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Abstract

This article defines the semantics of MinAML, an idealized aspect-

oriented programming language, by giving a type-directed translation

from a user-friendly external language to a compact, well-defined core

language. We argue that our framework is an effective way to give se-

mantics to aspect-oriented programming languages in general because the

translation eliminates shallow syntactic differences between related con-

structs and permits definition of an elegant and extensible core language.

The core language extends the simply-typed lambda calculus with two

central new abstractions: explicitly labeled program points and first-class

advice. The labels serve both to trigger advice and to mark continuations

that the advice may return to. These constructs are defined orthogonally

to the other features of the language and we show that our abstractions

can be used in both functional and object-oriented contexts. We prove

Preservation and Progress lemmas for our core language and show that the

translation from MinAML source into core is type-preserving. Together

these two results imply that the source language is type safe. We also

consider several extensions to our basic framework including a general

mechanism for analyzing the current call stack.

∗This research was supported in part by National Science Foundation CAREER grant No.
CCR-0238328, by ARDA Grant no. NBCHC030106, and by a Sloan Fellowship. Any opinions,
findings and conclusions or recomendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF, ARDA or Sloan foundation.

†This research is sponsored in part by the NSF Trusted Computing program, grant number
CCR-0311204 “Dynamic Security Policies” and by the NSF CAREER award, grant number
CNS03-46939 “Language-based Distributed System Security.” Any opinions, findings and
conclusions or recomendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

1



1 Introduction

Aspect-oriented programming languages (AOPL) [KLM+97, Asp01], such as As-
pectJ [KHH+01] and Hyper/J [OT00], provide the facility to intercept the flow
of control in an application and insert new computation at that point. In
this approach, certain control-flow points, called join points, are designated
as special—typically, join points include the entry and exit points of functions.
Computation at these control flow points may be intercepted by a piece of ad-
vice, which is a piece of code that can manipulate the surrounding local state
or cause global effects. Advice is triggered only when the run-time context at a
join point meets programmer-specified conditions, making advice a useful way
to instrument programs with logging information, performance monitors, or se-
curity checks. An aspect is a collection of advice and corresponding join points
that apply to a particular program.

The primary goal of this paper is to distill aspect-oriented programming
into its fundamental components: (1) the join points, a means of designating
“interesting” control-flow points, and (2) the advice, a way of manipulating the
data and computation at those points. The objective is to obtain a simple,
clear, and reusable semantic framework that researchers can use to explore new
AOPL designs and to study the interactions between pointcuts, advice and more
conventional language features. The main strength of our semantic framework
is its simplicity. Since it is simple, it does not model all features found in
full-scale AOPLs. For example, there is no obvious way to model Hyper/J’s
hyperslices [OT00].

One of the difficulties with specifying a simple and concise semantics for
aspects is that according to Filman and Friedman’s widely accepted defini-
tion [FF05], aspect-oriented programs must be oblivious. In other words, pro-
grammers should not be required to insert join point markers into their code
manually. Manual insertion of the join point markers often leads to inconsis-
tency, omission and other errors. Instead, the language implicitly associates
join points with certain program constructs and the compiler is responsible for
uniform insertion of these join points within programmer code. For example,
object- and aspect-oriented languages normally specify that a join point ex-
ists immediately prior to execution of any method body and immediately after
execution of any method body. Unfortunately, therefore, on the surface, the
semantics of join points and advice is conflated with the semantics of objects
and method invocation. Such a semantics breaks the principal of orthogonality,
which suggests that each programming language construct should be understood
independently of other programming language constructs. Tightly coupling join-
point definitions with the semantics of methods and objects makes it impossible
to understand aspects without first understanding methods and objects, which
are complicated in isolation.

To resolve these difficulties, we adopt the central ideas of a type-theoretic se-
mantic framework defined by Harper and Stone for Standard ML [HS98]. Rather
than give a semantics directly to a large and relatively complex AOPL, we trans-
late the unwieldy, but oblivious external language into a simple, unoblivious core
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language and then provide a precise and elegant operational semantics for the
core. Though the core language is not oblivious, there is no reason to wish that it
were — obliviousness is important in the source language used by programmers,
but not at all necessary or desirable in our semantic intermediate language. The
translation is beneficial as it compiles complex constructs into simpler ones and
eliminates shallow syntactic differences between similar constructs. Overall, we
believe it effectively modularizes the semantics.

Since we first presented our basic framework [WZL03], we have gained sub-
stantial additional experience with this style of semantics. In one case study,
we explored the interaction between parametric polymorphism, intentional type
analysis and aspects [DWWW05]. In a second case study, we equipped the core
calculus with a type system for detecting and preventing interference between
aspects and the mainline computation [DW04]. In both cases, our experience
was very positive. We were able to define rich type systems and use our semantic
framework to prove type safety results in the standard way. Most importantly,
the complexity of our proofs in these cases was completely manageable. In the
second case, we also proved a powerful non-interference result. The specifics
of these extensions are well beyond the scope of this paper, but the experience
is nonetheless valuable as it suggests that our semantic framework is robust
enough for researchers to build upon in a variety of ways.

One possible disadvantage of our approach is that in order to establish cer-
tain correctness properties of source-language programs, it will be necessary to
reason indirectly about the image of the translation of these programs in the
core calculus. In some cases, this may be more difficult than establishing a
direct semantics and reasoning about the source, though we have no definitive
evidence either way. So far, for the type safety results we have proven and also
for the non-interference result mentioned above, we have found the structure
of the language definition has helped us modularize and simplify our proofs.
Nevertheless, we do not expect our strategy to be the most effective in all cases.

In summary, the main contribution of this work is the definition of a novel
type-theoretic framework for understanding aspects. Specific components of our
theory include the following.

• A type-theoretic interpretation of an idealized aspect-oriented language
called MinAML that includes advice, functions, and objects.

• A minimalist core aspect language with a well-defined operational inter-
pretation, and a sound type system. The main novelty of the core language
are its two central abstractions:

– Explicit, labeled join points that are defined orthogonally from the
other constructs in the language, and

– A single kind of first-class advice that, together with labeled join
points, can give meaning to before, after and a simplified form of
around advice.
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• Several extensions to the basic framework including join point designators
based on collections of labels and a mechanism for analysis of the current
dynamic control context, which generalizes AspectJ’s temporal operators.
These extensions do not change the central machinery needed for aspects.

This work is an extended version of a paper that first appeared in the ACM
SIGPLAN International Conference on Functional Programming [WZL03]. An
important addition in this paper is the full proof of type safety for our core
aspect calculus. These details demonstrate how simple and uncluttered the
metatheory for our language is. We have also greatly improved the definition
of context-sensitive advice by simplifying our mechanism for dynamic context
analysis.

The next section introduces the features of the core aspect calculus and
its syntax, largely via examples. These examples motivate the design of the
operational semantics and type system, which are described in Sections 2.1 and
2.2. Section 3 defines the external language, MinAML. Subsequent sections
generalize the core calculus and MinAML by extending them to include objects
(Section 3.2) and richer pointcut designators (Section 4). The paper concludes
with a discussion of related work (Section 5) and some conclusions (Section 6).

2 Core aspect calculus

Labeled join points l〈e〉 are the essential mechanism of the core aspect calculus.
The labels, which are drawn from some infinite set of identifiers, serve several
purposes: They mark the points at which advice may be triggered, they provide
the appropriate contextual information for trigger predicates, and they mark
points to which control may be transferred when some advice decides to abort
part of the current computation. For example, in the expression v1 + l〈e2〉, after
e2 has been evaluated to a value v2, evaluation of the resulting subterm l〈v2〉
causes any advice associated with the label l to be triggered. This construct
permits the unambiguous marking of any control flow point rather than relying
upon some a priori designation of the “interesting control flow points,” which
are hard-wired in most aspect-oriented languages.

Advice, at the most fundamental level, is a computation that exchanges data
with a particular join point, and hence a piece of advice is similar to a function.
However, there are some subtleties involved in the definition. Advice can not
only manipulate the data at the point, it can also influence the control flow—
perhaps by skipping code that would have been run in the advice’s absence.

The advice {l.x → e} indicates that it will be triggered when control flow
reaches a point labeled l. The variable x is bound to the data at that point, and
evaluation proceeds with the expression e, the body of the advice. Assuming
that the advice {l.x → e} has been installed in the program’s dynamic environ-
ment, the example v1 + l〈v2〉 evaluates to v1 + e{v2/x}. Triggering the advice
associated with label l consumes the label; operationally this means that the
advice runs only once per labeled point. Note that the advice computes a value
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of the same type as its argument, in this case an integer—importantly, advice
can be composed with other advice.

The same label may be used to tag distinct control flow points, as long as
those points indicate computations of the same type. For example, the program
l〈v1〉 + l〈v2〉 causes two instances of the advice {l.x → e} to be run, but one
instance will be passed v1 and the other will be passed v2

Multiple pieces of advice may apply at the same control-flow point. Because,
in general, advice may have effects, the order in which they run is important. It
therefore seems natural that there should be at least two ways to install advice
in the run-time environment, one that runs the new advice prior to any other
and one that runs it after any other. Accordingly, the core aspect language
includes expression forms a << e and a >> e to respectively install the advice
a prior to and after the other advice. In both cases running the advice a is
delayed until the corresponding join point is reached; the program continues as
expression e.1

The following examples show how advice precedence works (assuming that
there is no other advice associated with label l in the environment).

{l.x → x + 1} << {l.y → y ∗ 2} << l〈3〉 7−→∗ 7
{l.x → x + 1} << {l.y → y ∗ 2} >> l〈3〉 7−→∗ 8

Evaluation proceeds from left to right. In the first example, the leftmost <<

operator installs the advice {l.x → x + 1}; then, the rightmost << installs the
advice {l.y → y ∗ 2} before the other advice. Hence, the multiplication happens
before the addition when the advice is triggered. The second example uses >>

to install the aspects in the other order.
Because it can be difficult to reason about the behavior of a program when

the advice associated with a label is unknown, it is useful to introduce a scoping
mechanism for labels. The expression new p : t. e allocates a fresh label that is
bound to the variable p in the expression e. This permits labels as first class
values that can be passed to and returned by functions. The example above can
be rewritten as follows:

new p :int. {p.x → x + 1} << {p.y → y ∗ 2} << p〈3〉

This construct ensures that only advice explicitly declared in the scope of the
new gets triggered at the location p〈v〉. The variables bound by the new expres-
sion α-vary, providing for modular program design.

With the features described so far, it is easy to see that aspects are a powerful
(and potentially dangerous) tool. Consider the following example:

new p :bool. {p.x → p〈x〉} << p〈true〉

1One could imagine generalizations of this idea. For instance, one might want to augment
the calculus with commands for uninstalling advice as well. This seems like a reasonable
extension to the language, but we do not pursue it here as our simpler set of commands
suffices for many interesting applications of aspects.
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This program immediately goes into an infinite loop, even though the underly-
ing program to which the advice applies, true, is already a value. Wand and
others [WKD02] have observed that aspects can be used to implement arbitrary
fixpoints of functions using this technique. As another example of the power
of aspects, the program below shows how to encode a (somewhat inefficient)
implementation of reference cells using the state provided by advice. A refer-
ence cell is represented as a pair of functions, the first dereferences the cell and
the second updates the cell’s contents. The data is stored in advice associated
with label ref ; the last advice to be run returns the current contents of the ref-
erence. This example illustrates the stateful nature of advice—the expression
{ref .y → y′} >> () used in the set function evaluates to (), but installs the
advice into the run-time environment as a side effect.

makeref
def
=

λinit :t. new ref :t.
{ref .x → x} <<

let get = λ :unit.ref 〈init〉 in

let set = λy′ :t.{ref .y → y′} >> () in (get,set)

As these examples show, aspects can radically alter the semantics of a given
programming language. Part of the contribution of this work is to provide a
framework that makes studying these issues straightforward.

It is sometimes desirable for advice to suppress the execution of a piece of
code or replace it altogether. The last feature of the core aspect calculus, writ-
ten return v to l, allows such alterations to the control flow of the program.
Operationally, return is very similar raising an exception. The value v is di-
rectly passed to the nearest enclosing control-flow point labeled l, bypassing any
intervening pending computation. If there is no point with label l, the program
halts with an error (this is analogous to an uncaught exception). As an example,
the following program evaluates to the value 3:

new p :int. p〈4 + (return 3 to p)〉

A second example (below) shows how to instrument a function f = λx :
bool. e of type bool → t so that if its argument is true then e proceeds as usual,
otherwise some alternative code e′ is run.

new fpre: bool.

new fpost: t.
{fpre.x→if x then x else return e′ to fpost}
>>

λx:bool.fpost〈let x = fpre〈x〉 in e〉

The strategy is to use two labels, fpre and fpost, that get triggered at the
function’s entry and exit. The advice associated with the precondition checks
the value of x and, if it is true, simply returns control to the body of the
function. If x is false, the advice runs e′ and returns the result directly to
the point labeled fpost. The function is instrumented by adding the label fpre,
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which will trigger the precondition advice to inspect the function argument x,
and by adding the label fpost around the entire function body, which specifies
the return point from the function.

2.1 Syntax and Operational Semantics

This section describes the operational semantics for the core language, whose
grammar is summarized below. For simplicity, the base language is chosen to
be the simply-typed lambda calculus with Booleans, strings and n-tuples.

l ∈ Labels
v ::= {v.x → e} | b | g | print | l | λx : t. e | (~v)
e ::= x | v | if e1 then e2 else e3 | e1 e2

| (~e) | let(~x :~t)= e1 in e2

| new x : t. e | e1〈e2〉 | return e1 to e2

| {e1.x → e2} | e1 >> e2 | e1 << e2

Let b range over the Boolean values true and false, g range over string
values, and a range over advice values {v.x → e2}. The other syntactic cate-
gories in the language include labels for control-flow points (l), values (v) and
expressions (e). The operator print e prints its arguments e. If ~e is a vector of
expressions e1, e2, . . . , en for n ≥ 0, then (~e) creates a tuple. The expression
let(~x :~t)= e1 in e2 binds the components of a tuple e1 to the vector of vari-
ables ~x in the scope of e2, and we often omit the parenthesis when the vector is
of length one. Types on let-bound variables are often omitted when they are
irrelevant or clear from context. To project the ith component of a tuple, we
often write πie, which is an abbreviation for let(~x)= e inxi.

The pointcut language has been reduced to the barest minimum for the core
calculus. However, the language design and semantics are completely compatible
with more expressive pointcuts; Section 4 investigates several alternatives. Note
that pointcuts, advice and labels are first-class values; these values may be
passed to and from functions just as any other data structure.

The operational semantics uses evaluation contexts (E) defined according to
the following grammar:

E ::= [ ] | ifE then e2 else e3 | print E | E e | v E
| (~v, E,~e) | E << e | E >> e | E〈e〉 | l〈E〉
| {E.x → e} | return E to e | return v to E

These contexts give the core aspect calculus a call-by-value, left-to-right eval-
uation order, but that choice is orthogonal to the design of the language. The
only requirement is that evaluation be allowed to proceed under labeled points:
l〈E〉 should be an evaluation context. This requirement ensures that the eval-
uation contexts accurately describe the nesting of labels as they appear in the
call stack.

The operational semantics must keep track of both the labels that have been
generated by the new construct and the advice that has been installed into the
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run-time environment by the program. An allocation-style semantics [MFH95]
keeps track of a set L of labels (and their associated types). Similarly, A is an
ordered list of installed advice—the << and >> operators respectively add
advice to the head (left) and tail of this list. Finally, the abstract machine states
or configurations C used in our operational semantics are triples, 〈L, A, e〉.

L ::= · | L, l : t A ::= · | A, a C ::= 〈L, A, e〉

Because the return operation needs to pass control to the nearest enclosing
labeled point, it is convenient to define a function S(E) that takes an evaluation
context E and returns the stack of labels appearing in the context. Such stacks
s, are given by the following grammar:

s ::= · | l | s1 :: s2

The top of the stack is to the left of the list. Stack concatenation, written
s1 :: s2, is associative with unit ·. The function S(E) is inductively defined on
the structure of E, where the only interesting cases are:

S([ ]) = · S(l〈E〉) = S(E) :: l

For the other evaluation context forms, S(E) simply returns the recursive ap-
plication of S(−) to the unique subcontext: S(E << e) = S(E), etc. As an
example,

S(l1〈(λx : t. l3〈e〉) l2〈[ ]〉〉) = · :: l2 :: l1

The operational semantics of the core aspect calculus is a transition relation
〈L, A, e〉 7−→ 〈L′, A′, e′〉 between machine configurations consisting of the set of
allocated labels, the list of installed advice, and the running program.

Most of the rules are straightforward. An auxiliary relation 7−→β , defined
below, gives the primitive β reductions for the language.

〈L, A, (λx : t. e) v〉 7−→β 〈L, A, e{v/x}〉
〈L, A, iftruethen e1 else e2〉 7−→β 〈L, A, e1〉

〈L, A, iffalsethen e1 else e2〉 7−→β 〈L, A, e2〉
〈L, A, print g〉 7−→β 〈L, A,()〉

〈L, A, let(~x :~t)=(~v) in e〉 7−→β 〈L, A, e{~v/~x}〉
(l 6∈ L) 〈L, A, new x : t. e〉 7−→β 〈(L, l : t), A, e{l/x}〉

〈L, A, a << e〉 7−→β 〈L, (a, A), e〉
〈L, A, a >> e〉 7−→β 〈L, (A, a), e〉

The first five rules are the usual β-rules for a lambda calculus with Booleans,
strings and tuples, where e{v/x} is capture-avoiding substitution of the value v
for the variable x in the expression e. We do not bother to model the output of
the printing function; the reader will have to use their imagination. The sixth
rule allocates a fresh label l and substitutes it for the variable x in the scope of
the new operator. The last two rules simply add the advice a to the appropriate
end of the list. Advice at the head of the list will be run before advice at the
tail.

8



The β-reductions apply in any evaluation context, as expressed by the fol-
lowing rule:

〈L, A, e〉 7−→β 〈L′, A′, e′〉

〈L, A, E[e]〉 7−→ 〈L′, A′, E[e′]〉

The remaining constructs, advice invocation and the return expression,
require more complex evaluation semantics.

Because multiple pieces of advice may be triggered at a single point, the
operational semantics must compose them together in the order indicated by
the list A. To do so, the advice {p.x → e} is treated as a function λx : t. e, which
can be combined with other advice using standard function composition. The
composition is well defined because advice that accepts input of type t must
produce an output of type t (or return to a point lower in the stack).

This behavior is captured by two auxiliary definitions. The first, A[[A]]C = e′,
takes a list of advice A and returns a function e′ that is the composition of the
applicable advice in the state C. The second judgment has the form C |= p
and is valid if the pointcut p is satisfied by the configuration C. In general, the
satisfaction relation may be an arbitrary predicate on the current state of the
abstract machine; Section 4 details some more pointcuts. However, in this core
language, the satisfaction relation is simply defined to be the equality relation
between p and the label at the current program point. The advice composition
and pointcut satisfaction are defined by the following rules.

A[[·]]〈L,A,E[l〈v〉]〉 = λx :L(l). x

C |= v A[[A]]C = λy : t. e′

A[[{v.x → e}, A]]C = λx : t. ((λy : t. e′) e)

C 6|=v A[[A]]C = e′

A[[{v.x → e}, A]]C = e′

l = p

〈L, A, E[l〈v〉]〉 |= p

With these definitions, the evaluation rule for l〈v〉 simply applies the function
resulting from interpreting the advice list to the value v.

A[[A]]〈L,A,E[l〈v〉]〉 = e

〈L, A, E[l〈v〉]〉 7−→ 〈L, A, E[e v]〉

The expression return v to l immediately hands the value v to the nearest
enclosing program point labeled by l. Using evaluation contexts and the S(−)
function, this behavior is expressed by the following rule.

(l 6∈ S(E)) 〈L, A, l〈E[return v to l]〉〉 7−→β 〈L, A, l〈v〉〉

Here, the program consists of a return expression in a context E labeled by l.
Because the stack of labels in E does not contain the label l, the point labeled
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by l must be the closest such point to the return expression. The program
thus steps immediately to the point labeled l, discarding the context E. This
semantics is essentially the same as those used for exception handlers. If there is
no point labeled l in the context of the return, the return expression discards
the entire context and the program terminates.

(l 6∈ S(E)) 〈L, A, E[return v to l]〉 7−→ 〈L, A, return v to l〉

Figure 1 summarizes the operational rules for the core calculus.

2.2 Type System

The type system for the core aspect calculus is a very simple extension of the
type system for the base language (in this case, the simply typed lambda cal-
culus). The main consideration is that because it is necessary to pass data
back and forth between the join point of interest and the advice, the advice
and control flow points must be in agreement with respect to the type of data
that will exchanged. The three new types are t label, the type of labels that
can annotate program contexts of type t, t pc, the type of pointcuts matching
program contexts of type t, and advice, the type of advice. Types and typing
contexts are given by the following grammar:

t ::= bool | string | (~t) | t1 → t2
| t label | t pc | advice

Γ ::= · | Γ, x : t

The basic typing judgment has the form Γ `L e : t. It indicates that term e can
be given type t in context Γ when labels have types given by L. Since the label
typing L stays the same throughout a typing derivation, we normally omit it
from the judgment and simply write Γ ` e : t.

Figure 2 contains the typing rules for the aspect calculus. The first three
lines in the figure give typing rules for booleans, functions and tuple typing.
They are completely standard. The last four lines in the figure give typing
rules for labels, pointcuts and advice. A concrete label value l is given the type
t label whenever L(l) = t. The new expression simply introduces a new variable
of type t label. An expression of type t label may be used to label another
expression of type t. Since pointcuts are simply labels here, the type t pc is
implemented by t label: Any expression with type t label may be considered
to have type t pc.

Advice associated with a pointcut of type t pc is constructed from code that
expects a variable of type t. The body of advice must produce a result suitable
for returning to the point from which the advice was triggered. Thus, the body
of the advice must itself be of type t. Note that because all advice associated
with a pointcut p accept and produce values of the same type, it is possible
to compose them in any order—the soundness of the composition used in the
operational semantics follows from this constraint.
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C 7−→βC’

〈L, A, (λx : t. e) v〉 7−→β 〈L, A, e{v/x}〉
〈L, A, iftruethen e1 else e2〉 7−→β 〈L, A, e1〉

〈L, A, iffalsethen e1 else e2〉 7−→β 〈L, A, e2〉
〈L, A, print g〉 7−→β 〈L, A,()〉

〈L, A, let(~x :~t)=(~v)in e〉 7−→β 〈L, A, e{~v/~x}〉
(l 6∈ L) 〈L, A, new x : t. e〉 7−→β 〈(L, l : t), A, e{l/x}〉

〈L, A, a << e〉 7−→β 〈L, (a, A), e〉
〈L, A, a >> e〉 7−→β 〈L, (A, a), e〉

(l 6∈ S(E)) 〈L, A, l〈E[return v to l]〉〉 7−→β 〈L, A, l〈v〉〉

C 7−→C’
〈L, A, e〉 7−→β 〈L′, A′, e′〉

〈L, A, E[e]〉 7−→ 〈L′, A′, E[e′]〉

A[[A]]〈L,A,E[l〈v〉]〉 = e

〈L, A, E[l〈v〉]〉 7−→ 〈L, A, E[e v]〉

(l 6∈ S(E)) 〈L, A, E[return v to l]〉 7−→ 〈L, A, return v to l〉

A[[A]]C = e

A[[·]]〈L,A,E[l〈v〉]〉 = λx :L(l). x

C |= v A[[A]]C = λy : t. e′

A[[{v.x → e}, A]]C = λx : t. ((λy : t. e′) e)

C 6|=v A[[A]]C = e′

A[[{v.x → e}, A]]C = e′

C |= p

l = p

〈L, A, E[l〈v〉]〉 |= p

Figure 1: Core Calculus Operational Semantics
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Γ ` e : t

Γ ` b : bool

Γ ` e1 : bool Γ ` e2 : t′ Γ ` e3 : t′

Γ ` if e1 then e2 else e3 : t′

Γ ` g : string

Γ ` e : string

Γ ` print e :()

Γ ` ei : ti (1 ≤ i ≤ n)

Γ `(e1, . . . , en)
(n≥0) :(t1, . . . , tn)

(n≥0)

Γ ` e1 : (~t) Γ, ~x :~t ` e2 : t′

Γ ` let(~x :~t)= e1 in e2 : t′

Γ, x : t ` e : t′

Γ ` λx.e : t → t′
Γ ` e1 : t → t′ Γ ` e2 : t

Γ ` e1 e2 : t′

L(l) = t

Γ ` l : t label

Γ, x : t label ` e : t′

Γ ` new x : t. e : t′

Γ ` e1 : t label Γ ` e2 : t

Γ ` e1〈e2〉 : t
Γ ` e : t label

Γ ` e : t pc

Γ ` e1 : t pc Γ, x : t ` e2 : t

Γ ` {e1.x → e2} : advice

Γ ` e1 : advice Γ ` e2 : t

Γ ` e1 << e2 : t

Γ ` e1 : advice Γ ` e2 : t

Γ ` e1 >> e2 : t

Γ ` e1 : t Γ ` e2 : t label

Γ ` return e1 to e2 : t′

Figure 2: Core Calculus Type system

Installing advice only causes side effects to the run-time environment, so all
advice expressions, regardless of the type of data they manipulate, can be given
the type advice. The rules for installing advice using << and >> permit the
program to be executed in the presence of the advice to have any type.

Lastly, the value returned to a label marking a context of type t should itself
have type t. However, as with exception or continuation invocation, the return

expression itself may be used in any context.

2.3 Type Safety

The typing rules are sound with respect to the operational semantics, and
our language design leads to a soundness proof in the style of Wright and
Felleisen [WF94]. Our proof is quite straightforward, so readers familiar with
type safety proofs may want to skip this section and move quickly onto the next.

The first step is to prove the standard substitution lemma by induction on
the structure of the typing derivation for expressions.
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Lemma 1 (Substitution)
If Γ, x : t′ ` e : t and Γ ` e′ : t′ then Γ ` e[e′/x] : t.

The following two lemmas are also essential for proving type safety. The first,
Weakening, may be proven by induction on the structure of the typing deriva-
tion.2 The second, Inversion of Typing, or simply Inversion, follows directly by
inspection of the typing rules.

Lemma 2 (Weakening)
If Γ `L e : t′ and L′ extends L and Γ′ extends Γ then Γ′ `L′

e : t′.

Lemma 3 (Inversion of Typing)
Every typing rule is invertible. In other words, if the conclusion of a par-

ticular rule holds, then its premises must also hold. For example, if Γ `
if e1 then e2 else e3 : t′ then Γ ` e1 : bool and Γ ` e2 : t′ and Γ ` e3 : t′.

Next, we determine some of the properties of the values that inhabit each
type by proving a canonical forms lemma. This lemma follows by induction on
the structure of the typing derivations for values.

Lemma 4 (Canonical Forms)
If · `L v : t then

• t = bool implies v is a boolean b,

• t = string implies v is a string g,

• t =(t1, . . . , tn) implies v is (v1, . . . , vn),

• t = t1 → t2 implies v is λx : t1.e,

• t = t′ label implies v is l

• t = t′ pc implies v is l, and

• t = advice implies v is {e1.x → e2}

Well-typed computational contexts also have important properties that we
use in the safety proof. The Well-typed Filled Context Lemma is a corollary
of the definition of well-typed contexts and the Substitution Lemma. Both the
Decomposition lemmas can be proven by induction on the typing derivation for
expressions.

Definition 5 (Well-typed Context)
A context E is well typed, written Γ ` E : t ⇒ t′, if x 6∈ FV (E) and Γ, x : t `
E[x] : t′.

2We do not distinguish between contexts L and Γ that only differ in the order of assump-
tions, so judgments containing them automatically satisfy the exchange property. They also
satisfy other standard structural properties that are not necessary for our purposes here.
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Corollary 6 (Well-typed Filled Context)
If Γ ` E : t ⇒ t′ and Γ ` e : t then Γ ` E[e] : t′

Lemma 7 (Decomposition I)
If · ` e : t then either

1. e is a value v, or

2. e can be decomposed into E[r] where r is a redex that can be reduced

immediately by one of the 7−→β reductions or r has the form return v to l.

Lemma 8 (Decomposition II)
If · ` E[e] : t′ then there exists a type t such that · ` E : t ⇒ t′ and · ` e : t.

Now, before we move on to the final results, we must specify what it means
for our abstract machine to be well-typed and for execution to be successfully
completed (i.e., finished)

Definition 9 (Finished Configuration)
A finished configuration is of the form 〈L, A, v〉 or the form 〈L, A, return v to l〉.

The first kind of finished configuration reprepresents normal termination of a
program that has computed the value v; the second kind of finished configuration
represents abnormal termination in which a value is returned to a labeled point
that is not in scope.

Definition 10 (Well-typed Configuration)
A configuration 〈L, A, e〉 is well typed, written ` 〈L, A, e〉 ok, if, for all advice

a ∈ A, it is the case that · `L a : advice, and · `L e : t for some t.

Finally, we have enough information to state and prove the progress lemma.

Theorem 11 (Progress)
If ` C ok then either the configuration is finished, or there exists another

configuration C ′ such that C 7−→ C ′.

Proof Let C = 〈L, A, e〉. Since e is well-typed, by Decomposition I, it is either
(1) a value v, or it has the form E[r] where (2) r is a redex that can be reduced
immediately by one of the 7−→β reductions, or (3) r has the form return v to l.
In case (1), the configuration is finished. In case (2), the configuration can take
a step using the context rule.

〈L, A, e〉 7−→β 〈L′, A′, e′〉

〈L, A, E[e]〉 7−→ 〈L′, A′, E[e′]〉

In case (3), the context E may be empty, in which case the configuration is
finished. Otherwise, a reduction can take place via one of the two rules for the
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return statement. More specifically, either E = E ′[l〈E′′[ ]〉] and l 6∈ S(E′′), in
which case

(l 6∈ S(E′′)) 〈L, A, l〈E′′[return v to l]〉〉 7−→β 〈L, A, l〈v〉〉

〈L, A, E′[l〈E′′[return v to l]〉]〉 7−→ 〈L′, A′, E′[l〈v〉]〉

or, l 6∈ S(E) and,

(l 6∈ S(E)) 〈L, A, E[return v to l]〉 7−→ 〈L, A, return v to l〉

�

Our last step is to prove the preservation lemma for the language. To do that,
we need two additional minor lemmas concerning the composition of advice.

Lemma 12 (Well-typed Advice Selection)
Let C = 〈L, A, E[l〈v′〉]〉. If C |= v and · `L {v.x → e} : advice and L(l) = t

then x : t `L e : t.

Proof This fact comes directly from the definition of the matching judgment
and inversion of the typing rules. �

Lemma 13 (Well-typed Advice Composition)
If A[[·]]〈L,A,E[l〈v′〉]〉 = e′ then · `L e′ : L(l) → L(l).

Proof By induction on the definition of the advice composition judgment, using
the Well-typed Advice Selection Lemma. �

Theorem 14 (β-Preservation)
If ` 〈L, A, e〉 ok and 〈L, A, e〉 7−→β 〈L′, A′, e′〉 then L′ extends L and there is a

derivation of ` 〈L′, A′, e′〉 ok.

Proof The proof is by cases on the operational rules. All of the cases are
straightforward. There is one slight subtlety in the case for new labels: We
must use the Weakening lemma to show that the stored advice in A remains
well-typed when we add a new label L to the store.

Here is the case for the operation of the return statement:

• Given: 〈L, A, l〈E[return v to l]〉〉 7−→β 〈L, A, l〈v〉〉 when l 6∈ S(E).
Since ` 〈L, A, l〈E[return v to l]〉〉 ok, we have

(1) for all a ∈ A, · `L a : advice, and

(2) · `L l〈E[return v to l]〉 : t for some t.

From (2), and by inversion of the typing rules, we can conclude that

(3) L(l) = t, and
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(4) · `L E[return v to l] : t .

From (4), and by Decomposition II, we conclude that · `L return v to l :
t′, for some t′. By inversion of typing and (3), we know that · `L v : t.
Consequently, due to the typing rule for labels, we can conclude

(5) · `L l〈v〉 : t.

From (1) and (5), we have our result: ` 〈L, A, l〈v〉〉 ok (and L trivially
extends itself).

�

Theorem 15 (Preservation)
If ` 〈L, A, e〉 ok and 〈L, A, e〉 7−→ 〈L′, A′, e′〉 then L′ extends L and there is a

derivation of ` 〈L′, A′, e′〉 ok.

Proof The proof is by cases on the operational rules. All three cases are straight-
forward.

• The first case concerns β-reduction inside a computational context. It
follows directly from β-preservation and the Well-typed Filled Context
Corollary.

• The second case concerns application of advice. It follows directly from
the Well-typed Advice Composition Lemma and the Well-typed Filled
Context Corollary.

• The third case concerns the return statement. The proof here is analogous
to the proof involving return in the β-preservation lemma given above.

�

3 MinAML

This section gives a semantics for a concrete AOPL called MinAML by translat-
ing it into the core aspect calculus. Figure 3 displays the MinAML syntax. The
base types are Booleans and functions. Booleans are as usual. Function declara-
tions define a (non-recursive) value and also implicitly declare a program point
f that can be referred to by advice. Otherwise, functions are treated normally.

MinAML allows programmers to define static, second-class advice—unlike
in the more general core language, programs may not manipulate advice at run-
time in any significant way. Advice is immediately appended to the advice store
when it is declared.

MinAML has three sorts of aspects: those that give advice before execution
of pointcut p (for now, p is limited to be a function call), those that give advice
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types t ::= bool | string | unit | t1 → t2
terms e ::= x | b | g | () | if e1 then e2 else e3

| print e | let ds in e | e1 e2

decls ds ::= ·
| (boolx = e) ds
| (stringx = e) ds
| (unitx = e) ds
| (funf(x : t1): t2 = e) ds
| ad ds

prog pts p ::= f
aspects ad ::= before p(x, fn)= e

| after p(x, fn)= e
| around p(x, fn)= e
| around p(x, fn)= e1; proceedy → e2

Figure 3: MinAML Syntax

after execution of p, and those that give advice around p. In the first and third
cases, the bound variable x will be replaced by the argument of p when the
advice is triggered. In the second case, x will be replaced by p’s result. When
declaring around advice, the programmer can choose either to replace p entirely
or to perform some pre-computation, proceed with p and then perform some
post-computation. In the latter case, after proceeding with p, a fresh variable
y is bound to the result of the function. All forms of advice have access to
metadata associated with the join point that triggered it. This metadata is
passed to the advice via the auxiliary parameter fn . For our current purposes,
we assume the metadata is a string containing the name of the function from
the source text. However, there are other useful forms of metadata, such as
access control privileges, that one might wish to assign to a join point. Our
semantics is flexible enough to accommodate any sort of metadata one might
be interested in.

Note that the around advice we present here is not as general as the around
advice found in AspectJ. In AspectJ, the proceed statement may appear any-
where within the body of the around advice and may even appear multiple times.
Moreover, as shown recently by Clifton and Leavens [CL05], a full semantics for
AspectJ-style around advice with proceed is substantially more complicated.
Consequently, rather than attempt to model full AspectJ-style advice, we sat-
isfy ourselves with this very simple substitute.

MinAML also deviates from AspectJ in another important way. AspectJ
allows programmers to refer to any method that appears anywhere in their
program, even private methods of classes. In contrast, the functions referred
to by MinAML advice must be in scope. This decision allows programmers
to retain some control over basic information hiding and modularity principles
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in the presence of aspects. For instance, a programmer can declare a nested
utility function and be assured that no advice interferes with its execution. The
programmer can also decide to expose the function declaration to manipulation
by advice by declaring it in an outer scope. The decision to make the external
language well-scoped truly is an external language design decision: we believe
the core aspect calculus is rich enough to express scopeless advice by using a
slightly different translation strategy.3

3.1 MinAML Interpretation

We give a semantics to well-typed MinAML programs by defining a type-
directed translation into the core language.

The translation is defined by mutually recursive judgments for terms, for
declarations and for advice. The term translation judgment has the form P ; Γ `

e : t
term
=⇒ e′. It computes the type t of the term e and, if it is well-formed,

produces a core language term e′ of the same type. The type-checking context
is split into two parts. The context Γ is a mapping from MinAML variables to
types. The context P is a mapping from program points p to pairs of input and
output types for that program point. For example, a function f : bool → int

extends the context P with the binding f : (bool, int) and extends the typing
context Γ with f :bool → int.

The term translation type checks external language terms and translates
them into analogous core language constructs. All of the interesting action
happens when translating declarations and advice. Figures 4, 5 and 6 present
the details.

The main idea in the translation of function declarations has already been
explained by example. Two new program points are declared in the course of
the translation, one for the function entry point (fpre) and one for the exit
point (fpost). These two points may be used in advice definitions declared in
the following scope. The translation maintains the invariant that if the binding
p : (t1, t2) appears in P then the translated term will type check in a context
extended with ppre :(t1, string) label, ppost :(t2, string) label. The type
string appears here since advice receives metadata from each join point. As
discussed in the previous subsection, this metadata is the source-text string
name of the function. We assume the presence of an unspecified function M(f)
to generate this metadata for us during the translation.

The key ideas for the aspect translation have also been explained informally
in previous sections. Before advice for p is defined to be core language advice
triggered by the ppre join point. After advice for p is triggered by the ppost join
point. Around advice with a proceed statement defines two pieces of advice, one

3Allowing programmers to reference variables defined in inner scopes would pose some
(again, external language) difficulties as any simple scheme would be incompatible with the
basic principles of alpha-conversion. However, these difficulties could likely be overcome by
giving bindings both an internal and external name, as in Harper and Lillibridge’s translucent
sum calculus [HL94]. Once naming conventions for the external language have been overcome,
the translation to internal language should be straightforward.

18



P ; Γ ` e : t
term
=⇒ e′

x : t ∈ Γ

P ; Γ ` x : t
term
=⇒ x P ; Γ ` b : bool

term
=⇒ b P ; Γ ` g : string

term
=⇒ g

P ; Γ `() : unit
term
=⇒()

P ; Γ ` e : string
term
=⇒ e′

P ; Γ ` print e : unit
term
=⇒ print e′

P ; Γ ` e1 : bool
term
=⇒ e′

1

P ; Γ ` e2 : t
term
=⇒ e′

2 P ; Γ ` e3 : t
term
=⇒ e′

3

P ; Γ ` if e1 then e2 else e3 : t
term
=⇒ if e′

1 then e′
2 else e′

3

P ; Γ ` ds; e : t
decs
=⇒ e′

P ; Γ ` letds in e : t
term
=⇒ e′

P ; Γ ` e1 : t1 → t2
term
=⇒ e′

1 P ; Γ ` e2 : t1
term
=⇒ e′

2

P ; Γ ` e1 e2 : t2
term
=⇒ e′

1 e′
2

Figure 4: MinAML Interpretation: Terms
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P ; Γ ` ds; e : t
decs
=⇒ e′

P ; Γ ` e : t
term
=⇒ e′

P ; Γ ` ·; e : t
decs
=⇒ e′

P ; Γ ` e1 : bool
term
=⇒ e′

1 P ; Γ, x :bool ` ds; e2 : t
decs
=⇒ e′

2

P ; Γ `(boolx = e1) ds; e2 : t
decs
=⇒ letx :bool = e′

1 in e′
2

P ; Γ ` e1 : string
term
=⇒ e′

1 P ; Γ, x :string ` ds; e2 : t
decs
=⇒ e′

2

P ; Γ `(stringx = e1) ds; e2 : t
decs
=⇒ letx :string = e′

1 in e′
2

P ; Γ ` e1 : unit
term
=⇒ e′

1 P ; Γ, x :unit ` ds; e2 : t
decs
=⇒ e′

2

P ; Γ `(unitx = e1) ds; e2 : t
decs
=⇒ letx :unit = e′

1 in e′
2

P ; Γ, x : t1 ` e1 : t2
term
=⇒ e′

1

P, f : (t1, t2); Γ, f : t1 → t2 ` ds; e2 : t
decs
=⇒ e′

2

P ; Γ `(funf(x : t1): t2 = e1) ds; e2 : t
decs
=⇒

new fpre : (t1, string). new fpost : (t2, string). let f = eb in e′
2

where eb = λx : t1.π1 (fpost〈 leta =(x, M(f))in
letx = π1 fpre〈a〉 in(e′

1, π2 a) 〉)

P ; Γ ` ad
adv
=⇒ e′

1 P ; Γ ` ds; e2 : t
decs
=⇒ e′

2

P ; Γ ` ad ds; e2 : t
decs
=⇒ e′

1 >> e′
2

Figure 5: MinAML Interpretation: Declarations
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P ; Γ ` ad
adv
=⇒ e′

p : (t1, t2) ∈ P P ; Γ, x : t1, fn :string ` e : t1
term
=⇒ e′

P ; Γ ` before p(x, fn)= e
adv
=⇒ {ppre.x → let(x, fn)= x in(e′, fn)}

p : (t1, t2) ∈ P P ; Γ, x : t2, fn :string ` e : t2
term
=⇒ e′

P ; Γ ` after p(x, fn)= e
adv
=⇒ {ppost.x → let(x, fn)= x in(e′, fn)}

p : (t1, t2) ∈ P

P ; Γ, x : t1, fn :string ` e1 : t1
term
=⇒ e′

1

P ; Γ, y : t2, fn :string ` e2 : t2
term
=⇒ e′

2

P ; Γ ` around p(x, fn)= e1; proceedy → e2
adv
=⇒

{ppre.x → let(x, fn)= x in(e′
1, fn)} >>

{ppost.y → let(y, fn)= y in(e′
2, fn)}

p : (t1, t2) ∈ P P ; Γ, x : t1, fn :string ` e : t2
term
=⇒ e′

P ; Γ ` around p(x, fn)= e
adv
=⇒

{ppre.x → let(x, fn)= x in return(e′, fn)to ppost}

Figure 6: MinAML Interpretation: Aspects

for the ppre point and one for the ppost point. Finally, around advice without a
proceed statement is triggered by ppre but returns to ppost.

Importantly, this translation produces well-typed core language terms: Let
P(p : (t1, t2)) be the context ppre :(t1, string) label, ppost :(t2, string) label
and let P(P ) be the point-wise extension of the former translation.

Lemma 16 (Translation Type Preservation)
1. If P ; Γ ` e : t

term
=⇒ e′ then Γ, P(P ) ` e′ : t.

2. If P ; Γ ` ds; e : t
decs
=⇒ e′ then Γ, P(P ) ` e′ : t.

3. If P ; Γ ` ad
adv
=⇒ e′ then Γ, P(P ) ` e′ : advice.

The proof of Lemma 16 is by induction on the translation derivation. Com-
bining Lemma 16 with the type safety result for the core language yields an
important safety result for MinAML.

Theorem 17 (MinAML Safety)
Suppose that ·; · ` e : t

term
=⇒ e′. Then either e′ fails to terminate or there is a

finished configuration 〈L, A, e′′〉 such that 〈·, ·, e′〉 7−→? 〈L, A, e′′〉
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3.2 Objects

The bulk of this paper focuses on using aspects in the context of a purely func-
tional language. However, we have tried to design the core language so that
each feature is orthogonal to the others. In particular, the labeled join points
are defined independently of other constructs and hence can be reused in other
computational settings with little change. In order to justify this claim, we
have lifted Abadi and Cardelli’s first-order object calculus (AC) directly from
their textbook [AC96]. This section shows how the aspect language constructs
interoperate with it. The main point is that while we naturally need to add
objects to both the external and core languages, the semantics of join points
remains unchanged. Moreover, while additional syntax is needed in the external
language to allow programmers to refer to new join points, the underlying se-
mantics of advice also remains the same. This analysis provides some evidence
that the semantic framework can be used in a variety of different computational
contexts.

3.2.1 Object-oriented Core Language

The type system and syntax for the AC object-oriented language is taken di-
rectly from Abadi and Cardelli [AC96].

t ::= · · · | [mi:ti]
1..n

e ::= · · · | [mi = ς xi.ei]
1..n | e.m | e1.m ⇐ ς x.e2

v ::= · · · | [mi = ς xi.ei]
1..n

AC is a classless language. New objects [mi = ς xi.ei]
1..n may be defined

at any point in a computation. The superscript 1..n indicates there is a series
of n method declarations in the object. Method invocation is denoted e.m and
method update (override) is denoted e1.m ⇐ ς x.e2.

The AC typing rules are straightforward. We have modified them to permit
labels, and slightly more significantly, we have dropped the subtyping for the
sake of simplicity.

Γ, xi : [mi:ti]
1..n ` ei : ti

Γ ` [mi = ς xi.ei]
1..n : [mi:ti]

1..n

Γ ` e : [mi:ti]
1..n 1 ≤ j ≤ n

Γ ` e.mj : tj

Γ ` e1 : [mi:ti]
1..n Γ, x : [mi:ti]

1..n ` e2 : tj 1 ≤ j ≤ n

Γ ` e1.mj ⇐ ς x.e2 : [mi:ti]
1..n

Finally, to extend the operational semantics, we define further evaluation
contexts corresponding to the new expression forms and the appropriate beta
rules.
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Evaluation Contexts:

E ::= · · · | E.m | E.m ⇐ ς x.e2

Beta Rules:

〈L, A, [mi = ς xi.ei]
1..n.mj〉 7−→β

〈L, A, ej{[mi = ς xi.ei]
1..n/xj}〉

〈L, A, [mi = ς xi.ei]
1..n.mj ⇐ ς x.e〉 7−→β

〈L, A, [m1 = ς x1.e1, . . . , mj = ς x.e, . . . , mn = ς xn.en] 〉

To adapt the progress and preservation theorems stated in the previous
section, we need only fill in the inductive cases for objects; the overall proof
structure remains intact.

3.2.2 Object-oriented External Language

The external language requires a new type for objects, new declarations for
defining objects and new expression forms for method invocation and update.
In addition, we add an expression form to control monitoring of method updates.
The declaration monitor t.m specifies that any update of method m to an object
with type t may be intercepted and modified by advice. This declaration also
introduces a new join point t.m, and programmers can declare before, after and
around advice that will be triggered by that join point (i.e., triggered whenever
the associated method update occurs). Programmers can also declare advice
triggered by calls to the m method of object x via the join point x.m.

t ::= · · · | [mi:ti]
1..n

e ::= · · · | e.m | e1.m ⇐ ς x.e2

d ::= · · · | (objectx : t = [mi = ς xi.ei]
1..n) ds

| monitor t.m ds
p ::= · · · | x.m | t.m

As a simple example, consider the following code which declares an object
with two fields. One field holds an integer and the other holds a function
that adds the integer to its argument. To prevent the integer field from being
updated (effectively rendering it “const”), the program declares that the field is
monitored and installs around advice that replaces any attempted update with
the identity function.

let object x:t =

[i = ςs.3;
plus = ςs.let fun f x = s.i + x in f]

monitor t.i

around (t.i) (x,fn) = x

in ...

where t = [i : int; plus : int -> int]
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Interpreting the object-oriented source language in the core aspect calculus
poses no challenges. The monitor declaration translates to a pair of expressions
that allocate new pre- and post-labels used to mark method updates. Interpret-
ing both method update in the case that the update is monitored, and object
declarations, follows a similar strategy to compilation of function bodies. The
translation marks the control-flow points just prior to and just after the oper-
ation in question. Advice declarations in the same scope can manipulate these
program points just as they manipulate function entry and exit points.

4 Complex Pointcuts

This section investigates two further generalizations of the basic aspect frame-
work. The first generalization allows advice to be associated with a set of labels
instead of just one label, which permits advice code to be shared by many pro-
gram points. The second generalization is to allow run-time inspection of the
labels that appear in the call stack, which permits advice to make context-
sensitive decisions about how to modify the program.

4.1 Label Sets

The first generalization associates a set of labels with each piece of advice. Doing
so is useful in situations where the same advice is applied at many different
locations. For example, one might want to instrument a collection of related
functions of type t1 → t2 with the same preprocessing of the argument, yet still
allow the possibility of associating other, different advice with each function.
With sets of labels, this situation can be expressed as:

new pre1:t1.new pre2:t1.

{{pre1,pre2}.x→e1} >> // Runs at either point

{{pre1}.y→e2} >> // Runs at pre1

{{pre2}.z→e3} >> // Runs at pre2

let f = λx:t1. let x = pre1〈x〉 in ... in

let g = λx:t1. let x = pre2〈x〉 in ... in ...

The necessary change to the syntax of the language is minimal, as shown in
the grammar below:

e ::= · · · | {e1, . . . , en} | e1 ∪ e2 | e1 ∩ e2

v ::= · · · | {v1, . . . , vn}

The advice {{l1, . . . , ln}.x → e} is triggered whenever a point labeled by any
of the labels l1 through ln is reached.

To change the operational semantics of advice invocation, we simply replace
the definition of the satisfaction relation with the following:

l ∈ {l1, . . . , ln}

〈L, A, E[l〈v〉]〉 |= {l1, . . . , ln}
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Advice is still applied in the order defined by the list A, but now advice is
triggered by a label l if l is in the set. Evaluation semantics for the set operators
e1 ∪ e2 and e1 ∩ e2 are straightforward to define.

The type system is altered to use the following rules for type checking point-
cuts. The type t pc is now implemented by a set of labels of the same type.

(Γ ` ei : t label)(1≤i≤n)

Γ ` {e1, . . . , en} : t pc

Γ ` e1 : t pc Γ ` e2 : t pc

Γ ` e1 ∪ e2 : t pc

Γ ` e1 : t pc Γ ` e2 : t pc

Γ ` e1 ∩ e2 : t pc

One could imagine further refinements along these lines. In particular, since
all labels in the set must have the same type, it is impossible to construct
pointcuts that represent all labels or all labels from a particular module. Such a
facility is useful when one wants to write a single piece of advice that instruments
many control flow points with tracing or profiling information. While it is
beyond the scope of this paper, it is possible to develop this calculus with the
ability to construct polymorphic pointcuts and polymorphic advice [DWWW05].

4.1.1 MinAML Extensions and Interpretation

Extending MinAML’s pointcut language to include sets of labels requires some
minor adjustments to the syntax:

pc ::= {p1, . . . , pn}
ad ::= before pc(x, fn)= e

| after pc(x, fn)= e
| around pc(x, fn)= e
| around pc(x, fn)= e1; proceedy → e2

The interpretation also requires some adjustments. One problem is that
around advice can be called from multiple different labeled points, so it is im-
possible to determine statically which label it should return to. To circumvent
this difficulty, the translation uses first-class labels: the around advice is passed
the “continuation” label to which it should return.

The new translation of function and advice declarations appears in Figure 7.
Given a set s of source-level program points {p1, . . . , pn}, we use the meta-level
function pre(s) to generate the corresponding set of labels {p1pre , . . . , pnpre

}. The
function post(s) is similar.

4.2 Context analysis

While labeled program expressions suffice to capture some of the “interesting”
program points, whether a point is “interesting” often depends on context. For
example, a typical use of aspects for logging is to print the arguments of a
function f when it is called from inside the body of a second function, g. The
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P ; Γ ` ds; e : t
decs
=⇒ e′

P ; Γ, x : t1 ` e1 : t2
term
=⇒ e′

1

P, f : (t1, t2); Γ, f : t1 → t2 ` ds; e2 : t
decs
=⇒ e′

2

P ; Γ `(funf(x : t1): t2 = e1) ds; e2 : t
decs
=⇒

new fpre : (t1, string, t2 label).
new fpost : (t2, string). letf = eb in e′

2

where eb = λx : t1.π1 (fpost〈 leta =(x, M(f), fpost)in
letx = π1 fpre〈a〉 in(e′

1, π2 a) 〉)

P ; Γ ` ad
adv
=⇒ e′

(p : (t1, t2) ∈ P )p∈s P ; Γ, x : t1, fn :string ` e : t1
term
=⇒ e′

P ; Γ ` before s(x, fn)= e
adv
=⇒ {pre(s).x → let(x, fn , l)= x in(e′, fn , l)}

(p : (t1, t2) ∈ P )p∈s P ; Γ, x : t2, fn :string ` e : t2
term
=⇒ e′

P ; Γ ` after s(x, fn)= e
adv
=⇒ {post(s).x → let(x, fn)= x in(e′, fn)}

(p : (t1, t2) ∈ P )p∈s

P ; Γ, x : t1, fn :string ` e1 : t1
term
=⇒ e′

1

P ; Γ, y : t2, fn :string ` e2 : t2
term
=⇒ e′

2

P ; Γ ` around s(x, fn)= e1; proceedy → e2
adv
=⇒

{pre(s).x → let(x, fn , l)= x in(e′
1, fn , l)} >>

{post(s).y → let(y, fn)= y in(e′
2, fn)}

(p : (t1, t2) ∈ P )p∈s P ; Γ, x : t1, fn :string ` e : t2
term
=⇒ e′

P ; Γ ` around s(x, fn)= e
adv
=⇒

{pre(s).x → let(x, fn , l)= x in return(e′, fn)to l}

Figure 7: MinAML Interpretation: Label Sets
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logging advice is not invoked when f is called from some third function h. To
enable this application, AOPLs provide mechanisms that allow the programmer
to specify in what dynamic contexts advice should be triggered.

One could tie this contextual information to the advice construct itself, but it
is simpler to provide an orthogonal mechanism for querying the run-time state of
the program. This section presents stack analysis as a mechanism that achieves
the desired expressiveness without altering the basic functionality of advice. We
developed this mechanism with the help of Dan Dantas, who uses something
similar in his system of harmless advice [DW04]. It is also possible to develop
a polymorphic version, as Dantas, Walker, Washburn and Weirich [DWWW05]
have demonstrated.

During the course of evaluation, labeled program points naturally form a
stack, which is a useful model of the computation being carried out by the
program. The return expression already makes use of this fact to determine to
where to jump to. Stack analysis allows programmers to write queries over the
label stack.

Aspect-oriented languages also permit queries on the data stored in the run-
time stack. To handle this feature, we extend the core language with a means
of storing values on the stack by adding a new expression store x : t = e1 in e2.
The semantics of the store expression resembles the semantics of let, in that
e1 is evaluated first and bound to x before e2 is evaluated. The difference is
that we retain value v1 that results from evaluation of e1 “on the stack” as we
execute e2. We formalize this behavior by introducing a second syntactic form
stored v1 : t in e that remembers v1 as we execute e.

e ::= . . . | store x : t = e1 in e2 | stored v : t in e
E ::= . . . | store x : t = E in e | stored v : t in E

Notice that the context stored v : t in E allows evaluation under the binding,
though before introducing the stored command, x is substituted away. The
following two β-rules make these ideas precise.

〈L, A, store x : t = v in e〉 7−→β 〈L, A, stored v : t in e[v/x]〉
〈L, A, stored v : t in v′〉 7−→β 〈L, A, v′〉

Allowing evaluation to proceed under the stored expression means that the
stack embodied by the evaluation contexts now includes stored data. Thus, we
can extend stacks to include values (val : t = v) in addition to the labels, and
extend the S(−) function to extract the data too:

s ::= · | s1 :: s2 | l | val : t = v
S(store x : t = E in e) = S(E)
S(stored v : t in E) = S(E) :: (val : t = v)

The current run-time stack is reified as a first-class data structure via the
stack() expression. Another expression, stkcase e1 (pat → e2 | → e3),
allows programs to pattern match against a stack: after e1 evaluates to stack s,
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evaluation proceeds either with e2 (if s matches pat) or e3 (otherwise).

v ::= . . . | s
τ ::= . . . | stack

e ::= . . . | stack() | stkcase e1(pat → e2 | → e3)

E ::= . . . | stkcase E (pat → e2 | → e3)

Stack patterns describe the stack of labels and stored values present in the
dynamic evaluation context. There are seven forms of stack patterns, inductively
defined according to the following grammar.

pat ::= · | x :stack | wild :: pat | val : t = v :: pat |
val : t = x :: pat | l :: pat | x : t label :: pat

Most of these patterns are self-explanatory. The · pattern matches exactly the
empty stack ·, while x : stack matches every stack and binds the matched
stack to the variable x in the stkcase expression. Using wild in a pattern
allows any single element on the stack to be matched. Data and label values
can be explicitly provided in stack patterns, such as in the pattern l :: pat.
Alternatively, patterns may supply variables to which data values and labels in
the stack are dynamically bound. For example, the pattern x : t label :: pat
matches stacks of the form l :: s when l is a t label and pat matches s. After
the pattern match, evaluation proceeds with l bound to x.

The operational semantics for expressions related to stack analysis is pre-
sented in Figure 8. The rules rely on an auxiliary relation s `L pat ∼ Σ to judge
whether stack s matches pattern pat in label context L, and if so, the variable
substitutions Σ to be applied in the stkcase expression. The static semantics
for stack-analysis expressions, given in Figure 9, similarly relies on an auxiliary
relation pat ` Γ to generate from stack pattern pat the variable context Γ in
which the inner stkcase expression should be typed.

Now consider instrumenting a function f with pre- and post-labels as one
might do in a translation from a higher-level language such as MinAML. Using
store rather than an ordinary let to bind f ’s argument gives the following:

λx : t.π1 (fpost〈leta =(x, M(f))in store x = π1 fpre〈a〉 in(e, π2 a)〉)

This new translation allows a stack pattern to extract the argument passed to
f . For example, one can write a piece of before advice that takes action only
when g is called directly from f and f ’s argument is true.

{gpre.(x, fn) → stkcase stack()

(gpre :: gpost :: val :bool =true:: fpost :: s :stack → e //take action

| → (x, fn))} //just continue

The stack matches the pattern gpre :: gpost :: val :bool =true:: fpost :: s :stack
only when control is inside the precondition advice of g but before leaving the
scope of f . (The tail of the stack, matched by s :stack, can be anything.) There
is some subtlety here, though: Unless all functions have been instrumented
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C 7−→C’

〈L, A, E[stack()]〉 7−→ 〈L, A, E[S(E)]〉

C 7−→βC’

〈L, A, store x : t = v in e〉 7−→β 〈L, A, stored v : t in e[v/x]〉

〈L, A, stored v : t in v′〉 7−→β 〈L, A, v′〉

s `L pat ∼ Σ

〈L, A, stkcase s(pat → e2 | → e3)〉 7−→β 〈L, A, e2[Σ]〉

s 6`L pat ∼ Σ

〈L, A, stkcase s(pat → e2 | → e3)〉 7−→β 〈L, A, e3〉

s `L pat ∼ Σ

· `L · ∼ · s `L x :stack ∼ s/x

s `L pat ∼ Σ

val : t = v :: s `L wild :: pat ∼ Σ

s `L pat ∼ Σ

l :: s `L wild :: pat ∼ Σ

s `L pat ∼ Σ

val : t = v :: s `L val : t = v :: pat ∼ Σ

s `L pat ∼ Σ

val : t = v :: s `L val : t = x :: pat ∼ v/x, Σ

s `L pat ∼ Σ

l :: s `L l :: pat ∼ Σ

l : t ∈ L s `L pat ∼ Σ

l :: s `L x : t label :: pat ∼ l/x, Σ

Figure 8: Stack Expressions: Operational Semantics
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Γ ` e : t

Γ ` stack() : stack Γ ` · : stack

l ∈ L

Γ `L l : stack

Γ ` s1 : stack Γ ` s2 : stack

Γ ` s1 :: s2 : stack
Γ ` v : t

Γ ` val : t = v : stack

Γ ` e1 : t Γ, x : t ` e2 : t′

Γ ` store x : t = e1 in e2 : t′
Γ ` v : t Γ ` e : t′

Γ ` stored v : t in ′e : t′

Γ ` e1 : stack pat ` Γ′ Γ, Γ′ ` e2 : t Γ ` e3 : t

Γ ` stkcase e1 (pat → e2 | → e3) : t

pat ` Γ

· ` · x :stack ` x :stack

pat ` Γ

wild :: pat ` Γ

pat ` Γ

val : t = v :: pat ` Γ

pat ` Γ

l :: pat ` Γ

pat ` Γ

val : t = x :: pat ` x : t, Γ

pat ` Γ

x : t label :: pat ` x : t label, Γ

Figure 9: Stack Expressions: Static Semantics
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with pre- and post-labels, there might be calls to arbitrarily many unlabeled
functions between the fpost and gpre. It is possible to specify the condition
that f indirectly calls g (via some other function or collection of functions) by
recursively traversing the run-time stack from gpost until fpost is found. This
sort of analysis can be useful for security purposes and is illustrated next.

Suppose function f is instead instrumented in the following manner:

λx : t.π1 (fpost〈store fn = M(f) in leta =(x, fn)in
letx = π1 fpre〈a〉 in(e, π2 a)〉)

Assuming that all function declarations are translated in this way and that
the core calculus has been extended with sequential expressions and recursive
functions, aspects can enforce stack-inspection-like policies.

{fpre.(x, fn) →
let rec inspect s = stkcase s

(val :string = fn ′ :: s′ :stack →
if enables fn ′ fn then () else inspect s′

| wild :: s′ :stack → inspect s′ // ignore labels and other values
| → abort()) // reached stack bottom with no enabler found
in inspect stack(); (x, fn)}

This aspect traverses the run-time stack of function names and checks whether
the current context has enabled the function f before allowing f to execute. It
relies on an auxiliary function enables:string→string→bool, which deter-
mines whether the first argument (a function name) provides the capability for
the second argument (another function name) to execute. The stack-inspection
code can analyze all function names in the run-time stack because these names
have the same string type. To additionally analyze all functions’ run-time
arguments, the core aspect calculus could be extended with polymorphic types
and type analysis, as recent research has done [DWWW05].

One of the beauties of the principle of orthogonality is that proofs of many
metatheorems extend easily when new features are added. This is the case with
the core language’s soundness when contextual analysis is added.

Lemma 18 (Inversion of Stack Typing)
The stack typing rules are invertible.

Lemma 19 (Canonical Forms, Stacks)
If Γ `L v : t then t = stack implies v is a stack s.

Before proving progress, we must add a new, third case to the Decomposi-
tion I Lemma for stack() expressions.

Lemma 20 (Decomposition I, Extended)
If · ` e : t then either

1. e is a value v,
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2. e can be decomposed into E[r] where r is a redex that can be reduced

immediately by one of the 7−→β reductions or r has the form return v to l,

3. e has the form E[stack()].

Theorem 21 (Progress)
If ` C ok then either the configuration is finished, or there exists another

configuration C ′ such that C 7−→ C ′.

Proof The proof is nearly the same as for the core calculus without contextual
analysis (Theorem 11). The only difference is that Decomposition I reveals an-
other alternative expression of the form E[stack()]. In this case, we continue
to have progress since 〈L, A, E[stack()]〉 7−→ 〈L, A, E[S(E)]〉 and S(·) is a total
function on contexts. �

Lemma 22 (Stack Lemma)
If · ` E : t ⇒ t′ then · ` S(E) : stack.

Proof By definition of the judgment · ` E : t ⇒ t′, we know x : t ` E[x] : t′

with x 6∈ FV (E). By induction on the structure of E, we can conclude that
· ` S(E) : stack. �

Definition 23 (Well-typed Substitutions)
A sequence of variable substitutions Σ has type Γ, written `L Σ : Γ, if and only

if for all x ∈ dom(Γ) there exists a v such that both v/x ∈ Σ and · `L v : Γ(x).

Lemma 24 (Pattern Lemma)
If pat ` Γ and · ` s : stack and s `L pat ∼ Σ then `L Σ : Γ.

Proof By induction on the structure of patterns, using the inversion of typing
lemma. �

Lemma 25 (Multiple Substitutions Lemma)
If `L Σ : Γ and Γ ` e : t then · ` e[Σ] : t

Proof By induction on the length of the substitution sequence Σ using the
standard substitution lemma. �

Theorem 26 (β-Preservation, Extended)
If ` 〈L, A, e〉 ok and 〈L, A, e〉 7−→β 〈L′, A′, e′〉 then L′ extends L and there is a

derivation of ` 〈L′, A′, e′〉 ok.

Proof Our new preservation lemma extends the previous lemma. The only
challenging case concerns execution of the stkcase operation when the first
branch is taken. Here, the operational rule is:
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(1) s `L pat ∼ Σ

〈L, A, stkcase s(pat → e2 | → e3)〉 7−→β 〈L, A, e2[Σ]〉

Since ` 〈L, A, stkcase s(pat → e2 | → e3)〉 ok, we have

(2) for all a ∈ A, · `L a : advice, and

(3) · `L stkcase s(pat → e2 | → e3) : t for some t.

From (3), and by inversion of the typing rules, we can conclude that

(4) · ` s : stack, and

(5) pat ` Γ′, and

(6) Γ′ ` e2 : t.

From (1), (4) and (5), and by the Pattern Lemma, we can conclude that

(7) `L Σ : Γ′

From (6) and (7), and by the Multiple Substitutions Lemma, we can conclude
that

(8) · ` e2[Σ] : t

(2), (3) and (8) are all we need to conclude that the configuration 〈L, A, e2[Σ]〉
is well typed.

�

Now that we have an extended β-Preservation lemma, we may show full Preser-
vation.

Theorem 27 (Preservation, Extended)
If ` 〈L, A, e〉 ok and 〈L, A, e〉 7−→ 〈L′, A′, e′〉 then L′ extends L and there is a

derivation of ` 〈L′, A′, e′〉 ok.

Proof We must extend the previous proof of preservation slightly as there is an
additional top-level operational rule:

〈L, A, E[stack()]〉 7−→ 〈L, A, E[S(E)]〉

In this case we must prove ` 〈L, A, E[S(E)]〉 ok, which follows easily from the
Stack Lemma. �
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4.2.1 MinAML Extensions and Interpretation

One way of providing richer context-sensitive pointcut designators in MinAML
is to add the stack()and stkcase expressions directly to MinAML (with just a
little syntactic sugar so programmers do not have to deal with low-level details
such as the appearance of both pre and post labels in the stack). With these
modifications, source language programmers can have access to a very powerful
reflection mechanism.

On the other hand, one could also add a select few stack predicates to the
source, as is in AspectJ, for instance. To see how to accomplish this latter
design, we sketch how MinAML can be extended with some convenient syntax
for expressing common context-sensitive pointcut designators.

pcd ::= > | pcd1 & pcd2 | within(f) | cflow(f)
ad ::= before p(x) when pcd = e

| after p(x) when pcd = e
| around p(x) when pcd = e
| around p(x) when pcd = e1; proceedy → e2

MinAML’s new when advice contains pointcut designators that must be sat-
isfied for the advice to be run. The > designator is always satisfied; pcd1 & pcd2

is satisfied if and only if both pcd1 and pcd2 are satisfied; within(f) is satisfied
if and only if the current join point appears immediately within the context of
function f ; and cflow(f) is satisfied if and only if the current context includes
the function f . For example, the aspect

before h(x) when within(g) & cflow(f)= e

only gets executed when f , perhaps by calling other functions, calls g, and g
directly calls h. The stack of function calls must look like h :: g :: anything ::
f :: anything , with h at the top.

MinAML with when advice can be translated into the core calculus in a
relatively straightforward manner. First, we define a function T (p, pcd) that
translates a context-sensitive pointcut designator pcd for program point p (a
function name) into a function from stacks to Booleans. Figure 10 reveals the
details. Now, the when advice may be translated into the core much like other
advice except it calls T (p, pcd) to determine whether it should execute its body
or do nothing. For example, the following rule shows how to translate before
advice.

p : (t1, t2) ∈ P P ; Γ, x : t1, fn :string ` e : t1
term
=⇒ e′

P ; Γ ` before p(x, fn) when pcd = e
adv
=⇒

{ppre.x → let(x, fn)= x in

if (T (p, pcd) stack()) then(e′, fn)else(x, fn)
}

The translations for the other types of advice are similar.
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T (f,>) = λs:stack. true

T (f,p&q) = λs:stack. if (T (f,p) s) then (T (f,q) s) else false

T (f,within(g)) =

λs:stack. stkcase s (

fpre :: fpost :: gpost ::s’:stack → true // begin f within g
| fpost :: gpost ::s’:stack → true // finish f within g
| → false)

T (f,cflow(g)) =

λs:stack.
let rec walk s’ = stkcase s’ (

gpost ::s’’:stack → true // inside g
| wild::s’’:stack → walk s’’

| → false)

in walk s

Figure 10: Context-sensitive Pointcut Designator Translation

5 Related work

There are a number of aspect-oriented language design and implementation
efforts that have already made a significant impact on industry, including As-
pectJ [KHH+01], Hyper/J [OT00], JBoss AOP [JBo05], Spring AOP [JHA+05],
and dynaop [Lee05]. The apparent importance of this new programming paradigm
has caused many researchers to begin to look at the semantics of aspects. The
two main elements of our work that set it apart from most other efforts to give
semantics to aspect-oriented languages are the fact that (1) our core calculus is
typed and we believe that we were the first to develop and prove the safety of a
minimal calculus of aspects and (2) that we define the semantics of an oblivious
source language through a type-preserving translation into our core calculus.

Most closely related to this paper is Tucker and Krishnamurthi’s work on
encoding aspects in Scheme [TK03]. Their approach uses continuation marks,
a construct introduced by Clements et al. to aid in the implementation of pro-
gram debugging tools [CFF01]. Continuation marks are very similar to labeled
program points except that (dynamically) they do not nest—the outer con-
tinuation mark overrides the inner. In the notation of this paper, the behav-
ior of continuation marks could be modeled by adding an additional β rule:
l1〈l2〈v〉〉 7−→β l1〈v〉. This difference leads to a slightly more complex encoding
of aspects. A more significant difference between this work and Tucker and
Krishnamurthi’s is that this paper develops a typed theory of aspects as op-
posed to an untyped theory of aspects. Related work by Masuhara, Kiczales
and Dutchyn [MKD02] specifies the semantics of an aspect-oriented language in
Scheme and applies partial evaluation to compile and optimize it.
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Several other authors have developed small, untyped formal calculi for rea-
soning about aspects. For instance, Wand, Kiczales and Dutchyn [WKD02] have
developed a denotational semantics for pointcuts and advice in a small aspect
calculus. Jagadeesen, Jeffrey and Riely [JJR03b] develop an object-oriented,
aspect-oriented language and give a specification and correctness proof for weav-
ing. Each of these formal studies have their strengths: Wand et al. use their
semantics, which is denotational (whereas the other groups are operational), to
analyze some of the corner cases in the behavior of AspectJ. Jagadeesen et al.’s
work sheds greater light on implementation efforts as they investigate weav-
ing. In each case, advice and join points are directly linked to the semantics of
method calls rather than being developed as an orthogonal programming con-
structs with their own independent semantics and neither of these works are
typed.

Clifton, Leavens and Wand [CLW03] develop an untyped aspect calculus
inspired by Abadi and Cardelli’s object calculus. Clifton et al. focus on a direct
study of aspects. As we discussed in the introduction, our indirect approach,
in which we compile from a source language to a target language and then give
semantics to the target, may make it difficult to reason about certain source-
level properties; Clifton avoids this potential problem. However, we also argued
that our indirect approach can help modularize and simplify the semantics of
an aspect language. The complexity of the direct approach is perhaps partially
revealed in the fact that Clifton’s calculus has eight different syntactic classes
for terms, and, in our opinion, the operational semantics they give is quite a bit
more complex than ours.

More recently, Bruns et al. [BJJR04] have developed a minimal untyped
calculus called µABC in which all computation is achieved through a primitive
aspect mechanism. They show how to compile our MinAML into their calculus
and then demonstrate how to compile µABC into the π-calculus. This research
makes an interesting connection between aspect-oriented languages and con-
currency theory. There are some loose connections between the semantics of
our core calculus and µABC as µABC is based on manipulation of abstract
“names,” which are somewhat similar to our labels, and µABC has its own or-
thogonal mechanism for advice. However, µABC is untyped and it is unclear
what sort of type theory would be needed to establish that Bruns’ translations
are type-preserving.

Alternative typed theories of aspect oriented programming languages include
work by Aldrich [Ald04a, Ald04b], Jagadeesen, Jeffrey and Riely [JJR03a], and
Clifton and Leavens [CL05]. Aldrich focuses on the interaction between aspects
and modules. He develops an elegant direct semantics for aspects in the context
of a calculus with simple structures and functors, and he uses logical relations
to prove an interesting implementation independence property of his calculus.
As in other direct-style semantics, the semantics of advice invocation is tied
directly to the semantics of functions. In addition, the join point designators
are somewhat impoverished in his language — he has no mechanism for imple-
menting context-sensitive advice. Jagadeesen et al.’s work extends their earlier
untyped aspect calculus with a type system. They demonstrate that typing is
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preserved by execution and also that weaving preserves typing. Their type sys-
tem has been developed for a class-based object-oriented language and it deals
with inner classes and concurrency. We have investigated none of these features
in our setting so there is not much overlap in the details of the two formalisms.
Clifton and Leavens focus on giving a complete semantics for around advice and
proceed as it appears in AspectJ. This requires substantial machinery as they
must deal with tricky issues such as advice that changes the target object of
a method call. In our opinion, their semantics is much more complicated than
ours, which would make it more difficult to extend the type system with ad-
vanced features such as polymorphism and effects for non-interference. On the
other hand, they benefit from their efforts by obtaining a complete and accurate
semantics for proceed in AspectJ.

Another typed semantics for aspects is given by Douence, Motelet and Sud-
holt [DMS01]. They provide a definition of pointcuts by encoding them in
Haskell and they also give an implementation in Java. However, the specifi-
cation of advice is not integrated into their language. Instead, programs have
two parts, an event (program point) producer and a monitor that consumes and
reacts to these program points.

Lieberherr, Lorenz and Ovlinger’s Aspectual Collaborations [LLO03, Ovl03]
study the problem of how to combine aspects with modules. Their proposal
allows module programmers to choose the join points (i.e., control-flow points)
that they will expose to external advice. External advice cannot intercept
control-flow points that have not been exposed. Aspectual Collaborations enjoy
a number of important properties including strong encapsulation, type safety
and the possibility of separately compiling and checking module definitions.
Ovlinger’s thesis [Ovl03] includes a typed calculus that integrates Aspectual
Collaborations with Featherweight Java, and he proves type soundness. The
formalism in this work is specialized to the system of aspectual collaborations,
whereas we develop a simpler, more generic platform for the study of aspects.

Bauer, Ligatti and Walker [BLW02] describe a language for constructing
first-class and higher-order aspects. They also provide a system of logical com-
binators for composing advice and type and effect system to ensure that advice
does not interfere with other advice. Unfortunately, the presence of aspect
combinators makes the operational semantics for the language very complex.
In similar work, Douence, Fradet and Südholt [DFS02, DFS04] analyze aspects
defined by recursion together with parallel and sequencing combinators. They
develop a number of formal laws for reasoning about their combinators and an
algorithm that is able to detect when advice is independent of each other. It
would be intriguing to know what kinds of formal laws we could prove about
combinators in our aspect calculus.

More recently, Bauer et al. [BLW05] have developed a simpler semantics for
their system of combinators (devoid of types and effects for noninterference),
and implemented the system as an extension to Java. However, the semantics
is specialized to meet the goals of explaining their system of combinators and
consequently does not make an appropriate platform for experimenting with
aspect-oriented design in general.
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Finally, as we mentioned in the introduction, we have used the semantic
framework developed in this paper to study the interactions between advice and
other programming language features. In one study [DWWW05], we extended
our surface language and core calculus with polymorphic pointcuts, polymor-
phic advice, polymorphic functions and type analysis, which are all extremely
useful in many applications of aspects. In a second study [DW04], we built a
type and effect system that guaranteed that aspects would not interfere with the
functional behavior of the mainline program. This new type system provides
programmers with the guarantee that the mainline program is not only syntac-
tically oblivious to advice but also semantically oblivious to advice. Overall, the
calculus presented in this paper provided a simple and convenient platform for
studying these complex type systems.

6 Conclusions

This paper has shown that many of the features of typed aspect-oriented lan-
guages can be modeled by a few relatively simple constructs in a core calculus.
The key features are: labeled control flow points, support for manipulating
data and control at those points, and a mechanism for inspecting the run-time
stack. This approach leads to a (largely) language independent, semantically
clean way of studying aspects. We have developed the theory of this core aspect
calculus and demonstrated its applicability by type-directed translations from
MinAML, a fragment of the simply-typed lambda calculus with aspects, and
an aspect-oriented variant of the Abadi-Cardelli object calculus. We claim that
this approach is relatively simple, facilitates the development of advanced type
systems for aspect-oriented languages, and helps modularize proofs of important
language properties such as type safety.
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resolution of aspect interactions. Rapport de recherche 4435, Inria,
Avril 2002.
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