
To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

A Study of the Influence of Coverage on the

Relationship Between Static and Dynamic

Coupling Metrics

Áine Mitchell and James F. Power ∗

Department of Computer Science, National University of Ireland,
Maynooth, Co. Kildare, Ireland.

Abstract

This paper examines the relationship between the static coupling between ob-
jects (CBO) metric and some of its dynamic counterparts. The dimensions of the
relationship for Java programs are investigated, and the influence of instruction cov-
erage on this relationship is measured. An empirical evaluation of 14 Java programs
taken from the SPEC JVM98 and the JOlden benchmark suites is conducted using
the static CBO metric, six dynamic metrics and instruction coverage data.

The results presented here confirm preliminary studies indicating the indepen-
dence of static and dynamic coupling metrics, but point to a strong influence of
coverage on the relationship. Based on this, this paper suggests that dynamic cou-
pling metrics might be better interpreted in the context of coverage measures, rather
than as stand-alone software metrics.

Key words: Software Engineering, Software metrics, Coupling, Coverage,
Regression Analysis

1 Introduction

The concept of coupling was first introduced in the context of structured devel-
opment techniques and defined as “the measure of the strength of association
established by a connection from one module to another” [1]. The stronger
the coupling between modules, i.e., the more inter-related they are, the more

∗ Corresponding author

Email address: {ainem,jpower}@cs.nuim.ie (Áine Mitchell and James F.
Power).

Preprint submitted to Elsevier Science 11 March 2005



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

difficult these modules are to understand, change, and correct and thus the
more complex the resulting software system.

The principal of coupling was initially transfered to object-oriented software
by Coad and Yourdon [2]. However, the seminal object-oriented design cou-
pling metric for methods in a class is the Coupling Between Objects measure
defined by Chidamber and Kemerer [3]. A number of empirical studies show
this metric to be a good predictor of the maintainability, fault-proneness,
testability, change-proneness and re-usability of a software design [4–6].

Arisholm et al. [7] define and validate a number of dynamic coupling metrics,
measured at run-time, and study the relationship of these with the change-
proneness of classes. They also conduct a preliminary investigation on the re-
lationship between the static and run-time measures. Their preliminary results
show that the dynamic metrics complement existing static coupling measures.

While there exists a significant body of work on static metrics, and a growing
body of work on dynamic metrics, there is still relatively little research on
the factors controlling dynamic metrics, and governing their relationship with
their static counterparts. Although the study by Arisholm et al. indicates
a link between dynamic coupling metrics and software fault detection, the
influence of the test cases used is not explored in detail.

Intuitively, when comparing static and dynamic measures, it is important to
have a thorough understanding of the degree to which the analyzed source code
corresponds to the code that is actually executed. This paper characterizes
this correspondence using instruction coverage measures, and investigates the
influence of coverage on the relationship between static and dynamic metrics.
It is demonstrated that coverage results have a significant influence on the
relationship and thus should always be a measured, recorded factor in any
such comparison.

The remainder of this paper is organized as follows. Section 2 gives an overview
of the related work in the field of static and dynamic coupling and coverage
measures. Section 3 outlines the goals and hypothesis of this study and Sec-
tion 4 describes the experimental design. The results of the statistical analyses
are presented in Sections 5 and 6. Section 5 presents a study using Principal
Component Analysis to characterize the relationship between static and dy-
namic metrics, and Section 6 uses linear regression to examine the influence
of instruction coverage on this relationship. Section 7 concludes the paper and
describes future research.

2



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

Variable Description

CBO Static Coupling Between Objects

IC Instruction Coverage

IC CC Import, Class Level, Number of Distinct Classes

IC CM Import, Class Level, Number of Distinct Methods

IC CD Import, Class Level, Number of Dynamic Messages

EC CC Export, Class Level, Number of Distinct Classes

EC CM Export, Class Level, Number of Distinct Methods

EC CD Export, Class Level, Number of Dynamic Messages

Table 1
Abbreviations for the main variables used in this study. Here, CBO is the Chidamber
and Kemerer static coupling metric, Ic is the instruction coverage measure, and the
remaining six variables represent the dynamic coupling metrics of Arisholm et al.

2 Background and Related Work

2.1 Static and Dynamic Coupling Metrics

The most accepted and widely used object-oriented coupling design metric
is the Coupling Between Objects (CBO) measure proposed by Chidamber
and Kemerer [3]. A number of empirical studies show this metric to be a
good predictor of the external quality attributes of a design. Chidamber and
Kemerer originally defined CBO for a class as “a count of the number of
non-inheritance related couples with other classes” [8]. An object of a class is
coupled to another if methods of one class use methods or instance variables
defined by the other. They later revised their definition to state “CBO for a
class is a count of the number of other classes to which it is coupled”, noting
that this includes coupling due to inheritance [3].

Briand et al. carried out an extensive survey of all the currently available
literature on coupling in object-oriented systems and concluded that all the
metrics at that time measured coupling statically, at the class level [9]. No
measures of run-time, or dynamic, coupling had at that time been proposed.
Subsequently, a set of dynamic coupling metrics was described by Yacoub et
al. which were intended to evaluate the change-proneness of a design [10].
The metrics were applied at the early development phase to determine design
quality. They used executable object-oriented design models to model the
application to be tested. The metrics were evaluated for a number of different
execution scenarios, and they extended the scenarios to have an application
scope.

A number of dynamic coupling metrics for classes are defined and validated by

3



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

Arisholm et al. [7], and are listed in the last six rows of Table 1. Each dynamic
coupling metric name starts with either IC or EC to distinguish between
import coupling and export coupling for the class, based on the direction of
the method calls. The remaining letters distinguish three types of class-level
coupling. The first metric, CC, counts the number of distinct classes that a
method in a given class uses or is used by. The second metric, CM , counts
the number of distinct methods invoked by each method in each class while
the third metric, CD, counts the total number of dynamic messages sent or
received from one class to or from other classes.

Arisholm et al. study the relationship of these measures with the change-
proneness of classes. They find that the dynamic coupling metrics do capture
additional properties compared to the static coupling metrics and are good
predictors of the change-proneness of a class. Their study uses a single software
system called Velocity, and its associated test suite, to evaluate the dynamic
coupling metrics. These test cases are found to originally have 70% method
coverage, which is increased to 90% for the methods that “might contribute
to coupling” through the removal of dead code. However, they do not study
the impact of code coverage on their results nor are results given for programs
other than versions of Velocity.

A number of studies on the quantification of a variety of run-time class-level
coupling metrics for object-oriented programs have been conducted [11, 12].
These studies use statistical analysis to investigate the differences in the under-
lying dimensions of coupling captured by static versus the run-time coupling
metrics. The results indicate that the run-time metrics capture different prop-
erties than the static metrics alone. The studies conclude that it is worthwhile
to continue the investigation into run-time coupling metrics and their rela-
tionship with external quality, as extra information can be provided by the
run-time metrics to complement that obtainable from a simple static analysis.

Features of object-oriented programming such as polymorphism, dynamic
binding and inheritance may render CBO imprecise in evaluating the run-
time behavior of an application. Therefore the static version of the metric may
fall short when evaluating the run-time properties of a program. Alexander
et al. conduct an extensive analysis on the effect of polymorphism on cou-
pling measures, and develop a set of test criteria to ensure that all instances
of such coupling are exercised [13]. A number of object-level (as opposed to
class-level) run-time metrics are also used to analyze run-time object coupling
behavior [14]. However, further consideration of the influence of polymorphism
or inter-object differences on coupling metrics are beyond the scope of this pa-
per.

The term dynamic metrics is also used for Java programs to describe general
dimensions of software, such as program size, polymorphism, memory use and

4



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

concurrency [15]. Indeed, a significant amount of the research on the analy-
sis and manipulation of Java programs seeks to combine static and dynamic
data, or to manipulate the dynamic behavior of Java programs through static
code transformations. Recent examples include work on static and dynamic
slicing [16], conflict analysis [17], super-instruction selection [18] and program
optimization [19].

While such research is not directly related to coupling and cohesion metrics,
many of the issues and approaches to measurement are similar. Indeed, any
research that performs both static and dynamic analyses of programs benefits
from being viewed in the context of some overall perspective of the relationship
between the static and dynamic data. In particular, this paper uses dynamic
coverage data, in the context of a regression analysis, to characterize the re-
lationship between static and dynamic coupling metrics.

2.2 Dynamic Coverage Metrics

Dynamic coverage measures are typically used in the field of software testing
as an estimate of the effectiveness of a test suite [20,21]. The basis of software
testing is that software functionality is characterized by its execution behavior,
with improved test coverage leading to improved fault coverage and improved
software reliability [22]. Higher execution coverage by a program means that
execution of the program provides a better characterization of that program’s
behavior.

There are a number of established procedures for determining test coverage in
a program. These include statement coverage, branch coverage, and multiple
condition coverage, as well as path and data-flow coverage measures [21]. As is
the case with some static software metrics, there can often be subtle differences
in the definition of these coverage measures. However, each of them seeks to
measure, typically as a percentage, the degree to which a certain aspect of the
program source code has been exercised at run-time.

This paper uses only one coverage measure, instruction coverage at the byte-
code level. Working in Java bytecode instructions, rather than program state-
ments, removes dependencies on the program source code, as well as ambigu-
ities in the definition of what constitutes a program statement. Furthermore,
this approach eliminates the potential effects of differences among Java compil-
ers by working directly with the compiled bytecode. While more complex forms
of coverage could be considered, the additional complexity in analysis was not
warranted based on the scope of this study. Further, the inter-dependencies
between various kinds of coverage measures would obscure the results of the
regression analysis used here.

5



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

JPDA EventTrace

Dynamic
Coupling
Metrics

Static CBO
Metrics

Calculation

Static CBO

Instruction
Coverage
Measures

Instrumentation
JOlden Programs
SPEC Programs

JOlden Programs
SPEC Programs

Bytecode (.class) files
Instrumented bytecode files

BCEL & Gretel

Calculation

Metrics

 MetricsDisassembler

JVM

JVM

Fig. 1. An overview of the data collection system. This figure depicts the processes
used to collect static metrics, dynamic metrics and instruction coverage data for
the benchmark programs used.

3 Statement of goals and hypothesis

The experiments for this study are set up using the GQM/MEDEA framework
proposed by Briand et al. [23]. Working within this framework the goal of the
experiment, the perspective on the goal, and the experimental environment
are all outlined below.

Goal: To examine the relationship between static CBO and dynamic coverage
metrics, particularly in the context of the influence of instruction coverage.

Perspective: Intuitively, one would expect the better the coverage of the
test cases used, the better the static and dynamic metrics should correlate.
A number of statistical techniques are used, including multiple regression
analysis, which are capable of determining if there is a significant correlation.

Environment: A number of Java programs from well-defined, publicly avail-
able benchmark suites are used in this study. Each benchmark program
comes with its own set of inputs, thus defining both the static and dynamic
context of the work. This contrasts with some other approaches which, at
worst, can use arbitrary software packages, often proprietary, with an ad
hoc set of test inputs.

The following principal hypothesis is investigated in this paper:

H0: The coverage of the test cases used to evaluate a program has no influence
on the relationship between static and dynamic coupling metrics.

H1: The coverage of the test cases used to evaluate a program has an influence
on the relationship between static and dynamic coupling metrics.

6



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

Program Description

BH A hierarchical O(Nlog(N)) force-calculation algorithm

Em3d A models the propagation of electromagnetic waves through objects in 3 dimensions.

Health A simulation of the Columbian health-care system

MST Uses Bentley’s algorithm to compute the minimum spanning tree of a graph

Perimeter Computes the total perimeter of a region in a binary image represented by a quadtree.

Power An optimal power pricing algorithm

Voronoi Computes a Voronoi diagram for a random set of points

201 compress Modified Lempel-Ziv compression method (LZW)

202 jess An Expert Shell based on the CLIPS expert shell system

205 raytrace A raytracer that works on a scene depicting a dinosaur

209 db Performs multiple database functions on memory resident database

213 javac The Java compiler from SUN’s JDK 1.0.2.

222 mpegaudio Decompresses ISO MPEG Layer-3 audio files

228 jack A Java parser generator that is based on PCCTS

Table 2
The benchmark programs used in this study. The seven programs in the top half of
the table are from the JOlden benchmark suite, while the seven programs in the
bottom-half of the table are from the SPEC JVM98 benchmark suite.

4 Experimental Design

In order to conduct the practical experiments underlying this study, it is nec-
essary to select a suite of Java programs and measure:

• the static CBO metric
• the instruction coverage percentages
• the dynamic coupling metrics

The components of the data collection system are illustrated in Figure 1, and
are described in the remainder of this section.

The main design objective influencing the development of the data collection
system is flexibility, as it is necessary to be able to collect a variety of static
and dynamic information. The dynamic analysis of any large program involves
a huge amount of data processing; however, the performance level of the col-
lection tool is not considered to be a critical issue at this time. It is only
desirable that the analysis could be carried out in a reasonable and practical
time.

7



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

4.1 The benchmark programs

The programs used in this study consist of the JOlden [24] and SPEC JVM98
[25] benchmark suites. The JOlden benchmarks are Java versions of pointer
intensive C programs, designed to exhibit a massive number of object cre-
ations. The SPEC JVM98 suite consists of seven Java programs which are
intended to represent different classes of “real world” Java applications. The
programs included in the two suites are summarized in Table 2. While the
SPEC JVM98 benchmark programs are more directly comparable to other
studies that use Java software, this study includes the more synthetic JOlden
programs to ensure that it considers programs that create significantly large
populations of objects.

All the programs in the JOlden suite are distributed as Java source code, and
were compiled using the javac compiler from Sun’s SDK version 1.4.2. The
programs in the SPEC suite are distributed in class file format, and were not
recompiled or otherwise modified. The SPEC programs were run individually,
and thus none of these results are directly comparable with the standard SPEC
JVM98 metric.

Both benchmark suites include not just the programs themselves, but a test
harness to ensure that results from different executions are comparable. The
JOlden benchmarks were run with the supplied standard parameter settings,
and the SPEC benchmarks were run at size 100. Each program was run using
the client virtual machine from Sun’s SDK version 1.4.2.

4.2 Static Metrics Calculation

The calculation of the static CBO metrics was carried out on each bytecode
class file in the 14 benchmark programs. Each class file was disassembled,
and a simple processor written in Java was then used to calculate the CBO
metrics.

4.3 Dynamic Data Collection

The Java runtime system provides an almost ideal environment for profiling
and analysis. Typically, such an analysis can be conducted at three main levels
of granularity.

• Instrumenting a JVM whose source is publicly available.
There are a number of open-source implementations of the JVM and, since

8



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

the JVM source code can be modified and recompiled, all aspects of a run-
ning Java program can be observed. The main drawback of this approach
is the need for a detailed low-level understanding of JVM internals. Also, a
number of open-source JVMs rely on third-party class libraries that might
cause compatibility issues for certain programs.

• Instrumenting the Java bytecode.
This involves modification of the class file content in order to acquire run-
time information, and can be performed using a number of publicly available
tools. This approach provides a relatively simple approach to dynamic anal-
ysis as it does not require a low-level knowledge of the JVM internals. It
also seems to add the least overhead to the execution of the programs. How-
ever, this approach is not practical when collecting information from many
different points in the bytecode and, of course, any change in the programs
being analyzed requires the re-instrumentation of the code.

• Run-time profiling
Sun Microsystem’s Java 2 SDK versions 1.4 and later implement the Java
Platform Debug Architecture (JPDA) [26]. The JPDA provides introspec-
tive access to a running JVM’s state, including providing information about
classes, arrays, interfaces, and primitive types, and their instances. This ap-
proach is faster than instrumenting a VM and is more robust. It is relatively
easy to learn and the same agent works with all Virtual Machines support-
ing the JPDA. A drawback is that generating a profile for a large application
is still quite time-consuming.

4.3.1 Coverage Data Collection

In order to calculate the instruction coverage, it is necessary to record whether
or not each instruction in the program is executed. In fact, well-known tech-
niques exist for identifying a sequence of consecutive instructions with a single
entry point, known as a basic block. The instrumentation overhead is some-
what smaller if records are kept only for basic blocks instead of every instruc-
tion. Because static code analysis is required to determine basic block entry
points, it is efficient to instrument the bytecode during the analysis.

The instrumentation framework uses the Apache Byte Code Engineering Li-
brary (BCEL) [27] along with the Gretel Residual Test Coverage Tool [28].
The Gretel tool statically works out the basic blocks in a Java class file and
inserts a probe consisting of small sequence of bytecode instructions at each
basic block. Whenever the basic block is executed, the probe code records a
“hit” as a simple boolean value. The number of bytecode instructions in the
basic block can then be used to calculate instruction coverage.

9



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

4.3.2 Dynamic Metrics Tool

The JPDA framework is used to measure the dynamic metrics. This framework
provides an event-based notification system. This system enables user-supplied
code to respond to JVM events as they occur at run-time. The principal
events that are traced to measure the dynamic metrics are object creation
and method call events.

In order to match objects against method calls it is necessary to model the
execution stack of the JVM, as this information is not provided directly by
the JPDA. An EventTrace analyzer class is implemented in Java, and this
carries out a stack-based simulation of the entire execution in order to obtain
information about the state of the execution stack. This class also implements
a filter which allows the user to specify which events and which of their cor-
responding fields are to be captured for processing. This allows a high degree
of flexibility in the collection of the dynamic trace data.

The final component of the dynamic metrics collection system is a Metrics

class that is responsible for calculating the desired metrics on the fly. It is
also responsible for outputting the results in text format. The metrics to be
calculated can be specified from the command line. The addition of the metrics
class allows new metrics to be easily defined as the user needs only interact
with this class. See [11, 29] for additional information.

5 The relationship between static and dynamic metrics

For each case study the distribution (mean) and variance (standard devia-
tion) of each measure is calculated. These statistics are used to select metrics
that exhibit enough variance to merit further analysis, as a low variance metric
would not differentiate classes very well and therefore would not be a useful
predictor of external quality. Descriptive statistics also aid in explaining the
results of the subsequent analysis.

The descriptive statistic results are summarized in Appendix A.1. The metric
values exhibit large variances which makes them suitable candidates for further
analysis.

5.1 Principal Component Analysis

Principal Component Analysis (PCA) is used to analyze the covariate
structure of the metrics and to determine the underlying structural dimensions
they capture. In other words PCA can tell if all the metrics are likely to

10



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

BH

PC1 PC2 PC3

CBO 0.403 0.002 0.520

IC CC 0.728 0.224 0.012

IC CM 0.536 0.391 0.001

IC CD 0.5553 0.376 0.000

EC CC 0.358 0.522 0.109

EC CM 0.203 0.763 0.025

EC CD 0.203 0.763 0.025

Em3d

PC1 PC2 PC3

CBO 0.134 0.034 0.712

IC CC 0.933 0.013 0.016

IC CM 0.772 0.168 0.039

IC CD 0.772 0.168 0.039

EC CC 0.139 0.702 0.082

EC CM 0.223 0.716 0.039

EC CD 0.223 0.716 0.039

Health

PC1 PC2 PC3

CBO 0.238 0.187 0.521

IC CC 0.956 0.005 0.017

IC CM 0.936 0.024 0.010

IC CD 0.940 0.028 0.009

EC CC 0.076 0.831 0.086

EC CM 0.070 0.919 0.002

EC CD 0.065 0.094 0.003

MST

PC1 PC2 PC3

CBO 0.000 0.013 0.972

IC CC 0.900 0.063 0.032

IC CM 0.956 0.010 0.026

IC CD 0.941 0.012 0.027

EC CC 0.356 0.609 0.033

EC CM 0.121 0.877 0.001

EC CD 0.118 0.881 0.000

Perimeter

PC1 PC2 PC3

CBO 0.231 0.123 612

IC CC 0.541 0.169 0.281

IC CM 0.876 0.080 0.002

IC CD 0.905 0.056 0.038

EC CC 0.236 0.752 0.000

EC CM 0.147 0.830 0.023

EC CD 0.142 0.828 0.026

Power

PC1 PC2 PC3

CBO 0.329 0.014 0.626

IC CC 0.617 0.073 0.161

IC CM 0.624 0.338 0.036

IC CD 0.712 0.228 0.041

EC CC 0.022 0.915 0.015

EC CM 0.007 0.880 0.112

EC CD 0.008 0.824 0.164

Voronoi

PC1 PC2 PC3

CBO 0.198 0.213 0.526

IC CC 0.718 0.123 0.069

IC CM 0.812 0.088 0.134

IC CD 0.773 0.176 0.141

EC CC 0.043 0.911 0.005

EC CM 0.067 0.934 0.004

EC CD 0.148 0.834 0.054

Table 3
PCA Test Results for the JOlden programs. Those values deemed to be significant
at the level p ≤ 0.05 are highlighted.

be measuring the same class property. This technique is used to investigate
whether the dynamic coupling metrics are not simply surrogate measures for
static CBO.

A similar study is carried out by Arisholm et al. using only their Velocity
program [7]. This paper extends their work to cover the fourteen programs
from the benchmark suites in order to demonstrate the robustness of these
results over a larger range and variety of programs.

PCA can generate a large number of principal components, depending on the
amount of variance explained by each component. A typical threshold, known
as the Kaiser criterion, is used in this paper, and involves retaining principal
components with eigenvalues (variances) larger than 1.0 [30].

5.2 PCA Results and Discussion

Tables 3 and 4 show the results of the principal component analysis used to
investigate the covariate structure of the static and dynamic metrics. Using the

11



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

201 compress

PC1 PC2 PC3

CBO 0.113 0.014 0.712

IC CC 0.865 0.065 0.186

IC CM 0.766 0.154 0.097

IC CD 0.866 0.073 0.100

EC CC 0.023 0.873 0.176

EC CM 0.143 0.799 0.035

EC CD 0.098 0.834 0.096

202 jess

PC1 PC2 PC3

CBO 0.198 0.187 0.672

IC CC 0.963 0.007 0.005

IC CM 0.912 0.003 0.016

IC CD 0.874 0.032 0.004

EC CC 0.154 0.812 0.002

EC CM 0.298 0.734 0.054

EC CD 0.098 0.923 0.002

205 raytrace

PC1 PC2 PC3

CBO 0.123 0.087 0.723

IC CC 0.834 0.021 0.019

IC CM 0.912 0.017 0.008

IC CD 0.896 0.103 0.001

EC CC 0.198 0.763 0.003

EC CM 0.125 0.709 0.017

EC CD 0.097 0.821 0.002

209 db

PC1 PC2 PC3

CBO 0.012 0.163 0.843

IC CC 0.893 0.088 0.002

IC CM 0.923 0.004 0.000

IC CD 0.976 0.003 0.013

EC CC 0.178 0.763 0.002

EC CM 0.110 0.793 0.027

EC CD 0.087 0.823 0.017

213 javac

PC1 PC2 PC3

CBO 0.187 0.000 0.973

IC CC 0.633 0.083 0.184

IC CM 0.834 0.033 0.023

IC CD 0.723 0.143 0.002

EC CC 0.138 0.834 0.004

EC CM 0.078 0.734 0.012

EC CD 0.067 0.759 0.034

222 mpegaudio

PC1 PC2 PC3

CBO 0.244 0.137 0.583

IC CC 0.943 0.004 0.087

IC CM 0.898 0.034 0.041

IC CD 0.943 0.023 0.001

EC CC 0.034 0.943 0.043

EC CM 0.134 0.754 0.085

EC CD 0.098 0.845 0.005

228 jack

PC1 PC2 PC3

CBO 0.004 0.243 0.634

IC CC 0.605 0.234 0.154

IC CM 0.723 0.194 0.076

IC CD 0.604 0.195 0.098

EC CC 0.194 0.749 0.098

EC CM 0.103 0.694 0.049

EC CD 0.094 0.749 0.104

Table 4
PCA Test Results for the SPEC JVM98 programs. Those values deemed to be sig-
nificant at the level p ≤ 0.05 are highlighted.

Kaiser criterion to select the number of factors to retain shows that the metrics
mostly capture three orthogonal dimensions in the sample space formed by all
measures. In other words, the coupling is divided along three dimensions for
each of the programs analyzed.

Analyzing the definitions of the measures that exhibit high loadings in PC1,
PC2 and PC3 yields the following interpretation of the coupling dimensions:

• PC1 = {IC CC, IC CD, IC CM}, the dynamic import coupling metrics.
• PC2 = {EC CC, EC CD, EC CM}, the dynamic export coupling metrics.
• PC3 = {CBO}, the static coupling metric.

Overall the PCA results demonstrate that the run-time coupling metrics are
not redundant with the static CBO metric and that they capture additional
dimensions of coupling. Therefore the values show that they are not just sur-
rogate static CBO metrics, suggesting that additional information over and
above the information obtainable from the static CBO metrics, can be ex-
tracted using run-time metrics. This confirms that the findings of Arisholm et
al. for the single Velocity program they studied are applicable across a variety
of programs.

12



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

The results also indicate that the direction of coupling is a greater determining
factor than the type of coupling, with PC2 containing the three export-based
metrics, and PC3 containing the three import-based metrics.

6 Measuring the influence of instruction coverage

The general purpose of multiple regression analysis is to learn more about the
relationship between several independent or predictor variables and a depen-
dent or criterion variable [31]. In this study it is used to determine if instruction
coverage is a factor influencing the relationship between static and dynamic
metrics. The two independent variables are thus the static CBO metric and
the instruction coverage measure Ic; each of the six dynamic coupling metrics
in turn is then used as the dependent variable.

6.1 Multiple Regression Analysis

The general computational problem that needs to be solved in multiple re-
gression analysis is to fit a straight line to a number of points. When there is
more than one independent variable, the regression procedures will estimate a
linear equation of the form shown in Equation (1), where Y is the dependent
variable, Xi stands for a set of independent variables, a is a constant and
each bi is the slope of the regression line. The constant a is also known as the
intercept, and the slope as the regression coefficient.

Y = a + b1X1 + b2X2 + . . . + bpXp (1)

The regression line expresses the best prediction of the dependent variable
Y given the independent variables Xi. However, usually there is substantial
variation of the observed points around the fitted regression line. The deviation
of a particular point from the line is known as the residual value. The smaller
the variability of the residual values around the regression line relative to the
overall variability, the better the prediction. In most cases the ratio will fall
somewhere between 0.0 and 1.0. If there is no relationship between the X

and Y variables the ratio will be 1.0, while if X and Y are perfectly related
the ratio will be 0.0. The least squares method is employed to perform the
regression.

The R2 or the coefficient of determination is 1.0 minus this ratio. The R2 value
is an indicator of how well the model fits the data. If there is an R2 close to
1.0 this indicates that almost all of the variability with the variables specified
in the model has been accounted for.

13



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

The correlation coefficient R expresses the degree to which two or more in-
dependent variables are related to the dependent variable, and can assume
values between -1 and 1. The sign (plus or minus) of the correlation coeffi-
cient interprets the direction of the relationship between the variables. If R is
positive, then the relationship of this variable with the dependent variable is
positive. If R is negative then the relationship is negative. If it is zero then
there is no relationship between the variables.

6.2 Analysis of Variance (ANOVA)

ANOVA is used to test the significance of the variation in the dependent
variable that can be attributed to the regression of one or more independent
variables. The results enable determination of whether or not the explanatory
variables bring significant information to the model. ANOVA gives a statis-
tical test of the null hypothesis H0, which is, there is no linear relationship
between the variables versus the alternative hypothesis H1, which is, there is
a relationship between the variables.

There are four parts to ANOVA results, the sum of squares, degrees of freedom,
mean squares and the F test. Fisher’s F test, as given by Equation (2), is used
to test whether the R2 values are statistically significant. Values are deemed
to be significant at p ≤ 0.05.

F =
R2 ∗ (N − K − 1)

(1 − R2) ∗ K
(2)

Here, K is the number of independent variables (two in this case) and N is
the number of observed values.

6.3 Multiple Regression Analysis

A comprehensive list of results from the multiple regression analysis can be
found in Appendices A.2 and A.3. These results are used to test the hypothesis
that the instruction coverage of the test cases used to evaluate a program
has no influence on the relationship between static and dynamic coupling
metrics. These tables display the R2 value that provides a measure of the
proportion of variance explained by the model, while the R value gives the
correlation between the dependent and independent variables. The F ratio is
the test statistic used to decide whether the model as a whole has a statistically
significant predictive capability.

14



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

(a) Results from the multiple linear regression where Y = IC CC.

(b) Results from the multiple linear regression where Y = EC CC.

Fig. 2. Regression results for Class-Level metrics (IC CC and EC CC). In both
graphs the lighter bar represents the R2 value for CBO, and the darker bar repre-
sents the R2 value for CBO and Ic combined.

15



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

(a) Results from the multiple linear regression where Y = IC CM

(b) Results from the multiple linear regression where Y = EC CM

Fig. 3. Regression results for Method-Level metrics (IC CM and EC CM). In both
graphs the lighter bar represents the R2 value for CBO, and the darker bar repre-
sents the R2 value for CBO and Ic combined.

16



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

The first thing to note from the data is that there is a positive correlation
between the dependent (dynamic metric) and independent variables CBO and
Ic for all the programs used in this analysis, as all R values are positive. This
means as the values for CBO and Ic increases/decreases so will the observed
value for the dynamic metric under consideration.

The results of the regression analysis for each of the fourteen benchmark
programs are summarized in Figures 2(a) and 2(b) for class-level dynamic
coupling, and Figures 3(a) and 3(b) for method-level dynamic coupling. Of
particular interest in all four graphs is the difference between the lighter bars,
representing the influence of CBO, and the darker bars, representing the in-
fluence of both CBO and Ic, since these indicate the additional amount of the
variation of the dynamic metric that can be allocated to instruction coverage.

6.3.1 Distinct Classes: IC CC and EC CC

It is immediately apparent from Figures 2(a) and 2(b) that the instruction
coverage is a significant influencing factor. For example, from Figure 2(a)
it can be seen that in seven of the programs, Ic accounts for an additional
20% variation. Two of the programs in Figure 2(a) that show little increase,
MST and Voroni, already exhibit a high correlation with CBO alone that
would have been difficult to improve on. While the increase is not uniform
throughout the programs in Figure 2(a), the overall data demonstrates that
instruction coverage is an important contributory factor.

Figure 2(b), representing the contribution of CBO and Ic to export coupling
measured at the class level, presents a sharper contrast. Here, the influence
of Ic is clearly a vital contributing factor, accounting for at least an extra
20% of the variation in nine of the fourteen programs. The important factor
here is that the overall contribution of CBO to export coupling is much lower
than to import coupling, as can be seen from contrasting the lighter-shaded
bars in Figure 2(a) with those in Figure 2(b). Thus classes with a high level
of static coupling exhibit a higher level of import coupling at run-time. This
indicates that the coupling being exercised at run-time is from classes behaving
as clients, making use of other class’ methods, rather than those behaving as
servers, offering their methods for use by others. The greater influence of Ic in
export coupling results from there being less of a drop in its influence between
IC CC and EC CC, suggesting that instruction coverage, as a predictor of
coupling, is not as sensitive to the direction of that coupling.

6.3.2 Distinct Methods: IC CM and EC CM

The results for the IC CM and EC CM , illustrated by Figures 3(a) and
3(b), present a similar picture. Both of these dynamic metrics are scaled by

17



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

the number of methods involved in the coupling relationship. Given that CBO

is defined on a class-level, it does surprisingly well in influencing the IC CM

metric. Instruction coverage is also defined at a class level, but nonetheless
accounts for roughly an extra 20% of the variance for four programs, and
roughly an extra 10% for four other programs. The drop between import and
export coupling is accentuated here but, while Figure 3(b) shows CBO proving
a bad predictor for EC CM , instruction coverage dramatically improves this
for over half the programs studied.

Overall, these results show that coverage has a significant impact on the cor-
relation between static CBO and the four run-time coupling metrics defined
for distinct classes and distinct methods.

6.3.3 Dynamic Messages: IC CD and EC CD

Neither of the dynamic metrics based on distinct method counts, IC CD and
EC CD exhibit a significant relationship for the programs under considera-
tion, and are not summarized graphically. The lack of a relationship for these
metrics is expected, since they are defined in terms of a count of the num-
ber of distinct times a method was executed. It is reasonable to speculate
that such metrics might be more influenced by the “hotness” of a particular
method, and the distribution of execution focus through the program, rather
than instruction coverage data.

7 Conclusion and Future Work

This paper investigates whether the coverage of test cases used to evaluate
a program have any influence on the correlation between static and dynamic
metrics. An empirical investigation is conducted using the set of dynamic
metrics proposed by Arisholm et al. on Java programs from the SPEC JVM98
and JOlden benchmark suites. The differences in the underlying dimensions of
coupling captured by the static versus the dynamic metrics are assessed using
principal component analysis. Three components are identified containing the
static CBO, the import-based dynamic metrics, and the export-based dynamic
metrics. This establishes that the dynamic metrics were not simply surrogate
static measures, making them suitable candidates for further analysis.

A study into the predictive ability of the static CBO and instruction coverage
data is then conducted using multiple regression analysis. The purpose of this
is to show how well the static CBO metric and instruction coverage measure Ic

could predict the six dynamic metrics under consideration. The PCA analysis
places import and export based coupling in different components, and this

18



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

difference is also seen in the regression analysis. Both CBO and instruction
coverage have less influence overall on the export-based metrics, EC CC and
EC CM than on the import-based dynamic metrics, IC CC and IC CM .

It is shown from the regression analysis that the combination of static metrics
with instruction coverage gives a significantly better prediction of the run-time
behavior of programs than the use of static metrics alone for the class-based
and method-based metrics. This leads to the rejection of the null hypothesis
for these four dynamic metrics, and suggests that the correlation between
static and dynamic is as much a factor of coverage as an intrinsic property of
the metrics themselves.

The results for the two dynamic metrics based on distinct message counts,
EC CD and EC CD are not within the chosen significance level, and thus
no determination is made on the relationship for these metrics.

Future work will involve investigating the role run-time metrics may play in
software testing. Run-time metrics may have implications for the quantifica-
tion of the effectiveness of software testing strategies. Clearly a static analysis
is relatively independent of program behavior, whereas any run-time analysis
will be fundamentally influenced by the testing strategy and test input. An-
other important aspect would be to further investigate the correlation between
run-time metrics and external aspects of a design, including investigating the
possibility of using hybrid models that use a combination of static and run-
time metrics to evaluate a design.

Much of the work on the dynamic analysis of Java programs has come from the
language design and compiler community. The work in this paper forms part
of an increasing link between this community and the software engineering
community, with an emphasis on collecting, analyzing and comparing quanti-
tative static and dynamic data. Other possible examples of this synthesis in-
clude relating studies of polymorphicity with testing inheritance relationships,
or relating measures of program “hot-spots” with metrics based on distinct
messages such as IC CD and EC CD. Run-time metrics may also have a role
to play in areas of research such as reverse engineering and program compre-
hension, as they contribute to a better understanding of the behavior of code
in its operational environment.

8 Acknowledgements

This work is funded in part by the Embark initiative, operated by the Irish
Research Council for Science, Engineering and Technology (IRCSET).

19



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

References

[1] W. Stevens, G. Myers, L. Constantine, Structured design, IBM Systems Journal
13 (2) (1974) 115–139.

[2] P. Coad, E. Yourdon, Object-Oriented Analysis, Vol. 2, Prentice Hall, 1991.

[3] S. Chidamber, C. Kemerer, A metrics suite for object-oriented design, IEEE
Transactions on Software Engineering 20 (6) (1994) 467–493.

[4] V. Basili, L. Briand, W. Melo, A validation of object-oriented design metrics as
quality indicators, IEEE Transactions on Software Engineering 22 (10) (1996)
751–761.

[5] J. Eder, G. Kappel, M. Schrefl, Coupling and cohesion in object–oriented
systems, Tech. Rep. 2/93, Department of Information Systems, University of
Linz, Linz, Austria (1993).

[6] F. Wilkie, B. Kitchenham, Coupling measures and change ripples in C++
application software, The Journal of Systems and Software 52 (2–3) (2000)
157–164.

[7] E. Arisholm, L. Briand, A. Foyen, Dynamic coupling measures for object-
oriented software, IEEE Transactions on Software Engineering 30 (8) (2004)
491–506.

[8] S. Chidamber, C. Kemerer, Towards a metrics suite for object-oriented
design, in: Object Oriented Programming Systems Languages and Applications,
Phoenix, Arizona, USA, 1991, pp. 197–211.

[9] L. Briand, J. Daly, J. Wüst, A unified framework for coupling measurement
in object-oriented systems, IEEE Transactions on Software Engineering 25 (1)
(1999) 91–121.

[10] S. Yacoub, H. Ammar, T. Robinson, Dynamic metrics for object-oriented
designs, in: 5th International Software Metrics Symposium, Boca Raton,
Florida, USA, 1999, pp. 50–61.

[11] A. Mitchell, J. F. Power, Toward a definition of run-time object-oriented
metrics, in: 7th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, Darmstadt, Germany, 2003, pp. 1–7.

[12] A. Mitchell, J. F. Power, An empirical investigation into the dimensions of
run-time coupling in Java programs, in: 3rd Conference on the Principles and
Practice of Programming in Java, Las Vegas, Nevada, 2004, pp. 9–14.

[13] R. T. Alexander, J. Offutt, Coupling-based testing of O-O programs, Journal
of Universal Computer Science 10 (4) (2004) 391–427.

[14] A. Mitchell, J. F. Power, Using object-level run-time metrics to study coupling
between objects, in: ACM Symposium on Applied Computing, Santa Fe, New
Mexico, 2005, p. (to appear).

20



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

[15] B. Dufour, K. Driesen, L. J. Hendren, C. Verbrugge, Dynamic metrics for
Java, in: Conference on Object-Oriented Programming Systems, Languages and
Applications, Anaheim, CA, USA, 2003, pp. 149–168.

[16] F. Umemori, K. Konda, R. Yokomori, K. Inoue, Design and implementation
of a bytecode-based Java slicing system, in: Third International Workshop on
Source Code Analysis and Manipulation, Amsterdam, The Netherlands, 2003,
pp. 108–117.

[17] C. von Praun, T. Gross, Static conflict analysis for multi-threaded object-
oriented programs, in: Conference on Programming Language Design and
Implementation, San Diego, California, USA, 2003, pp. 115–128.

[18] M. Ertl, D. Gregg, Optimizing indirect branch prediction accuracy in virtual
machine interpreters, in: Conference on Programming Language Design and
Implementation, San Diego, California, USA, 2003, pp. 278–288.

[19] K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma, O. Gohda, T. Inagaki,
A. Koseki, K. Ogata, M. Kawahito, T. Yasue, T. Ogasawara, T. Onodera,
H. Komatsu, T. Nakatani, Effectiveness of cross-platform optimizations for a
Java just-in-time compiler, in: Conference on Object-Oriented Programming
Systems, Languages and Applications, Anaheim, California, USA, 2003, pp.
187–204.

[20] G. Myers, The Art of Software Testing, John Wiley & Sons, 1979.

[21] R. Binder, Testing Object Oriented Systems: Models, Patterns and Tools,
Addison Wesley, 1999.

[22] Y. K. Malaiya, M. N. Li, J. M. Bieman, R. Karcich, Software reliability growth
with test coverage, IEEE Transactions on Reliability 51 (4) (2002) 420–426.

[23] L. Briand, S. Morasca, V. Basili, An operational process for goal-driven
definition of measures, IEEE Transactions on Software Engineering 28 (12)
(2002) 1106–1125.

[24] B. Cahoon, K. McKinley, Data flow analysis for software prefetching linked data
structures in Java, in: International Conference on Parallel Architectures and
Compilation Techniques, Barcelona Spain, 2001, pp. 280–291.

[25] SPEC, SPEC releases SPEC JVM98, first industry-
standard benchmark for measuring Java virtual machine performance, Press
Release, http://www.specbench.org/osg/jvm98/press.html (August 19 1998).

[26] Sun Microsystems, Inc., Java platform debug architecture (JPDA),
http://java.sun.com/products/jpda.

[27] M. Dahm, Byte code engineering library (BCEL), version 5.1,
http://jakarta.apache.org/bcel/ (April 25 2004).

[28] C. Howells, Gretel: An open-source residual test coverage tool,
http://www.cs.uoregon.edu/research/perpetual/Software/Gretel/ (June 2002).

21



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

[29] A. Mitchell, J. F. Power, An approach to quantifying the run-time behaviour
of Java GUI applications, in: Winter International Symposium on Information
and Communication Technologies, Cancun, Mexico, 2004, pp. 1–6.

[30] I. Jolliffe, Principal Component Analysis, 2nd Edition, Springer Verlag, 2002.

[31] R. Freund, W. Wilson, Regression Analysis: Statistical Modeling of a Response
Variable, Academic Press, 1998.

22



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

A Appendices

Appendix A.1 contains the descriptive statistic results for the programs from
the SPEC JVM98 and JOlden benchmark suites.

Appendices A.2 and A.3 contain the results from the multiple linear regression
used to test the hypothesis H0, that coverage has no effect on the relationship
between static and dynamic metrics for the programs from the JOlden and
SPEC JVM98 benchmark suites. All significant results are highlighted.

A.1 Descriptive statistic results for the programs from the SPEC JVM98 and
JOlden benchmark suites.

BH

Mean SD

CBO 5.22 3.40

IC CC 2.33 2.50

IC CM 7.44 8.86

IC CD 8.67 10.84

EC CC 2.33 1.33

EC CM 5.77 4.44

EC CD 6.25 4.74

Em3d

Mean SD

CBO 4.20 2.86

IC CC 3.22 0.71

IC CM 3.87 1.01

IC CD 4.76 3.96

EC CC 3.75 1.33

EC CM 3.35 3.49

EC CD 4.65 3.46

Health

Mean SD

CBO 3.43 3.46

IC CC 2.43 2.46

IC CM 3.35 4.24

IC CD 4.25 5.46

EC CC 3.35 3.46

EC CM 3.55 2.43

EC CD 4.46 4.43

MST

Mean SD

CBO 4.34 3.45

IC CC 3.54 2.45

IC CM 4.23 3.45

IC CD 7.54 4.54

EC CC 3.45 3.34

EC CM 3.45 2.45

EC CD 4.56 4.32

Perimeter

Mean SD

CBO 5.34 4.34

IC CC 3.34 3.45

IC CM 4.34 2.45

IC CD 8.56 6.45

EC CC 3.54 3.45

EC CM 4.54 3.43

EC CD 6.54 3.54

Power

Mean SD

CBO 4.50 2.54

IC CC 1.32 0.45

IC CM 5.23 2.23

IC CD 5.64 2.56

EC CC 1.54 1.45

EC CM 4.12 4.56

EC CD 4.67 5.35

Voronoi

Mean SD

CBO 5.43 3.46

IC CC 2.43 1.45

IC CM 4.54 0.45

IC CD 7.45 3.46

EC CC 3.45 3.46

EC CM 4.45 2.45

EC CD 5.36 2.46

201 compress

Mean SD

CBO 6.24 6.2

IC CC 1.72 2.11

IC CM 4.34 3.54

IC CD 7.56 5.46

EC CC 1.80 1.16

EC CM 4.35 4.76

EC CD 6.56 4.56

202 jess

Mean SD

CBO 6.99 4.78

IC CC 2.97 7.21

IC CM 4.34 3.43

IC CD 5.45 4.54

EC CC 2.97 9.01

EC CM 4.34 4.35

EC CD 7.56 6.56

205 raytrace

Mean SD

CBO 7.25 7.51

IC CC 2.14 4.25

IC CM 4.45 3.54

IC CD 7.56 6.56

EC CC 2.06 1.89

EC CM 4.54 4.53

EC CD 6.56 4.56

209 db

Mean SD

CBO 9.12 6.60

IC CC 1.81 1.98

IC CM 6.56 4.46

IC CD 9.67 8.68

EC CC 1.88 1.54

EC CM 6.45 5.67

EC CD 9.57 7.65

213 javac

Mean SD

CBO 8.54 7.15

IC CC 3.21 3.01

IC CM 5.45 4.56

IC CD 7.56 7.56

EC CC 3.01 2.87

EC CM 3.45 4.56

EC CD 5.45 5.65

222 mpegaudio

Mean SD

CBO 5.75 4.90

IC CC 2.60 2.36

IC CM 4.54 3.56

IC CD 7.56 6.56

EC CC 2.60 2.70

EC CM 5.45 4.56

EC CD 5.87 5.46

228 jack

Mean SD

CBO 6.05 7.51

IC CC 2.68 5.37

IC CM 3.45 3.43

IC CD 5.45 4.45

EC CC 2.68 2.39

EC CM 5.45 4.56

EC CD 7.56 6.56



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

A.2 Multiple linear regression results for the JOlden programs

BH

Hypothesis Y R R2 P > F

HCBO IC CC 0.531 0.282 0.038

HCBO,Ic
IC CC 0.767 0.588 0.044

HCBO EC CC 0.092 0.008 0.0001

HCBO,Ic
EC CC 0.533 0.284 0.0001

HCBO IC CD 0.431 0.185 0.247

HCBO,Ic
IC CD 0.617 0.381 0.237

HCBO EC CD 0.443 0.196 0.232

HCBO,Ic
EC CD 0.514 0.264 0.398

HCBO IC CM 0.45 0.203 0.024

HCBO,Ic
IC CM 0.635 0.403 0.013

HCBO EC CM 0.443 0.196 0.032

HCBO,Ic
EC CM 0.514 0.264 0.024

Em3d

Hypothesis Y R R2 P > F

HCBO IC CC 0.617 0.381 0.046

HCBO,Ic
IC CC 0.748 0.659 0.001

HCBO EC CC 0.262 0.069 0.03

HCBO,Ic
EC CC 0.937 0.878 0.024

HCBO IC CD 0.59 0.349 0.294

HCBO,Ic
IC CD 0.591 0.349 0.651

HCBO EC CD 0.02 0.00 0.975

HCBO,Ic
EC CD 0.626 0.392 0.608

HCBO IC CM 0.59 0.349 0.194

HCBO,Ic
IC CM 0.591 0.349 0.151

HCBO EC CM 0.02 0.000 0.075

HCBO,Ic
EC CM 0.626 0.392 0.008

Health

Hypothesis Y R R2 P > F

HCBO IC CC 0.601 0.372 0.04

HCBO,Ic
IC CC 0.643 0.414 0.003

HCBO EC CC 0.22 0.048 0.06

HCBO,Ic
EC CC 0.254 0.064 0.13

HCBO IC CD 0.659 0.434 0.075

HCBO,Ic
IC CD 0.753 0.566 0.124

HCBO EC CD 0.444 0.197 0.27

HCBO,Ic
EC CD 0.535 0.286 0.431

HCBO IC CM 0.669 0.447 0.07

HCBO,Ic
IC CM 0.76 0.578 0.116

HCBO EC CM 0.444 0.197 0.207

HCBO,Ic
EC CM 0.535 0.286 0.431

MST

Hypothesis Y R R2 P > F

HCBO IC CC 0.97 0.941 0.001

HCBO,Ic
IC CC 0.972 0.945 0.0001

HCBO EC CC 0.606 0.367 0.002

HCBO,Ic
EC CC 0.76 0.577 0.001

HCBO IC CD 0.966 0.933 0.002

HCBO,Ic
IC CD 0.987 0.974 0.004

HCBO EC CD 0.239 0.057 0.649

HCBO,Ic
EC CD 0.618 0.382 0.486

HCBO IC CM 0.966 0.933 0.002

HCBO,Ic
IC CM 0.987 0.974 0.004

HCBO EC CM 0.239 0.057 0.049

HCBO,Ic
EC CM 0.618 0.382 0.086

Perimeter

Hypothesis Y R R2 P > F

HCBO IC CC 0.36 0.13 0.306

HCBO,Ic
IC CC 0.422 0.178 0.503

HCBO EC CC 0.095 0.009 0.194

HCBO,Ic
EC CC 0.599 0.359 0.211

HCBO IC CD 0.512 0.262 0.131

HCBO,Ic
IC CD 0.585 0.343 0.230

HCBO EC CD 0.256 0.065 0.476

HCBO,Ic
EC CD 0.58 0.336 0.238

HCBO IC CM 0.645 0.416 0.044

HCBO,Ic
IC CM 0.66 0.435 0.135

HCBO EC CM 0.256 0.065 0.076

HCBO,Ic
EC CM 0.58 0.336 0.038

Power

Hypothesis Y R R2 P > F

HCBO IC CC 0.709 0.502 0.042

HCBO,Ic
IC CC 0.713 0.508 0.001

HCBO EC CC 0.635 0.404 0.011

HCBO,Ic
EC CC 0.872 0.76 0.001

HCBO IC CD 0.104 0.011 0.844

HCBO,Ic
IC CD 0.723 0.523 0.329

HCBO EC CD 0.363 0.132 0.479

HCBO,Ic
EC CD 0.632 0.399 0.465

HCBO IC CM 0.067 0.004 0.9

HCBO,Ic
IC CM 0.638 0.407 0.456

HCBO EC CM 0.417 0.174 0.010

HCBO,Ic
EC CM 0.673 0.453 0.005

Voronoi

Hypothesis Y R R2 P > F

HCBO IC CC 0.922 0.85 0.009

HCBO,Ic
IC CC 0.941 0.885 0.0001

HCBO EC CC 0.553 0.306 0.255

HCBO,Ic
EC CC 0.561 0.314 0.568

HCBO IC CD 0.762 0.58 0.078

HCBO,Ic
IC CD 0.768 0.589 0.263

HCBO EC CD 0.627 0.393 0.183

HCBO,Ic
EC CD 0.636 0.405 0.459

HCBO IC CM 0.765 0.586 0.076

HCBO,Ic
IC CM 0.77 0.594 0.059

HCBO EC CM 0.627 0.393 0.083

HCBO,Ic
EC CM 0.636 0.405 0.029



To appear in Science of Computer Programming 2005
- DRAFT VERSION ONLY -

1

A.3 Multiple linear regression results for the SPEC JVM98 programs

201 compress

Hypothesis Y R R2 P > F

HCBO IC CC 0.775 0.593 0.003

HCBO,Ic
IC CC 0.798 0.602 0.0001

HCBO EC CC 0.634 0.402 0.01

HCBO,Ic
EC CC 0.870 0.759 0.007

HCBO IC CD 0.512 0.262 0.421

HCBO,Ic
IC CD 0.599 0.359 0.201

HCBO EC CD 0.239 0.057 0.054

HCBO,Ic
EC CD 0.422 0.178 0.134

HCBO IC CM 0.762 0.58 0.003

HCBO,Ic
IC CM 0.885 0.784 0.006

HCBO EC CM 0.235 0.056 0.04

HCBO,Ic
EC CM 0.58 0.336 0.035

202 jess

Hypothesis Y R R2 P > F

HCBO IC CC 0.553 0.306 0.002

HCBO,Ic
IC CC 0.703 0.494 0.001

HCBO EC CC 0.428 0.184 0.031

HCBO,Ic
EC CC 0.567 0.322 0.023

HCBO IC CD 0.765 0.586 0.145

HCBO,Ic
IC CD 0.868 0.754 0.321

HCBO EC CD 0.691 0.748 0.246

HCBO,Ic
EC CD 0.723 0.523 0.135

HCBO IC CM 0.762 0.581 0.023

HCBO,Ic
IC CM 0.922 0.852 0.012

HCBO EC CM 0.618 0.382 0.001

HCBO,Ic
EC CM 0.645 0.416 0.002

205 raytrace

Hypothesis Y R R2 P > F

HCBO IC CC 0.444 0.197 0.021

HCBO,Ic
IC CC 0.659 0.434 0.002

HCBO EC CC 0.59 0.349 0.043

HCBO,Ic
EC CC 0.669 0.447 0.032

HCBO IC CD 0.256 0.065 0.342

HCBO,Ic
IC CD 0.36 0.13 0.365

HCBO EC CD 0.239 0.057 0.123

HCBO,Ic
EC CD 0.363 0.132 0.432

HCBO IC CM 0.443 0.196 0.034

HCBO,Ic
IC CM 0.599 0.359 0.032

HCBO EC CM 0.422 0.178 0.012

HCBO,Ic
EC CM 0.632 0.399 0.032

209 db

Hypothesis Y R R2 P > F

HCBO IC CC 0.419 0.178 0.0001

HCBO,Ic
IC CC 0.868 0.754 0.001

HCBO EC CC 0.567 0.322 0.002

HCBO,Ic
EC CC 0.881 0.777 0.001

HCBO IC CD 0.691 0.478 0.522

HCBO,Ic
IC CD 0.768 0.589 0.263

HCBO EC CD 0.312 0.097 0.609

HCBO,Ic
EC CD 0.429 0.184 0.816

HCBO IC CM 0.582 0.338 0.003

HCBO,Ic
IC CM 0.703 0.494 0.006

HCBO EC CM 0.313 0.098 0.019

HCBO,Ic
EC CM 0.428 0.184 0.016

213 javac

Hypothesis Y R R2 P > F

HCBO IC CC 0.535 0.286 0.005

HCBO,Ic
IC CC 0.748 0.559 0.002

HCBO EC CC 0.443 0.196 0.004

HCBO,Ic
EC CC 0.531 0.282 0.007

HCBO IC CD 0.512 0.262 0.234

HCBO,Ic
IC CD 0.606 0.367 0.176

HCBO EC CD 0.872 0.76 0.765

HCBO,Ic
EC CD 0.922 0.85 0.567

HCBO IC CM 0.553 0.306 0.034

HCBO,Ic
IC CM 0.76 0.577 0.024

HCBO EC CM 0.321 0.107 0.042

HCBO,Ic
EC CM 0.567 0.322 0.034

222 mpegaudio

Hypothesis Y R R2 P > F

HCBO IC CC 0.174 0.032 0.003

HCBO,Ic
IC CC 0.452 0.204 0.001

HCBO EC CC 0.296 0.088 0.013

HCBO,Ic
EC CC 0.635 0.403 0.006

HCBO IC CD 0.734 0.538 0.165

HCBO,Ic
IC CD 0.885 0.784 0.214

HCBO EC CD 0.948 0.899 0.234

HCBO,Ic
EC CD 0.978 0.956 0.654

HCBO IC CM 0.753 0.567 0.001

HCBO,Ic
IC CM 0.769 0.592 0.002

HCBO EC CM 0.533 0.284 0.021

HCBO,Ic
EC CM 0.635 0.403 0.03

228 jack

Hypothesis Y R R2 P > F

HCBO IC CC 0.606 0.367 0.003

HCBO,Ic
IC CC 0.966 0.933 0.012

HCBO EC CC 0.512 0.262 0.002

HCBO,Ic
EC CC 0.872 0.76 0.003

HCBO IC CD 0.239 0.057 0.465

HCBO,Ic
IC CD 0.618 0.382 0.045

HCBO EC CD 0.363 0.132 0.123

HCBO,Ic
EC CD 0.419 0.178 0.576

HCBO IC CM 0.585 0.343 0.013

HCBO,Ic
IC CM 0.599 0.359 0.002

HCBO EC CM 0.363 0.132 0.045

HCBO,Ic
EC CM 0.417 0.174 0.032


