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Abstract

Estimating the Worst-case Execution Time (WCET) of real-time embedded software
is an important problem. WCET is defined as the upper bound b on the execution
time of a program P on a processor X such that for any input the execution time
of P on X is guaranteed to not exceed b. Such WCET estimates are crucial for
schedulability analysis of real-time systems. In this paper, we present Chronos, a
static analysis tool for generating WCET estimates of C programs. It performs de-
tailed micro-architectural modeling to capture the timing effects of the underlying
processor platform. Consequently, we can provide safe but tight WCET estimate of
a given C program running on a complex modern processor. Chronos is an open-
source distribution specifically suited to the needs of the research community. We
support processor models captured by the popular SimpleScalar architectural sim-
ulator rather than targeting specific commercial processors. This makes Chronos
flexible, extensible and easily accessible to the researcher.
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1 Introduction

Estimating the Worst Case Execution Time (WCET) of a program is an im-
portant problem [20,22,14,26]. WCET analysis computes an upper bound on
the program’s execution time on a particular processor for all possible inputs.
The immediate motivation of this problem lies in the design of real-time em-
bedded systems. Typically an embedded system contains processor(s) running
specific application programs and communicating with an external environ-
ment in a timely fashion. Many embedded systems are safety critical, e.g.,
automobile, avionics and healthcare monitoring applications. The designers of
such systems must ensure that all the real-time constraints are satisfied. Real-
time constraints impose hard deadlines on the execution time of embedded
software. WCET analysis of the program can guarantee that these deadlines
are met. A survey of WCET analysis techniques appears in [17].

Due to its inherent importance in embedded system design, timing analysis of
embedded software has been studied extensively. Accurate timing analysis crit-
ically depends on modeling the effects of the underlying micro-architecture. Ig-
noring the micro-architecture can produce extremely pessimistic time bounds.
This is particularly so because modern processors employ advanced micro-
architectural features such as pipeline, caches, and branch prediction to speed
up program execution. Therefore, to obtain safe but tight WCET estimate of
a program, we need to model the timing effects of these architectural features
and their complex interactions.

In this paper, we present a WCET analysis tool named Chronos 1 . Chronos
estimates WCET through static program analysis. It incorporates timing mod-
els of different micro-architectural features present in modern processors. In
particular, it models superscalar in-order and out-of-order pipelines, instruc-
tion caches, dynamic branch prediction and their interactions. The modeling
of different architectural features is parameterizable. For example, the user
can set the line size, number of lines, and the associativity of the instruction
cache. The user can also choose among various dynamic branch prediction
schemes (including popular schemes such as GAg, gshare, etc.) and set the
sizes of the associated hardware structures such as branch history register,
branch prediction table etc. Similarly, pipeline parameters such as the issue
width, number/type of functional units, sizes of different pipeline buffers etc.
can be set by the user.

The input to Chronos is a C program. The front end performs limited data
flow analysis at C source code level to determine loop bounds, failing which
it requests the user to provide this information. However, the core of the

1 The name is taken from ancient Greek mythology where Chronos was the per-
sonification of time.
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analyzer operates on the binary executable of the program. This is because
micro-architectural modeling requires details that are only available at the
binary executable level 2 . The analyzer disassembles the binary executable to
construct the assembly level control flow graph of the program. It then finds
the timing estimate of each basic block through detailed micro-architectural
modeling. The timing estimates of the individual basic blocks are combined
together to estimate the WCET of the program. For this step, we provide a
mapping of the loop bounds and other program path related information from
the source code to the binary executable level.

What are the distinguishing features of Chronos w.r.t. other WCET analysis
tools and prototypes? We note that Chronos captures the timing effects of
complex micro-architectural features such as out-of-order pipelines and dy-
namic branch prediction. One pragmatic issue is whether one needs to model
the timing effects of such complex micro-architectural features for obtain-
ing reasonable WCET estimates. We observe that current high-performance
processors employ out-of-order execution engines to mask latencies due to
pipeline stalls; these stalls may happen due to data dependency, resource con-
tentions, cache misses, branch mispredictions, etc. In the embedded domain,
many recent processors employ out-of-order pipelines and other complex fea-
tures; examples include Motorola MPC 7410, PowerPC 755, PowerPC 440GP,
AMD-K6 E and NEC VR5500 MIPS.

Apart from the functionality provided in terms of advanced micro-architectural
modeling, Chronos provides several advantages in terms of its usage in re-
search/development. First, Chronos is a completely open source distribution
especially suited to the needs of the research community. It can be downloaded
from

http://www.comp.nus.edu.sg/~rpembed/chronos

This allows the researcher to modify and extend the tool for his/her individual
needs. Current state-of-the-art WCET analyzers, such as aiT [1], are commer-
cial tools that do not provide the source code. Even most of the research
prototypes, such as Cinderella [13], do not make the source code available.
The only notable exception in this aspect is HEPTANE [19], which is open
source. However, HEPTANE does not support complex architectural features
such as out-of-order pipeline and global branch prediction.

Secondly and more importantly, unlike other WCET analyzers, Chronos is not
targeted towards one or more commercial embedded processors. Instead, it is
built on top of the freely available SimpleScalar simulator infrastructure. Sim-
pleScalar is a widely popular cycle-accurate architectural simulator that allows

2 For example, instruction cache and branch prediction analysis require exact mem-
ory addresses of the instructions.
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the user to model a variety of processor platforms in software [3]. We target
our analyzer to processor models supported by SimpleScalar. This choice of
platform ensures that the user does not need to purchase a particular embed-
ded platform and its associated compiler, debugger and other tools (which are
often fairly expensive) in order to conduct research in WCET analysis us-
ing Chronos. Also, the flexibility of SimpleScalar enables development and
verification of modeling a variety of micro-architectural features for WCET
analysis.

The rest of the paper is organized as follows. The next section gives a high-
level view of the WCET analysis technique used in Chronos, as well as the
challenges it addresses. Section 3 describes the workflow of Chronos in more
details. Based on the technical discussions in Sections 2 and 3, Section 4
walks through a sample usage of the tool by showing some user-interactions,
screenshots and intermediate analysis results. Section 5 narrates some results
obtained using Chronos, in the context of the recently organized “WCET
Tool Challenge 2006” for comparing and evaluating existing WCET analysis
tools. Section 6 compares Chronos to existing WCET analysis tools. Finally,
Section 7 provides conclusions and some discussions on Chronos.

2 WCET Analysis Technique

The execution time of a program is determined by the program path taken
during execution, as well as the timing of instructions along that path. Con-
sequently, Worst-Case Execution Time (WCET) analysis should take care of
these two issues. For instruction timing, Chronos performs microarchitecture
modeling to capture the timing effects of performance enhancing microarchi-
tectural features. This work is done at the level of basic blocks, that is, it
returns the upper bound on execution time of each basic block in the pro-
gram’s control flow graph.

With the knowledge of execution times of basic blocks, Chronos represents the
execution time of the whole program using an Integer Linear Programming
(ILP) formulation, and uses an ILP (or simply a Linear Programming) solver
to find the WCET estimate. Formally, let B be the set of basic blocks of a
program. The program’s WCET is given by the following objective function

maximize
∑
B∈B

NB ∗ cB

where NB is an ILP variable denoting the execution count of basic block B
and cB is a constant denoting the WCET estimate of basic block B. The linear

4



constraints on NB are developed from the flow equations based on the control
flow graph. Thus for basic block B,∑

B′→B

EB′→B = NB =
∑

B→B′′
EB→B′′

where EB′→B (EB→B′′) is an ILP variable denoting the number of times control
flows through the control flow graph edge B′ → B (B → B′′). Additional linear
constraints are also provided to capture loop-bounds and any infeasible path
information known to the user.

The main functionalities provided by Chronos are in the domain of complex
micro-architectural modeling, such as modeling of out-of-order (as well as in-
order) pipelines, instruction cache and branch prediction. All of this is done
to get tight estimates for the constants cB — the maximum execution time of
the individual basic blocks. The main obstacle to achieve this modeling lies
in the timing anomaly problem [16]. Let us consider an instruction I with
two possible latencies lmin and lmax such that lmax > lmin. The variation of
latency could be due to different reasons: cache hit/miss for a load instruction,
variable number of cycles taken by an arithmetic instruction like multiplica-
tion etc. Let us assume that the execution time of a sequence of instructions
containing I is gmax (gmin) if I incurs a latency of lmax (lmin). The latencies of
the other instructions in the sequence are fixed. A timing anomaly happens
if either (gmax − gmin) < 0 or (gmax − gmin) > (lmax − lmin). In the presence
of timing anomaly, techniques which generally take the local worst case for
WCET estimation no longer guarantee safe bounds. Even in the absence of
caches and branch prediction, we cannot avoid timing anomaly if the pipeline
executes instructions out-of-order. As a result, we cannot estimate the WCET
of even a sequence of instructions by assuming the maximum latency of each
of the instructions. Instead, all possible instruction schedules need to be con-
sidered. For a piece of code with N instructions and each of which has K
possible latencies, a naive approach, which examines each possible schedule
individually, will have to consider KN schedules. The recent work [12] shows
a simple example of a code fragment with variable latency instructions where
timing anomaly is exhibited. Similarly, it is not safe to assume that the worst
case timing behavior of a sequence of instructions results from cache misses
for all the instructions.

How does Chronos bypass the timing anomaly problem to efficiently estimate
WCET of each basic block in the presence of complex micro-architectural
features? The basic idea of finding the WCET estimate of a basic block B
without enumerating instruction schedules is as follows. We observe that the
worst-case timing behavior of B occurs from maximum resource contention
among instructions in B, that is, each instruction being delayed by maximum
number of other instructions. We produce very coarse estimates for the time
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intervals at which instructions in B can start/finish execution by initially
assuming that any instruction in B can delay the other instructions, except
for contentions ruled out by data dependencies. The estimates allow us to
rule out certain contentions — if the earliest time at which instruction I is
ready for execution occurs after the latest time at which J finishes, clearly I
cannot delay J . This allows us to further refine the estimates, thereby ruling
out more contentions. The process continues until a fixed point is reached.
The WCET of the basic block B is the maximum time between the fetch of
B’s first instruction and commit of B’s last instruction.

The above is only a brief sketch of our pipeline modeling. More details of
our out-of-order pipeline modeling can be obtained from [12]. Needless to say,
Chronos can model the timing effects of simple in-order pipelines as well. The
modeling of cache and branch prediction appears in [11,18]. The integration
of cache/branch prediction modeling with pipeline modeling appears in [12].
By varying and configuring the different micro-architectural features, we can
model the timing effects of different processors. This gives us the flexibility to
estimate the execution time of a given program on different processors without
actually having access to the processors.

In summary, given a C program and a processor configuration, Chronos re-
turns an estimated Worst-Case Execution Time (WCET) for the program.
The estimated WCET is guaranteed to be not less than the program’s actual
execution time for any input. How do we know whether the estimated WCET
is a tight estimate, that is, the estimated WCET does not substantially exceed
the actual WCET of the program? Finding the actual WCET is difficult even
for programs with few paths in the presence of complex micro-architectural
features. For example, even for a program with a single path, finding the ac-
tual WCET in the presence of out-of-order pipelines can be difficult since the
program path can have variable latency instructions and the exact worst case
can only be determined by exhaustively considering all instruction schedules.
For this reason, we measure the accuracy of the estimation with the help of
architectural simulation. In other words, we simulate the given program using
several data inputs that are likely to lead to longer execution times. We call
the result obtained through simulation Observed WCET, which is guaranteed
to be less than the actual WCET. The Estimated WCET, on the other hand,
is guaranteed to be more than the actual WCET. Thus

Estimated WCET ≥ Actual WCET ≥ Observed WCET

Ideally, we would like to compare the Estimated WCET with the actual WCET
to find the accuracy of our analysis. Since we do not know the actual WCET,
we conservatively compare the Estimated WCET with the Observed WCET
to assess the accuracy of the WCET estimation. If the Estimated WCET is
close to the Observed WCET, clearly this means that the Estimated WCET is
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close (possibly even closer) to the actual WCET. We now explain the detailed
workflow of Chronos.

3 Analyzer Internals

C Source

GCC 
(SimpleScalar)

Binary Code

Path
Analysis

Processor
Configuration

CFG

Microarchitecture
Modeling

Functional
Cons

ILP Problem

CPLEX / 
lp_solve

Est. WCET

SimpleScalar
Simulator

Obs. WCET

Microarch ConsFlow Cons.

Fig. 1. Workflow of the Chronos timing analyzer

Chronos uses the well-known SimpleScalar toolkit [3] to compile the applica-
tions. Its workflow consists of the following steps, which are also summarized
in Figure 1.

• First, the program source is compiled into the binary code by the GCC
compiler of the SimpleScalar toolset. This GCC version yields binary exe-
cutable corresponding to an instruction set architecture (ISA), which is a
superset of MIPS ISA.
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• Chronos reads in binary executable and reconstructs the control flow graph
(CFG) by disassembling the binary. The control flow information is rep-
resented as linear constraints which are called “flow constraints”. Chronos
performs a lightweight dataflow analysis to find out the basic blocks of
the program whose execution counts are independent of the program input.
Once this is found, we use the SimpleScalar profiler to find out the execution
counts of these input independent basic blocks.

In addition, Chronos allows the user to input constraints such as loop
bounds and some other flow facts through a graphical interface, and these
constraints are called “user constraints”. This step corresponds to program
path analysis (see Figure 1).

• Based on the processor model, which can be configured by user via the
tool’s graphical interface, Chronos performs micro-architectural modeling
(see Figure 1). This yields (1) time bounds for each basic block’s execu-
tion under certain execution contexts; (2) constraints on the occurrences of
these execution contexts (instruction cache state, branch prediction infor-
mation etc.). These are shown as “Micro-architectural Cons.” (constraints
introduced by micro-architectural modeling) in Figure 1. Combined with
the flow constraints and user constraints, a complete Integer Linear Pro-
gramming (ILP) problem is formulated by Chronos.

• The tool invokes either CPLEX [5], a high-performance commercial ILP
solver, or lp solve [2], a free Linear Programming solver, to solve the ILP
problem. This yields the Estimated WCET. It is important to note here
that even though ILP constitutes the back-end of Chronos, this tool is not
an ILP-only one like Cinderella [13]. The core of our micro-architectural
modeling method is achieved by a fixed-point analysis of pipeline/cache
behavior.

• In addition to the estimated WCET, an observed WCET can be obtained
via simulation using the SimpleScalar toolset with the same processor con-
figuration as that used in estimation. This yields the Observed WCET, which
can then be compared against the Estimated WCET (produced by micro-
architectural analysis and ILP solving).

4 Sample Usage

We now walk-through a sample session in Chronos to describe the usage of
the tool. The example is insertsort taken from the WCET benchmark set
maintained by the Mälardalen WCET research group [21]. Figure 2 shows the
dialog for selecting insertsort.

Step 1: Compilation and disassembling. The source code of insertsort
is shown on the second pane in Figure 3 (some irrelevant lines in the source
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Fig. 2. Chronos: benchmark selection

Fig. 3. Chronos: main window
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code have been removed for better view). Once insertsort is loaded, Sim-
pleScalar GCC is invoked by Chronos for compilation. Subsequently, the as-
sembly code (shown on the right pane in Figure 3) is obtained by objdump in
SimpleScalar toolset. The association between source code and assembly code
is provided by the SimpleScalar toolkit. It is very useful in practice, since it
allows the user to add functional constraints about the program at the source
code level. These constraints automatically get translated to constraints on
execution of basic blocks in the assembly-level control flow graph.

Step 2: Path analysis. Chronos then performs program path analysis. It
constructs insertsort’s control flow graph (shown on the third pane in Fig-
ure 3), and formulates a set of control flow constraints. These constraints, as
part of the final ILP file insertsort.lp , are shown in Figure 4(a). For exam-
ple, the line b4−d4 5−d4 1 = 0 captures the flow constraint that the execution
count of basic block 4 (denoted as b4) is equal to its outgoing flows (d4 5 and
d4 1 denote the transfers from block 4 to block 5 and block 1 respectively).
Similarly, the line b4− d1 4− d3 4 = 0 captures the flow constraint that the
execution count of basic block 4 is equal to its incoming flows. Note that the
block identifiers in Figure 4(a) actually denote “transformed blocks”. Chronos
transforms the individual control flow graphs of each procedure into a global
control flow graph by traversing the procedure call graph of the program.

Chronos also performs a light-weight data flow analysis to discover additional
constraints like input-independent loop bounds. In this case, it finds that the
outer loop iterates nine times, and generates a constraint b1 = 9 accordingly.
The number of iterations of the inner loop, however, is dependent on the
content of the array to be sorted. Therefore, the user needs to provide an upper
bound for the inner loop. Chronos allows the user to give constraints at the
source code level. Suppose the user can determine that the inner loop is entered
no more than 45 times, he or she then gives such a constraint: line10 <= 45.
This constraint will be converted into a basic block level constraint b3 <= 45
by Chronos. Note that the basic block level constraint refers to the assembly
level control flow graph, so we need to consider the mapping between source
and assembly code for this step.

The following steps correspond to microarchitecture modeling, which are de-
composed into branch prediction analysis, instruction cache analysis, and
pipeline analysis.

Step 3: Branch prediction analysis. Given the branch predictor config-
uration, Chronos performs branch prediction analysis based on the technique
in [18] to bound the number of mispredictions at each branch. Figure 4(b)
shows a small part of the branch prediction constraints. For example, the line
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d1 2− dc1 2− dm1 2 = 0 means that the control flow transfers from block 1
to block 2 can be divided into two cases: the branch at the end of block 1 is
correctly predicted (denoted by dc1 2) or mispredicted (denoted by dm1 2).
The other branch prediction constraints that further bound dc1 2 and dm1 2
are not shown in Figure 4(b). The reader is referred to our earlier paper [18]
for the technical details.

Step 4: Instruction cache analysis. Given the instruction cache configu-
ration, Chronos performs instruction cache analysis based on the technique in
[12] to bound the number of cache misses. This basically involves a static cate-
gorization of the memory blocks into “cache hit” or “unknown”. To reduce the
pessimism in such categorization we categorize a memory block under different
control flow contexts (such as different levels of loop nest). The static cache be-
havior categorization affects the ILP constraints for WCET calculation, which
are shown in Figure 4(c). For example, b3− b3.0− b3.1− b3.2 = 0 means the
execution count of block 3 can be divided into three scenarios in terms of
cache misses of memory blocks (a memory block is a sequence of instructions
in a basic block that are mapped into the same cache line). The occurrence
counts of these three scenarios are given by b3.0, b3.1, b3.2. Roughly speaking,
a cache scenario of a basic block corresponds to hit/unknown categorization
of each of its memory blocks. The reader is referred to [12] for further details.

The variable d2 3.0 in b3.0− d2 3.0− d3 3.0 = 0 denotes the count of control
flow transfers from block 2 to block 3 with the cache miss scenario correspond-
ing to b3.0. The other constraints that further bound variables like b3.0, d2 3.0
are not shown in Figure 4(c). The reader is referred to our [12] for technical
details of our cache modeling.

Step 5: Pipeline analysis. Given the pipeline configuration, the results of
branch prediction analysis and instruction cache analysis, Chronos performs
pipeline analysis to estimate the execution time upper bounds of basic blocks.
In fact, since a basic block’s pipeline schedule varies significantly with branch
prediction and/or cache behavior, it is necessary to consider branch predic-
tion/cache while performing pipeline analysis of a basic block.

Figure 4(d) is the result of our pipeline analysis. The whole expression denotes
the overall execution time of insertsort, where each term is the contribution
of one basic block. For example, in the term ”1 dc1 2.0”, the variable dc1 2.0
denotes the execution count of basic block 2 under the following context: (1)
it is reached from block 1; (2) the branch at the end of block 1 is correctly
predicted; and (3) it is executed under cache miss scenario 0 of block 2. The
coefficient, 1, is the predicted execution time upper bound of block 2 under
this context. These coefficients are provided by our pipeline modeling.

11



dSta_0 = 1
b0 - d0_1 = 0
b0 - dSta_0 = 0
b1 - d1_2 - d1_4 = 0
b1 - d0_1 - d4_1 = 0
b2 - d2_3 = 0
b2 - d1_2 = 0
b3 - d3_4 - d3_3 = 0
b3 - d2_3 - d3_3 = 0
b4 - d4_5 - d4_1 = 0
b4 - d1_4 - d3_4 = 0
b5 - d4_5 = 0

(a) Control flow constraints

d1_2 - dc1_2 - dm1_2 = 0
d1_4 - dc1_4 - dm1_4 = 0
d3_4 - dc3_4 - dm3_4 = 0
d3_3 - dc3_3 - dm3_3 = 0
d4_5 - dc4_5 - dm4_5 = 0
d4_1 - dc4_1 - dm4_1 = 0
...

(b) Branch prediction 
constraints (partial)

d1_2 - dc1_2 - dm1_2 = 0
d1_4 - dc1_4 - dm1_4 = 0
d3_4 - dc3_4 - dm3_4 = 0
d3_3 - dc3_3 - dm3_3 = 0
d4_5 - dc4_5 - dm4_5 = 0
d4_1 - dc4_1 - dm4_1 = 0
...
b0.0 <= 1
...
b3.0 - d2_3.0 - d3_3.0 = 0
...

(c) Instruction cache 
constraints (partial)

334 dSta_0 + 63 d0_1.0 + 1 dc1_2.0 + 32 dc1_2.1 + 4 dm1_2.0 + 35 dm1_2.1 + 64 dc1_4.0
+ 67 dm1_4.0 + 10 d2_3.0 + 97 d2_3.1 + 127 d2_3.2 + 64 dc3_4.0 + 67 dm3_4.0 + 10 dc3_3.0
+ 97 dc3_3.1 + 127 dc3_3.2 + 13 dm3_3.0 + 100 dm3_3.1 + 130 dm3_3.2 + 1 dc4_5.0 + ...

(d) Pipeline analysis results

Fig. 4. Fragment of ILP problem constructed for the insertsort program

The final ILP file, insertsort.lp, contains the following.

• Flow constraints
• Loop bounds inferred and/or provided by user
• Instruction cache and branch prediction constraints
• Objective function denoting execution time of the program (this uses the

results from pipeline analysis)

Now Chronos submits insertsort.lp to lp solve, a publicly available linear
programming solver, and dumps out the WCET returned by lp solve, as shown
on the bottom pane in Figure 3. Chronos also supports the commercial ILP
solver CPLEX for the back-end constraint solving. CPLEX allows for much
more efficient WCET calculation and thus provides a more scalable back-end
to Chronos.

5 The WCET Tool Challenge Experience for Chronos Team

In September 2006, a tool challenge was organized among the WCET analysis
tools. The effort was initiated and conducted by a working group based on
discussions at the Timing Analysis group under the ARTIST2 Network of Ex-
cellence for Embedded Systems. The purpose of the challenge was to test the
maturity of state-of-the-art WCET analysis tools. Thus, the event was in the
true sense “WCET Tool Challenge” rather than “WCET Tool Competition”.
The results of the event were discussed and published at the Second Interna-
tional Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA) in November 2006. Chronos was one of the five en-
trants to this challenge. In this section, we articulate some of the experiences
gained from this effort. We briefly describe the results from Chronos, and the
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lessons we learnt. The interested reader is referred to [6] for more details.

The Challenge consisted of checking each WCET tool against fifteen medium
sized benchmarks and two programs from a fly-by-wire application, resulting
in a total of seventeen programs. The medium-sized benchmarks were drawn
from the Mälardelaen benchmark suite [21] and the fly-by-wire application
was taken from the Papabench suite. 3 For each program, the tools were tried
in several modes such as — no annotations (analysis proceeds completely au-
tomatically), minimal annotations (the user provides basic information such
as loop bounds) and maximal annotations (the user can provide any annota-
tion provided the WCET analysis tool can exploit it for estimation). The tools
were tested on the given benchmarks by an independent evaluator employed by
the WCET working group.

We found that Chronos successfully estimated fifteen (15) out of the seventeen
(17) programs. The estimation was done of various processor configurations —
processors with no cache and perfect branch prediction, processors with cache
and global branch prediction etc. Two of the seventeen benchmarks could
not be handled by Chronos. One of them is because Chronos cannot handle
recursive programs, except those programs where a recursive procedure calls
itself. The other program’s estimation was not considered because of rather
specific technical reasons (the Graphical User Interface of our tool was not
equipped to handle compilation of programs where all the program files were
not in the same directory).

The results from the Tool Challenge gave us some useful lessons, as well as
confidence in our tool. We found that Chronos is one of the only two tools
(the other one being the commercial tool aiT) which provides Observed WCET
as well as Estimated WCET values. The other tools simply provide the Es-
timated WCET and hence there is no way to gauge how tight the estimate
is. The WCET analysis times from Chronos were also well within acceptable
limits (typically few seconds), making it feasible to integrate such tools into a
compiler infrastructure.

Overall, we found that the loop bound inferencing in our tool needs improve-
ment. Since loop bounds are required for WCET analysis, any loop bound
that cannot be automatically inferred by Chronos needs to be provided by the
user as annotation. In future, we are planning to hook up Chronos with an
external constraint solver which will perform an offline loop bound inferencing
along the lines of [8].

3 See (http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_
rubrique=97
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6 Related Work — Existing WCET Analysis tools

There exist some commercial and research prototype tools for WCET analysis.
However, with the exception of one or two, none of these tools are open source.
Moreover, most of these tools cannot model complex architectural features
that are becoming common in modern embedded processors (e.g., out-of-order
execution and dynamic branch prediction) for timing analysis.

The most well-known and extensively used commercial WCET analyzer is the
aiT tool [1] from AbsInt Angewandte Informatik, and it is the only WCET
analyzer that has been used to model out-of-order execution. Here we take
an overview of its underlying techniques, and show how the same example –
insertsort would work on aiT. The discussion is based on information from
aiT website and a few technical publications [10,23]. This tool also derives
an upper bound on the execution time of each basic block, and uses these
upper bounds to find the program’s WCET by solving an ILP problem. The
microarchitectural modeling technique, however, is different from ours. What
aiT uses, as suggested by its name, is the theory of abstract interpretation [4],
which conservatively derives program properties (in this case, properties about
cache behavior and so on). In the following we describe how aiT would work
on insertsort targeted to an out-of-order processor. This will expose some
key differences between the two analyzers.

Like Chronos, aiT works on program binary. It first takes in the binary of the
program, and reconstructs the control flow graph (CFG); this corresponds to
Step 2 in Section 4. It then conducts an analysis called value analysis, which
statically computes the ranges of data values and addresses. This information
is used for data cache analysis to identify non-conflicting memory accesses.
Since data cache is not modeled in Chronos, it does not have a corresponding
step. Next, aiT performs loop bound analysis, which determines upper bounds
for simple loops. Conceptually, this is very similar to our light-weight data
flow analysis, and we expect it to discover the bound on insertsort’s outer
loop as Chronos does.

When it comes to micro-architecture modeling, the two analyzers (Chronos
and aiT) work very differently. First, we have not seen any detailed discussion
on branch prediction analysis in aiT – Step 3 in Chronos. In particular, for
dynamic branch prediction, we do not know how the number of mispredic-
tions is bounded via abstract interpretation in aiT. We conjecture that stati-
cally classifying (via abstract interpretation) the three conditional branches of
insertsort as either mispredicted or correctly predicted might be too coarse.

In aiT, cache analysis (Step 4 in Chronos) and pipeline analysis (Step 5 in
Chronos) can be performed either in separation or in integration. The work
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[23] presents a separated approach which is used to model the PowerPC 755
processor, while [10], which models the same processor, describes an integrated
approach. The integrated approach is able to achieve better accuracy at the
expense of much higher complexity. Overall, aiT’s instruction cache analysis
is not significantly different from that of Chronos – both tools try to classify
for each instruction whether it is always a hit in some execution context, or
otherwise.

What is fundamentally different in the two tools (Chronos and aiT) is the
pipeline analysis. At the basic block level, aiT estimates the execution time of
a basic block via cycle-wise evolution of pipeline states along program points.
Although pipeline state abstraction w.r.t. timing-irrelevant aspects (e.g., reg-
ister values) is enforced, it still has to maintain a large number of pipeline
states. Furthermore, for WCET estimation, aiT maintains the pipeline states
for each basic block. The tool iteratively populates/updates these states until
there are no changes to the pipeline state space of any basic block. For com-
plicated pipelines, this approach suffers from a huge state space explosion. As
reported in [23], when working on a 3+ GHz Pentium 4, aiT spent 12 hours
per task on average for the avionics program, and its memory consumption
was close to 3 Gbytes – nearing the limit of current 32-bit architectures.

Since aiT is not an open-source software, and SimpleScalar processor model is
not in the supported list, we are unable to conduct a quantitative comparison
between aiT and Chronos. However, it should be noted that aiT is a commer-
cial tool coming with a number of powerful supporting tools like aiSee, PAG,
StackAnalyzer, etc. These supporting tools not only help in WCET analysis
but also in performance debugging and visualization.

Another commercial WCET analyzer is the Bound-T tool [15] which also works
on program binary. It concentrates mainly on program path analysis and does
not model cache, complex pipeline and/or branch prediction. Even in path
analysis, the main focus of the tool is in inferring loop bounds – for which it
depends heavily on user assertions. Bound-T has been targeted towards Intel
8051 series micro-controllers, Analog Devices ADSP-21020 DSP, and ATMEL
ERC32 SPARC V7-based platforms. Again, unlike Chronos, Bound-T is not
open-source.

Among the research prototypes, HEPTANE [19] is an open-source WCET
analyzer. HEPTANE models in-order pipeline, instruction cache and branch
prediction; but it does not include any automated program flow analysis.
Symta/P [24] is another research prototype that estimates WCET for C pro-
grams. It models caches and simple pipeline; but does not support modeling of
complex micro-architectural features such as out-of-order pipelines and branch
prediction. The SWEET tool [7] primarily focuses on loop bound inferencing
and flow analysis. Cinderella [13] is an Integer Linear Programming (ILP)

15



Tool Caches Pipeline Periphery

aiT I/D cache, direct/SA, LRU, in-order/out-of-order PCI bus

PLRU, pesudo round robin

Bound-T - in-order -

SymTA/P I/D cache, direct/SA, LRU - -

Heptane I-cache, direct/SA, LRU, in-order -

locked cache

Vienna jump-cache simple in-order -

SWEET I-cache, direct/SA, LRU in-order -

Florida I/D cache, direct/SA in-order -

Chalmers split L1 SA, multi-issue superscalar -

unified L2 cache

Chronos 2.0 I-cache, direct/SA, LRU multi-issue superscalar, -

in-order/out-of-order,

dynamic branch prediction
Table 1
Comparison of WCET tools in terms of support for architectural features (SA stands
for set associative).

based research prototype developed at Princeton University. The main distin-
guishing feature of this tool is that it performs both program path analysis and
micro-architectural modeling by solving a (huge) ILP problem. However, this
formulation makes the tool less scalable because the ILP solving time does not
always scale up for complex micro-architectures. Also, Cinderella mostly con-
centrates on program path analysis and cache modeling; it does not analyze
timing effects of complex pipelines and branch prediction.

Apart from the above-mentioned tools, several other research groups have de-
veloped their own in-house timing analysis prototypes incorporating certain
novel features (e.g., TU Vienna research prototype, Chalmers research proto-
type). One notable effort is by the research group in Florida State University.
Their work involves sophisticated flow analysis for inferring infeasible path
patterns and loop bounds [9]. However the tool is currently not available for
use/download, that is, it is an in-house research effort.

Table 1 taken from [25] compares the architectural features supported by dif-
ferent static analysis based WCET tools. Chronos 2.0 and aiT are the only
two WCET tools that support complex out-of-order pipeline. Chronos also
accurately models different dynamic branch prediction schemes. Furthermore,
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Chronos and aiT are the only two tools which give both estimated and ob-
served WCET, thereby providing an idea about the estimation tightness.

7 Discussion

In this paper, we have presented Chronos, a Worst-case Execution Time
(WCET) analysis tool for real-time embedded software. It takes as input
the program binary, disassembles it and performs static analysis on the as-
sembly code. The static analysis involves program flow analysis as well as
micro-architectural modeling. Currently, there exist commercial tools as well
as research prototypes for WCET analysis. The main distinguishing features
of Chronos w.r.t. these tools are as follows.

• Chronos is open-source unlike most existing WCET analyzers. The user can
change the micro-architectural analysis routines to model new processor
platforms. Thus, he/she can always re-use the routines doing standard stuff
— control flow graph extraction, disassembly etc. Moreover, if a new pro-
cessor has a completely different pipeline structure (for example) we can
change the core pipeline analysis with minimal change to the cache/branch
prediction analysis. In contrast, most existing WCET analyzers only allow
a user to set architectural parameters in a limited way (e.g. set the cache
line size, cache associativity etc.)

• Chronos is built on the top of the popular Simplescalar architectural simu-
lator. Simplescalar allows the user to flexibly model different architectures
for simulation. By building Chronos on top of Simplescalar, we provide the
users a similar advantage but for timing analysis — he/she can quickly
model different processor platforms and perform WCET estimation of a
given application.

• Last but certainly not the least, Chronos supports accurate modeling of
advanced micro-architectural features such as out-of-order pipelines and dy-
namic branch prediction (both local and global). This increases the scope
of the tool’s applicability — the timing effects of more processor platforms
can be estimated by Chronos.

The Chronos tool is available from

http://www.comp.nus.edu.sg/~rpembed/chronos

In future releases, we plan to enhance the tool by working on program path
analysis (more powerful loop bound inferencing) as well as micro-architectural
modeling (modeling of new features like data caches).
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