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Abstract

We present a real-time stereo visual-inertial-SLAM system which is able to recover from complicated

kidnap scenarios and failures online in realtime. We propose to learn the whole-image-descriptor

in a weakly supervised manner based on NetVLAD and decoupled convolutions. We analyse the

training difficulties in using standard loss formulations and propose an allpairloss and show its

effect through extensive experiments. Compared to standard NetVLAD, our network takes an order

of magnitude fewer computations and model parameters, as a result runs about three times faster.

We evaluate the representation power of our descriptor on standard datasets with precision-recall.

Unlike previous loop detection methods which have been evaluated only on fronto-parallel revisits,

we evaluate the performace of our method with competing methods on scenarios involving large

viewpoint difference. Finally, we present the fully functional system with relative computation and

handling of multiple world co-ordinate system which is able to reduce odometry drift, recover from

complicated kidnap scenarios and random odometry failures. We open source our fully functional

system as an add-on for the popular VINS-Fusion.

Keywords: Kidnap Recovery, Loop Closure, VINS, Whole Image Descriptor.

1. Introduction

Over the past decade, the SLAM (Simultaneous Localization and Mapping ) community has

made amazing progress towards increasing the specificity of the odometer and building usable

maps of the environment to assist robots in various planning tasks. Systems using visual and

inertial information fusion have been a contemporary theme towards reducing drift to less than

0.5% of the trajectory length [3]. Identifying a revisit to a place presents an opportunity to reduce

the drift further and also to recover from kidnap scenarios. General place recognition, however,

?The source code is available at https://github.com/HKUST-Aerial-Robotics/VINS-kidnap
1Corresponding author: mpkuse@connect.ust.hk
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remains an extremely challenging problem [4] due to myriad ways in which visual appearance of a

place varies. In our own daily experience, humans describe places to fellow humans as a collection

of objects, their color cues, their spatial locations and so on, thereby allowing to disambiguate

places even if they approach the place from a very different viewpoint. Ideally, the loop detection

module should describe a scene in this context. Humans probably do not rely on corner features (a

common technique in use for loop detection in existing SLAM systems) to identify a place, instead

we humans, most likely represent the scene as a whole in a semantic sense. The proposed system

builds on this motivation.

In this work, we propose the use of a framework which learns whole-image descriptors without

explicit human labeling to represent a scene in a high dimensional subspace for detecting place

revisits. We lay special emphasis on the real-time performance and evaluation of the system in

context of visual-SLAM.

Popular past works have considered loopclosure under fronto-parallel scenarios. However, place

revisits can happen at substantial viewpoint difference. The underlying place recognition module

in SLAM systems to identify place revisits occurring at widely different viewpoints. Past systems

based on bag-of-visual-words (BOVW) are limited by the underlying low-level feature descriptors.

The learned vocabulary (for BOVW) also have difficulty generalizing under adversaries like large

viewpoint difference, noise, low light, changing exposure, less texture [4]. The proposed method can

learn a representation that generalizes well and can identify place revisits under non fronto-parallel

viewpoints.

We compare our method’s run-time performance with a popular bag-of-words approach, DBOW

[5] and ibow-lcd by [6] along with recently proposed CNN based approaches for place recognition

[7], [8], [9]. On real sequences, our method delivers a similar recognition performance to NetVLAD

but at a 3X lower computational time and an order of magnitude fewer training variables. The

major advantage of our system is that it has a high place recall rate thus is able to recover live in

real-time from long and chained kidnaps by maintaining multiple co-ordinate systems and their

relative poses.

Our paper is organized as follows. In Section 2, we start by reviewing approaches in the Visual

Place Recognition (VPR) community and some recent loopclosure methods used in Visual-SLAM

community. Next, in Section 3, we identify the issue of unstable learning in the original NetVLAD

implementation which uses the tripletloss and we propose an allpairloss function to alleviate this

issue. In Section 4.1 we present our implementation details for deployment as a visual-SLAM

subsystem which includes the place recognition module, the datastructure for handling multiple

co-ordinate systems and recovery from kidnap. In Section 5, we presents comparative experiments

2



to this effect. Finally, we present our entire system which is available as a pluggable module to the

popular VINS-Fusion [10].

2. Literature Review

We recognize that visual place recognition (VPR) and loopclosure detection in SLAM are

related problems. Here we first review recent advances from VPR community and then review

state-of-the-art loop-closure methods.

In the context of VPR, Sunderhauf et al. [7] pioneered the use of ConvNet features. Compared

to SeqSLAM [11] and FAB-MAP [12, 13] use of features from pretained network results in better

precision-recall performances on standard VPR datasets(Norland, Gardens Point, St. Lucia and

Campus). In their subsequent work, Sunderhauf et al. [14] proposed to use region proposals and

extract ConvNet features on each of the regions. Arandjelovic et al. [15] proposed a trainable feature

aggregation layer which mimics the popular VLAD (Vector of Locally Aggregated Descriptor).

While impressive performance was obtained, these methods rely on nearest neighbour search for

retrival. The image descriptor being very high dimensional (eg. 32K dimensional for [15], 64K for

[7]), these methods perform various dimensionality reduction techniques to make nearest neighbour

search feasible in reasonable time with some hit to the retrieval performance. WPCA was used by

[15] which involve storage of a 32Kx4K matrix costing about 400 MB.

More recently Khaliq et al. [16] proposed an approach which make use of region-based features

from a light-weight CNN architecture and combines them with VLAD aggregation. The approach

from Chen et al. [17, 18] identifies key landmark regions directly from responses of VGG16 network

which was pretrained on image classification task. For regional features encoding, bag-of-words was

employed on a separare training dataset to learn the codebook. The approach by Hou et al. [19]

is very similar to [17]. The Disadvantage of using pretrained models learned on ImageNet object

classification, for example, puts more emphasis on objects rather than the nature of the scene itself.

Other works in this context include [20, 21, 22, 23, 24, 25, 26, 27]. For a more detailed summary

of the works in place recognition we direct the readers to survey on place recognition / instance

retrieval [28, 4]. We summarize the literature in Table 1.

Although CNN based techniques are considered as state-of-the-art in retrieval and place

recognition tasks, they are still disconnected from overall SLAM and loop-closure detection problems.

Commonly employed loop detection methods in state-of-the art SLAM systems rely on sparse point

feature descriptors like SIFT, SURF, ORB, BRIEF etc. for representation and an adaptation of

BoVW for retrieval. While BoVW provides for an scalable indexed retrieval, the performance of

the system is limited by the underlying image representation. Such factors as the quantization in
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clustering when building vocabulary, occlusions, image noise, repeated structures also affect the

retrieval performance.

FAB-MAP [12, 13], DBOW2 [5] and others [29, 30] rely on a visual vocabulary which is trained

offline, while recent methods like OVV [31] , IBuILD[32], iBOW-LCD [6], RTAB-MAP [33] and

others [34, 35, 36, 37] rely on online constructed visual vocabulary. Authors have also made use of

whole-image-descriptors in loopclosure context [38, 39, 11]. Works in the context of loopclosures in

SLAM which make use of learned feature descriptors are: [8, 21]. Merril and Huang [8] learned an

auto-encoder from the common HOG descriptors for the whole image. Other miscellaneous work

related to our localization system are [40, 41, 42, 43, 44].

Some works have also built full SLAM system with multi-session map merging capability.

The maplab system [2] provides an online tool, ROVIOLI which is essentially a visual-inertial

odometry and localization front-end. Although it provides for a console based interface offline for

multi-session map merging, it cannot identify kidnaps and recover from them online. This is the

major distinguishing point of our system. Also the relocalization system by Tong et al. [1] can

merge multiple sessions live it only merges with the first co-ordinate frame, any loop connections

between co-ordinate systems not involving the first co-ordinate systems are ignored. Our system

on the other hand is able to maintain multiple co-ordinate systems and their relative poses, set

associations and merge the trajactories online in real-time.

We summarize our contributions:

• A fully functional system, as an add-on for VINS-Fusion, which uses whole-image descriptor

for place representation and recovery from odometry drifts, kidnap and failures live and in

real-time. Our learning code 2 and VINS-Fusion addon ROS package 3 are open sourced.

• A novel cost function which deals with the gradient issue observed in standard NetVLAD

training.

• Decoupled convolutions instead of standard convolutions result in similar performance on

precision-recall basis but at a 3X lower computation cost and about 5-7X fewer learnable

parameters, making it ideally suitated for real-time loopclosure problems.

• Squashing channels of CNN descriptors instead of explicit dimensionality reduction of image

descriptor for scalabilty. Even a 512-D image descriptor gives reasonable performance.

2https://github.com/mpkuse/cartwheel_train
3https://github.com/HKUST-Aerial-Robotics/VINS-kidnap
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Figure 1: Shows the corrected trajectories (different colors for different worlds) merged according to

the inter-world loop candidates. Note that the merging occurs live (not offline) in real-time as the loop

candidates are found. We also note that such cases cannot be handled by Qin et al.[1] which just merges

with the world-0 (first world) and ignore any inter-world loop candidates not involving world-0. The maplab

system [2] provides an online tool, ROVIOLI which is essentially a visual-inertial odometry and localization

front-end. Although it provides for a console based interface offline for multi-session map merging, it cannot

identify kidnaps and recover from them online. This sequence involves multiple kidnaps lasting from 10s to

30s. The video for the live run is available at the link: https://youtu.be/3YQF4_v7AEg. Live runs videos

are available for more sequences through this link: https://bit.ly/2IkEh3F.
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\mathbf{h}_{\mathbf{u}}^{(I)}
\mathbf{w}_k, b_k
\theta
r_k
\sigma(\mathbf{r})_k
 {\mathbf{\vartheta}}_k = \sum_{\forall \mathbf{u}} a_k( {\mathbf{h}}^{(I)}_{\mathbf{u}} ) \times ( {\mathbf{h}}^{(I)}_{\mathbf{u}} - {\mathbf{c}}_k )
\mathbf{c}_k
\vartheta_1
\vartheta_2
\vartheta_K
\eta^{(I)}
\vdots

NetVLAD

Figure 2: Notations and computations for the whole-image descriptor. An image is fed into the CNN

followed by the NetVLAD layer. We experiment with VGG16 and propose to use decoupled convolution for

its speed. Additionally for dimensionality reduction we propose channel-squashing. Our fully convolutional

network, with K=16 produces a 4096-dimensional image descriptor (without channel squashing) and a

512-dimensional image descriptor (with channel squashing). In terms of number of floating point operations

(FLOPs) for a 640x480 input image our proposed network is about 25X faster, real computational time is

about 3X faster. Details in Sec. 3.

3. Learning Place Representation

In this section, we describe the training procedure. We start by reviewing VLAD and NetVLAD

[15] (Sec. 3.1). We see these methods as a way for pixelwise featuremap aggregation. Next we

describe the learning issues associated with the triplet ranking loss function. To mitigate this issue

we propose to use a novel all-pair loss function (Sec. 3.2). We provide an intuitive explanation

along with experimental evidence on why the proposed all-pair loss function leads to faster and

stable training.

3.1. Review of VLAD and NetVLAD

Let h(I)
u (d) be the dth dimension (d = 1 · · ·D) of the image feature descriptors for image I

(width W and height H) at pixel u := (i, j), i = 1, . . .W ′; j = 1, . . . H ′. These per pixel CNN-feature

descriptors are assigned to one of the K clusters (K is a fixed parameter, we used 16, 48, 64 in

our experiments), with ck ∈ <D, k = 1 . . .K as cluster centers. The VLAD [15] representation is

D ×K matrix, V = [ϑ1, ϑ2, . . . , ϑK ], defined as the sum of difference between local descriptor and

assigned cluster center,

ϑk =
∑
∀u

ak(h(I)
u )× (h(I)

u − ck) (1)

where ak(.) denotes a scalar membership indicator function of the descriptor h
(I)
u in one of

the K classes. Arandjelovic et al. [15] proposed to mimic VLAD in a CNN-based framework. In

order that the cluster assignment function, ak(.), be differentiable and hence learnable with back

propagation they defined an approximation of the assignment function ak(.) using the softmax
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function. For brevity, we write, h
(I)
u as h:

âk(h) =
e−α ||h−ck||∑K

k′=1 e
−α ||h−ck′ ||

= σ(r)k

(2)

where rk = wT
k h + bk, wk = 2αck, bk = −α||ck||2. σ(r)k is the softmax function. rk can be

computed with convolutions. wk, bk and ck are learnable parameters in addition to the CNN

parameters θ. Fig. 2 summarizes the computations and notations. Each of the vectors corresponding

to K clusters is individually unit normalized and then the whole vector is unit normalized. This

is referred in the literature as Intra-normalization which reduce the effect of burstiness of visual

features[51]. Thus, scene descriptor η(I), of size D ∗K is produced using a CNN and the NetVLAD

layer,

η(I) = ℵ({h(I)
u }) (3)

In general any base CNN can be used and the NetVLAD mechanism can be thought of

aggregating the CNN pixel-wise descriptors. For experiments, we use the VGG16 network [52].

Additionally, following [53] we propose to use the decoupled convolution, ie. a convolution layer is

split into two layers, the first of which does only spatial convolution independently across all the

input channels. Second of the two layers does 1x1 convolution on the channels. This has been found

to boost running time at marginal loss of accuracy for object categorization tasks. We also propose

to reduce the dimensions by quashing channels with learned 1x1 convolutions rather than reduce

the dimensions of the image descriptor as has been done by the original NetVLAD paper. This

eliminates the need to store the whittening matrix (as done by [15]). At the run time it eliminates

the need for a large matrix-vector multiplication for dimensionality reduction.

3.2. Proposed All-Pair Loss Function

To learn the parameters of the CNN (θ) and of the NetVLAD layer (wk, bk and ck), the cost

function needs to be designed such that, in the dot product space, η corresponding to projections

of the same scene (under different viewpoints) appear as nearby points (higher dot product value,

nearer to 1.0). Let η(Iq) be the descriptor of the query image Iq. Similarly, let η(Pi) and η(Nj) be

the descriptors of ith positive and jth negative sample respectively. By positive sample, we refer to

a scene which is same as query image scene but imaged from a different perspective. By negative

sample, we refer to a scene which is not the same place as the query image. Let the notation,

〈η(a), η(b)〉, denote the dot product of two vectors.

8



Following [15] we use multiple positive and negative samples {Iq, {Pi}i=1,...,m, {Nj}j=1,...,n} per

training sample, however with a novel all-pair loss function. We provide an intuitive explanation

for the superiority of the proposed loss function over the standard triplet loss used by [15] for

training. We also provide corroborative experimental evidence towards our claims. The commonly

used triplet loss function can be rewritten in our notations as, Ltriplet−loss:∑
j

max
(
0, 〈η(Iq), η(Nj)〉 −mini(〈η(Iq), η(Pi)〉) + ε

)
(4)

where ε is a constant margin. Note that [15] prefered to define the loss function in Euclidean

space rather than the dot product space. Using any of the spaces is equivalent since for unit

vectors, a and b, the dot product, 〈a,b〉, and the squared Euclidean distance d(a,b), are related

as, d(a, b) = 2(1− 〈a, b〉) with a negative correlation. This has been taken care of by flipped sign in

our optimization problem compared to the one used by Arandjelovic et al. [15]. This loss function

is the difference between the worst positive sample, ie. mini〈η(Iq), η(Pi)〉 and the query with every

negative sample.

In an independent study by Bengio et al. [54], it was observed that for faster convergence, it is

crucial to select triplets from the training dataset, that violate the triplet constraint, ie. result in as

few zero-loss as possible. They demonstrated that these zero-loss scenarios lead to zero gradients

which in turn slows the training. They suggested to provide easier samples in early iterations and

harder samples in later iteration to speed up the learning process. To this effect, Schroff et al. [55]

proposed a strategy to select triplets using recent network checkpoints, every n (say 1000) training

iterations. Instead of using a complicated strategy as done by [55], we rely on a well-designed loss

function which gives this effect. Thus, we define a novel loss function based on all-pair comparisons

of positive and negative samples with the query image. The proposed loss function is relatively

harder to satisfy (resulting in fewer zero loss samples), hence its higher discriminatory power

compared to the triplet loss (see Fig. 6).

In order to learn highly discriminative descriptors, we want the similarity of query sample ie.

η(Iq) with positive samples be more than the similarity between query sample and the negative

samples. Let us consider two cases a) 〈η(Iq), η(Nj)〉 > 〈η(Iq), η(Pi)〉; b) 〈η(Iq), η(Nj)〉 < 〈η(Iq), η(Pi)〉.
Case-b is what we prefer so we do not want to have a penalty (want to have zero loss) for its

occurence. Case-a is opposite of what we prefer thus we add a penalty proportional to the magnitude

of the dot product to discourage this event. We propose to add a penalty term as above for all

the pairs where the conditions do not hold. For effective learning we propose to compute the loss

over every pair of positive and negative sample. The final loss function for one learning sample (

9



 
 

Learning

Figure 3: Illustration of the effect of learning with proposed loss function. Descriptor of query image

(η(Iq), in blue). Descriptors of positive set (η(Pi), in green) and negative set (η(Nj), in black). See also Eq.

5.

{Iq, {Pi}i=1,...,m, {Nj}j=1,...,n} ) is given as, Lproposed:

L =

m∑
i=1

n∑
j=1

max(0, 〈η(Iq), η(Nj)〉 − 〈η(Iq), η(Pi)〉+ ε) (5)

The motivation and the effect of the proposed loss function on termination of learning is summarized

in Fig. 3. We further note that the proposed loss function is harder to satisfy (giving a positive

penalty) compared to the loss function used by Arandjelovic et al.[15] (ie. Eq. 4). This has been

experimentally observed (see Fig. 6). The major drawback of using an easy to satisfy penalty

function is the vanishing gradients problem [54], which slows the speed of learning. This is because

a zero-loss sample results in zero-gradient during back-propagation.

3.2.1. Loss function in Matrix Notation

For fast and efficient training we express the loss function (Eq. 5) in a matrix notation. We

firstly define ∆q
P to represent dot product between the sample query ηq and descriptors of each of

the positive samples

∆q
P =


〈η(Iq), η(P1)〉

...

〈η(Iq), η(Pm)〉

 (6)

Next, we define ∆q
N to represent dot product between the sample query and descriptors of each

of the negative samples.

∆q
N =


〈η(Iq), η(N1)〉

...

〈η(Iq), η(Nn)〉

 (7)

Let 1n denote a column-vector of size n and 1m denote a column-vector of size m with all

entries as 1s. Also define 0m×n as null-matrix of dimensions m × n. The max(.) operator is a

10



point-wise operator. Now we note that Eq. 5 can be expressed in matrix notation as:

L = max (0m×n,1m(∆q
N)T −∆q

P1
T
n + ε1m1Tn ) (8)

3.3. Training Data

In order to train the scene descriptor, only requirement on the data is that we be able to draw

positive sample images (views of the same physical scenes) and negative sample images (images

of different scenes). One possible way is to bootstrap a video sequence with existing methods for

loopclosure detection. Such a preprocessed sequence might not be useful for localization but can

provide enough information to draw positive and negative samples for learning a whole-image-

descriptor with the proposed method. Several walking, driving, drone videos etc. available on video

sharing websites can be used for learning. Another way could be to use 3D mesh-models and render

views with nearby virtual-camera locations to obtain positive samples. With the advent of crowd

sourcing street scenes and availability of services like mappilary4, it is easily possible to assemble

a much larger dataset for training. Faster and descriminative learning is even more crucial when

making use of such larger training datasets. We differ this until our future work.

For our experiments be comparable with exisiting methods, we use the Pittsburgh (Pitts250k)

[56] dataset which contains 250k images from Google’s street-view engine. It provides multiple

street-level panoramic images for about 5000 unique locations in Pittsburg, Pennsylvania over

several years. Multiple panoramas are available at a particular place (≈ 10m apart) sampled

approximately 30 degrees apart along the azimuth. Another similar dataset is the TokyoTM dataset

[56].

3.4. Training Hyperparameters

The CNN-learnable parameters are initialized with the Xavier initialization [57]. We initialize

NetVLAD parameter ck as unit vectors drawn randomly from a surface of a hypersphere. bk and wk

are coupled with ck at initialization. However, as learning progresses these variables are decoupled.

We use the AdaDelta solver [58] with batch size of b = 4 (each batch with m = 6 positive samples

and n = 6 negative samples)). This configuration takes about 9GB of GPU memory during training.

We stop the training at 1200 epochs. Our 1 epoch is 500 randomly drawn tuples from the entire

dataset. The learning rate is reduced by a factor of 0.7 if loss function does not decrease in 50

epochs and a regularization constant is set to 0.001 (to make regularization loss about 1% of fitting

loss). Data augmentation (rotation, affine scale, random cropping, random intensity variation) is

4https://www.mapillary.com/
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used for robust learning, which we begin after 400 epochs. This explains the rise in the loss function

values in our experiments in Fig. 8, 9, 10.

The output descriptor size is K×D. K is the number of clusters in NetVLAD, we use K=16,32,64.

D is the number of channels of the output CNN. For both VGG16 and the decoupled network it is

512. Some other authors notably Arandjejovic [15] and Sunderhauf [7] have used whittening-PCA

and gaussian random projections respectively to reduce the dimensions of the image descriptor from

about 64K to 4K. We suggest to use learnable squashing channels (to say 32) with channelwise

convolutions before feeding the pixelwise descriptors to the NetVLAD layer rather than reduce the

dimensionality of the image descriptor. We have experimentally compared the effect of this channel

squashing in Fig. 14 and Fig.15.

4. Deployment

Our system, which is able to correct drifts of VIOs, recover from long kidnaps and system

failures online in real-time, is available as a add-on to the popular VINS-Fusion. In general, our

system can work with any VIO system. It is worth nothing that the maplab system’s [2] ROVIOLI

cannot identify kidnaps and recover from them online, although it can merge multiple sequences

offline (when all the sequences are known).

In this section we describe our multi-threaded software architecture (Fig. 4). We use the

consumer-producer paradigm for real-time deployment of our system. We start by describing

the image level descriptor extraction and comparison. After that, we describe the details of pose

computation at the loopcandidate image pair. Next we describe how our system is able to recover

from kidnaps by keeping track of the disjoint co-ordinate systems and switching off the visual-interial

odometry when no features can be reliably tracked.

4.1. Descriptor Extraction and Comparison

We propose a pluggable system to the popular VINS-Fusion5 by Qin et al.[10]. Our system

receives keyframes from the visual-inertial odometry sub-system to produce loopclosure candidates.

We use a naive store-and-compare strategy to find loopcandidates. The descriptors at all previous

keyframes, ie. η(It) t = 1, . . . , t are stored indexed with time. When a new keyframe arrives, say

η(It+1), we perform 〈η(Iti ), η(It+1)〉 i = 1, . . . , t− T . T is typically 150, ie. ignore latest 150 frames

(or 15 seconds) for loopclosure candidates. These are a measure of likelihoods for loopclosure at

each of the keyframe timestamps. We accept the loopclosure hypothesis if the query score is above

a set threshold (fixed for all the sequences) and if three consecutive queries retrieve descriptors

5https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
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within six keyframes of the first of the three queries. In a real implementation, the threshold can be

set a little lower and wrong hypothesis can be eliminated with geometric verifications heuristics. We

note that loopcandidates with large viewpoint difference provide a formidable challenge for tracked

feature matching between the two views. In this work for comparison of descriptor’s precision-recall,

we do not perform any geometric verification.

Our naive comparison (matrix-vector multiplication) takes about 50 ms for comparison with

4000 keyframes (about 10 min sequence) on a desktop CPU with image descriptor dimension of

8192 and about 10ms for 512 dimensional image descriptor. While the comparison times grow

unbounded as number of keyframes increase, the objective of this paper is to demonstrate the

representation power of learned whole image descriptors over the traditional BOVW on sparse

feature descriptor loopclosure detection framework and the recently proposed CNN-based image

descriptors in terms of detection under large viewpoint difference. Dealing with scalability could be

a future research direction. In our opinion scalability can be achieved by sophisticated product

quantization approaches similar to Johnson et al.[59] or by maintaining a marginalized set of scene

descriptors, along with scene object labels and dot product comparison on this smaller subset.

4.2. Feature Matching and Pose Computation

In this section we describe the task of metric scale relative pose computation given a loopcandi-

date pair. For computation of reliable pose estimates we make use of the GMS-Matcher [60] as a

robust correspondence engine. The GMS-matcher propose a simple grid based voting scheme for

finding fast correspondences. This matcher provides reliable matches even under large viewpoint

difference. This can be attributed to the grid-based voting scheme that it implements, has the effect

13



of eliminating point correspondences if nearby points in one view do not go to nearby points in

the second view. Computationally it takes about 150-200 ms per image pair (image size 640x480).

Since we only need to compute these correspondence on loopcandidates and also since we use a

multi-threaded implementation, this higher computational time does not stall our computational

pipeline. Note that in the event of loop detections under large viewpoint difference, the tracked

features in a SLAM system do not provide enough information for feature computation. Some other

related recent works on CNN based feature correspondence include InLoc [61], Neighbourhood

consensus network[62]. Although these approaches present impressive results, they involve storage

of allpair dense pixel-level features which currently cannot be accomplished in realtime.

Once the feature correspondences are produced we make use of direct perspective-n-point (PNP)

method by Hesch and Roumeliotis [63] for pose computation 6. We reject a loopcandidate if

insufficient number of correspondences are produces (we use a threshold of 200 correspondences).

We use random sampling and consensus (RANSAC) to make the PNP robust under spurious feature

correspondences that may occasionally occur. For about 10 RANSAC iteration it takes on average

5 ms to compute the pose from approximately 2000 feature correspondences. We make use of stereo

geometry for computing 3D points at loopclosures.

In cases where the queue size is small and computational resources sufficient we also compute

the pose by iterative closest point (ICP) method in addition to the PNP. The 3D points for both the

images of the loopcandidates is obtained from stereo geometry in this case. If the pose computations

are not consistent from the two methods we reject the loopcandidate.

4.3. Kidnap Detection and Recovery

In our system we also deal with a kidnap recovery mechanism. By kidnap we refer to the

camera’s view being blocked and the camera teleported to another location several 10s to 100s of

meters away in 10s to 100s of seconds. The teleported location may or may not be a previously seen

location. We make use of a simple criterion like the current number of tracked features falling to a

very low value (like less than 10) to determine if the camera system is kidnapped. Once we determine

that the camera system has been kidnapped we stop the visual inertial odometry subsystem. When

sufficient number of features are again being tracked we reinitialize the odometry/sensor fusion

system. It is to be noted that in such a case it starts with a new co-ordinate reference. Hence

forth we refer to the new co-ordinate systems as world-0 (w0), world-1 (w1), world-2 (w2) and

world-k (wk) in general. We denote the nodes n by a superscript to identify the world that it is in.

6Implementation from theia-sfm (http://www.theia-sfm.org/)
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Figure 5: The solid black squares represent the nodes in the pose graph. Arrows show the loopcandidates.

The white rectangles show each of the individual worlds. The colored rectangular enclosures are the worlds

belonging to the same set.

For instance n
(k)
i , means the ith node (i is the global index of the node) is in the kth world. The

odometry pose of the node is denoted as (k)Ti.

The incoming loopcandidate pair can be categorized into two kinds (refer to figure 5 for a visual

explaination). a) Intra worlds (eg. n
(k)
i ↔ n

(k)
j ) and b) Inter worlds (n

(k)
i ↔ n

(k′)
j ).

4.3.1. Direct Pose Computation Between wk and wk′

The inter-world loopcandidates n
(k)
i ↔ n

(k′)
j can be used to infer the relative poses between the

co-ordinate system wk and wk′ . In this section, we describe the computation of the relative pose

between the worlds k and k′, ie. (k)T(k′) from the relative pose between the two nodes (iTj) and

the odometry poses of the nodes in their respective worlds ie. (k)Ti and (k′)Tj respectively.

(k)T(k′) =(k) Ti ×i Tj × ((k
′)Tj)

−1 (9)

4.3.2. Indirect Pose Computation Between wk and wk1

It is easy to see that if we have two inter-world loopcandidates like: n
(k)
i ↔ n

(k′)
j and n

(k1)
i1
↔

n
(k′)
j1

, the three worlds wk, wk′ and wk1 are said to be in same set. It is also possible to indirectly

infer the relative pose between worlds wk and wk1 even though no loopcandidate exists between

these two sets. This estimate is needed for correctly initializing the poses to solve the pose graph

optimization problem.

We make use of the data structure disjoint sets [64] to maintain the world information that are

in the same set. The advantage of the disjoint set datastructure is it provides for a constant time

set-union and sub-linear time set-association query. Each world starts in its own set, everytime we

encounter the inter-world looppair we merge these two sets of the worlds into a single set.
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When we assert that two different worlds are in the same set, we imply that a relative transform

between these two worlds can be determined. However that a loopcandidate between these two

pairs of worlds may or may not exist. In case no loopcandidate exists between the two worlds but

these two worlds are in the same set, the relative poses between the worlds can be determinted by

finding a graph-path between the two worlds and chaining the relative pose estimates between the

adjacent world pairs in the path.

In a general scenario, this can be accomplished by constructing a directed graph of the worlds

with nodes being the worlds in the same set and edges being the relative poses between these two

worlds, ie. (k)T(k′). A breadth-first search on this graph is sufficient to determine an estimate of

relative poses between arbitary pairs of worlds by chaining the relative poses of the path generated

by the graph search.

4.4. Implementation Details

Our full system employs multiple threads. It uses the producer-consumer programming paradigm

for managing and processing the data. In our system, thread-1 produces image descriptors of all

incoming keyframe images. Thread-2 consumes the image descriptors to produce candidate matches.

Thread-3 consumes the candidate matches to produce feature correspondences. Thread-4 uses the

feature correspondence to produce the relative pose iTj . Thread-5 monitors the number of tracked

features to know if the system has been kidnap. Thread-6 uses the loopcandidates and their relative

poses to construct the disjoint set data structure and maintain the relative poses between multiple

co-ordinate systems as detailed in Sec. 4.3.1 and 4.3.2. Thread-7 incrementally constructs and

solves the pose graph optimization problem while carefully initializing the initial poses and making

use of poses between the worlds. Our pose graph solver is based upon the work of Sunderhauf et

al. [65]. A separate thread is used for visualizing the poses. Even though we use 7 threads, the

effective load factor on the system is about 2.0. This means about two cores are occupied by our

system (this does not include the processing for VINS-Fusion Odometry System).

We demonstrate the working of our full system (see Fig. 1). It is worth noting that in addition

to reducing the drift on account of loopclosures, our implementation can reliably identify and

recover from kidnap scenarios lasting longer than a minute online in realtime. We attribute such

robustness to the high recall rates of the NetVLAD based image descriptor engine. The results in

regard to the operation of the full system can be found in the attached video. We record our own

data for demonstating the kidnap cases. Some of the kidnap cases are labelled hard which include

the need for indirect inference which is not available in the previous slam systems including the

relocalization system from Qin et al.[1].
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5. Experiments

In this section we describe our experiments. We evaluate the effect of using the allpair loss

function compared to the commonly used triplet loss function (Sec. 5.1), while keeping the same

backend CNNs. Next the effect on running time and memory consumption by the use of decoupled

convolutions are tabulated (Sec. 5.2). In Sec. 5.3 we evaluate the precision-recall performance of

the proposed algorithm with other competing methods in the SLAM community and in the visual

place recognition community. Finally in Sec. 5.4 we evaluate the performance of the proposed

method on a real world SLAM sequences captured under challenging conditions especially revisits

occuring with non-fronto parallel configurations and in-plane rotations. For demonstration of our

full system on real world sequences refer to the video attachment.

5.1. Evaluation Metrics for Loss Function

We evaluate the effect of the proposed loss function on NetVLAD compared to the original

triplet loss which was used in [15]. We evaluate our proposed loss function using a) relative loss

declines b) number of correctly identified pairs from the validation tuple. We also plot the variance

dot products of the positive samples amongst themselves. For validation we use the Pitts30K

dataset and for training we use the TokyoTM dataset.

Similar to the training tuple, a validation tuple contains a query image, nN (= 6) negative

samples and nP (= 6) positive samples. For evaluation, we propose to count the number of correctly

identified image pairs which were actually similar to query images (ground truth) and identified as

similar based on the image descriptor dot product scores. Ideally, the evaluation metric should

be the SLAM sequences however it becomes infeasible to evaluate with SLAM sequence every say

20 epochs so we stick to this workaround. We plot these metrics for the training data and the

validation data as the iterations progress. See Fig. 8, 9, 10 for the plots. The summary of the

observation:

• Using the same backend convolutional network, the same parameters of the netvlad layer, and

same learning hyperparameters, the network trained with the proposed all-pair loss function

performs better as evaluated against the validation metric, count of pairs correctly identified.

• It can also be inferred that the gradients obtained from the use of proposed all-pair loss

function are more stable, hence the faster convergence.

• Our all pair loss function was found to perform better even when using the decoupled

convolutions, decoupled convolution with channel quashing vs the original VGG16 network.
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Figure 6: The number of batches with zero loss as iterations progress for learning with proposed cost

function (in blue, Eq. 5) compared to using the triplet ranking loss [15] (in red, Eq. 4).This experiments used

a batch size of 24 with gradient cummulation. Having a higher count for zero-loss samples is detrimental to

learning as it leads to zero-valued gradients. Best viewed in color.

5.1.1. Number of Zero Loss Tuples

In this experiment, we train with batch size 24. But since this won’t fit in the GPU memory we

use gradient cummulation. We plot the number of zero loss sample as iterations progress in Fig. 6.

When using the triplet loss, we get more number of zero loss samples. This results in zero-gradient

updates and hence slow learning compared to proposed allpairloss. This can be attributed to

allpairloss function being harder to satisfy resulting in better gradients during training.

5.1.2. Spreads of Positive and Negative Samples

As experimentally observed in Fig. 7, the use of proposed allpair loss function results in a

more discriminative image descriptor as compared to the network trained with the triplet loss.

We observe a lower spread amongst the positive samples and a larger separation in positive and

negative samples. This has the effect that the deployment as loopclosure module being less sensitive

to slight changes in dot product thresholds.

5.1.3. TripletLoss vs AllpairLoss on Decoupled Net

We compare the effect of different loss function when using the decoupled network. The network

trained with allpair loss is able to correctly identify almost 60% of the pairs from the tuples drawn

from the validation data, compared to when network was trained with tripletloss which is able to

identify about 35% correctly under identical conditions. See Fig. 8.
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Figure 7: Showing spreads (µ± σ) of 〈ηq, ηPi〉 (in green) and spreads of 〈ηq, ηNi〉 (in red) as the learning

progresses. Fig. 7 (top) corresponds to [15], with the triplet loss function. Fig. 7 (bottom) corresponds

to the proposed allpair loss function. We observe a lower spread amongst positive samples and larger

separation between positive and negative samples.
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Figure 8: Comparing the effect of using allpairloss and tripletloss for training with decoupled net (deepest

layer) with K=16. (a) Shows the relative training loss as iterations progress (lower is better). We show

the evaluation metric, ie. the count of correctly identified pairs in (b) and (c) for training data and a

separate validation data (higher is better). (d) show the variance in the positive set in dot product space

as iterations progress (lower is better).
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Figure 9: Effect of tripletloss and allpairloss with backend CNN as the VGG16 net with K=16. (a)

shows the relative training loss as iterations progress (lower is better). (b) and (c) shows the training

and validation evaluation metric (higher is better). Evaluation metric is the percentage of pairs correctly

identified. (d) shows the variance of positive set descriptors in dot product space.
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Figure 10: Effect of tripletloss vs allpairloss for decoupled net, K=16 with channel squashing. The

descriptor size in this case was just 512. Arguably the learning in this case can be improved with lower

learning data due to the osscillating losses we observe. (a) shows the relative training loss. (b) and (c)

shows the percentage of pairs correctly identified for training and a separate validation data.

5.1.4. TripletLoss vs AllpairLoss on VGG16 Net

Even when trained with VGG16 as the backend CNN, allpairloss performed better than the

tripletloss under identical training conditions. See Fig. 9.

5.1.5. TripletLoss vs AllpairLoss on Decoupled Net with Channel Squashing

When using decoupled network with channels squashing (for dimensionality reduction) we

observe a better performance when trained with allpairloss. In this configuration the descriptor size

is just 512 per image. The training was arguably more unstable in this case (we observe oscillations).

Possibly with a lower learning rate this effect can be reduced. See Fig. 10.
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Figure 11: Effect of tripletloss vs allpairloss for VGG16 net, K=64. (a) shows the relative training loss

(ratio of loss at ith and 0th iteration). (b) and (c) shows the percentage of pairs correctly identified for

training and a separate validation data.

5.2. Running Times

Currently there is rapid progress in compute-capabilities of GPUs. Under such circumstances

it is much more appropriate to report the number of floating point operations (FLOPs) for the

networks rather than absolute running times in seconds (or milli-seconds). We tabulate in Table 2

the Giga-FLOPs of the networks under various parameter settings. For reference, the forward pass

with VGG base network can be computed in about 40-50ms and with decoupled nets in about 10-

15ms for 640x480 3 channel images on Titan X (Pascal). VGG16 with K = 64 is the recommended

configuration from Arandjelovic et al. [15], which results in a 32K-dimensional descriptor which is

reduced to 4096-dimensional by a linear transformation. This linear transformation takes about

400 MB of memory.

On the other hand, our proposed network which uses a network with decoupled convolutions

as the base CNN with channel squashing and K = 16 results in 512-dimensional descriptor (4096-

dimensional if not using channel quashing). It is able to run 3-4x faster than NetVLAD [15] while

having about 20x fewer floating point operations for a 640x480 image and 5x fewer number of

learnable parameters. See table 2. It is worth noting that most of the computational load is in the

computation of per pixel descriptors and the NetVLAD layer itself takes negligible computations

compared to base CNN.

For training the networks, we use Intel i7-6800 CPU with Titan X (Pascal), 12GB GPU RAM.

It takes about 1 seconds per iteration for forward and backward pass. Note that one iteration with

batchsize 4, involve 52 images ((6 + 6 + 1)× 4).

5.3. Precision-recall Comparison

We evaluate the performance on the following datasets: a) GardensPoint dataset, b) Cam-

pusLoop dataset [8], c) our CampusConcourse dataset. Each of the datasets contains two

sequences, ‘live‘ and ‘memory‘. Note that every image in live sequence has a corresponding image

in the memory sequence. For evaluation, we load the memory sequence in the database and
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CNN Layer # L D-Size Model (MB) Fwd pass memory (MB) GFLOPS

VGG16 K16 320x240 640x480 320x240 640x480

block5 pool 14.7M 8192 56.19 234.94 767.56 47.04 188.08

block4 pool 7.6M 8192 29.19 174.06 725.32 47.05 188.117

block3 pool 1.7M 4096 6.65 165.47 641.86 47.05 188.167

VGG16 K64 320x240 640x480 320x240 640x480

block5 pool 14.78M 32768 56.38 234.32 711.46 47.05 188.11

block4 pool 7.70M 32768 29.38 203.53 696.23 47.08 188.26

block3 pool 1.76M 16384 6.75 158.86 635.26 47.13 188.46

decoup K16 320x240 640x480 320x240 640x480

pw13 3.2M 8192 12 197.97 792.21 1.742 7.01

pw10 1.36M 8192 5 189.1 734.48 1.749 7.03

pw7 554K 4096 2 164.9 652.25 1.749 7.04

decoup K16 r 320x240 640x480 320x240 640x480

pw13 3.5M 512 12 211.58 793.46 1.742 7.01

pw10 1.49M 512 5 193.86 739.73 1.749 7.03

pw7 686K 512 2 167.67 657.97 1.749 7.04

decoup K64 320x240 640x480 320x240 640x480

pw13 3.33M 32768 12 210.98 805.21 1.76 7.08

pw10 1.40M 32768 5 189.38 734.58 1.78 7.18

pw7 600K 16384 2 162.86 652.35 1.78 7.186

Table 2: Tabulation of run time memory requirements, learnable parameters (# L), descriptor size

(D-Size), model size in Mega-bytes, giga floating point operation (GFLOPs) for various configurations. We

note that block5 pool for VGG16 network is equal in depth to pw13 for decouped network. block4 pool and

pw10 have equal depth; block3 pool and pw7 have equal depth. K (eg. K16, K64) refers to the number of

clusters in NetVLAD layer. We report data for input image size 320x240 and 640x480. We conclude that

our proposed decoupled network is 20X faster computationally with an order of magnitude less number of

parameters, while delivering about the same performance as the original NetVLAD. Our squashed channel

network ‘decoup K16 r‘ gives a descriptor size of 512 with about 5% additional forward pass memory and

2% increase in parameter size with hardly noticible computation time increase. NetVLAD [15] uses a

whittening PCA for reducing descriptor dimensionality which needs to store a matrix of size 32Kx4K that

takes about 400 MB.
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compare this database with each of the images in live sequence using a basic nearest neighbour

search. Further we also evaluate our performance for the mappilary Berlin streetview dataset

[14] i)berlin-kundamm ii) berlin-halenseeestrasse and iii) berlin-A100 as has been common

amongst visual place recognition community.

We compare the proposed method with the recently proposed learning based loop detection

methods CALC by Merril and Huang [8]. Additionally we also compare with DBOW [5] (Bag-of-

visual words). We evaluate with prominent approaches amongst visual place recognition community,

AlexNet by Sunderhauf et al. [7], LA-Net, by Lopez-Antequera et al. [9]; original NetVLAD

[15]; Chen et al. [18].

The main idea of this evaluation is to gauge the recall rates and discriminative performance of

various methods. We take the matches as correctly identified if match’s index is within six indices

of itself. For our evaluation, we use the total number of positive matches as the length of the

sequence, since every image in the live sequence has a correspondence in the memory-sequence.

Total number of accepted matches are those which satisfy the loop hypothesis. The precision-recall

curves are formed by sweeping through all the thresholds within the full range of thresholds. The

results presented here differ from those presented in [8] as it is not exactly clear how recall=1 was

achieved by them, how the DBoW was used to generate these results and any heuristics, if any, was

used to identify false positives.

As noted by Merril and Huang [8], and by Sunderhauf et al. [66] superior precision-recall does

not fully prove the superiority of a method in real loop-closure of a SLAM system. Such factors

as repeated objects in scenes, similar looking scenes, invariance to rotation & scale, computation

time are important when considering a place recognition system for SLAM’s loop closure. Another

issue about such an evaluation is that it cannot gauge a method’s ability to return ’no matches’ in

case the query scene is not found in the database. Also all these datasets are rather small (about

80-200 frames) and we cannot evaluate the generalizability of the scene description by each of the

methods. For example a dataset with multiple similar looking scene is needed to throughly evaluate

a method’s performance. Rotation and scale variance of the method cannot be evaluated with these

datasets. So for a better perspective of the usability of the methods we also evaluate them on live

SLAM sequences with manually marked loopclosure detections for evaluation (details in section

5.4).

5.3.1. Walking-apart Sequence

For precision-recall curves see Fig. 12. The CampusLoop sequence contains appearance variation

due to changing weather condition. Our method does not explicitly deal with this kind of variation
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Figure 12: Precision-recall curves for various methods for loop detection. Our method using the decoupled

net as the backend CNN gives comparable performace in CampusLoop dataset which contains appearance

changes due to snowy weather. Our method gives a comparable performance to the NetVLAD in other two

datasets which has only large viewpoint and in-plane rotational changes. Which is far better than other

relavant methods.

as it is primarily based on color cues. The method CALC, for example, is based on scene structure.

Our method delivers comparable performance in this sequence. For the other two testing sequences,

viz. GardenPoint and UniConcourse, our method performs better than previous methods. This is

attributed to the fact that the descriptors learned by our method are able to generalize well into

identifying place revisits at large viewpoint difference and rotational variance, which is the case

in these two sequences. When compared to NetVLAD [15] which uses the triplet loss and VGG

network, we observe a slight boost of recall rates. Since these sequences are very small, the higher

capacity of the proposed method is not observable in this case.

5.3.2. AUC Performance on Mappilary Dataset

We evaluate our method with other state of the art methods with area-under-the-curve (AUC)

of the precision-recall plot on the mappilary berlin-streets dataset in Fig. 13. Each of the three

test sequences contain two sets of images. Note that each image in second of the two sets has a

pre-image in the first set. These datasets are 80-200 frames each. Although considerable viewpoint

and light variation exists amongst the two sets, there is no rotation variation. We test our method

with VGG16 backend CNN and with decoupled-net backend CNN. We compare with FAB-MAP

[13], SEQSLAM [11], Chen et al. [18], NetVLAD [15]. In this case, Chen et al.’s method outperform.

It is worth noting that Chen’s method [18] makes use of region proposal and is not a real-time (or

near real-time) method.

5.4. Online Loop Detections

We compare the performance of the descriptors produced from the proposed method to some of

the relavant methods with real world sequences. We introduce three sequences and refer them as

’Live Walks Dataset’, each is about 10min of walking. The main differentiating point compared to
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Figure 13: Comparing the methods with area under the curve (AUC) of the precision-recall plots for the

mappilary dataset. The following methods were compared: FABMAP [13], SeqSLAM [11], Z.Chen [18],

NetVLAD [15], proposed with VGG16 backend net, proposed with decoupled net as backend net.

the standard KITTI dataset is that ours contains adversaries like revisits under large viewpoint

difference, moving objects (people), noise, lighting changes, in-plane rotation to name a few. Two

of which were captured with a gray scale camera and one of it was captured with a color camera.

We also provide manually marked ground truth labels for loop detections along with odometry

of the poses for visualization. The odometry was not used for identifying loops. Note that for a

real sequence with N keyframes there are a little less than N2 pair of loop-frames. The human

was shown every pair and asked to mark the pairs which were the same place. Using these manual

annotations, there are 3 kinds of pairs. a) pairs not detected by the algorithm, ie. missed pairs b)

wrongly detected pairs, ie. pairs which were in reality different places but algorithm identified it as

the same place. c) pairs correctly identified, ie. pairs which were marked by the algorithm as same

places and were in reality same places.

We compare our method with some of the relavant methods on our real world datasets. We

plot the precision-recall under various threshold settings. We define precision as the fraction of

candidate loops which were actually loops. By recall we mean the fraction of actual loops identified.

We do not use any geometric verification step to boost our precision, the results shown in this

section are from raw image descriptor comparison. With geometric verification, precision of almost

100% can be easily accomplished.

We use our method in various configurations a) decoupled net as base CNN, K=16 (descriptor

size of 4096), b) VGG16 as base CNN, K=16, c) decoupled net with squashed channels, K=16

(descriptor size of 512). We compare with i) NetVLAD [15], ii) Merril and Huang [8], iii) Sunderhauf

et al. [7], iv) DBOW [5] and v) ibow-lcd [6]. We acknowledge the superior performance of Z. Chen

et al. [18] method and possibly also of Sunderhauf et al. [14] on the mappilary dataset. However,

it was not practical to test it on our datasets which are an order of magnitude larger than those

dataset. It takes about 1-1.5 sec/frame for descriptor computation and about 800ms-1.2 sec/pair for

descriptor comparison. For our dataset of 5000 keyframes the provided MATLAB implementation
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Figure 14: Precision-recall plot for the sequence ‘mynt coffee-shop‘ when compared to manual annotations

of loop candidates and threshold varied. We compare the following methods: Relja NetVLAD [15], decoupled

net with channel squashing (proposed), decoupled net without channel squashing, CALC [8], ibow-lcd [6]

and DBOW [5].

would take almost 100 days (number of comparisons would be 5000 + 4999 + 4998 + ... ). Arguably

a faster implementation could acomplish the task in about a day or two for a 5000 frame or 15 min

walking video. Thus this method is no where close to being real-time. Hence it was not compared.

We also note that the running time for Sunderhauf et al. [14] is in similar range to Z. Chen et al.’s

method.

The proposed method is able to detect revisits in all the regions for this test sequence. We

attribute this to the NetVLAD architecture which cumulates the descriptors so as to become

somewhat invariant to in-plane rotations. Other learning based methods for example CALC totally

miss the revisits occurring under dim to moderate lighting. This can be attributed to the fact that

it is based on HOG which under dim lighting do not provide enough spread for the histogram to

generate meaningful descriptors. CALC and DBOW as expected are able to work in situations

with in-plane rotations (in region 1 of Fig. 16). AlexNet and LA-Net being essentially off-the-shelf

parameters learned for object classification task are not invariant to rotations. DBOW however

is easily confused if two scene share similar looking textures, for example, the texture of the

ceiling in otherwise different looking scenes. DBOW also perform poorly under low-contrast scenes.

Compared to the original NetVLAD descriptor we observe a boost in recall rates for the proposed
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Figure 15: Similar to Fig. 14 but for sequence ‘mynt seng‘.

method. A precision-recall curve when comparing the methods to human marked loop candidates

is presented in Fig. 17.

5.5. Full System Experiments

We also experiment with our entire system involving relative pose computations at the loopcan-

didates and pose graph solver with kidnap recovery mechanism. Our experimental setup involves

just the ’MYNT EYE D’ 7 camera. It includes a stereo camera pair and an 200 Hz IMU with

frame and IMU sync of about 1 ms. We kidnap the camera by blocking the view of the camera and

trasporting it to another location. Additionally, we also experiment with the EuRoC MAV dataset

[67] which also have stereo camera data and IMU.

A representative live real-time run of the system is shown in Fig. 1. Our system can identify

and recover from kidnaps online and in realtime. A comparison of the loop detections with the

VINSFusion system and our proposed system is shown in Fig. 19. This sequence repeatedly traverse

a hall at non-fronto-parallel views and with in-plane rotations. Our system is able to correctly

recognize and compute relative poses at loopclosures involving large viewpoint differences and

in-plane rotations.

We highlight the distinguishing points of our system compared to colmap [68] and maplab [2].

Colmap is a general 3D reconstruction system and involves offline processing of unordered image

7https://www.mynteye.com
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Figure 16: Top row: Plot of visual-inertial odometry of the sequence ’base-2’; Loop candidates by our

proposed method; human marked loop candidates; 2nd row: NetVLAD [15]; CALC [8] ; LA-Net[9] ;

Alexnet [14] ; DBOW2 [5]. Row 3 and 4: Examples of correct detections by the proposed method in each

of the regions. Row 5: Examples of wrong detections.
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sets. The maplab system provides an online tool, ROVIOLI which is essentially a visual-inertial

odometry and localization front-end. Although it provides a console based interface for multi-session

map merging, it cannot identify kidnaps and recover from them online. Our system essentially fills

in this gap.

6. Conclusion and Future Work

We proposed a data-driven, weakly supervised approach to learn a scene representation for use

in loopclosure module of a SLAM system. Additionally we demonstrated the use of the disjoint

dataset structure to maintain set associations of multiple coordinate systems for online merging of

multiple pose graphs.

Unstable learning was observed for the original NetVLAD [15] which made use of tripletloss

for training. This was observed to be especially prominent when trained with smaller number of

clusters. The issue was mitigated with use of the proposed allpairloss function. This resulted in

higher performance even with a smaller number of cluster in the NetVLAD layer. For realtime

performance we made use the decoupled convolutional layer instead of the standard convolutions

for speed. The network with decoupled convolutions are almost 3X faster in computation time with

5-7X fewer learnable parameters.

To evaluate precision-recall performance for loopclosure detection in a real SLAM system,

we compare our method with popular BOVW-based methods along with state-of-the-art CNN-

based methods on real world sequences. Qualitative and quantitative experiments on standard

datasets as well as self-captured challenging sequences with adversaries including revisits at large

viewpoint difference, in-plane rotation, dim lighting etc. suggest that proposed method can identify

loopcandidates under substantial viewpoint difference. We also observe a boost in recall rates when

compared to training with original NetVLAD. Also our descriptors are found to be fairly invariant

to rotation and lighting changes.

In addition to the precision-recall we also demonstrate the real-time working of our method as

a pluggable module for VINS-Fusion. Our system is not only able to reduce drift but also identify

and recover from complicated kidnap scenarios and failures.

A robust place recognition module is a critical element for the SLAM dependent fields: long-term

autonomy and augmented reality. In addition to a robust and discriminative image representation,

the use of text and object information to further disambiguate similar looking places and provide

semantic cues to underlying planning methods could be a way forward for a truly intelligent and

scalable place recognition system. To aid the development of such a system, we opensource our

implementation and our dataset along with human annotated looppairs to the research community.
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Figure 17: Loop closure candidates (in red) as we vary the thresholds on VIO (green) for sequence ’base-2’

for the proposed method (in row-1); NetVLAD [15] (in row-2); CALC[8] (in row-3) and DBOW [5] (in

row-4). Along the columns are various thresholds. Leftmost is for loosest, rightmost is for tightest. Row-5

shows the PR-curve for each method where compared to human marked loop-candidates.37



Figure 18: The results of the proposed method on KITTI00 and KITTI05. The XY plane is the 2d

location of the trajectory. z-axis represents the frame number. In this dataset the revisits occur at similar

viewpoints, the performance of all the compared methods is almost the same.
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Figure 19: Comparing revisit detections of the proposed method (top) and VINS-Fusion, which uses

DBOW2 (2nd row). This sequence contains repeated traversal in a hall of 15mx5m at various rotations and

viewpoints. Although bag-og-words based method perform well under fronto-parallel view it has very low

recall compared to our method on larger viewpoint difference. A side-by-side live run of this sequence is

available at https://youtu.be/dbzN4mKeNTQ. Row-3 to row-5 shows some representative looppairs which

we identified by our methods as loops but were missed out by DBOW2 in VINS-Fusion.
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