinear system simultaneously with the 
capability of dealing with multivariable inputs. This method 
also allows designing the adaptation law using predefined 
training principles directly from clinical practice in natural 
language terms. Using this compliance controller, the assist-
as-needed training has been realized, and we demonstrate the 
contributions of this work as following: 1) this is a novel 
approach to establish a cascade control system with fuzzy 
logic and sliding mode control for PM driven rehabilitation 
robots; 2) proposed fuzzy logic controller is model-free and 
robust. 

This paper is organized in the following order. First is the 

presentation of the improved hardware design with the 
human-exoskeleton interaction force sensing instrument-
tation. This is followed by the development process of the 
fuzzy logic compliance adaption algorithm. The next section 
will be on the experimental validation of the system with 
three healthy subjects. The discussion and conclusions are 
presented at last. 

II. METHODS 
A. GAREX System 

The GAREX system has been previously reported in [20]. 
Four 3/5 analog valves (FESTO: MPYE-5-1/8-HF-010-B) 
were adopted, similar to that reported in [6], two for each 
actuated joint. The pneumatic flow through the valve can be 
controlled by changing its orifice area which depends on the 
input voltage. Two magnetic encoders (AMS: AS5048B) 
and four pressure transducers (FESTO: SPTE-P10R-S6-
V2.5K) are adopted to feedback joint space kinematics and 
actuator pressures for the control system. A MyRIO platform 
by National Instrument is employed for data acquisition and 
real-time control processing. MyRIO consists of one micro-
processor and one FPGA module. Data acquisition and 
signal processing are performed through the MyRIO’s 
FPGA module at a rate of 1 kHz. The real-time controller 
runs on the micro-processor at a rate of 100 Hz. A custom 
printed circuit board was also designed for physical 
hardware interfacing the MyRIO. 

Healthy subjects with no current lower limb injury were 
recruited to be involved in the experiments. Ethical approval 
for the experiments was granted by the University of 
Auckland Human Participants Ethics Committee (014970). 
Written informed consent had been obtained from all the 
participants before conducting any experiments. 

B. Interaction Torque Sensing 

Interaction force/torque measurements have been utilized 
for the assessment of subjects’ effort or active participation 
during robotic gait rehabilitation. A 6-axis load cell was 
employed in this study for human-robot interaction force 
sensing. It was installed between the shank segment of the 
exoskeleton and the brace for the human shank, as shown in 
Fig.1. Since the load cell is the only link between shank 
segments of the exoskeleton and the training subject, the 

 
Fig 1. The developed GRAEX system and the illustration of the treadmill-
based walking tests. The 6-axis load cell is implemented at the shank. 



sensed forces and torques are thus the interactive forces and 
torques. In this application, only the interaction knee joint 
torque in the sagittal plane is of the researcher’s interest. The 
joint torque can be calculated simply by the product of the 
interactive force along the y-axis and its moment arm relative 
to the sagittal plane rotation of the knee joint. 

C. Relation of Interactive Torque and Subject Participating Level 

The sensed interaction forces have been used as an 
indication of the subject’s effort during rehabilitation 
training [9]. Higher interaction force was regarded as less 
effort from the subject to walk in a desired gait pattern. 
Hence, to ensure the desired gait pattern can be achieved the 
higher impedance should be induced. In contrast, lower 
interaction force indicated more effort from the subject to 
synchronize his/her leg movements to the desired trajectories 
of the rehabilitation robot. Hence, lower impedance is 
adapted. 

Pilot experiments were designed to investigate how a 
subject’s effort is reflected by the various sensor 
measurements of the system. The experiments were 
conducted with a neurologically intact subject (male, 185 cm, 
100 kg) with no lower limb injury. The MIMO sliding mode 
controller presented in [20] was adopted to control the 
exoskeleton. Both the hip and knee joints of GAREX were 
actively controlled to guide the subject to walk on the 
treadmill at the speed of 1.5 km/h. The average PM pressures 
of the two actuated joints were regulated to 270 KPa based 
on the previous experience. Different patients’ capabilities 
or participating levels were simulated through three 
experiments. In the first experiment, the subject was 
requested to actively engage the gait training by following 
the robotic guidance to walk in the desired trajectory. The 
second experiment simulated the no effort scenario. The 
subject tried to relax the leg attached to the exoskeleton as 
much as possible let the exoskeleton provide the torque 
required to produce the reference gait pattern. In the third 
experiment, stiff leg or undesired leg movements (spasms) 
were simulated. The subject was asked to slightly oppose the 
robotic guidance during the swing phase of every gait cycle. 
While this was subjective, it still gave the pilot data 
necessary to develop our controller. The experimental results 
of the three experiments are shown in Fig.2. 

To compare the differences of the three experimental 
scenarios, root means square (RMS) values of the trajectory 
tracking error and the interaction torque were calculated for 
every gait cycle period during the experiments and shown in 
the result plots, the results showed the position tracking error 
for three experiments are around 0.1 rad, 0.12 rad, and 0.19 
rad, respectively. These results indicated the GAREX system 
performed a comparable, if not better than, position tracking 
to existing gait rehabilitation devices [21-24]. It can be 
summarized that the subject’s active participation or effort 
leads to better trajectory tracking accuracy and less RMS 
interaction torque over a gait cycle period compared to the 
experiment when the subject tried to relax and make no effort. 
On the other side, when the subject deliberately opposed the 
guidance of the exoskeleton, a larger overall trajectory error 
has resulted. The robotic system hence increased the control 
effort to drive the knee joint back to the desired trajectory, 
which thus led to higher interaction torque. 

 
Fig 2. Experimental results of measured human-robot interaction 
forces in three designed cases under a constant pressure at 270 KPa. In 
these figures: (a) Desired and actual knee joint trajectories versus time 
plot; (b) Plots of trajectory error and RMS trajectory error over every 
gait cycle; (c) Plots of interaction torque and RMS interaction torque 
over every gait cycle. 
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D. FLCA controller 

The goal of the adaption algorithm is to encourage active 
participation of training subjects by only providing as much 
assistance as he/she needed to walk in desired trajectories. 
From the experiments conducted in the last section, the 
general principles for compliance adaptation can be 
summarized as follows (the speed of treadmill is set at 1.8 
km/s, and the stride frequency is around 2.2 s/gait cycle): (1) 
low interaction torque with low trajectory error. This case 
demonstrates that the subject possesses good walking 
capability and less robotic assistance is needed. Let the 
compliance level stay to where it is; (2) low interaction 
torque with high trajectory error. This case demonstrates that 
the subject cannot walk in the desired pattern and more 
robotic assistance is needed. Compliance level needs to be 
reduced for more guidance; (3) high interaction torque with 
low the trajectory error. This case demonstrates that the 
subject is going great with high robotic assistance. 
Compliance level should be reduced to encourage more 
participant of the subject; (4) high interaction torque with 
high the trajectory error. The case demonstrates that the 
subject cannot walk in the desired pattern but the exoskeleton 
has already been providing a lot of assistance. Let the 
compliance level temporally stay where it is. 

It is understood that any change in compliance will 
influence both the interaction torque and the trajectory 
tracking error. The change in interaction torque or trajectory 
error will affect each other. A fuzzy logic compliance 
adaptation controller is a good candidate for such a complex 
system and hence developed to implement the AAN 
rehabilitation concept. The block diagram of the control 
system is presented in Fig.3. 

The frequency of the compliance adaptation processing 
was set to be the gait cycle frequency of the exoskeleton. 
There are two main reasons for this decision. Firstly, the 
compliance adaptation is based on the subject’s performance 
over a past period rather than a certain instant. Hence, it is 
not necessary to run the compliance adaptation controller at 
the same frequency as the MIMO sliding mode controller 
(100 Hz). Secondly, the trajectory error and interaction 
torque distributions over a gait cycle are not homogeneous. 
If the sampling periods contain different parts of a gait cycle, 
it is difficult to find standards to evaluate the subject’s effort 
during those sampling periods. Hence, it is a good practice 
to set the sampling period to be integer multiples of the gait 

 

 

 

 
Fig 4. The membership functions of the input variables. (a) The RMS 
value of the interaction torque (N/m) over a gait cycle; (b) The RMS 
value of the tracking error(rad) over a gait cycle; (c) The change of the 
tracking error between the current and previous gait cycle; (d) The 
output membership function of the FLCA controller. 
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Fig 3. The fuzzy compliance adaptive control system block diagram of GAREX. In this figure, ࢏ = ,ࡲ ࢐ and (flexion, extension) ࡱ = ,ࢎ  ࢐࢏ࢁ ;(hip, knee) ࢑
is the input to the plant or the voltages fed into the corresponding analogue valves; ࢑_࢚࢔࢏࣎ is the interaction torque of the knee joint; ࢐ࡼ is the average 
pressure of the antagonistic PMs of the corresponding joint; parameters with the subscript ࢊ indicate desired values;  and ∆ࢊ࢐ࡼ is the increment to the 
desired average pressure of the antagonistic PMs of the joints. 
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cycle period. In this application, the sampling period was 
chosen to be the same as the gait cycle period. 

There are three major stages of the fuzzy logic controller 
implementation: 
1. Define the inputs/outputs: As shown in Fig. 3, the RMS 
values of the knee joint trajectory error ( ௞ߠ ) and the 
interaction torque (߬௜௡௧_௞) of the past gait cycle are two of the 
inputs of the fuzzy logic controllers. The difference between 
the RMS trajectory errors of the current and the last gait 
cycles is calculated as the third input of the controller, shown 
in (1). ∆ߠ௞ = ௞(௡)ߠ −  ௞(௡ିଵ) (1)ߠ

this input is utilized to reflect if the system’s trajectory 
tracking performance is improving. The output of the 
controller is the increment (∆ܲ௞ௗ ) to the desired average 
pressure of the knee joint. 
2. Perform fuzzification: Fuzzification was performed to 
acquire input and output membership functions. The 
fuzzification of the inputs and outputs was through the 
membership functions shown in Fig.4. The crisp input and 
output values are converted into linguistic variables and 
membership values. The fuzzy set of each input or output is 
determined using the membership functions which are 
normally distributed around its center. There are three 
linguistic variables or membership functions (low, medium 
and high) each for the trajectory error and interaction torque 
inputs. The third input variable (∆ߠ௞) and the output variable 
( ࢊ࢐ࡼ∆ ) each can be further divided into five linguistic 
variables, which are BD (big decrease), SD (small decrease), 
NC (no change), SI (small increase) and BI (big increase). 
The center value of the Gaussian-shaped membership 
functions was tuned and finalized through experiments with 
the developed FLCA enabled control system. For certain 
input values, the membership degrees for the linguistic 
variables of each input can be calculated with membership 
functions as ߤ௔_௜  (݅ = 1, 2, 3), ௕_௜ߤ  (݅ = 1, 2, 3), ௖_௜ߤ  (݅ =1, 2, 3, 4, 5) for 3 levels of the inputs of the trajectory error, 
and interaction torque, and 5 levels of change in trajectory 
error, respectively. 
3. Inference process: This process generates the 
membership degrees of the output linguistic variables based 
on the fuzzified inputs. The key to the inference process is 
the development of the fuzzy rules. The fuzzy rules are to 
reflect the expectation of compliance adaptation by linking 
the linguistic variables with a combination of input linguistic 
variables. Table I exhaustively listed the fuzzy output 
generated by all 45 input combinations with five sub-tables. 
The fuzzy rules were first developed by the four principles 
stated at the beginning of this section and further tweaked 
through experiments. The well-known Mamdani’s max-min 
method [25] is used for the inference process. From Table I, 
it can be seen that a certain amount of combinations of input 
linguistic variables that lead to the same output linguistic 
variable. To calculate the membership degree of the output 
linguistic variable, the membership degree resulted by each 
of the possible combinations is calculated first as in (2). ߤௗ_௜(௝) = ,௔_௫ߤ)݊݅݉ ௕_௬ߤ ,               (௖_௭ߤ

with (݆ = 1,2, … , ݊) 
(2) 

where ݊  is the number of possible combination of input 
linguistic variables that lead the ݅th output linguistic variable; ߤ௔_௫ , ௕_௬ߤ  , ௖_௭ߤ   are the membership degrees of the input 

linguistic variables in that specific combination. The 
minimum of ߤ௔_௫ ௕_௬ߤ , ௖_௭ߤ ,  is calculated and assigned to ߤௗ_௜(௝) .The membership degrees of the output linguistic 
variables are calculated as the maximum of all the possible 
values (ߤௗ_௜(௝)) in (3). ߤௗ_௜ = )ݔܽ݉ ∀݆ ∈ (1,2, … ,  ௗ_௜(௝)) (3)ߤ(݊

The defuzzification stage maps the conversion from the 
degrees of the output membership function to the non-fuzzy 
controller output. The center of area method is used for this 
process. The controller was developed with the help of the 
Fuzzy System Designer with the LabVIEW software 
package. The designed FLCA controller was programmed in 
LabVIEW and run on the MyRIO real-time control platform. 
 

TABLE I. The rule table for the FLCA. 

 

Note: L: Low, M: Medium, H: High, grids shaded in different colors 
represent different levels of the inputs ∆ߠ௞_ோெௌ  and ߬௜௡௧_௞ , light grey for 
“BD”, dark grey for “SD”, yellow for “NC”, blue for “SI”, and green for 
“BI”.  

III. EXPERIMENTS AND RESULTS 

Experiments were conducted with three healthy subjects 
(Subject A: male, 172 cm, 62 kg; Subject B: male, 185 cm, 
100 kg; Subject C: male, 171 cm, 72 kg) with no lower limb 
injuries. Written consents have been obtained from all the 
participants before the experiments. To conduct the 
experiments, the subject was first fitted to GAREX which 
was adjusted according to the subject’s anthropometric data. 
The subject performed a trial walk with robotic guidance for 
5 minutes, so he could get used to the assisted walk with 
GAREX. After a rest of 5 minutes, the actual compliance 
adaptation experiments would be conducted. The subject 
was requested to behave differently in three experiments 
with GAREX. In the first experiment, the “Active” case, 
subjects were required to actively follow the guidance of the 
exoskeleton to walk in the desired trajectory. The experiment 
is designed to simulate the rehabilitation training scenario in 
which a patient makes a good effort to actively participate in 
the training. In the second experiment, the “Relax” case, 
subjects were required to try to fully relax the leg attached to 
the exoskeleton and let GAREX provide the torque needed 
to produce the desired gait pattern. This experiment was 
designed to simulate the gait rehabilitation scenario when a 
patient is not capable of making active participation. In the 
last experiment, the “Oppose” case, subjects were asked to 
oppose the guidance as much he could comfortably do, 
during the swing phase; meanwhile, he was still able to walk 
on the treadmill safely. This experiment aimed to simulate 
patients with stiff joints or spasm during robotic 
rehabilitation. Each of the experiments lasted for 3 minutes 
and in between two experiments there was a rest period of 3 
minutes. In all the experiments, the desired gait cycle period 
was set to 2.2 seconds. 

The experimental results of the three participants were 
shown in Fig.5 for Subject A, Subject B and Subject C. For 
comparison purposes, the results of the experiments 

ݐ݊݅߬ ܵܯܴ_݇_  
ܵܯܴ_݇ߠ  

L M H L M H L M H L M H L M H 

L SD NC SI NC NC SI NC SI BI NC SI BI SI SI BI 

M SD SD SI SD NC SI SD SI SI NC SI SI NC SI BI 

H BD SD NC BD SD SI BD NC SI SD NC SI NC SI SI 



conducted by the same subject are shown in the same figure. 
Each of the figure contains three subplots. The output of the 
FLCA controller is represented by the ௞ܲௗ  plot. The 
controller inputs, which are the gait cycle RMS trajectory 
error and the gait cycle RMS interaction torque, are also 
shown in the figures. To ensure the readability of the plots, 
only 80-second segments of experiments are plotted. For 
each experiment, the starting point of the desired average 
pressure was chosen differently so the compliance adaptation 
processes could be visualized. 

As stated in the adaptation rule, the compliance is 
supposed to be high when the active participation by the 
subject is detected. On the other hand, if the subject is not 
capable to follow the desired gait pattern. The compliance is 
supposed to be decreased to constrained subject's lower limb 
to the desired trajectory. As shown in Fig.5 subplots (a), after 
stable compliance had been achieved, actively following the 
desired trajectory resulted in the highest compliances (lowest 
average PM pressure) for all the subjects. Compared to 
actively following, the experiments with subjects relaxing 
their legs attached to the exoskeleton resulted in lower 
compliance levels. The lowest compliance was resulted by 
subjects deliberately opposing the robotic guidance. Such 
experimental results indicate that the control system 
performed to the overall expectation. 

From the gait cycle trajectory error in Fig.5 subplots (b), 
it can be obtained that the magnitude of the trajectory error 
is generally positively correlated to the compliance level. 
However, the correlation is not obvious for the "Oppose" 
experiments conducted by Subject B and C. There are also 
relatively large magnitude variations in the "Oppose" 
experiments conducted by Subject A and Subject B, as well 
as the "Relax" experiment by Subject A. Different 
experiments conducted by the same subject were also 
compared. For Subject A and Subject B, the best overall 
trajectory tracking performance achieved in "Active" 
experiments, followed by the "Relax" experiments. The 
"Oppose" experiments scored the largest overall tracking 
error. However, for Subject B, no obvious difference in 
tracking performance could be identified. These results 
indicated that it is not practical to perform compliance 
adaptation only based on kinematics feedback.  

Compared to the gait cycle RMS trajectory error, as shown 
in Fig.5 subplots (c), it is even less likely to only use the 
interaction torque to perform compliance adaption. Besides, 
there are no obvious differences in ߬௜௡௧_௞ between the three 
experimental conditions of the same subject. However, the 
inter-subject comparison shows some obvious differences. 
For Subject A, after the compliance levels adaption had been 
settled, the overall interaction torque in the "Active" 
experiment is much lower than the other two experiments. 
For Subject C, the highest interaction torque was achieved 
by the "Active" experiment.  

Through the analysis, it can be concluded that the 
controller can assess if subjects are actively participating in 
the trial and adjust the compliance level regardless that 
different subjects may produce different input patterns when 
trying to make a similar effort. 

The overall control system fore-mentioned in Fig.3 is a 
cascade control structure. The FLCA controller’s output 
(ܲ௞ௗ) is one of the inputs for the MIMO SM controller. It is 
necessary to investigate if the MIMO sliding mode controller 
can track the desired average PM pressures. The tracking 
results of the three experiments conducted by Subject B are 

 
Fig 5. The experimental result plots of three subjects. In all figures: (a) 
The desired knee joint average PM pressure (measurement of 
compliance) versus time plots. (b) The gait cycle RMS trajectory error 
versus time plots. (c) The gait cycle RMS interaction torque versus 
time plots. 
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shown in Fig.6. As can be seen from the first two plots of the 
figure, the system was able to closely track the adapted ܲ௞ௗ. 
However, for the “Oppose” case, the system was able to 
track the desired PM pressure for the first 20 seconds. After 
20 seconds, the controller was unable to deliver satisfactory 
tracking performance. For the last five seconds, the control 
system managed to bring the average PM pressure back to its 
desired magnitude. The MIMO SM controller tuning could 
be one of the causes of the suboptimal control system 
performance. The MIMO SM controller needs to control the 
angular trajectory and the average PM pressure of an 
actuated joint simultaneously. Considering the safety and 
nature of robotic gait rehabilitation, angular trajectory 
tracking needs to be prioritized among the two control 
objectives. This was implemented by the tuning parameters 
that let angular trajectory tracking take the dominant role in 
the overall control actions. As a result, the large trajectory 
error in the “Oppose” experiment led to significant control 
action to drive the knee joint back to its desired position. The 
control action to maintain the average pressure thus became 
less effective. However, after the 90-second mark of Fig.6 
(c), the desired average pressure started decreasing, which is 
an indication that the subject’s effort of opposing the 
guidance may have reduced. The angular position tracking 
could thus also be improved and the better average pressure 
regulation has resulted. 

It can also be observed that the actual average PM pressure 
oscillated just below the desired value, even when the 
tracking was effective. Within the same gait cycle, the 
demand of control action to track the gait trajectory varies. 
For the knee joint, the trajectory over the swing phase is 
much more challenging for the controller than the stance 
phase. The average pressure tracking performance is 
somehow affected and hence the oscillations happen. Apart 
from the controller tuning strategy, the limited control 
system bandwidth could also a cause of imperfect 
performance. 

IV. DISCUSSION  

In this study, a fuzzy compliance adaptation controller 
was integrated with the existing MIMO sliding mode 

controller to implement the ANN concept with the GAREX 
system. A fuzzy logic compliance adaption controller is 
demonstrated to be suitable for this application due to 
multivariable inputs. It also enables the implementation of 
the adaptation law based on predefined training principles 
directly from clinical practice in natural language terms. The 
fuzzy controller adjusts the knee joint compliance of the 
exoskeleton based on the subject participation assessment 
through the gait kinematics and knee joint interaction torque. 
One of the significant benefits of FLCA controller is that it 
does not require the model of the exoskeleton or the human 
biomechanics; therefore, it could be more practical in clinical 
settings. 

The developed FLCA control system was experimentally 
validated with three healthy subjects. Each subject 
participated experiment to simulate three different 
capability/effort levels of patients with gait problems. The 
experimental results indicated that the FLCA control system 
was able to distinguish the capability/effort levels and adapt 
the knee joint compliance of the exoskeleton accordingly. 
Experimental results also reveal that the MIMO sliding mode 
controller was able to regulate the average PM pressure of 
the knee joint to the reference provided by the FLCA 
controller except when the subject was opposing the robotic 
guidance to create significant trajectory error. 

Although effective compliance adaption has been 
successfully achieved, there are still potential improvements 
that could be made to the control system. In terms of the 
controller implementation, the stance and swing phase of a 
gait cycle could be distinguished, because the torque s of the 
two phases are considerably different. It would also be more 
meaningful to investigate the interaction torque of the two 
phases separately. The ground reaction force sensor can be 
used to distinguish the two phases. It can also be utilized 
together with the 6-axis load cell to more accurately estimate 
the knee joint interaction torque during the stance phase. 
With more accurate joint torque mapping over the entire gait 
cycle the fuzzy controller could thus be updated for better 
control accuracy. 

V. CONCLUSIONS AND FUTURE WORK 

To summarize, this study proposes a model-free FLCA 
controller to form a novel cascade system. To the author’s 
best knowledge, this is the first attempt to implement fuzzy 
logic-based compliance adaption on rehabilitation robots 
driven by PM actuators. Experiments were conducted with 
three healthy subjects and results showed that the FLCA 
controller could effectively distinguish the capability/effort 
levels and adapt the knee joint compliance of the exoskeleton 
accordingly. During experiments in three walking sceneries 
the maximum angular deviations from desired joint angle 
trajectories is 0.19 rad. This performance is consistent with 
the other gait rehabilitation orthoses such as Lokomat, for 
which the maximum trajectory tracking errors during the 
position control mode must be less than 15o [24]. The results 
also indicated FLCA and MIMO sliding mode controllers 
collaborated well as a system to put the ANN concept into 
practice with the GAREX. 

Further improvements to the experiments are also possible. 
Interviews with the participants revealed that the “Active” 
experiments were the easiest to conduct for all of them. They 
felt walking with GAREX is quite similar to natural walking. 
All the subjects reported that it is difficult to fully relax the 

 
Fig 6. The desired and actual average PM pressures of the knee joint versus 
time plots for the three experiments conducted by Subject B. (a) “Active” 
experiment; (b) “Relax” experiment; (c) “Oppose” experiment. 
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leg attached to GAREX and not participate at all, mainly 
because it is hard to have the robot support the body weight 
during the single stance phase on the attached leg without the 
fear of falling. A possible solution could be the introduction 
of a bodyweight support system. For the “Oppose” 
experiments, it was observed that the magnitudes of 
trajectory error and interaction torque were varied among the 
subjects, because of their differences in strength. In further 
studies, it may be worthy to provide visual feedback to the 
subject during the experiments, so the subjects could better 
follow the researcher’s instructions. This would help 
produce quantified participation levels of the subject for 
more in-depth control performance evaluation. 
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