Robotics and Autonomous Systems 141 (2021) 103786

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

MPTP: Motion-planning-aware task planning for navigation in belief N
space ety

Antony Thomas *, Fulvio Mastrogiovanni, Marco Baglietto
Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Via All'Opera Pia 13, 16145 Genoa, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 31 August 2019

Received in revised form 8 August 2020
Accepted 8 April 2021

Available online 16 April 2021

We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale envi-
ronments. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation
of different approaches. In contrast, TMP for navigation has received considerably less attention.
Autonomous robots operating in real-world complex scenarios require planning in the discrete (task)
space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, a robot
has to reason at the highest-level, for example, the objects to procure, the regions to navigate to in
order to acquire them; on the other hand, the feasibility of the respective navigation tasks have to be
checked at the execution level. This presents a need for motion-planning-aware task planners. In this
paper, we discuss a probabilistically complete approach that leverages this task-motion interaction for
navigating in large knowledge-intensive domains, returning a plan that is optimal at the task-level. The
framework is intended for motion planning under motion and sensing uncertainty, which is formally
known as belief space planning. The underlying methodology is validated in simulation, in an office
environment and its scalability is tested in the larger Willow Garage world. A reasonable comparison
with a work that is closest to our approach is also provided. We also demonstrate the adaptability of
our approach by considering a building floor navigation domain. Finally, we also discuss the limitations

Keywords:

Task-motion planning
Belief space planning
Autonomous navigation

of our approach and put forward suggestions for improvements and future work.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous robots operating in complex real world scenarios
require different levels of planning to execute the assigned tasks.
High-level (task) planning helps break down a given set of tasks
into a sequence of sub-tasks. Actual execution of each of these
sub-tasks would require low-level control actions to generate ap-
propriate robot motions. In fact, the dependency between logical
and geometrical aspects is pervasive in both task planning and ex-
ecution. Hence, planning should be performed in the task-motion
or the discrete-continuous space [1].

In recent years, combining high-level task planning with low-
level motion planning has been a subject of great interest among
the Robotics and Artificial Intelligence (Al) communities. Tradi-
tionally, task planning and motion planning have evolved as two
independent fields. Al planning frameworks such as the Planning
Domain Definition Language (PDDL) [2] mainly focus on high-
level task planning supposing that the geometric preconditions
(e.g., grasping poses for a pick-up task [3]) for the robot motion

* Corresponding author.
E-mail addresses: antony.thomas@dibris.unige.it (A. Thomas),
fulvio.mastrogiovanni@unige.it (F. Mastrogiovanni), marco.baglietto@unige.it
(M. Baglietto).

https://doi.org/10.1016/j.robot.2021.103786
0921-8890/© 2021 Elsevier B.V. All rights reserved.

to carry out these tasks are achievable. In reality, such an as-
sumption can be catastrophic as an action or sequence of actions
generated by the task planner might turn out to be unfeasible at
the controller execution level.

Over the past few years, Task-Motion Planning (TMP) for ma-
nipulation has received considerable interest among the research
community [3-7]. Robot-based manipulation domain calls for
discrete and continuous reasoning to execute the required action
reliably. For example, a simple table top domain requires the
robot to reason at the discrete level to decide the objects to be
picked up and also the order of these high-level actions. The
execution of these discrete actions require continuous reasoning
in the configuration space of the robot to generate appropriate
motions. Yet, a discrete action might turn out to be unfeasible due
to the end-effector’s reachability workspace. This might be due
to the availability of a partial map leading to unmodeled objects
or occlusions leading to unobserved objects or simply because
the robot is too close the target object, rendering a grasp action
impossible. This presents the need for a tight coupling between
task planning and motion planning, enabling an interface for
efficient interaction between the symbolic and geometric layers.
TMP for navigation presents different challenges in comparison
to TMP for manipulation. As such, TMP for navigation has not yet
received much attention and therefore lacks sufficient literature.

https://doi.org/10.1016/j.robot.2021.103786
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2021.103786&domain=pdf
mailto:antony.thomas@dibris.unige.it
mailto:fulvio.mastrogiovanni@unige.it
mailto:marco.baglietto@unige.it
https://doi.org/10.1016/j.robot.2021.103786

A. Thomas, F. Mastrogiovanni and M. Baglietto

Robotics and Autonomous Systems 141 (2021) 103786

Task Planner

Motion Planner\

/s N A

Action applied to
expand the state

...... .
. -

o~ feasble v
S, path -

Action calls motion planner
>

GEntn

Optimal path returned

optl:mal
feasible
path

______ .
.
+* feasible “+
. P
~. path -

Fig. 1. The discrete actions available to the planner are denoted by A = {ay, ay, as, ..

., a,}. Different motion plans are generated for the action that requires

appropriate robot motion via an external module. This module is essentially a motion planner. The optimal path among the feasible motion plans is then selected,
returning the optimal cost to the task planner. The corresponding action and the optimal path is the task-motion plan for changing the task state of the robot from

S; to Siy1.

TMP for navigation essentially involves reasoning about different
objects and their properties, deciding which objects to procure,
selecting high-level actions that satisfy the low-level continuous
motion constraints to navigate to the objects or other locations of
interest, and finally procuring the objects and delivering it to the
respective goal locations subject to task and motion constraints.
For example, consider a robot in an office environment where
it needs to deliver documents for evaluation to the respective
project managers. At the task level, it is required that the robot
first identifies the project in order to navigate to the respective
sections, collect the documents and then deliver them to the
project manager. A task planner computes a plan in terms of
these symbolic actions, subject to minimizing a certain metric.
This metric, for example, might correspond to different types of
action costs or the number of actions. Since we are concerned
with navigation, in this paper we associate the symbolic actions
to their associated motion costs. Certain symbolic actions may not
require robot motions. For example, for collecting a document,
the robot may have to stay at a particular location for a given
amount of time waiting for a human to place the document.
Such actions are assigned a fixed cost. Selecting the best set
of discrete actions for a given objective requires computing the
navigation costs (and other fixed costs) for each of these ac-
tions. Hence motion planning should be interleaved with task
planning to compute the motion costs for each of the respective
discrete actions. Though it can be argued that the motion costs
can be approximated a priori and fed to the task planner, in
large knowledge-intensive domains such an assumption can be
harder to justify, especially in the presence of localization and
map uncertainty. Moreover, real-world scenarios often induce
uncertainties. Such uncertainties arise due to insufficient knowl-
edge about the environment, inexact robot motion or imperfect
sensing. In such scenarios, the robot poses or other variables of
interest can only be dealt with, in terms of probabilities. Planning
is therefore done in the belief space, which corresponds to the
probability distributions over possible robot states. Consequently,
for efficient planning and decision making, it is required to reason
about future belief distributions due to candidate actions and the
corresponding expected observations. Such a problem falls under
the category of Partially Observable Markov Decision Processes
(POMDPs) [8]. Our motion planner is therefore equipped to per-
form planning in partially-observable state-spaces with motion
and sensing uncertainty.

This paper extends the work presented in [9] providing a
comprehensive discussion and an extensive performance evalu-
ation. Specifically, this paper contributes to the literature with a

Motion-Planning-aware Task Planning (MPTP) approach provid-
ing an interface between task and motion planning for navigating
in large knowledge-intensive domains. Such domains require a
robot to reason about different objects and locations to navi-
gate to, subject to minimizing (or maximizing) the navigation
cost (objective function). Our task-motion interface layer facil-
itates this reasoning by communicating the motion feasibility
and the corresponding planned motion costs to the task planner,
synthesizing an optimal plan. To this end, we develop a proba-
bilistically complete Task-Motion Planning (TMP) framework for
mobile robot navigation under partial-observability, embedding
a motion planner within a task planner through an interface
layer. We would like to stress the fact that our implementation is
independent of any particular form of cost function. In this paper,
we use a standard cost function (see Section 4) as the MPTP cost
and compare it with different cost functions in Section 5.

An overview of our MPTP approach is shown in Fig. 1. We
define A = {ay,...,a,} as the finite set of symbolic/discrete
actions available to the task planner. For example, let us again
consider an office setting where a robot is tasked with collect-
ing and delivering documents. In such a setting, some of the
actions include, collect_document- which might correspond
to a human placing the document on the robot and therefore
the robot waiting at a specific location for a certain duration,
deliver_document- similar to collect_document action but
a human picks up the document, goto_region- corresponds
to navigating through the environment. Once an action that re-
quire appropriate robot motions to be generated is expanded by
the task planner, a call to an external library is triggered. The
symbolic parameters are then converted to their corresponding
geometric instantiations. For example, for an action that takes
the robot to a particular cubicle/region, the instantiations would
be the different sampled poses in that cubicle. Once the map
of the environment is obtained, the geometric instantiations can
be pre-sampled. The instantiations give rise to different motion
plans and the best among them is chosen according to a certain
metric. The cost of the selected motion plan cost is then returned
to the task planner as the cost of the corresponding action. The
task-motion plan for changing the task state of the robot from
the state s; to si.1 is the ordered tuple of the action g; and the
corresponding optimal path. For instance, in the office setting
where a robot navigates from one cubicle (s;) to another (si; 1),
the tuple is {goto_region, 7;}. Here, goto_region is the task-
level action @; and t; is the planned trajectory for achieving this
high-level action. This tuple is appended for all the task-level

A. Thomas, F. Mastrogiovanni and M. Baglietto

actions to generate the complete task-motion plan. While our
approach is applicable to any domain that require task-motion
interaction, we establish the key ideas in Section 4 through two
different navigation domains and further validate our approach
in Section 5 using the same.

2. Related work

TMP has emerged as an active research area in the recent
past, with particular focus on robot-based manipulation. Manipu-
lation tasks are often rendered infeasible due to the end-effector’s
reachability workspace. This calls for an integrated TMP approach
to ensure geometric feasibility of high-level tasks.

The genesis of TMP can be credited to Fikes and Nilsson
for their work on STRIPS [10] which further led to the Shakey
project [11]. Initial works on TMP performed task planning first,
synthesizing a sequence of actions to be executed later by a mo-
tion planner. Shakey’s planner performed a logical search first, as-
suming that the resulting robot motion plans can be formulated.
This assumption limits the capability of the robot as the high-
level actions may turn out to be non executable due to geometric
limitations of the environment or the robot or both. [12] inter-
leaves task and motion planning by checking individual high-level
action feasibility using semantic attachments. [13] perform a com-
bined search in the logical and geometric spaces using a state
composed of both the symbolic and geometric paths. The aSyMov
planner described in [13] adopts a combination of Metric-FF [14]
and a sampling-based motion planner. In contrast, we use a
temporal task planner, POPF-TIF [15] with roadmap-based sam-
pling, incorporating robot state uncertainty. Srivastava et al. [3]
implicitly incorporate geometric variables, performing symbolic-
geometric mapping using a planner-independent interface layer.
Erdem et al. [16] leverage a boolean satisfiability (SAT) solver,
computing a task-level plan and then refining it until a feasible
motion plan is found.

Kaelbling and Lozano-Péres [17] propose a hierarchical ap-
proach that tightly integrates logical and geometric planning. The
complexities arising out of long-horizon! planning are tackled to
the extent that planning is done at different levels of abstraction,
thereby reducing the long-horizons to a number of feasible sub-
plans of shorter horizon. This regression?-based planner assumes
that the actions are reversible while backtracking. This work is
extended in [5] to consider the current state uncertainty, mod-
eling the planning problem in the belief space. The hierarchical
approach is also employed in [20,21] to compute discrete actions
with unbounded continuous variables. A geometric backtrack
search is used to instantiate the symbolic actions in [22]. They
also prune certain geometric instantiations, reducing the com-
plexity. FFRob [4] performs task planning by performing search
over a sampled finite set of poses, grasps and configurations. The
authors of [4] extend the FF heuristics, incorporating geometric
and kinematic planning constraints that provide a tight estimate
of the distance to the goal. Our approach is similar to FFRob in
the sense that we also pre-sample robot configurations and then
plans with them, incorporating motion constraints.

Toussaint [23] performs optimization over an objective func-
tion based on the final geometric configuration (and the cost
thereby), finding approximately locally optimal solutions by min-
imizing the objective function. The planning problem is modeled
as a constraint satisfaction problem with symbolic states used to
define the constraints in the optimization. This logic-geometric
programming is applied to a four manipulator setting in [24].

1 Large environments require a robot to perform many actions to reach the
goal, resulting in a long planning horizon [18].

2 Goal regression is the process of planning backwards from the goal [19].

Robotics and Autonomous Systems 141 (2021) 103786

Lozano-Péres and Kaelbling [25] model the motion planning as a
constraint satisfaction problem over a subset of the configuration
space. Iteratively Deepened Task and Motion Planning (IDTMP)
is a constraint-based task planning approach that incorporates
geometric information to account for the motion feasibility at
the task planning level [6]. In our architecture, the motion costs
are returned to the task planner, similar to the motion planner
information that guides the IDTMP task planner. IDTMP per-
forms task-motion interaction using abstraction and refinement
functions whereas we use semantic attachments [26].

Though the approaches discussed above fall under the cate-
gory of TMP for manipulation, the scope of TMP is not limited to
manipulation problems alone. TMP for navigation is pervasive in
most real world scenarios. For example, a mobile office robot
may be tasked with collecting documents and delivering them
across multiple floors. Yet, TMP for robot navigation has received
less attention in the past. Real-world planning problems in large
scale environments often require solving several sub-problems.
For example, while navigating to a goal, the robot might have
to visit other places of interests. Visiting these places of interest
are high-level tasks that can be addressed using traditional task
planners. Yet, these symbolic planners cannot compute the exact
motion costs for these tasks, let alone perform navigation and
path planning. This calls for task plans that are motion planning
aware, in terms of motion costs and its feasibility.

Task planning for robot Navigation Among Movable Obstacles
(NAMO) is introduced in [27], where each object is displace at
most once throughout the plan. Van Den Berg et al. [28] provide a
probabilistically complete algorithm for the NAMO class of prob-
lems. However, the robot state is assumed to be known perfectly.
In contrast, we plan in the belief space, computing an estimate of
the robot state at each instant. Hauser and Latombe [29,30] con-
sider multi-model motion planning for manipulation and legged
locomotion, wherein the space of feasible configurations consists
of intersecting spaces of different dimensions. In [31] a TMP
approach is presented in the context of Human-Robot Interac-
tion (HRI). They integrate probabilistic reasoning with symbolic
reasoning by implementing a spoken dialog system, enabling
the robots to ask intelligent queries. Their task planner is based
on Answer Set Programming (ASP) [32]. Jiang et al. [33] focus
exclusively on task planning in robotics, assuming that a feasible
motion plan exists for the synthesized task plan. They provide
a comparison between ASP-based and PDDL-based task planners
using different benchmark domains and conclude that PDDL-
based planners perform better on tasks with long solutions, and
ASP-based planners tend to perform better on shorter tasks. In
this paper, we employ a PDDL-based task planner. UP2TA [34]
develops a unified path planning and task planning framework for
mobile robot navigation. In this approach, the robot is required
to perform a series of tasks at different locations before return-
ing back to the initial location. An interesting feature of UP2TA
is its task planner heuristic, which is a combination of the FF
heuristic [14] and the Euclidean distance between the waypoints
associated with locations. The path planning layer computes the
optimal path between each waypoint with the help of a Digital
Terrain Model (DTM). Wong et al. [35] develop a task planning
approach that takes into account the optimal traversal costs> to
synthesize a plan. Similar to UP2TA, they define tasks that are to
be performed at different waypoints. However, the path planner
pre-computes an optimal path for all pairs of waypoints, which
are then passed to the task planner to find the optimal sequence
of tasks. In contrast, we consider a general approach where the
robot has to reason at a high-level about different objects or

3 The costs are defined in terms of mechanical work and the objective is to
find the path with optimal mechanical work. For more details, refer to [35].

A. Thomas, F. Mastrogiovanni and M. Baglietto

locations or regions to navigate to. The objects/locations/regions
are instantiated to their geometric counterpart, by considering
a set of sampled poses. For example, if a robot has to reach
a location close to a chair, the geometric instantiations of this
symbolic goal would correspond to a set of poses around the
chair.

Jiang et al. [36] introduced a framework that integrates TMP
with reinforcement learning that is robust to changes in the
environment. The inner loop of their dual layer architecture is a
TMP planner that generates task-motion plans to be sent to the
outer loop. The outer loop executes the generated plans to learn
from rewards. In contrast MPTP is a purely planning approach.
Lo et al. [37] introduced PETLON, a purely planning approach for
navigation that is task-level optimal and is the work closest to our
approach. The inner loop in [36] uses a TMP planner that is similar
to PETLON. However, in PETLON, the action costs returned by the
motion planner is the trajectory length and complete observabil-
ity is assumed. In contrast, our framework is more general, since
we additionally consider the cost due to motion and sensing
uncertainty and the distance to the goal. It is to be noted that
our approach is not limited to any particular cost function and
can be easily adapted to support any general cost formulation.
In Section 5, we benchmark the scalability of our approach and
provide a comparison with PETLON by considering a motion
planner that evaluates the geometric-level cost of navigation. In
this way we compare MPTP to PETLON by adapting our cost
function to incorporate only the geometric-level cost of traversing
from one location to another. Further, PETLON first compute a
task plan using an admissible heuristic which is then sent to the
motion planner for cost evaluation. This updates the heuristic
and a refinement process repeats until the optimal plan is found.
In contrast, MPTP evaluates the motion cost as each action is
expanded by the task planner and hence the plan returned is
optimal and needs no refinement.

3. Preliminaries and definitions

We begin by formally defining the notions of task and motion
planning. Then, we state the TMP problem that we discuss in
this paper. The notations and formalism correspond to that of a
state-transition system [19].

3.1. Task planning

Task planning or classical planning can be defined as the
process of finding a discrete sequence of actions from the current
state to a desired goal state [19].

Definition 1. A task domain §2 can be represented as a state
transition system and is a tuple £2 = (S, A, y, So, Sg) where:

e S is a finite set of states, each state is a conjunction of
propositions*;

e Ais a finite set of actions;

ey : S xA — S is the state transition function such that
s =vy(s,a);

e 5o € S is the start state;

e S, C S is the set of goal states.

Definition 2. The task plan for a task domain £2 is the sequence
of actions ay, ..., a, such that s;,1 = y(s;,q;), fori = 0,...,n
and s, satisfies Sg.

4 A proposition is represented by a tuple of elements, which may be constants
or variables, and can be negated [38].

Robotics and Autonomous Systems 141 (2021) 103786

The Planning Domain Definition Language (PDDL) [2] being
the de facto standard syntax for task planning, we resort to
the same for modeling our task domain. PDDL is an action-
centered language, where each action q; is described as a tuple
a; = (preg, effs;), where pre,; (a set of preconditions for a;) is
a conjunction of propositions with either positive or negative
terms that must hold for action execution and eff,, (the set of
effects of a;) is a conjunction of positive (effai*) and negative (eﬂfalf)
propositions that are added or deleted upon action application,
thereby changing the system state. The set of positive effects eﬁ;{
contains propositions that become true upon the execution of
action a; and the set of negative effects effa,f contains propositions
that evaluates to false upon action execution. An action g; is
said to be applicable to a state s; if each proposition of the
preconditions holds in s;, that is, pre;, C s;. If an action q; is
applicable in state s;, the corresponding successor state s;;i is
obtained as, si11 = y(si, a;), where s;11 = (5 \ eﬂalf) U effaj’. A
valid plan is a sequence of actions that when executed from sg
results in Sg.

A planning problem with PDDL is created by providing a do-
main description that describes the predicates and action schemas
with free variables, and a problem description that specifies
the objects, initial state and the goal condition. The objects are
used to instantiate the predicates and action schemas, through
a process called grounding. Grounding is the process by which
every combination of objects is used to replace the free variables
in predicates and action schemas to obtain propositions and
ground actions respectively. In this paper, we use an extension
of PDDL [39] that supports durative actions and numeric-valued
fluents. Temporal planning introduces the possibility of comput-
ing concurrent plans. A temporal task domain can be defined by
extending the task domain in Definition 1 as follows

Definition 3. A temporal task domain £2 can be represented as
state transition system and is a tuple £2 = (S, A, y, so, Sg) where:

e S is a finite set of states;

e V is a set of real valued variables;

e Ais a finite set of actions;

ey : S xA — S is the state transition function such that
s'=y(s,a)

e sy € SUV is the start state;

e 5S¢ € SUV is the set of goal states.

A durative action is a tuple a; = (preq,, effy;, durg,), where pre,
and eff,, are temporally annotated by specifying conditions/ef-
fects that holds at the start, end or during the entire action interval
and are expressed using the constructs at start, at end and over
all respectively. Note that these constructs are specific to PDDL
formalism. dur,, corresponds to the duration of action a;.

3.2. Motion planning

Motion planning finds a sequence of collision free poses from
a given initial/start pose (position and orientation) to a desired
goal pose [40].

Definition 4. A motion planning problem is a tuple M = (C, f, qo,
G) where:

e C is the configuration space or the space of possible robot
poses;

e f = {0, 1} determines if a configuration/pose is in collision
(f = 0) or not (Csee with f = 1). Cse. denotes the set of all
poses that are not in collision;

e (o is the initial configuration;

e G is the set of goal configurations.

A. Thomas, F. Mastrogiovanni and M. Baglietto

Definition 5. A motion plan for M finds a valid trajectory in C
from g to g, € G such that f evaluates to true for qqo, ..., gn.

In addition to the sequential form of the definition above, a
motion plan can also be defined by a continuous trajectory

Definition 6. A motion plan for M is a function of the form
7 : [0, 1] = Cpee such that 7(0) = go and (1) € G.

We will use a combination of the two to define the TMP
problem and use roadmap based motion planner to generate
collision free configurations.

3.3. Task-motion planning

TMP essentially involves combining discrete and continuous
decision-making to facilitate efficient interaction between the
two domains. Starting from an initial state, TMP synthesizes a
plan to a goal state by a concurrent or interleaved set of discrete
actions and continuous collision-free motions. Below we define
the TMP problem formally.

Definition 7. A task-motion planning is a tuple ¥ = (C, £2, ¢, &,
qo) where:

e ¢ : S — 2€ isafunction mapping states to the configuration
space. For example, if s represents the task state — the robot
is in a corridor, then ¢(s) corresponds to all configurations
such that the robot is in the corridor;

e & : A — 2% is a function mapping actions to motion
plans. We recall here that motion planning is essentially
computing collision free poses in C.

Definition 8. The TMP problem for the TMP domain ¥ is to find a
sequence of actions do, ..., a, such that si1 = y(s;, a;), Sp1 € Sg

and to find a sequence of motion plans 1o, ..., t, such that for
i=0,...,n, it holds that

7i(0) € ¢(si) and (1) € P(sit1) (1)
7i+1(0) = w(1) (2)
7 € &(a;) (3)

3.4. Problem definition

In this paper, we consider the TMP problem for a mobile robot
operating in a partially-observable environment. The map of the
environment is either known a priori or is built using a standard
Simultaneous Localization and Mapping (SLAM) algorithm.” At
any time k, we denote the robot pose (or configuration gq;) by
X = (x, Y, 0), the acquired measurement is denoted by z; and the
applied control action is denoted as u. We consider a standard
motion model with Gaussian noise

X1 = (X, ug, wy) , wi ~ N(0, Wy) (4)

where wy is the random unobservable noise, modeled as a zero
mean Gaussian. To process the landmarks in the environment we
measure the range and the bearing of each landmark relative to
the robot’s local coordinate frame. In general, we consider the
observation model with Gaussian noise

Ze = h(x) + v, vie ~ N(0, Qi) (5)
It is to be noted that we assume data association as solved

and hence given a measurement we know the corresponding

5 http://wiki.ros.org/slam_gmapping/.

Robotics and Autonomous Systems 141 (2021) 103786

landmark that generated it. This is not a limitation and our ap-
proach can be extended to incorporate reasoning regarding data
association, as shown recently in [41]. The motion (4) and obser-
vation (5) models can be written probabilistically as p(Xx.+1|Xk, Ux)
and p(zx|xx) respectively. Given an initial distribution p(x,), and
the motion and observation models, the posterior probability
distribution at time k can be written as
k
P(Xo|Zo:, Uox—1) = P(xo) [| Pxelxe1, we—1)p(zelxe) (6)
i=1
where Xox = {Xo0,...,%}, Zox = {z0,...,2z¢} and Upy_1 =
{ug, ..., ur_1}. This posterior probability distribution is the belief
at time k, denoted by b[Xy] ~ AN(uk, k). Similarly, given an
action uy, the propagated belief can be written as

b[Xi11 = p(Xok|Zok» Uok—1)P(Xkct 11X, i) (7)
Given the current belief b[X,] and the control uy, the prop-
agated belief parameters can be computed using the standard
Extended Kalman Filter (EKF) [42] prediction as
i1 = f (ks tg)
Zir1 = B EF + viw vl
where Fy is the Jacobian of f(-) with respect to x; and Vj is the
Jacobian of f(-) with respect to uy. For brevity, the linearized
process noise will be denoted as Ry = VkaVkT . Upon receiving
a measurement zi, the posterior belief b[Xy,] is computed using
the EKF update equations
Ki = Ziy1Hy (He S Hy + Qi)'
i1 = 1 + Ki(zgpr — h(ftes1)) 9)
Zer1 = (I — KeHy) Zkq
where Hj is the Jacobian of h(-) with respect to xi, K is the
Kalman gain and I € R3*3 is the identity matrix.

(8)

4. Approach

PDDL-based planning frameworks are limited, as they are
incapable of handling rigorous numerical calculations.® Most ap-
proaches perform such calculations via external modules or se-
mantic attachments, e.g. [26]. The term semantic attachment was
coined by Weyhrauch [44] to describe the association of algo-
rithms to function and predicate symbols via external procedures.
However, the effects returned by these semantic attachments
are not exploited in identifying helpful actions during search and
hence do not provide any heuristic guidance, deeming the task
unsolvable most often [45]. An action is considered helpful if it
achieves at least one of the lowest level goals in the relaxed
plan to the state at hand [14]. Recently, Bernardini et al. [45]
developed a PDDL-based temporal planner to implicitly trigger
such external calls via a specialized semantic attachments called
external advisors. They classify variables into direct (V4"), indirect
(Vindy and free (V/re€). v4ir and V/*€ variables are the normal PDDL
function variables whose values are changed in the action effects,
in accordance with PDDL semantics. V™ variables are affected
by the changes in the V4" variables. A change in a V" variable
invokes the external advisor which in turn computes the Vi
variables. The Temporal Relaxed Plan Graph (TRPG) [46] con-
struction stage of the planner incorporates the indirect variable
values for heuristic calculation, thereby synthesizing an efficient
goal-directed search. We employ this semantic attachment based
approach for the task-motion interface. The overall procedure and
the interface layer are discussed in detail in the remainder of this
Section.

6 pppL+ [43], an extension of PDDL supports mixed discrete and continuous
non-linear changes.

http://wiki.ros.org/slam_gmapping/

A. Thomas, F. Mastrogiovanni and M. Baglietto

. S

L

Fig. 2. Map of the office environment obtained after a SLAM session.

4.1. Task planning

TMP for navigation requires that the task planner takes into
account the motion feasibility and the corresponding motion
costs while synthesizing a plan. As opposed to the manipulation
domain, where the motion feasibility is corroborated with the
end-effector’s reachability workspace, in navigation domains this
is often validated against the cost constraints, for example, a
robot navigating in a corridor with a bound on the pose covari-
ance to avoid collisions. As such, any task planner customized
to enable the task-motion interface can be employed for our
approach. In our tests, PDDL is used to define the task domain.

Below, we elucidate the PDDL formalism for two different
navigation domains that we have considered. It is to be noted
that the semantic attachment procedure is domain independent
and remains the same in both the domains. But the PDDL domain
and problem description differ, as the two domains are differ-
ent in nature. In the first domain, the underlying roadmap for
motion planning does not change during plan computation. How-
ever, in the second domain, the roadmap is updated during plan
computation. Description of the two domains are detailed below.

4.1.1. Office domain

We consider a robot navigating in an office environment to
collect and deliver documents. The map of the environment fol-
lowing a SLAM session is shown in Fig. 2 (snapshot of the en-
vironment can be seen in Fig. 6). The regions cq,...,Ccq are
cubicles and L denotes a lift. The robot, starting from region S
has to visit certain cubicles to receive documents. Navigating
to cubicles/regions is encoded using a single high-level action
goto_region. Once a robot reaches a cubicle from which a
document is to be collected, we assume that a human places
the requisite document. Thus, the robot needs to wait at the
specific location for a fixed duration of time in which the human
places the required document on the robot. This is encoded using
a high-level action collect_document. These documents then
have to be delivered to another floor, which implies using the lift
L. Navigating to the lift is modeled using a different high-level ac-
tion goto_lift. This is because, unlike the action goto_region,
goto_lift is to be performed only if the robot has collected all
the necessary documents to be delivered. The stars with different
colors represent certain unique features assumed to be known
and modeled like, printer, trash can, lounge, that aids the robot
in better localization. Hence, once the robot knows the regions
to visit, then it suffices to perform goto_region actions and
collect the documents from these regions. However, to synthesize
an optimal plan it is necessary to sequence these actions in an
order that minimizes the cost function. It is therefore inevitable

Robotics and Autonomous Systems 141 (2021) 103786

to obtain the motion costs of these goto_region actions, so as
to accurately synthesize the optimal plan.

A fragment of the PDDL domain is shown in Fig. 3. The
PDDL domain dynamics is specified through a set of durative
actions (:durative-action). We use the following parameters
to model these actions: ?v is the name of the robot, 7from
is the cubicle the robot is currently at and ?to is the cubi-
cle to which the robot needs to move, ?r corresponds to the
different regions or cubicles in the environment. Each action is
described using :condition and :effect, as defined in Sec-
tion 3, and defines the conditions and effects that holds at the
start (at start), end (at end) or during the entire action in-
terval (overall), respectively. The predicate robot_in checks
if the robot is in a particular region. The function triggered
encodes the fact that the robot is moving from one cubicle (from)
to another (to). The functions get and collected model the
cubicles from which the document is collected and whether it has
been collected. Finally, act-cost stores the cost associated with
the actions and goal-trace keeps the robot state uncertainty
bounded. The actions goto_region and goto_lift invoke the
external module call once the facts (increase (act-cost)
(external)) and (increase (goal-trace) (bound)) are
encountered. Here, act-cost, goal-trace are the direct vari-
ables in V4" and external, bound are the indirect variables V",
The function (triggered 7from 7to) is assigned the numerical
value 1 each time the actions are expanded and re-initialized
to 0 once the action duration is completed. In this way, the
grounded variables from (start) and to (goal) are communicated
to the motion planner. The variables external and bound re-
turns the motion cost and the goal covariance trace respectively,
which are computed by the external module. The action col-
lect_document does not invoke the motion planner. In the
problem description, the function (get ?r), where r is a free
variable denoting cubicles, is initialized to 1 for the cubicles
from which the documents are to be collected and to O for the
remaining.

4.1.2. Corridor domain

We consider a navigation domain, similar to the one in [33],
wherein a robot navigates through a building floor that consists of
several rooms connected to one another through a corridor. These
rooms have doors, which can either be closed or open, connecting
them to the corridor. In addition, some of the rooms are also
accessible from each other, through doors in between them. The
robot can navigate through the entire building by opening these
doors. We assume that once the robot is near to a closed door that
directly connects a room to the corridor, a human opens the door
to allow the robot to pass through. Navigating to rooms can hence
be encoded using a single high-level action goto_room. However,
the doors between any two rooms are automatic, that opens only
when the robot is directly in front of the door. This requires the
robot to navigate to the door and is encoded using the high-level
action goto_door. Upon reaching the goal, since the robot is un-
certain about its pose, the robot can be anywhere within its cur-
rent belief distribution. Taking this into account, on reaching the
door it is open only if the trace of the pose covariance is within a
certain bound . If the trace is within the bound, an edge is added
to the Probabilistic Roadmap (PRM) [47] graph between the cur-
rent node and the nearest node in the next room to which the
robot can navigate via the door. Once the robot traverses the door
to reach the next room, the newly added edge is removed from
the roadmap. This process is illustrated in Fig. 4. The addition and
deletion of edges is performed by the external module.

A fragment of the corridor PDDL domain is shown in Fig. 5.
Similar to the office domain, we use the following parameters:
?from is the room the robot is currently at and ?to is the room

A. Thomas, F. Mastrogiovanni and M. Baglietto

(:durative-action goto_region

Robotics and Autonomous Systems 141 (2021) 103786

:parameters (?v — robot ?from ?to — region)

:duration (= ?duration 100)

:condition (at start (robot_in ?v ?from))

effect (and (at start (not (robot_in ?v ?from)))

(at start (increase (triggered ?from ?to) 1))

(at end (robot_in ?v ?to)) (at end (assign (triggered ?from ?to) 0))

(at end (increase (act—cost) (external)))

(at end (increase (goal—trace) (bound))))

(:durative-action collect_document

:parameters (?v — robot ?r — region)

:duration (= ?duration 20)

:condition (and (at start (robot_in ?v ?r)) (at start (> (get ?r) 0))

(over all (robot_in ?v ?r)))

ceffect (and (at end (collected ?r))(at end (increase (act—cost) 4))))

(:durative-action goto_lift

:parameters (?v — robot ?from ?to - region)

:duration (= ?duration 100)

:condition(at start (robot_in ?v ?from))

effect (and (at start (not (robot_in ?v ?from)))

(at start (increase (triggered ?from ?to) 1))

(at end (reached ?to)) (at end (assign (triggered ?from ?to) 0))

(at end (increase (act—cost) (external))))

Fig. 3. A fragment of the PDDL office domain.

which the robot needs to visit, ?d is any door. The predicate
visited_in checks if the robot has visited a room, hasdoor
checks if the room has a door that opens to another room, and
expanded model the change in the roadmap. Similar to the
previous domain, the actions goto_room and goto_door invoke
the external module call once the fact (increase (act-cost)
(external)) is encountered. Here, act-cost is the direct vari-
able in V4" variable and external is the indirect variable in V¢,
The function (triggered ?from 7to) and (expanded 7r 7d)
are assigned the value of 1 each time the actions are expanded
and re-initialized to 0 once the action duration is completed. This
is performed so that the grounded variables from (start) and to
(goal) as well as r (start) and d (goal) are communicated to the
motion planner. The variables from, to and r are used to denote
the rooms and the variable d represents the doors available. This
can be seen in the parameters definition of the actions. The
variable external returns the motion cost computed by the
external module.

4.2. Motion planning

Independently of the domain, we use a sampling based PRM
to instantiate robot poses for the task actions. To begin with,
the initial mean and covariance of the robot pose is assumed to
be known. This means that the initial state so corresponds to a
single pose instantiation qo. The regions to be navigated to are
also instantiated into poses, by sampling from the pose space
within each region. Once an action g; is expanded by the task
planner, the corresponding start and goal states, that is s; and sj14
are communicated to the motion planner. This is facilitated by the

functions triggered and expanded, as detailed in the previous
section. For example, the task state s; might specify that the robot
is in cubicle ¢, and the goal state s;;; can be for the robot to
reach cubicle c¢4. In this scenario ¢(s;) and ¢(si1+1), that is, the
mapping from states to configurations, correspond to all possible
poses such that the robot is in cubicles c; and c4 respectively.
Since the set of possible poses is infinite, we randomly sample
a set of poses corresponding to each task state s;. It is to be
noted that this sampling is an independent problem and this
set is incorporated while building the entire roadmap. For each
region s;, the number of pose instantiations will be denoted by s}
and a particular instantiation by s? k. With the pose instantiation
of s; as the start node, for each pose instantiation of s;,{, we
simulate a sequence of controls along each edge starting from

s?" and ending in s?’H, estimating the beliefs at the each of these

nodes using (8)-(9). The S?L that corresponds to the minimum
cost is then selected as the goal pose to reach, for the state s;, 1.
Thereafter, this instantiation becomes the start node when an
expansion is attempted from state s;,q. It is true that PRM is
in the configuration space and not in the belief space, but the
basic problem remains the same since we are essentially finding
a sequence of actions that minimizes the objective function which
is a function of the resulting beliefs. Our PRM approach is similar
to the Belief Roadmap (BRM) [48] approach and differs in the way
one-step belief updates are performed. Moreover, BRM assume
maximum likelihood observations but we do not.

Since we plan in the belief space of the robot state, given the
mean and covariance of the starting node we propagate the belief
along the edges of the PRM as the roadmap is expanded during
the search. Belief update is performed upon reaching a node if

A. Thomas, F. Mastrogiovanni and M. Baglietto

Robotics and Autonomous Systems 141 (2021) 103786

'Y -8 . 'Y -8 .
' ' N] “ N]
- N o e currentstate s]
e . ° ~o . /)
[L o A L
current state® ? ? f.
(a) goto_door (b) goto_door
Y -8 7 3 ° @ ..
k \ 9 g ; °
currentsta.te . ’ e)*. curren‘tstate :
. ./] - .~/)
L \ . ® \ .
1) e 1) e

(c) goto_room

(d) goto_room

Fig. 4. The addition and deletion of an edge to the PRM graph. The red nodes are the ones that are close to the door. (a) Shows a possible path in green, when the
goto_door action is expanded. Note that there is no edge between the two red colored nodes. (b) Upon satisfying the trace constraint, an edge added between the
two nodes close to the door. (c) The goto_room action takes the robot to the next room. (d) As the robot navigates towards the first node (red colored node) in
the new room, the edge connecting it to the room from which the robot traversed is removed from the roadmap.. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

(:durative-action goto_room
parameters (? from ?to — room)

:duration (= ?duration 100)

:condition (and (at start (robot_in ?from)) (at start

(connected ?from ?to)))

effect (and (at start (not (robot_in ?from)))

(at start (increase (triggered ?from ?to) 1))

(at end (robot_in ?to)) (at end (assign (triggered ?from ?to) 0))

(at end (increase (act—cost) (external))) (at end (visited ?to))))

(:durative-action goto_door
:parameters (?r — room ?d — door)

:duration (= ?duration 40)

:condition(and (at start (robot_in ?r)) (at start (hasdoor ?r ?d))

(over all (robot_in ?r)))

effect (and (at start (increase (expanded ?r ?d) 1))

(at end (assign (expanded ?r ?d) 0))

(at end (increase (act—cost) (external)))))

Fig. 5. A fragment of the PDDL corridor domain.

a landmark is successfully detected by the robot’s perception
system. Since we are in the planning phase and yet to obtain
observations, we simulate future observations zy,; given the
propagated belief b[Xk_H], the set of landmarks Ly = I4, ..., I, and
the measurement model (5). In this work, we model landmarks
using AprilTags [49] which are placed on the objects of interest.
Given a pose x € b[Xk_H], the nominal observation Z = h(x, [;)
is corrupted with noise to obtain z;,;, which is then used to
compute the posterior belief.

4.3. Task-motion planning for navigation

In our approach, the interface between task and motion plan-
ning occurs through semantic attachments. Formally, semantic
attachment can be defined as

Definition 9. Semantic attachments is a functional mapping from
the set of direct variables to the set of indirect variables, that is,
X Vdir N de.

A. Thomas, F. Mastrogiovanni and M. Baglietto

Algorithm 1 TMP for Navigation in Belief Space

Input: ¥ = (C, 2, ¢, &, qo): Task-Motion domain, #5: Uncer-
tainty budget
1: while true do
2: a; < task planning(£2)
> g; = an action selected to expand the next state
3: Tt <0

4: if a; € A; then
5: External module <« V4
> V4 = {act — cost, goal — trace}
6: current task state < s;, next task state < s;,q
7: c< 0, T« 0
8: current task state < ¢(s;), next task state < ¢(s;y1)
9: for each s, € ¢>(51+1) do
10: start node < s;*, goal node 51 "
11: Belief space seqrch from start node to goal node.
12: c<«d,T<«1
13: end for
14: j* =argmin c
15; T < r,.’*
> 7; is the selected motion plan to arrive at the task
state Sji1.
16: vind « External module
17: m* <« append(x*, (a;, 7;))
18: end if

19: end while
20: return 7 *

Algorithm 2 Belief space search

Input: Roadmap (sampled poses and edges), start node n with
belief (u,, X,) corresponding to start state s;, goal node
(é(sir1))

1: T < n
2: while ¢(s;;1) not reached do

for each edge from n to n’ do
Propagate the belief (8)
if Landmark within sensing range then

Compute posterior belief (9).
end if
Select n’ with minimum cost.
¢ < minimum cost, 7; < append(z;,n’)

10: n=n

11: end for

12: end while

13: return c,

© NN RWw

We recall here that for the office domain V%" = {act-cost,
goal-trace} and V™ = {external, bound)}. For the corridor
domain, we have V%" = {act-cost} and V" = {external}. The
planner receives as input-the PDDL domain, problem description,
the shared library and other input parameters. The input pa-
rameter specifies the regions/rooms and the corresponding pose
instantiations. For the office domain, these pose instantiations
are the poses that lie inside the cubicles and for the corridor
domain they are the poses that lie inside the rooms. These poses
are sampled once the map of the environment is available as
described in the previous section.

An overview of our TMP approach is presented in Algorithm
1. The external module computes the V"™ values and is invoked
only when a change occurs in V4" variables due to the action
effects. The PDDL keyword increase is overloaded to refer to an
encapsulated object [15] and the external module is called if the

Robotics and Autonomous Systems 141 (2021) 103786

PDDL action to be expanded has an effect of the form (increase
(i) (v j'"d)) where v!" € V4" and v € V™. We denote the set
of such actions by As. It is to be noted that the elements of this set
can vary depending on the requirements of a particular domain.
However, the process for achieving the semantic attachments
of the external module remains the same. In this paper, the
set A, = {goto_region, goto_lift, goto_room, goto_door}.
Every time a v is changed due to the direct effects of an action
a; € A the values of the respective vJ'“d is calculated by the
external module, attaching the computed value to the indirect
variable v}'”d, thereby updating the state. Once an action q; is
expanded by the task planner, the corresponding start (s;) and
goal (si;1) task states are communicated to the motion planner
through the function (triggered 7from 7to) (line 6). For the
task state s;, the robot pose 7;(0) = ¢(s;) is known since it is
the mean of the current belief distribution. For the task state s 1,
each pose instantiation s?fH € ¢(sip1) is considered as a goal node
(line 9). With 7;(0) as the start node, a motion plan is attempted
to each of the goal node s?jrl. The set of feasible motion plans is
obtained by performing a search over the roadmap. Along each
edge of the roadmap, the belief at s; is propagated to s,.f+1 by
simulating the sequence of controls and observations. We use
EKF to compute the appropriate matrices for belief computation
as shown in (8). The posterior belief is computed at each node
if a landmark is detected by the robot’s sensor. This belief
search process is shown in Algorithm 2. The motion costs and the
corresponding feasible motion plans are populated to the sets ¢
and T respectively (line 12). The motion plan that corresponds
to minimum cost is then computed as rJ (lines 14-15). The
computed values by the external module is then passed to the
respective indirect variables V™ (line 16), achieving semantic
anttachments The corresponding motion plan t; and the goal node
s; +, are stored and this goal node subsequently becomes the start
node for the roadmap search from s;;;. Consequently, the belief
estimates returned by the semantic attachments guide the TRPG
in identifying the helpful actions, besides providing an efficient
heuristic evaluation for the task plan. .

For the office domain, the feasibility of the motion plan r{
is checked by accounting for the trace of the covariance matrix
upon reaching a cubicle associated with s;, 1, that is, trace(X j« s,)

Since the cubicle doors are of specific length, we bound the trace
by a constant n. However, the failure of an action a; to find
a feasible motion plan during the current expansion does not
mean that it has to be discarded. Feasibility also depends on the
sequence of actions performed earlier. A different action sequence
prior to g; can render ga; feasible. Hence infeasible actions are not
discarded and are set aside for reattempting later. Consequently
the feasibility check is performed for the returned optimal plan
. The plan is feasible if for each a; € 7, the trace(ES,*) < n;
i+1

else there is no is feasible plan.

4.3.1. Cost function

So far we have been agnostic about the cost function used
while selecting the nodes for expansion. Though our formulation
can be adapted to any generic cost functions we use a standard
cost function [50]

CﬁMUCu + Mgcc + Mxcx (10)

where c, is the control usage, c; is the distance to goal and
¢y is the cost due to uncertainty, defined as trace(X'), where X
is the state covariance associated with the robot belief. M,, Mg
and My are user-defined weights. For the current node n that is
considered for expansion, the cost ¢ is computed for each of the
nodes that shares an edge with n. The node with the minimum
c is selected as the next node n* for expansion. As such, this can

A. Thomas, F. Mastrogiovanni and M. Baglietto

be extended to non-myopic planning in a trivial manner, but it
is not the current focus of this paper. It is to be noted that n* is
considered only if it is not already in the expanded path with the
n being the last node added to the path. So if n* leads to a cycle,
the next best node n** is selected.

As mentioned in the previous section, in case of the office
domain we add the condition cx, < 7, where x, is the trace of
the goal state covariance and 7 is a constant. The cubicle doors
have a width of 2m and considering maximum uncertainty along
the door width we fix 7 = 3m? as the maximum upper limit
and discard the motion plans with cx, > 3 (see lines 19-24,
Algorithm 1). For the corridor domain, since the automatic doors
are of 1m in length, we set an upper bound of n = 0.75m?,
which corresponds to an uncertainty budget of 0.5m in each of
the pose component. This check is performed when the robot is
at a node directly in front of the door as a result of executing
the action goto_door. If the estimated covariance is within the
uncertainty budget an edge is added between the current node
and the nearest node in the next room to which the robot can
navigate via the door. Once the robot traverses the door to reach
the next room by executing the action goto_room, the newly
added edge is removed from the roadmap. The process of addition
and deletion of an edge occur within the external module as a
consequence of the goto_door and goto_room actions.

4.3.2. Optimality

For a given roadmap, the plan synthesized by our approach
is optimal at the task-level. This means that the task plan cost
returned by our approach (c*) is lower than any of the other
possible task plan costs (c). Let us denote the optimal plan cor-
responding to c¢* as 7 *. Suppose that there exists a plan 7 with
associated cost ¢ such that ¢ < c*. If # and 7* have the same
sequence of actions, this is not possible since the action costs
are evaluated by the motion planner and for a given roadmap,
the motion cost returned is the optimal for each action, giving
c* <c.If r and 7* have a different sequence of actions, the task
planner ensures that the returned plan is optimal, giving c* < c.
Therefore, in both the case, we have c¢* < c.

4.3.3. Completeness

We provide a sufficient condition under which the probability
of our approach returning a plan approaches one exponentially
with the number of samples used in the construction of the
roadmap. A task planning problem, £2 = (S, A, y, S, Sg) is com-
plete if it does contain any dead-ends [51], that is there are
no states from which goal states cannot be reached. The PRM
motion planner is probabilistically complete [52], that is the prob-
ability of failure decays to zero exponentially with the number
of samples used in the construction of the roadmap. Therefore,
if the motion planner terminates each time it is invoked then
probability of finding a plan, if it exists, approaches one.

On the one hand our approach is probabilistically complete;
on the other hand, it is also resolution complete since the motion
plan feasibility depends on the parameter n. Nevertheless, given
a fixed value of n, the probability that the planner fails to return
a solution, if one exists, tends to zero as the number of samples
approaches infinity. In this sense the best that we can guarantee
is probabilistic completeness.

5. Implementation and experimental results

In this Section, we validate our approach in two different robot
navigation domains, namely office domain and corridor domain
as described in Sections 4.1.1 and 4.1.2. We use the temporal
POPF-TIF [45] as our task planner by customizing it to achieve se-
mantic attachments of an external module. The external module

10

Robotics and Autonomous Systems 141 (2021) 103786

performs a PRM-based planning in the belief space and is imple-
mented as a dynamically loaded shared library that is passed as
an input to the planner. The enumeration into direct variables
V4 and indirect variables V" are listed in the external module.
The performance are evaluated on an Intel® Core i7-6500U under
Ubuntu 16.04 LTS.

First, we present the motion and sensor models used in our
experiments.” Then, we discuss the metrics devised to evaluate
the usefulness and validity of our approach. Finally, we present
the evaluation of our approach in the two navigation domains
using the devised metrics.

5.1. Motion and sensor model

The robot dynamics is modeled using the following non-linear
model [53]
xk+1(]) = Xk(]) + Strans COS(XI<(3) + Brotl)
xk+1(2) = Xk(z) + Strans : SiI‘l(Xk(?)) + 8rotl)
Xk+1(3) = Xk(3) + Srot1 + Sror2

(11)

where x;, = (x,y,0), is the robot pose at time k with x,(1) =
x,%(2) = y and x(3) = 0 and ux = (8r0t1, Strans> Oror2) is the
applied control. The model in (11) assumes that the robot ideally
implements the following commands in order: rotation by an
angle of 8,1, translation of 8;q;s and a final rotation of &,y
orienting the robot in the required direction.® It is to be noted
that the robot accrue translational and rotational errors while
executing uy.

In the EKF, the Jacobian of the state transition model with
respect to the state x, denoted by Fi (see (8) and (9)) is obtained
by linearizing the state transition function about the mean state
at x, and is given by

r of of of
oxk(1) 0xk(3) 9x(3)
F, — of of of
= @ B x0)
of of of
Loxe(1) oxk(3) 0xk(3)
[1 0 —d¢rans - SIN(Xk(3) + 8ror1)
=(0 1 atrans : COS(XI<(3) + (Srotl) (]2)
10 O 1

Similarly, the linearized process noise, Ry = VW, V], is obtained
by computing the Jacobian of Vj

- of af of
031 03trans 08rot2
Ve | of of
k= 98rot1 08trans 03ror2
of af af
L 9dror1 03trans 08rot2
["—Strans * SIN(Xk(3) + Sror1) CQS(Xk(3) +&ror1) O
= | Otrans - COS(Xk(3) + Sror1) SIN(Xk(3) + Sroe1) O (13)
1 0 1

The noise covariance matrix W, is formulated as below with
a1 to a4 being the robot-specific error parameters [53] modeling
the accuracy of the robot motion

o1 - srzorl toy- Stzmns 0 0
Wi = 0 a3 - ‘Stzrans tag- (6720[1 + 53Mz) 0
0 0 02 8 18

(14)

7 To simplify the notation, most variables are presented without time indexes.
8 The state transition model form of (11) is given in (4).

A. Thomas, F. Mastrogiovanni and M. Baglietto

As for the sensor model, we use a landmark-base model

r=/(L(1) — x(1)2 + (h(2) — x(2))?
+ v,

Zx =
¢ = arctan({22y _ y, (3)

(D =x(T)
v ~ N(0, Qi)

where r and ¢ are the range and bearing of the ith landmark
I; relative to the robot frame. The sensor model is linearized
to obtain the Jacobian Hy, which is the partial derivative of the
measurement function with respect to the robot state.’

(15)

ar ar ar
H, — axp(1) axg(2) Axk(3)
k=1 a¢ 3¢)
WD @D
_GMew() @)
— T T
| @@ s g (16)
r2 2

We would like to reiterate the fact that since we are in the
planning phase, the nominal observation Z = h(x, I;) is corrupted
with noise to simulate future observations.

5.2. Plan metrics

To benchmark our approach we consider four different cost
formulations that differ in their motion cost computation and
thereby the task-level action costs. Though our formulation can
be adapted to any general cost function (see Section 4.3.1), we
choose the following four cost functions to demonstrate the
efficiency of our approach:

e Euclidean cost: The motion planner is never called and the
task cost are evaluated computing the Euclidean distance
Ceuc between the geometric instantiations of s; and s;1, that
is, between 7/(0) and 7/(1). Here ¢ = Ceyc.

e o —Euclidean cost: This configuration evaluates the motion
cost as the sum of Euclidean distance between 7;(0) and ;(1)
and the cost due to uncertainty, defined as cx = trace(X),
where X is the covariance at each node of 7;. The general
form of this cost function is ¢ = MeycCeyc + MsCs.

e PETLON cost: In this configuration, the motion planner
returns the trajectory length or the geometric-level cost of
traversing from s; to s;; 1, that is, from 7(0) € ¢(s;) to 7/(1) €
¢(sir1). The general form of the cost for this configuration
is ¢ = Mycy + Mcgcg, where ¢, is the control usage and cg
is the distance to goal. Since we assume straight line path
between two sampled poses, the applied control for trans-
lation, that is 84,5 represents the trajectory length. We note
here that the motion planner in PETLON [37] computes the
geometric-level cost of traversing from one state to another
and hence this configuration will be used to compare MPTP
with PETLON.

e MPTP cost: In this configuration, we use the cost function
as defined in Section 4.3.1, that is, ¢ = Myc, +Mgcc+Mscs,
where ¢, is the control usage, c; is the distance to goal
and cx is the cost due to uncertainty. It is noteworthy
that PETLON cost is subsumed in MPTP cost since MPTP cost
is fundamentally PETLON cost added with the cost due to
uncertainty.

5.3. Office domain

This domain is simulated in Gazebo [54] by constructing an
office environment of 36 m x 25 m; top view of the simulated

9 The measurement function form of (15) is given in (5).

11

Robotics and Autonomous Systems 141 (2021) 103786

Fig. 6. Top view of the simulated environment in Gazebo. See office domain in
Section 4 for a detailed description.

environment is shown in Fig. 6. We note here that the landmarks
considered in this domain are the objects outside the cubicles like
printers, trash cans, lounge, vending machines and book-shelves.
The robot is required to collect documents from different cubicles,
and the documents are then taken to the next floor via the lift L.

5.3.1. Validation

We first demonstrate the need for a combined TMP for naviga-
tion. Unless otherwise stated, the panning times presented is an
average for 25 different planning sessions. Consider the following
scenario in which the robot is required to collect documents
from the cubicles ¢3, c4, c6 and c9. We first run the planner
with Euclidean cost to synthesize the task plan. We remind
that in this configuration the motion planner is never called
and the action costs are evaluated by considering the Euclidean
distance between the start and goal regions. The plan synthesized
isS > 3 > ¢4 - c6 - ¢9 — L. This plan is then
given to the motion planner, to compute the corresponding cost
due to uncertainty cy which is the trace of the robot state
covariance. The task planning cost and the motion planning cost
are added to estimate the overall planning cost, which equated
to 298.84. The addition of the two costs is possible because we
first compute the task plan which is then passed to the motion
planner to compute the cost due to uncertainty. Therefore the
overall planning cost is the task planning cost combined with
motion planning cost. In the same way, the overall planning time
was computed to be 0.94 (+0.09) seconds by adding the time
for task planning and motion planning, respectively. Next, we
ran the planner with o —Euclidean cost, returning the plan S —
4 - c9 - c6 - c3 — L,in 1.28 (£0.06) seconds with a
total cost of 90.89. This configuration evaluates the motion cost
as the sum of Euclidean distance and the cost due to uncertainty.
It is seen that there is a significant difference in the plan quality
as the cost is improved by a factor of 3 for o —Euclidean cost.
This difference in cost is attributed to the different task sequence
synthesized. Essentially, Euclidean cost corresponds to planners
that pre-compute motion costs of all task-level actions or use
an admissible heuristic for the same (for example, the approach
in [35]). The task plan is then given to the motion planner for
execution, assuming that such a motion plan exists. In contrast,
o —Euclidean cost checks for the motion feasibility and estimates
the motion costs while expanding each task-level action and thus
corresponds to an integrated TMP approach as discussed in this
paper. The difference in plan quality between Euclidean cost

A. Thomas, F. Mastrogiovanni and M. Baglietto

Robotics and Autonomous Systems 141 (2021) 103786

o

o

Fig. 7. (left and center) The propagated belief distributions along the planned paths for PETLON cost and MPTP cost. The belief estimates for a single planning
instantiation corresponding to a unique set of simulated observations are shown. Black dots represent the sampled poses. (left) Shortest path route that corresponds
to PETLON cost. (center) Belief space planning corresponding to MPTP cost, returning an information rich route. (right) Traces of robot’s true state while starting

from the initial belief — run with MPTP cost.

160 T T T

140

nnn
AN
1

"o
AAan

=

N

o
T
1

Plan length (m)
[=]
=) o
o o
T T
[)
1 1

60 - .

40 1 1 1
3 5 7

Overall time (s)

Fig. 8. Plan length with overall planning time. MPTP is run with PETLON cost
and a sampling density of d = 1.5.

and o —Euclidean cost clearly demonstrates the efficiency of a
combined TMP approach as opposed to performing task planning
and motion planning separately. Though our considered scenario
is much less knowledge-intensive than real-world scenarios, the
above example conveys the need for a combined task-motion
planner.

Next, we run the planner with PETLON cost and MPTP cost
to demonstrate the advantage of planning in belief space, that
is using our MPTP approach. We recall here that similar to
PETLON [37], with PETLON cost, the motion planner evaluates
the geometric-level cost of traversing 7;(0) to 7;(1), whereas with
MPTP cost, in addition to considering the geometric-level cost of
traversing, the cost due to uncertainty is also incorporated. We
consider a scenario in which the robot has to collect a document
from cubicle ¢3. The planned trajectories in both the scenarios
with the corresponding covariance estimated at each node (only
the (x, y) portion is shown) is shown in Fig. 7. Clearly, the belief
space task-motion planner (MPTP cost) returns a route which
is rich in sensor information (see Fig. 7 in the mid), enabling
effective localization. PETLON cost returns the shortest path
trajectory but with an increased robot state uncertainty. Fig. 7
on the right hand side shows the traces of true robot state for
25 different simulations while running on MPTP cost—the initial
state being sampled from the known initial belief.

5.3.2. Scalability

We test the scalability of our approach by increasing the task-
level complexity. We run our planner on three different scenarios
where 2, 4, 6 number of cubicles (¢ = 2, 4, 6) are to be visited to
collect the corresponding number of documents. This results in
evaluating more task-level actions, escalating the task level com-
plexity. We also test these scenarios on varying levels of sample
densities. We choose d = 1, 1.5,2, where d = i corresponds

12

to an average of i samples per square meter. The tests are run
using MPTP cost and PETLON cost. The overall planning time
and the returned cost can be seen in Table 1. While we ran
with the MPTP cost, for d = 1 and ¢ = 6, no feasible motion
plan is found since the condition n < 1 is violated. However,
for higher sample densities, a feasible motion plan is found. The
plan quality is increased with increase in d, but at the expense of
exponentially increasing computation time. It is clearly seen that
for our considered scenario d = 1.5 can be chosen, without much
loss of plan quality.

In [37], TMP for navigation is performed by evaluating the
geometric cost of traversing. They consider a scenario in which
nine objects are placed at different locations. Two objects from
among them are to be collected and delivered to a person such
that the geometric cost of traversing is minimum. They report a
total planning time of about 15 s with a plan length of 37 m.
Though the environment considered in [37] is larger than ours,
to provide a comparison with PETLON, we run our task-motion
planner with PETLON cost and evaluate the planning time with
respect to the plan length. In comparison, MPTP with PETLON cost
fares superiorly with respect to increased task-level complexity.
To demonstrate this, we first consider three scenarios where 2,
4, and, 6 documents are to be collected to be delivered to the
next floor. The results can be seen in Table 1 under the PETLON
cost section. We note here that for d = 1.5 and collecting 6
documents (¢ = 6) MPTP with PETLON cost took only about 7
(£0.34) seconds with a plan length of about 150 m (see Fig. 8).
To provide a better comparison, we also evaluate our approach
by considering a much larger environment, the Willow Garage
world of 58 m x 45 m as shown in Fig. 9(a). In this example,
the robot (at start) needs to collect any two objects from among
nine different objects (location of objects marked as green blobs),
and deliver it to a person at the goal location (shown in red). We
ran our planner with PETLON cost, returning an optimal plan of
length 53.94 m in 3.69 (&£ 0.09) seconds. We recall here that for
the same scenario, PETLON [37] report a planning time of about
15 s for a plan length of 37 m. In contrast, MPTP with PETLON cost
is almost three faster. This clearly elucidates the superiority of our
approach. PETLON first computes a task plan using an admissible
heuristic which is then sent to the motion planner for actual
cost evaluation. This cost refinement process is iterated until the
optimal plan is found. MPTP does not require such an iteration
since it evaluates the motion cost using semantic attachments
as the action is expanded by the task planner. The scalability
to increasing task complexity is tested by varying the number
of objects to be collected (see Fig. 9(b)). The task in which four
objects are to be collected was completed in only about 25 (£
1.64) seconds. Therefore MPTP reveals to be much faster than
PETLON and is robust to the increasing number of objects and
map size.

A. Thomas, F. Mastrogiovanni and M. Baglietto

Table 1

Robotics and Autonomous Systems 141 (2021) 103786

Overall planning time and cost returned while running the task-motion planner with MPTP cost and PETLON cost.
The average number of samples per square meter is denoted by d. ¢ = 2, 4 and 6 denotes the number of cubicles
to be visited, increasing the task-level complexity. '-’ denotes the fact that no plan is found as the condition n < 1

is violated.

d Overall time (s) Cost
c=2 c=4 c=6 c=2 c=4 c=6
MPTP cost 1 1.34 £ 0.05 224 £ 0.15 - 83.84 90.27 -
1.5 3.41 £+ 0.08 7.16 + 0.12 14.04 £+ 0.09 88.18 101.01 237.59
2 9.11 + 1.17 28.48 + 1.19 46.15 £+ 2.23 92.32 126.96 260.092
c=2 c=4 c=6 c=2 c= c=6
PETLON cost 1 0.47 + 0.02 0.77 + 0.04 1.77 £ 0.01 47.80 84.88 161.47
15 3.17 + 0.03 491 + 0.02 7.10 + 0.10 55.77 95.74 174.90
2 6.08 £+ 0.11 9.86 £ 0.17 15.14 £+ 1.09 56.19 95.77 181.06
N 30
T T T
) 25+ *
| E‘ 20 - -
— £
- i 11 * .
3 I T
. g 10} -
“—— o
A —
5 - -
)
0 L J 1 1 |
’ 1 2 3 4
-5&'“1— l I I l _| Object number
(a) (b)

Fig. 9. (a) Willow Garage world with nine objects whose instances are marked as green blobs. The optimal path when two objects are to be collected is shown
in blue. The planner is run with PETLON cost. (b) Overall planning time with increasing number of objects to be collected for delivering. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

80k 1 1 L S A
0 1 2 3 4 5 6
Time bound (s)

Fig. 10. Anytime property of MPTP. Valid solutions are returned even when
strict bounds are placed on the planning time.

POPF-TIF supports anytime planning which means that the
planner searches for improved solutions until it has exhausted the
search space or is interrupted. Specifically, POPF-TIF is run with a
-n flag to activate anytime search. A time bound may be specified
with the flag -tx, where x is the time bound in seconds and is
used in situations with strict time bounds where optimality is
sacrificed. We demonstrate this by considering the Willow Garage
world in which the robot needs to collect any three documents
from among the nine objects and deliver it to a person. We start
with a time bound of 1 s and increment it by a second until an
optimal solution is found. The result is plotted in Fig. 10. As the
time bound is incremented, the plan quality is increased and for
a planning time bound of 4 s, the optimal plan length of 78.63 m
is returned.

13

We stress here the fact that in this paper we are mainly
concerned with planning and the synthesized plans are given
to the robot for execution. Thus, any such execution approach
may be employed. In this work, the generated plans are executed
with a TurtleBot robot in the simulated Gazebo environment. We
use AprilTags [49] to identify objects like printers, trash cans, as
landmarks. TurtleBot robot in front of one such landmark is seen
in Fig. 11. A ROS-based architecture has been developed to im-
plement the approach. Belief estimation is carried out using EKF.
We note here that presently we consider static obstacles while
planning and therefore the planned trajectories are collision-free.
However, to be robust to dynamic obstacles, the plan execution
is trivially extended to employ any collision avoidance approach
in dynamic environments [55,56]. Snapshots of dynamic obstacle
avoidance during the execution of a plan can be seen in Fig. 12. As
seen in the figure, dynamic obstacles are simulated using Turtle-
Bot robots (white in figure). We now report here the execution
time for the scenario discussed in Section 5.3.2. When 2, 4, 6
number of cubicles are to be visited to collect the corresponding
number of documents, the execution times are 140.21s (£3.11s),
366.40s (44.99s), and 664.71s (£16.28s), respectively. We note
here that the execution time varies with robot and its control
limits.

5.4. Corridor domain

Our corridor domain (see Section 4.1.2 for a detailed descrip-
tion) is a variant of the robot navigation domain in [33]. However,
they treat it as a task planning problem assuming that feasible
motion plans exist for the synthesized task plans. In contrast, we
perform task-motion planning. In this domain of 12 m x 25 m,

A. Thomas, F. Mastrogiovanni and M. Baglietto Robotics and Autonomous Systems 141 (2021) 103786

Fig. 11. A robot in front of AprilTags which provide the transformation between the robot pose and the landmark pose.

€Y (b)

(c) (G))

x -

n
= -

(e) (3}

Fig. 12. A robot avoiding a couple of dynamic obstacles (white TurtleBot robots) during execution. Our approach is not restrictive to any particular execution
strategy and any approach that employs dynamic obstacle avoidance may be used.

14

A. Thomas, F. Mastrogiovanni and M. Baglietto

L "
Ls L7 |8 9 *rio
x
|]
rl ;irz |r3 *Ir4 r5

Fig. 13. Map of the building floor environment with half the rooms connected
directly by doors. The stars with different colors represent landmarks that aids
the robot in better localization. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

= = =

(=) o o
[-] - N
T T T

Overall planning time (s)

=

S
-
T

1 1 1 1 1 | 1 1 1
1 2 3 4 5 6 7 8 9
Number of rooms to visit

Fig. 14. Overall task-motion planning time for different number of rooms that
need to be visited in log scale. Planning times are the average for 25 different
runs.

a mobile robot, starting from a given room, navigates an office
floor to visit a set of rooms that are selected randomly. The office
floor has ten rooms and the robot is initially located in room 1.
All the rooms are connected to each other through the central
corridor. In addition, five rooms are directly connected with each
other via doors which need to be opened by the robot. The goal is
to visit a set of rooms R that are randomly selected for each run.
Since these visits have to be carried out expending as less cost
as possible, the robot needs to assess the accessibility between
the rooms that are directly connected to each other via a door.
This is facilitated through the goto_door action as discussed in
Section 4.1.2. The map of the building floor is as shown in Fig. 13.

5.4.1. Validation and scalability

First, we run the planner with MPTP cost. For a fixed set
cardinality |R| (set elements are the rooms to be visited), 25 trials
are performed, where the set elements are selected randomly for
each trial. The average planning time for each of them is shown
in Fig. 14. While the planning time does scale exponentially with
|R|, the plan for |R] = 9 is computed in less than 3 min. The
work in [33] evaluates the task planning performance on a similar
domain randomly selecting the number of rooms to visit in
each trial. Since MPTP performs task-motion planning, the overall
MPTP planning times with increasing |R| is greater than those
reported in [33]. However the graph of |R| with planning time
(Fig. 14) follows a similar trend to that reported in [33]. It is
noteworthy that for a given |R|, the difference in MPTP planning
time and the planning time reported in [33] is significantly less.

Next, we run the planner with PETLON cost and MPTP cost.
We consider a scenario in which the robot, starting from room
r1, has to visit rooms r2 and r3. As seen in Fig. 13, rooms r1, r2
and r2, r3 are also connected by doors between them. Fig. 15 on
top-left and top-right shows the planned trajectories in both the
scenarios with the corresponding covariance estimated at each

15

Robotics and Autonomous Systems 141 (2021) 103786

node (only the (x, y) portion is shown). Note that the illustrations
show a single planning instantiation corresponding to a unique
set of simulated observations Z. Belief space planning (MPTP cost)
enables effective localization by returning a route which is rich
in sensor information (see Fig. 15 on top-right). Fig. 15 on the
bottom-left, shows the traces of true robot states for 25 different
simulations while running on PETLON cost. The initial poses
are sampled from the known initial belief distribution. Out of
the 25 trials, 20 lead to collision on the walls, giving a success
rate of only 20%. The traces of true robot pose for 25 different
simulations while running on MPTP cost is shown in Fig. 15
(bottom-right). Only 2 trials lead to collision, giving a success rate
of 92%.

Finally, we test the scalability of our approach by running
the planner with varying number of rooms that are directly
connected by doors between them. We consider a scenario in
which seven rooms are to be visited. We consider five different
cases of this scenario, each of which has a fixed number of rooms
that are directly connected by the doors. For each case, 25 trails
are performed and for each trial, the rooms with doors between
them are randomly selected. The overall planning time is seen in
Fig. 16.

6. Discussion

In this section, we first discuss some limitations of our ap-
proach and later comment on the relation to multi-goal planning
and traveling salesman problems.

MPTP has few limitations and assumptions and relaxing them
would enhance the capability and robustness of our approach in
challenging scenarios. First, we sample collision-free poses and
therefore considering static obstacles, the planned trajectories are
collision-free. In this sense, we employ a deterministic collision
avoidance approach and do not compute the probability of colli-
sions while computing a path during planning. It is a reasonable
assumption for all practical purposes but is not the case in general
while planning in narrow regions or corridors. The execution may
be trivially extended to consider collision probabilities, making it
robust to both static and dynamic obstacles. Second, we assume
straight line path between two sampled poses. This might not
fare well in some experimental domains and can lead to larger
prediction uncertainties. Presently, as the number of samples
vary, the search is performed again. It is our future direction
to efficiently utilize the previous search results to reduce the
computation time for increased samples. It is also an interesting
future direction to extend the framework to an online real-time
planning approach.

Multi-Goal Planning (MGP) [57], where a robot visits a se-
quence of goal configurations is a subset of the general class of
TMP problems. Most existing MGP approaches [57-60] leverage
the Traveling Salesman Problem (TSP) [61] solvers for task se-
quencing. A TSP problem finds a minimum cost path traversing
a set of points such that every point is visited once. In an MGP
problem these points correspond to the set of goal configurations
the robot needs to visit. It can be argued that all MGP problems
can be modeled as a TMP problem but not vice versa. For instance,
consider the office domain presented in Section 4.1.1. In this
scenario the robot not only has to visit regions of interest but
execute actions such as collecting the documents, which is to be
performed when visiting each cubicle ensuring that the action
preconditions are met. Moreover, in certain scenarios cubicles
may need to be visited multiple times violating the single visit
constraint of traditional TSP solvers. The corridor domain (see
Section 4.1.2) presents additional challenges for TSP solvers. If
we consider that there are no doors between the rooms, then the
problem reduces to just visiting different rooms and can be solved

A. Thomas, F. Mastrogiovanni and M. Baglietto

Robotics and Autonomous Systems 141 (2021) 103786

T

b

Lo
I I B |

Veaiinl

Fig. 15. (top-left and top-right) The propagated belief distributions along the planned paths while running MPTP with PETLON cost and MPTP cost. The belief estimates
for a single planning instantiation corresponding to a unique set of simulated observations are shown. The black dots represent the sampled poses. (top-left) Shortest
path route that corresponds to running the planner with PETLON cost. (top-right) Belief space planning corresponding to running the planner with MPTP cost,
returning an information rich route. (bottom-left) Traces of robot’s true state while starting from the initial belief and run on PETLON cost- 80% of the trajectories
lead to collision. (bottom-right) Traces of robot’s true state while starting from the initial belief and run on PETLON cost- only 8% of the trajectories lead to collision.

T T T
w160 4
[
E
- &
2120 .
< e
]
s
= 80 z =
o - -
] &
>
o
40+ s
1 1 1
0 2 4 6 8

Rooms with doors between them

Fig. 16. Overall planning time for visiting 7 rooms when the number of rooms
directly connected by doors are varying. Average time for 25 trails are plotted
in each case.

using TSP solvers. However, in the considered scenario there
are doors between certain rooms and the accessibility between
the rooms that are directly connected to each other via a door
needs to be assessed by the robot. This requires different levels
of reasoning to verify the action preconditions such as, checking
if a door exists, navigating to the door, checking if the trace of
the robot pose covariance is within the uncertainty budget and
if yes, then updating the roadmap. Moreover, if the robot passes
through the door, the accomplishment of the action effect (in
this case, closing the door corresponds to updating the roadmap)
needs to be established. Thus MPTP is able to solve a larger class
of problems than traditional TSP solvers.

7. Conclusions

This paper introduces an approach for task-motion planning
under motion and sensing uncertainty. Task-motion interaction
is facilitated by means of semantic attachments that return mo-
tion costs to the task planner. In this way, the action costs of
the task plans are evaluated using a motion planner. The plan
synthesized is optimal at the task-level since the overall action
cost is less than that of other task plans generated for a given
roadmap. It is to be noted that the action cost also encompasses

16

the motion cost. The proposed approach is probabilistically com-
plete and we have validated the framework using a simulated
office environment in Gazebo and a corridor environment. The
approach has been evaluated with different configurations that
correspond to different motion cost computation, illustrating the
need for a combined TMP approach for navigation in belief space.
Though we have validated MPTP in two different robot navigation
domains, real-world scenarios often require large number of tasks
to be performed. Real-world domains are much more knowledge-
intensive, significantly increasing the task-level and motion-level
complexity. The scalability results suggest that our approach fares
well with respect to increased task-level complexity and plan
length.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

We thank Chiara Piacentini for her valuable inputs on the
POPF-TIF planner that were very helpful in our implementation.

References

[1] F. Lagriffoul, N.T. Dantam, C. Garrett, A. Akbari, S. Srivastava, L.E. Kavraki,
Platform-independent benchmarks for task and motion planning, Robot.
Autom. Lett..

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D.
Weld, D. Wilkins, PDDL- The Planning Domain Definition Language, in:
AIPS-98 Planning Competition Committee, 1998.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, P. Abbeel, Combined
task and motion planning through an extensible planner-independent
interface layer, in: Robotics and Automation (ICRA), IEEE International
Conference on, IEEE, 2014, pp. 639-646.

C.R. Garrett, T. Lozano-Perez, L.P. Kaelbling, Ffrob: Leveraging symbolic
planning for efficient task and motion planning, Int. J. Robot. Res. 37 (1)
(2018) 104-136.

L.P. Kaelbling, T. Lozano-Pérez, Integrated task and motion planning in
belief space, Int.]. Robot. Res. 32 (9-10) (2013) 1194-1227.

[2]

3]

[4]

[5

http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb3
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb4
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb4
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb4
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb4
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb4
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb5
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb5
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb5

A. Thomas, F. Mastrogiovanni and M. Baglietto

[6]

[7]

[8

9]

[10]

[11]

[12]

[13]

N.T. Dantam, Z.K. Kingston, S. Chaudhuri, LEE. Kavraki, An incremental
constraint-based framework for task and motion planning, in: Special Issue
on the 2016 Robotics: Science and Systems Conference, Int.]J. Robot. Res.
37 (10) (2018) 1134-1151.

C.R. Garrett, C. Paxton, T. Lozano-Pérez, L.P. Kaelbling, D. Fox, Online re-
planning in belief space for partially observable task and motion problems,
arXiv preprint arXiv:1911.04577.

L.P. Kaelbling, M.L. Littman, A.R. Cassandra, Planning and acting in partially
observable stochastic domains, Artificial Intelligence 101 (1-2) (1998)
99-134.

A. Thomas, F. Mastrogiovanni, M. Baglietto, Task-motion planning for
navigation in belief space, in: The International Symposium on Robotics
Research, 2019.

R.E. Fikes, N.J. Nilsson, STRIPS: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2 (3-4) (1971)
189-208.

NJ. Nilsson, Shakey the robot, Tech. Rep. 323, Airtificial Intellignece Center,
SRI International, Menlo Park, California, 1984.

C. Dornhege, M. Gissler, M. Teschner, B. Nebel, Integrating symbolic and
geometric planning for mobile manipulation, in: Safety, Security & Rescue
Robotics (SSRR), IEEE International Workshop on, IEEE, 2009, pp. 1-6.

S. Cambon, R. Alami, F. Gravot, A hybrid approach to intricate motion,
manipulation and task planning, Int. J. Robot. Res. 28 (1) (2009) 104-126.

[14] J. Hoffmann, The metric-FF planning system: Translating ignoring delete

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

lists to numeric state variables,]. Artificial Intelligence Res. 20 (2003)
291-341.

C. Piacentini, V. Alimisis, M. Fox, D. Long, An extension of metric temporal
planning with application to ac voltage control, Artif. Intell. 229 (2015)
210-245.

E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, T. Uras, Combining high-
level causal reasoning with low-level geometric reasoning and motion
planning for robotic manipulation, in: 2011 IEEE International Conference
on Robotics and Automation, IEEE, 2011, pp. 4575-4581.

L.P. Kaelbling, T. Lozano-Pérez, Integrated robot task and motion plan-
ning in the now, Tech. Rep. 2012-018, Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, 2012.

H. Kurniawati, Y. Du, D. Hsu, W.S. Lee, Motion planning under uncertainty
for robotic tasks with long time horizons, Int. J. Robot. Res. 30 (3) (2011)
308-323, http://dx.doi.org/10.1177/0278364910386986.

M. Ghallab, D. Nau, P. Traverso, Automated Planning and Acting, Cambridge
University Press, 2016.

AXK. Pandey, J.-P. Saut, D. Sidobre, R. Alami, Towards planning human-
robot interactive manipulation tasks: Task dependent and human oriented
autonomous selection of grasp and placement, in: 2012 4th IEEE
RAS & EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob), IEEE, 2012, pp. 1371-1376.

L. de Silva, AK. Pandey, M. Gharbi, R. Alami, Towards combining htn
planning and geometric task planning, in: RSS Workshop on Combined
Robot Motion Planning and Al Planning for Practical Applications, 2013.
F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, L. Karlsson, Efficiently
combining task and motion planning using geometric constraints, Int. J.
Robot. Res. 33 (14) (2014) 1726-1747.

M. Toussaint, Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning, in: Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

M. Toussaint, M. Lopes, Multi-bound tree search for logic-geometric
programming in cooperative manipulation domains, in: 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, 2017, pp.
4044-4051.

T. Lozano-Pérez, L.P. Kaelbling, A constraint-based method for solving
sequential manipulation planning problems, in: Intelligent Robots and
Systems (IROS), IEEE/RS] International Conference on, IEEE, 2014, pp.
3684-3691.

C. Dornhege, P. Eyerich, T. Keller, S. Triig, M. Brenner, B. Nebel, Semantic
attachments for domain-independent planning systems, in: International
Conference on Automated Planning and Scheduling (ICAPS), Thessaloniki,
Greece, 2009, pp. 114-121.

M. Stilman, J. Kuffner, Planning among movable obstacles with artificial
constraints, Int.]. Robot. Res. 27 (11-12) (2008) 1295-1307.

[28] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, D. Manocha, Path planning

[29]

[30]

among movable obstacles: a probabilistically complete approach, in: Work-
shop on the Algorithmic Foundations of Robotics VIII, WAFR, Springer,
Guanajuato, Mexico, 2009, pp. 599-614.

K. Hauser, J.-C. Latombe, Integrating task and PRM motion planning:
Dealing with many infeasible motion planning queries, in: ICAPS Workshop
on Bridging the Gap between Task and Motion Planning, 2009.

K. Hauser,]J.-C. Latombe, Multi-modal motion planning in non-expansive
spaces, Int. J. Robot. Res. 29 (7) (2010) 897-915.

17

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Robotics and Autonomous Systems 141 (2021) 103786

P. Khandelwal, S. Zhang, J. Sinapov, M. Leonetti, J. Thomason, F. Yang, I.
Gori, M. Svetlik, P. Khante, V. Lifschitz, et al, Bwibots: A platform for
bridging the gap between ai and human-robot interaction research, Int. J.
Robot. Res. 36 (5-7) (2017) 635-659.

V. Lifschitz, Answer set programming and plan generation, Artificial
Intelligence 138 (1-2) (2002) 39-54.

Y.-q. Jiang, S.-q. Zhang, P. Khandelwal, P. Stone, Task planning in robotics:
an empirical comparison of PDDL-and ASP-based systems, Front. Inf.
Technol. Electron. Eng. 20 (3) (2019) 363-373.

P. Mufioz, M.D. R-Moreno, D.F. Barrero, Unified framework for path-
planning and task-planning for autonomous robots, Robot. Auton. Syst. 82
(2016) 1-14.

C. Wong, E. Yang, X.-T. Yan, D. Gu, Optimal path planning based on a
multi-tree T-RRT* approach for robotic task planning in continuous cost
spaces, in: 2018 12th France-Japan and 10th Europe-Asia Congress on
Mechatronics, IEEE, 2018, pp. 242-247.

Y. Jiang, F. Yang, S. Zhang, P. Stone, Task-motion planning with reinforce-
ment learning for adaptable mobile service robots, in: IROS, 2019, pp.
7529-7534.

S.-Y. Lo, S. Zhang, P. Stone, Petlon: Planning efficiently for task-level-
optimal navigation, in: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, International Foundation
for Autonomous Agents and Multiagent Systems, 2018, pp. 220-228.

T. Bylander, The computational complexity of propositional STRIPS
planning, Artificial Intelligence 69 (1-2) (1994) 165-204.

M. Fox, D. Long, PDDL2. 1: An extension to PDDL for expressing temporal
planning domains,]. Artif. Intell. Res. 20 (2003) 61-124.

J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
S. Pathak, A. Thomas, V. Indelman, A unified framework for data association
aware robust belief space planning and perception, Int.]J. Robot. Res. 37
(2-3) (2018) 287-315, http://dx.doi.org/10.1177/0278364918759606.

R.E. Kalman, A new approach to linear filtering and prediction problems,
Trans. ASME D 82 (Series D) (1960) 35-45.

M. Fox, D. Long, Modelling mixed discrete-continuous domains for
planning, J. Artificial Intelligence Res. 27 (1) (2006) 235-297.

RW. Weyhrauch, Prolegomena to a theory of mechanized formal
reasoning, Artif. Intell. 13.

S. Bernardini, M. Fox, D. Long, C. Piacentini, Boosting search guidance
in problems with semantic attachments, in: International Conference on
Automated Planning and Scheduling (ICAPS), Pittsburgh, PA, USA, 2017, pp.
29-37.

AJ. Coles, Al Coles, M. Fox, D. Long, Forward-chaining partial-order
planning, in: Twentieth International Conference on Automated Planning
and Scheduling, 2010.

LE. Kavraki, P. Svestka,].-C. Latombe, M.H. Overmars, Probabilistic
roadmaps for path planning in high-dimensional configuration spaces, IEEE
Trans. Robot. Autom. 12 (4) (1996) 566-580.

S. Prentice, N. Roy, The belief roadmap: Efficient planning in belief space by
factoring the covariance, Int. J. Robot. Res. 28 (11-12) (2009) 1448-1465.
E. Olson, Apriltag: A robust and flexible visual fiducial system, in: Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2011, pp. 3400-3407.

V. Indelman, L. Carlone, F. Dellaert, Planning in the continuous domain: a
generalized belief space approach for autonomous navigation in unknown
environments, Int.]. Robot. Res. 34 (7) (2015) 849-882.

J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, J. Artificial Intelligence Res. 14 (2001) 253-302.
S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion
planning, Int. . Robot. Res. 30 (7) (2011) 846-894.

S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT press, 2005.

N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-
source multi-robot simulator, in: 2004 IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), 3, IEEE, 2004, pp. 2149-2154.
C. Park, J.S. Park, D. Manocha, Fast and bounded probabilistic collision
detection for high-DOF trajectory planning in dynamic environments, I[EEE
Trans. Autom. Sci. Eng. 15 (3) (2018) 980-991.

H. Zhu, J. Alonso-Mora, Chance-constrained collision avoidance for mavs
in dynamic environments, IEEE Robot. Autom. Lett. 4 (2) (2019) 776-783.
M. Saha, G. Sanchez-Ante, J.-C. Latombe, Planning multi-goal tours for robot
arms, in: 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), 3, IEEE, 2003, pp. 3797-3803.

F. Imeson, S.L. Smith, A language for robot path planning in discrete
environments: The tsp with boolean satisfiability constraints, in: 2014 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2014,
pp. 5772-5777.

S. Alatartsev, S. Stellmacher, F. Ortmeier, Robotic task sequencing problem:
A survey, J. Intell. Robot. Syst. 80 (2) (2015) 279-298.

F. Imeson, S.L. Smith, An SMT-based approach to motion planning for
multiple robots with complex constraints, IEEE Trans. Robot. 35 (3) (2019)
669-684.

D.L. Applegate, R.E. Bixby, V. Chvatal, W.]J. Cook, The Traveling Salesman
Problem: A Computational Study, Princeton university press, 2006.

http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb6
http://arxiv.org/abs/1911.04577
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb8
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb8
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb8
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb8
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb8
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb10
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb10
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb10
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb10
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb10
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb11
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb11
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb11
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb12
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb12
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb12
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb12
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb12
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb13
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb13
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb13
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb14
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb14
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb14
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb14
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb14
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb15
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb15
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb15
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb15
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb15
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb16
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb17
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb17
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb17
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb17
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb17
http://dx.doi.org/10.1177/0278364910386986
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb19
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb19
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb19
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb20
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb22
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb22
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb22
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb22
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb22
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb24
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb25
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb27
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb27
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb27
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb28
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb30
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb30
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb30
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb31
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb32
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb32
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb32
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb33
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb33
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb33
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb33
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb33
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb34
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb34
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb34
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb34
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb34
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb35
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb38
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb38
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb38
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb39
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb39
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb39
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb40
http://dx.doi.org/10.1177/0278364918759606
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb42
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb42
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb42
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb43
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb43
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb43
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb47
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb47
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb47
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb47
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb47
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb48
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb48
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb48
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb49
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb49
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb49
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb49
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb49
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb50
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb50
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb50
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb50
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb50
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb51
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb51
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb51
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb52
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb52
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb52
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb53
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb54
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb54
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb54
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb54
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb54
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb55
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb55
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb55
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb55
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb55
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb56
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb56
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb56
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb57
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb57
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb57
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb57
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb57
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb58
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb59
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb59
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb59
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb60
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb60
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb60
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb60
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb60
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb61
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb61
http://refhub.elsevier.com/S0921-8890(21)00071-3/sb61

A. Thomas, F. Mastrogiovanni and M. Baglietto

Antony Thomas is currently a Ph.D. student at the
Department of Informatics, Bioengineering, Robotics,
and Systems Engineering (DIBRIS), University of Genoa,
Italy. He received his M.Sc. degree in 2017 from the
Technion-Israel Institute of Technology. In 2016, he
was awarded the Leonard and Diane Sherman Inter-
disciplinary Graduate School Fellowship for his M.Sc.
research. Antony also holds a dual degree (Bachelor
of Technology and Master of Technology) in Aerospace
Engineering, awarded by the Indian Institute of Tech-
nology (IIT) Madras in 2014. His current research
interests include integrated task-motion planning (TMP), belief space planning
(BSP), and autonomous navigation.

Prof. Fulvio Mastrogiovanni, male, Ph.D., serves as
Chief Research Officer at TESEO from 2019. Fulvio
is Associate Professor at the University of Genova,
Adjunct Professor at Ecole Centrale de Nantes, and
Affiliate Associate Professor at the Centre for Intelli-
gent Robotics, Japan Advanced Institute of Science and
Technology (JAIST). Fulvio has been Visiting Professor
at the Asian Institute of Technology in Thailand, the
Shanghai Jiao Tong University in China, the Karlsruhe
Institute of Technology in Germany, Keio University
and JAIST in Japan. He served as Project Coordinator,
Principal Investigator and co-Investigator, as well as Key Person in different
national (SHELL), bilateral (WearAml, SSHH), FP7 (ROBOSKIN, CloPeMa), H2020
(CARESSES, InDex) and Erasmus+ (EMARO+, J-EMARO) projects. Fulvio served as
EU Program Chair for IEEE RO-MAN 2013, IEEE RO-MAN 2015, and IEEE RO-
MAN 2018, EU Program Chair for DARS 2014 and EU Program Chair for URAI
2014, Industry/Exhibitions co-Chair for IEEE/RS] IROS 2016, Workshops/Tutorials
co-Chair for IEEE RO-MAN 2016 and 2017, and for ERF 2017. Fulvio has served
as Senior Editor of Intelligent Service Robotics (Springer) from 2013 to 2019,
and he is Editor of Robotics and Autonomous Systems (Elsevier). Fulvio has
published more than 140 papers in international journals and peer-reviewed
international conferences, one edited book, and he is the inventor of three

18

Robotics and Autonomous Systems 141 (2021) 103786

patents. He is part of the Board of Directors of the Italian Association for Artificial
Intelligence. His research interests focus on artificial intelligence techniques for
Robotics with a special emphasis on human-robot interaction, knowledge-based
representation and automatic reasoning. Fulvio received three Best Paper Awards
in international conferences.

Marco Baglietto was born in Savona in 1970. He
received the “Laurea” degree in Electronic Engineering
in 1995 and the Ph.D. degree in Electronic Engineering
and Computer Science in 1999, both from the Univer-
sity of Genoa. Since 1999, he has been an Assistant
Professor and since 2011 he is Associate Professor of
Automatic Control at the Dept. of Informatics, Bio-
engineering, Robotics and Systems Engineering-DIBRIS
(formerly Dept. of Communications, Computer and Sys-
tems Science-DIST), University of Genoa In the past
years, he has been charged to hold the courses of
“Automatic Control”, “Operations Research 2", “Systems Theory” and “Neural
Networks for Classification and Identification” at the University of Genoa (Faculty
of Engineering). At present, he is charged to hold the courses of “System
Identification” and “Identification and Estimation of Dynamic systems.” Prof.
Baglietto is author of about 100 scientific papers appeared on international
journals or conference proceedings. He is the co-recipient of the 2004 Out-
standing Paper Award of the IEEE Transactions on Neural Networks. His research
interests include: - State estimation for linear and nonlinear dynamic systems;
in particular, in the so-called moving-horizon framework. - State estimation
and control of switching systems. - Distinguishability for linear and nonlinear
systems. - Information-based control and estimation of stochastic dynamic
systems. - Control techniques applied to communication networks. - Neural
networks for the solution of optimal control problems, with particular attention
to informationally decentralized dynamic systems; Prof. Baglietto is currently
an Associate Editor for the “Nonlinear Analysis, Hybrid Systems” and for the
IEEE Control Systems Society Conference Editorial Board. “IEEE Trans. on Neural
Networks and Learning Systems” and a member of the guest editorial team of
the Special Issue of the “IEEE Transactions on Neural Network’s on “Adaptive
Learning Systems in Communication Networks.”

	MPTP: Motion-planning-aware task planning for navigation in belief space
	Introduction
	Related work
	Preliminaries and definitions
	Task planning
	Motion planning
	Task-motion planning
	Problem definition

	Approach
	Task planning
	Office domain
	Corridor domain

	Motion planning
	Task-motion planning for navigation
	Cost function
	Optimality
	Completeness

	Implementation and experimental results
	Motion and sensor model
	Plan metrics
	Office domain
	Validation
	Scalability

	Corridor domain
	Validation and scalability

	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgment
	References

