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Abstract— Multi-Agent Path Finding has been widely studied
in the past few years due to its broad application in the
field of robotics and AI. However, previous solvers rely on
several simplifying assumptions. They limit their applicability
in numerous real-world domains that adopt nonholonomic car-
like agents rather than holonomic ones. In this paper, we give
a mathematical formalization of Multi-Agent Path Finding for
Car-Like robots (CL-MAPF) problem. For the first time, we
propose a novel hierarchical search-based solver called Car-
like Conflict-Based Search to address this problem. It applies
a body conflict tree to address collisions considering shapes of
the agents. We introduce a new algorithm called Spatiotemporal
Hybrid-State A* as the single-agent path planner to generate
path satisfying both kinematic and spatiotemporal constraints.
We also present a sequential planning version of our method
for the sake of efficiency. We compare our method with
two baseline algorithms on a dedicated benchmark containing
3000 instances and validate it in real-world scenarios. The
experiment results give clear evidence that our algorithm scales
well to a large number of agents and is able to produce
solutions that can be directly applied to car-like robots in the
real world. The benchmark and source code are released in
https://github.com/APRIL-ZJU/CL-CBS.

I. INTRODUCTION

Multi-Agent Path Finding, also known as MAPF, is a
crucial planning problem for multiple agents. Each agent is
required to move from an initial start place to a specified
goal and avoid collisions with each other. Due to its broad
applications in AI and robotics community, research on MAPF
has been flourishing in the past few years.

MAPF is known to be an NP-hard problem [1]. Famed
approaches to solve this problem can be classified into
reduction-based methods [2]–[4], A*-based methods [5]–
[8], prioritized methods [9] [10] and dedicated search-
based methods [11]–[13]. Some researches also take partial
kinematic constraints into consideration [14]–[17].

MAPF can be applied to several contemporary scenarios
including self-driving cars, autonomous straddle carriers [18],
warehouse robots [19], unmanned surface vehicles [20] and
office robots [21]. These industrial and service robots are
generally nonholonomic and designed as car-like vehicles
in practice. However, almost all the above methods base
on assumptions that agents are modelled as disks and are
capable of rotating in place. These solvers also adopt discrete
4-neighbor grids as their search space.
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(a) WeTech Robot (b) Snapshot of the field test

Fig. 1: Our proposed method tested on seven ackermann-steering
robots produced by WeTech. The experiment video is available in
the attachment of this paper.

In reality, car-like robots are in nature with rectangle shapes
and have minimum turning radii. Original MAPF solvers can
be applied by reducing the grid-graph resolution and adopting
dedicated controllers to track generated paths. However, this
may generate coarser solutions and degrade their practical
applicability since the controllers cannot track paths precisely,
especially those with sharp turns. These solvers also apply
various types of conflicts, including vertex conflicts and
edge conflicts, to avoid collisions between moving agents
[22]. Nevertheless, the types of conflicts adopted in different
situations depend on their specific environments, and they
can not represent all the collision scenarios.

To address these concerns, it is essential to formalize
Multi-Agent Path Finding for Car-Like robots (CL-MAPF)
problem. We propose a novel hierarchical search-based solver
called Car-Like Conflict-Based Search(CL-CBS) to settle this
problem.

Our main contributions are summarized as follows:
• We present a complete CL-MAPF solver, which simply

uses body conflicts to describe all inter-agent collision
scenarios. Our approach also ensures the robustness for
agents’ execution error.

• We propose a new single-agent path planner for car-like
robots, which generates path satisfying both kinematic
and spatiotemporal constraints.

• We also introduce a sequential version of our original
method, which significantly reduces search time with
little sacrifice on performance.

• We conduct experiments in both simulated and physical
environment. They demonstrate our method can scale
well to large amount of agents and produce solutions
directly applied to car-like robots in real-world scenes.

II. RELATED WORKS

MAPF problem has been widely studied in the robotic and
AI community. One way to solve the problem is reduction to
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other well-studied combinatorial problems [2]–[4]. Besides,
several solvers using search techniques have been proposed
to solve this problem. M* [5] expands search nodes to all
possibilities when conflict occurs. OD-recursive-M* (ODrM*)
[7] adapts the concept of Operator Decomposition [6] to keep
the branching factor small. Another complete and optimal
MAPF solver is the Safe Interval Path Planning (SIPP) [8].
It runs an A* search in a graph where each node represents
a pair of vertexes in the workspace and a safe time interval.
One popular branch of MAPF solvers nowadays is based on
a two-level optimal solver called Conflict-Based Search(CBS)
[11]. ICBS [12] and CBSH [13] improves CBS further by
classifying conflicts and resolving cardinal conflicts first.
Finally, a prioritized approach [10] is also a common choice in
numerous cases. However, it lacks a completeness guarantee.

Most of the methods above use some assumptions, like
ignoring robot’s kinematic constraints and using discrete grid
graphs. MAPF-POST algorithm that works on differential-
drive robots is proposed in [14]. It takes velocity limits into
account and provides a guaranteed safety distance between
robots. [15] presents a generalized version of CBS for large
agents that occupy more than one grid. SIPPwRT [16]
combines the token passing algorithm with SIPP for pickup
and delivery scenarios. In [17] a road-map based planner
supporting different moving speeds is suggested, and a grid-
based planner capable of handling any-angle moves using a
variant of SIPP is proposed in [23].

There are also researches about distributed collision
avoidance for multiple nonholonomic robots. Traditional
approaches for single robot can be applied, including artificial
potential field [24], dynamic window approach [25], and
model predictive control [26]. The reciprocal velocity obstacle
(RVO) [27] is a decentralized algorithm allowing robots
to avoid each other with no communication between them.
Optimal reciprocal collision-avoidance (ORCA) [28] succeeds
the concept of velocity obstacle and solves the problem faster
by casting into a low-dimensional linear program. Bicycle
reciprocal collision avoidance (B-ORCA) [29] and εCCA [30]
are two adaptions of ORCA for car-like vehicles. Nevertheless,
ORCA-based methods need global path planners to avoid
deadlocks in scenarios with obstacles and cannot guarantee
that each robot can reach its goal.

III. CL-MAPF PROBLEM

Classic MAPF solvers usually consider holonomic agents
moving in cardinal directions and neglect agents’ size. This
will cause the generated solutions cannot be executed on real-
world multi-agent systems, especially for those composed
of car-like robots. In this section, we first present the robot
kinematic model and then present the definition of Multi-
Agent Path Finding for Car-Like robot (CL-MAPF) problem.

A. Robot Kinematic Model

Kinematic constraints must be considered for nonholo-
nomic robots. Several path models like circular trajectories,
asymptotically heading trajectories apply to different kinds
of robots in practice. For car-like robots discussed in this
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Fig. 2: Ackermann-steering model

paper, we commonly use Ackermann steering geometry as the
kinematic model shown in Fig.2. The kinematic constraints
forbid it to move laterally and rotate in place [31].

The state for an Ackermann-steering robot is denoted by
s = (x, y, θ). The origin of rigid body frame (x, y) places
at the center of robot’s rear axle. The x-axis of body frame
points alongside yaw angle θ, y-axis points to the left side of
the robot. v represents the robot’s velocity, and φ represents
the steering angle of front wheels. When the steering angle
is fixed at φ, radius of the circular trajectory which robot
moves along is denoted as r = L/ tanφ. Let dw = r · dθ
represents the distance along trajectory after time dt.

The kinematic relation between φ and θ̇ is defined as:

θ̇ =
v

L
tanφ (1)

By discretizing and recursively integrating with sample time
Ts , we can calculate robot state at timestep t as following:

st =

 x
y
θ


t

=

 x
y
θ


t−1

+ Ts

 v cos θ
v sin θ
v
L tanφ


t−1

(2)

The robot’s velocity v is bounded as vbmax ≤ v ≤ vfmax,
where vbmax < 0 and vfmax > 0 represent the max speed
when robot moves forward or backward, respectively. The
steering angle is restricted by φmax, which implies each
Ackermann-steering robot should maintain a minimum turning
radius rmin during the whole path.

B. Problem Definition

Given a workspace W ⊂ R3 and a set of obstacles
occupying an arbitrary region Ows ⊂ W, we formalize
CL-MAPF problem as follows.

There are K car-like agents a1, a2, ..., aK . Time is assumed
to be discretized. Let sit be the state of agent ai at timestep
t. The start and goal state of ai is respectively denoted as
sistart ∈ W and sigoal ∈ W. A single-agent path pi =
[si0, ..., s

i
Ti
, siTi+1, ...] for ai is feasible iff all the following

four conditions are satisfied:
a. Path of ai should begin at its start state and stops at its

goal states after limited timesteps Ti. That is pi[0] =
sistart and pi[Ti] = sigoal.

b. Agent ai would stay at the goal position after reaching
it, ∀t ≥ Ti, pi[t] = sigoal.

c. Agent ai should never collide with obstacles at any
timestep t.
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Fig. 3: A pipeline of Car-like CBS. Agents’ start states are denoted as solid colored rectangle and goal states as dotted outline rectangles.
Grey area represents the obstacle region Ows. A body conflict between blue agent and green agent is detected in middle figure. Then two
child nodes are expanded with each contains a new constraint and spatiotemporal hybrid-state A* is performed for the agent receiving it.

d. Each move of an Ackermann-steering agent should
satisfy the kinematic model. Thus given agent’s max
forwarding speed vfmax, max reversing speed vrmax and
max steering angle φmax, agent state pi[t] and pi[t+1]
should obey Equation 2 for any timestep t.

As shown in Fig.2, we use Lf and Lb to denote distance
from rear axle to robot front and robot rear, respectively. Wr

denotes the width of robot. For an agent at state (x0, y0, θ0),
the rectangle shape of agent body C in Cartesian coordinate
system can be defined as:

C =
{
(x, y) ∈ R2, f(x, y) ≤ 2

}
f(x, y) =

∣∣∣ x′

Lb+Lf
+ y′

Wr

∣∣∣+ ∣∣∣ x′

Lb+Lf
− y′

Wr

∣∣∣ (3)

where,[
x′

y′

]
=

[
cos θ0 sin θ0
− sin θ0 cos θ0

] [
x− x0
y − y0

]
+

[
Lb
Wr

2

]
We use a tuple 〈ai, aj , Ci

t , C
j
t , t〉 to denote a collision , or

a body conflict, between agent ai and agent aj at timestep t
when Ci

t ∩ C
j
t 6= ∅. Ci

t represents body rectangle for ai at
timestep t.

A solution for CL-MAPF problem is a set of feasible paths
for all K agents where every two paths are collision-free. A
CL-MAPF example is shown in problem input of Fig.3.

Solutions can be evaluated using two commonly used
functions: makespan and sum of costs. Since agents are not
required to move at the same speed each timestep, definitions
of these two functions slightly vary from classic MAPF.
Makespan is the maximum length of paths for all agents to
reach their goals, maxi∈[1,K] d(p

i). Sum of costs is the total
length of all agents’ paths,

∑K
i=1 d(p

i). Since the original
MAPF problem is proven to be NP-hard [2], finding an
optimal solution for CL-MAPF are also NP-hard.

IV. METHODOLOGY

We introduce a novel solver for CL-MAPF problem called
Car-like CBS. The high-level body conflict search tree is a
variant of the conflict tree in CBS. As for low-level path
finding method for single agent, we proposed Spatiotemporal
Hybrid-State A* algorithm to cope with both kinematic and
spatiotemporal constraints. We also introduce a sequential
planning version of our method at the end of this section. It

remarkably shortens the searching time with little sacrifices
on completeness.

A. Body Conflict Tree

The classic MAPF solvers apply various types of conflicts
(the most common ones are vertex conflicts and edge conflicts)
to avoid collisions between two single-agent paths. Yet these
conflicts cannot represent all situations of agent colliding.
Benefit from planning in a continuous workspace, we can
simply use body conflicts to describe all inter-agent collision
scenarios. We propose a binary body conflict tree (BCT) and
perform best-first search on it. Each node on BCT contains
a set of inter-agent constraints and a solution that satisfies
these constraints.

The expansion of the BCT works is shown in Fig.3. When
the leaf node N with minimum cost popped out from BCT,
a collision check is executed for the solution belonging to N .
If a body conflict 〈ai, aj , Ci

t , C
j
t , t〉 has been detected, we

produce two inter-agent constraints: 〈ai, Cj
t , [t− δT , t+ δT ]〉

for ai and 〈aj , Ci
t , [t − δT , t + δT ]〉 for aj . The former

constraint denotes that agent ai should not pass through
rectangle area Cj

t from timestep t− δT to time step t+ δT ,
likewise the latter. Then two child node of N are generated,
each contains one of inter-agent constraints. At last we
perform a low-level search in both of child nodes for the
agent received the extra constraint. The pseudocode of BCT
is shown from line 1 to line 19 in Algorithm 1.

In the view of robots will not execute as we expect in
practice, our method retains certain robustness in both time
and space dimensions. When there are execution errors on
position for agents, we inflate the rectangle area Ct of inter-
agent constraint. By multiplying an inflation coefficient k on
param Lf , Lb and Wc in Equation 3, robots possess bigger
space for others to bypass. The param δT of the constraint
definition is used for eliminating errors in the time dimension.

B. Spatiotemporal Hybrid-State A*

As mentioned above, the high-level body conflict tree
requires low-level search to:
• Plan paths satisfying the kinematic constraint to be

executed by Ackermann-steering agents;
• Plan paths satisfying spatiotemporal inter-agent con-

straints with other agents;



Algorithm 1: Car-like CBS

1 Root.constraints← ∅;
2 Root.plan← path for each agent using SH Astar(ai);
3 BCT← {Root};
4 while BCT6= ∅ do
5 Node← argminN′∈BCTN

′. cost;
6 BCT ← BCT \{Node};
7 C ← CollisionDetect(Node.plan);
8 if C=∅ then
9 return Node.plan;

10 end
11 foreach Ci = 〈ai, Cj

t , [t− δT , t+ δT ]〉 ∈ C do
12 New.plan← Node.plan;
13 New.constraints← Node.constraints ∪ {Ci};
14 New.plan for ai ← SH Astar(ai);
15 if SH Astar(ai) 6= ∅ then
16 BCT ← BCT ∪{New};
17 end
18 end
19 end
20 Function SH Astar(ai):
21 Open← {(0, xistart, yistart, θistart)};
22 while Open 6= ∅ do
23 N ← argminN′∈OpenN

′. fScore;
24 if (N.x,N.y,N.θ) near sigoal then
25 pathtoGoal ← AnalyticExpand(sigoal);
26 if CollisionDetect(pathtoGoal) = ∅ then
27 return pathwhole;
28 end
29 end
30 foreach act ∈ steering actions do
31 N ′ = (N.t+ Ts, x, y, θ)← Expand(N, act);
32 if not SatisfyConstraint(N ′) or N ′ ∈ Ows then
33 continue
34 end
35 N ′.gScore =

N.gScore+ penalty(act)× cost(act);
36 N ′.h = N ′.gScore+ heuristic(N ′, sigoal);
37 if N ′ /∈ Open then
38 Open← Open ∪ {N ′};
39 else if N ′.gScore < NinOpen.gScore then
40 update Node with N ′.state,N ′.gScore
41 end
42 end
43 end
44 return ∅;

• Discretize paths by sample time Ts and return a state
sequence p[t];

A well-known path planner applied to the continuous 3D
state space for car-like robots is Hybrid-State A* [32], but it
cannot deal with spatiotemporal constraints. We proposed an
adaptation called Spatiotemporal Hybrid-State A* (SHA*) as
the low-level planner for Car-like CBS.

When planning for multiple agents, the ability to stay still
at the current state in order to avoid other agents moving is
necessitated. Thus, the seven steering actions for expanding
child nodes are forward max-left(FL), forward straight(FS),
forward max-right(FR), backward max-left(BL), backward
straight(BS), backward max-right(BR), and wait, as shown in
Fig.2. We denote actions besides moving straight and waiting
as turning actions.

Spatiotemporal hybrid-state A* uses a 4D search space

(a) Sequential car-like CBS (b) A fail case

Fig. 4: (a) Sequential CL-CBS. (b) A simple fail case for sequential
CL-CBS. The blue agent cannot reach its goal when the grey agent
planned in former batch arrives at its goal (which locates between
the obstacles) before the blue one passing through those obstacles.

(t, x, y, θ), with x, y, θ ∈ R and time t being discrete. For
a node with search state (t0, x0, y0, θ0), its child nodes will
have states like (t0 + Ts, x1, y1, θ1), where (x1, y1, θ1) are
computed using robot kinematic Equation 2. When a node
popped from the open list, we use seven different steering
actions to expand this node. For each of seven child states,
we not only check collisions with obstacles in Ows, but also
check if the state satisfies all the spatiotemporal constraints
for this agent. Spatiotemporal hybrid-state A* is indicated
from line 20 to line 44 in Algorithm 1 as SH Astar function.

It is worth noted that we add three penalties to cost function
gSocre when the agent performs turning actions, driving
backwards, and switching the moving direction. The heuristic
function design and analytic expansion technique of our
method are the same as the original hybrid-state A*.

C. Sequential Car-like CBS

In car-like CBS solver, the high-level conflict search tree
is proven to be both optimal and complete [33]. However,
spatiotemporal Hybrid-State A* search only ensures com-
pleteness but lacks theoretical optimality guarantees. Thus,
the whole car-like CBS solver is complete and near-optimal.

As a result of expanding workspace from discrete space
to continuous space, the low-level search time suffers from
scalability problems when the number of obstacles increasing
and the workspace getting larger. Besides, the high-level
search tree expands more nodes when multiple agents visiting
the same region at the approximately same time. These will
lead to a noticeable increase in the searching time of Car-like
CBS.

Though the scalability problem of the single-agent planner
is unavoidable, we propose a sequential planning method to
reduce high-level search time inspired by [34]. We divide the
K agents into Kb batches, and each batch contains dK/Kbe
agents except the last batch. Then we sequentially solve these
sub-CL-MAPF problems for each batch and combines result
paths together as the final solution of the whole problem.
For a batch b, the actions of agents in subsequent batches
are ignored. The paths planned out in former batches act as
dynamic obstacles in the workspace, and they are added to
the constraint set of the root node in BCT.



Fig. 5: Glimpses of field tests. Snapshots in the upper row show four keyframes during an experiment, and pictures in the lower row plot
the trajectories agents have driven at the corresponding frame. Best viewed in color.

The procedure of this method is exhibited in Fig.4(a).
The agents are divided into three batches. The paths in grey
planned out in the first batch act as dynamic obstacles for
agents planning in the second batch (colored). Black agents
denote agents of the third batch. As a result of avoiding
solver to deal with overmuch agents at the same time, the
sequential method shortens searching time by nearly an order
of magnitude in our experiment. However, it should also be
noted that this sequential method sacrifices the completeness
guarantee of Car-like CBS. A simple fail case is shown and
explained in Fig.4(b).

V. EXPERIMENTS

In this section, we implement Car-like CBS solver in C++
using boost library for math calculation and OMPL library
to produce Reeds-Shepp paths. The program are executed
on a PC running Ubuntu 16.04 with Intel i7-8700@3.20GHz
and 8G RAM. We test our car-like CBS solver in both
simulated and physical environment and the experiment video
is available in the attachment of this paper.

A. Simulated Experiment

Since it is the first time we proposed CL-MAPF problem,
there are few direct competitors for our experiments. We adopt
two methods, a centralized one and a decentralized one, acting
as the baseline of our experiment. i) The centralized method
is model predictive control with CBS (CBS-MPC) based on
[35]. It applies original CBS solver to provide guide paths
for each agent and use MPC to generate final trajectories. ii)
The decentralized baseline we use is plain hybrid-state A*
(HA*) for a single agent, without the high level-search tree
and spatiotemporal constraints.

1) Benchmark: The classic MAPF benchmark like DAO
map sets are all 4-neighbor grid-based benchmark and cannot
be used for CL-MAPF problem. Therefore we generate a
novel CL-MAPF benchmark for simulation experiment.

The benchmark contains two scenarios involving workspace
with and without obstacles. Each scenario includes 25
map sets. These map sets possess three type of map size
(300×300m,100×100m,50×50m) and distinct agent numbers
from 5 to 100. Every map set has 60 unique instances, and
the whole benchmark contains 3000 different instances.

For each instance in the benchmark, i) it describes a
continuous R3 workspace; ii) the start and goal states of
agents are guaranteed not collide with each other (for agents
under 5×5m size); iii) the Euclidean distance between start
and goal state of an agent is greater than 1/4 of the map width;
iv) for instances with obstacles, it contains circle obstacles
with 1m radius and the entire obstacle region occupies 1%
map area. We use 300x300 agents80 obs to denote mapset
with 80 agents in a 300×300m workspace with obstacles.

Based on the benchmark, we evaluate the performance of
our method compared with two baseline algorithm HA* and
CBS-MPC.

TABLE I: Comparision with CBS-MPC

Mapsize(m2) Agents Method Empty / Obstacles

Makespan(m) Collision Times

300x300 50 CBS-MPC 206.6/205.4 9.25/10.09
Ours 179.1/178.8 0/0

100x100 30 CBS-MPC 71.92/67.90 9.43/9.96
Ours 70.73/67.25 0/0

50x50 20 CBS-MPC 36.38/35.54* 7.28/9.26
Ours 48.80/52.96 0/0

*Though having a smaller makespan, we don’t consider CBS-MPC
performs better due to the collisions in the solution.

2) Comparision with CBS-MPC: We assume agents in the
experiments are homogeneous with the following parameters:
the shape of agents is 2×3m as Lf = 2m,Lb = 1m, the
maximum speed for both forward and backwards vmax =
2m/s, the minimum turning radius r = 3m. We set the
runtime limit for each instance as 90 seconds and compare
the average makespan and collision times in the solution of
each map set. The results are shown in Table I.

Our method outperforms CBS-MPC in almost all map sets.
The average collision times of the solution by CBS-MPC
are between 7 to 10 under different map sizes, which are
all considered as failures. The agents would collide with
each other when using MPC following their guided paths
since the kinematic constraints are not considered in the high-
level CBS. Our proposed method, however, has no collisions
in any of the map sets and performs smaller makespans in
300×300m and 100×100m map sets as well.

3) Comparision with HA*: We assess then how our
method scales to a large number of robots compared to
the decentralized method HA*, seeing that CBS-MPC have



(a) Success rate on 300x300 mapset (b) Runtime on 300x300 mapset (c) Success rate on 100x100 mapset (d) Runtime on 100x100 mapset

Fig. 6: Scalability Comparision with HA*

(a) Results on 300x300 agents60 obs mapset

(b) Results on 50x50 agents15 empty mapset

Fig. 7: Sequential CL-CBS experiment results

collisions between agents in most cases. The sequential
version of our method (with Kb=2) also participates in the
comparison. We limit the computation time of each instance
to 120 seconds, and the results are shown in Fig.6.

In 300×300m map sets, our CL-CBS approach outperforms
HA* in both success rate and runtime. Our original method
successfully solves over 50% of instances containing 60
agents in both empty and obstructive scenarios and the
sequential version solves instances including 100 agents with
over 70% success rate. On the contrary, HA* barely works
out instances over 50 agents. The running time of HA* is
more than twice as long as ours in the same map set. As for
100×100m map sets, our method solves instances up to 40
agents in 30 seconds while HA* costs over 60 seconds for
instances containing 30 agents with success rate below 10%.

4) Comparision with sequential version: As we proposed
the sequential version of our method in IV-C, we evaluate
the performance of the original method and its sequential
version with different batch numbers Kb. We perform
a comparative test in two map sets: a large map with
obstacles (300x300 agents60 obs) and a small empty one
(50x50 agents15 empty). The time limit for each instance is
60 seconds. The results are shown in Fig.7.

In the large map set, our original method (Kb=1) achieves
merely 38.3% success rate and costs 31.6 seconds runtime at
average. Fig.7(a) shows the success rate increases rapidly to
98.3%, and the average runtime decreases to 6.8 seconds when
we divide agents into three batches. The runtime reduced
to 4.4 seconds when Kb=6, which is almost an order of

magnitude smaller than the original method. Meanwhile, the
average sum of costs has only increased by 2.5%.

As we mentioned before, the sequential method sacrifices
completeness guarantee and may lead to some fail cases. In
the 50×50m map set, when Kb increases, the success rate
first rises to 98.3% and then falls to 86.6% as Fig.7(b). This
is for the reason that previous agents are not aware of the
existence of subsequent agents during the planning and may
block their paths to the goal.

B. Field Test

We conduct field tests using seven 23×20 cm Ackermann-
steering robots produced by WeTech as shown in Fig.1. The
robot is able to move at 0.3m/s, and the minimum turning
radius is 26cm. All the robots are equipped with a 2D Lidar
from Slamtec, a 5-megapixel camera, and a Raspberry Pi 4
running Ubuntu 18.04 and ROS Melodic. We use a PC laptop
running ROS as the central computing station to communicate
with all agents use 2.4GHz Wifi.

Experiments are performed in a 5×3m room, including
empty and obstructed scenarios. Before each experiment,
we create a 2D occupancy map using lidar by gmapping
algorithm. After appointing start and goal states for all agents,
a solution is computed on the laptop. We then transfer paths
to a sequence of velocity commands and send them to agents
for execution. Amcl package is used when robots are running
so that we can get the trajectory. The snapshot of the field
test is shown in Fig.5, and full experiments are presented in
the supplemental video.

VI. CONCLUSION AND FUTUR WORKS

In this paper, we formalize the CL-MAPF problem that
considers the kinematic and spatiotemporal constraints of car-
like robots. We present CL-CBS, an efficient hierarchical
search-based algorithm that is correct and complete for
solving the problem. Experiments in simulated and physical
environments show that our method outperforms baseline
solvers in terms of both scalability and solution quality. One
of the directions of future research is extending our method in
order to plan for holonomic and nonholonomic agents under
the same scenario, and another one is applying the proposed
approach to combined target-assignment and path-finding
(TAPF) problem.
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