
Efficient Run-Time Dispatching in Generic Programming with
Minimal Code Bloat

Lubomir Bourdev
Adobe Systems Inc.

lbourdev@adobe.com

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Abstract
Generic programming using C++ results in code that is efficient but
inflexible. The inflexibility arises, because the exact types of inputs
to generic functions must be known at compile time. We show how
to achieve run-time polymorphism without compromising perfor-
mance by instantiating the generic algorithm with a comprehensive
set of possible parameter types, and choosing the appropriate in-
stantiation at run time. The major drawback of this approach is ex-
cessive template bloat, generating a large number of instantiations,
many of which are identical at the assembly level. We show prac-
tical examples in which this approach quickly reaches the limits of
the compiler. Consequently, we combine the method of run-time
polymorphism for generic programming with a strategy for reduc-
ing the amount of necessary template instantiations. We report on
using our approach in GIL, Adobe’s open source Generic Image
Library. We observed notable reduction, up to 70% at times, in ex-
ecutable sizes of our test programs. Even with compilers that per-
form aggressive template hoisting at the compiler level, we achieve
notable code size reduction, due to significantly smaller dispatching
code. The framework draws from both the generic programming
and generative programming paradigm, using static metaprogram-
ming to fine tune the compilation of a generic library. Our test bed,
GIL, is deployed in a real world industrial setting, where code size
is often an important factor.

Categories and Subject Descriptors D.3.3 [Programming Tech-
niques]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Techniques]: Language Constructs and Feat-
ures—Polymorphism; D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries

General Terms Design, Performance, Languages

Keywords generic programming, C++ templates, template bloat,
template metaprogramming

1. Introduction
Generic programming, pioneered by Musser and Stepanov [19],
and introduced to C++ with the STL [24], aims at expressing al-
gorithms at an abstract level, such that the algorithms apply to
as broad class of data types as possible. A key idea of generic

Copyright is held by the author/owner(s).
LCSD ’06 October 22nd, Portland, Oregon.
ACM [to be supplied].

programming is that this abstraction should incur no performance
degradation: once a generic algorithm is specialized for some con-
crete data types, its performance should not differ from a similar
algorithm written directly for those data types. This principle is of-
ten referred to as zero abstraction penalty. The paradigm of generic
programming has been successfully applied in C++, evidenced, e.g.,
by the STL, the Boost Graph Library (BGL) [21], and many other
generic libraries [3,5,11,20,22,23]. One factor contributing to this
success is the compilation model of templates, where specialized
code is generated for every different instance of a template. We re-
fer to this compilation model as the instantiation model.

We note that the instantiation model is not the only mechanism
for compiling generic definitions. For example, in Java [13] and
Eiffel [10] a generic definition is compiled to a single piece of byte
or native code, used by all instantiations of the generic definition.
C# [9, 18] and the ECMA .NET framework delay the instantiation
of generics until run time. Such alternative compilation models
address the code bloat issue, but may be less efficient or may
require run-time compilation. They are not discussed in this paper.

With the instantiation model, zero abstraction penalty is an
attainable goal: later phases of the compilation process make no
distinction between code generated from a template instantiation
and non-template code written directly by the programmer. Thus,
function calls can be resolved statically, which enables inlining
and other optimizations for generic code. The instantiation model,
however, has other less desirable characteristics, which we focus
on in this paper.

In many applications the exact types of objects to be passed
to generic algorithms are not known at compile time. In C++ all
template instantiations and code generation that they trigger occur
at compile time—dynamic dispatching to templated functions is
not (directly) supported. For efficiency, however, it may be crucial
to use an algorithm instantiated for particular concrete types.

In this paper, we describe how to instantiate a generic algorithm
with all possible types it may be called with, and generate code that
dispatches at run time to the right instantiation. With this approach,
we can combine the flexibility of dynamic dispatching and perfor-
mance typical for the instantiation model: the dispatching occurs
only once per call to a generic algorithm, and has thus a negligi-
ble cost, whereas the individual instantiations of the algorithms are
compiled and fully optimized knowing their concrete input types.
This solution, however, leads easily to excessive number of tem-
plate instantiations, a problem known as code bloat or template
bloat. In the instantiation model, the combined size of the instan-
tiations grows with the number of instantiations: there is typically
no code sharing between instantiations of the same templates with
different types, regardless of how similar the generated code is.1

1 At least one compiler, Visual Studio 8, has advanced heuristics that can
optimize for code bloat by reusing the body of assembly-level identical



This paper reports on experiences of using the generic program-
ming paradigm in the development of the Generic Image Library
(GIL) [5] in the Adobe Source Libraries [1]. GIL supports several
image formats, each represented internally with a distinct type. The
static type of an image manipulated by an application using GIL is
often not known; the type assigned to an image may, e.g., depend on
the format it was stored on the disk. Thus, the case described above
manifests in GIL: an application using GIL must instantiate the rel-
evant generic functions for all possible image types and arrange that
the correct instantiations are selected based on the arguments’ dy-
namic types when calling these functions. Following this strategy
blindly may lead to unmanageable code bloat. In particular, the set
of instantiations increases exponentially with the number of image
type parameters that can be varied independently in an algorithm.
Our experience shows that the number of template instantiations is
an important design criterion in developing generic libraries.

We describe the techniques and the design we use in GIL to
ensure that specialized code for all performance critical program
parts is generated, but still keep the number of template instantia-
tions low. Our solution is based on the realization that even though
a generic function is instantiated with different type arguments, the
generated code is in some cases identical. We describe mechanisms
that allow the different instantiations to be replaced with a single
common instantiation. The basic idea is to decompose a complex
type into a set of orthogonal parameter dimensions (with image
types, these include color space, channel depth, and constness) and
identify which parameters are important for a given generic algo-
rithm. Dimensions irrelevant for a given operation can be cast to a
single ”base” parameter value. Note that while this technique is pre-
sented as a solution to dealing with code bloat originating from the
“dynamic dispatching” we use in GIL, the technique can be used
in generic libraries without a dynamic dispatching mechanism as
well.

In general, a developer of a software library and the technolo-
gies supporting library development are faced with many, possibly
competing, challenges, originating from the vastly different context
the libraries can be used. Considering GIL, for example, an applica-
tion such as Adobe Photoshop requires a library flexible enough to
handle the variation of image representations at run time, but also
places strict constraints on performance. Small memory footprint,
however, becomes essential when using GIL as part of a software
running on a small device, such as a cellular phone or a PDA. Ba-
sic software engineering principles ask for easy extensibility, etc.
The design and techniques presented in this paper help in building
generic libraries that can combine efficiency, flexibility, extensibil-
ity, and compactness.

C++’s template system provides a programmable sub-language
for encoding compile-time computations, the uses of which are
known as template metaprogramming (see e.g. [25], [8, §.10]). This
form of generative programming proved to be crucial in our solu-
tion: the process of pruning unnecessary instantiations is orches-
trated with template metaprograms. In particular, for our metapro-
gramming needs, we use the Boost Metaprogramming Library
(MPL) [2, 14] extensively. In the presentation, we assume some
familiarity with the basic principles of template metaprogramming
in C++.

The structure of the paper is as follows. Section 2 describes
typical approaches to fighting code bloat. Section 3 gives a brief
introduction to GIL, and the code bloat problems therein. Section 4
explains the mechanism we use to tackle code bloat, and Section 5
describes how to apply the mechanism with dynamic dispatching

functions. In the results section we demonstrate that our method can result
in noticeable code size reduction even in the presence of such heuristics.

to generic algorithms. We report experimental results in Section 6,
and conclude in Section 7.

2. Background
One common strategy to reduce code bloat associated with the
instantiation model is template hoisting (see e.g. [6]). In this ap-
proach, a class template is split into a non-generic base class and a
generic derived class. Every member function that does not depend
on any of the template parameters is moved, hoisted, into the base
class; also non-member functions can be defined to operate directly
on references or pointers to objects of the base-class type. As a re-
sult, the amount of code that must be generated for each different
instantiation of the derived class decreases. For example, red-black
trees are used in the implementation of associative containers map,
multimap, set, and multiset in the C++ Standard Library [15]. Be-
cause the tree balancing code does not need to depend on the types
of the elements contained in these containers, a high-quality im-
plementation is expected to hoist this functionality to non-generic
functions. The GNU Standard C++ Library v3 does exactly this:
the tree balancing functions operate on pointers to a non-generic
base class of the tree’s node type.

In the case of associative containers, the tree node type is split
into a generic and non-generic part. It is in principle possible to split
a template class into several layers of base classes, such that each
layer reduces the number of template parameters. Each layer then
potentially has less type variability than its subclasses, and thus two
different instantiations of the most derived class may coalesce to a
common instantiation of a base class. Such designs seem to be rare.

Template hoisting within a class hierarchy is a useful technique,
but it allows only a single way of splitting a data type into sub-parts.
Different generic algorithms are generally concerned with different
aspects of a data-type. Splitting a data type in a certain way may
suit one algorithm, but will be of no help for reducing instantiations
of other algorithms. In the framework discussed in this paper, the
library developer, possibly also the client of a library, can define a
partitioning of data-types, where a particular algorithm needs to be
instantiated only with one representative of each equivalence class
in the partition.

We define the partition such that differences between types
that do not affect the operation of an algorithm are ignored. One
common example is pointers - for some algorithms the pointed type
is important, whereas for others it is ok to cast to void∗. A second
example is differences due to constness (consider STL’s iterator
and const iterator concept). The generated code for invoking a
non-modifying algorithm (one which accepts immutable iterators)
with mutable iterators will be identical to the code generated for
an invocation with immutable iterator. Some algorithms need to
operate bitwise on their data, whereas others depend on the type of
data. For example, assignment between a pair of pixels is the same
regardless of whether they are CMYK or RGBA pixels, whereas the
type of pixel matters to an algorithm that sets the color to white, for
example.

3. Generic Image Library
The Generic Image Library (GIL) is Adobe’s open source image
processing library [5]. GIL addresses a fundamental problem in
image processing projects — operations applied to images (such
as copying, comparing, or applying a convolution) are logically the
same for all image types, but in practice image representations in
memory can vary significantly, which often requires providing mul-
tiple variations of the same algorithm. GIL is used as the framework
for several new features planned for inclusion in the next version of
Adobe Photoshop. GIL is also being adopted in several other imag-
ing projects inside Adobe. Our experience with these efforts show



that GIL helps to reduce the size of the core image manipulation
source code significantly, as much as 80% in a particular case.

Images are 2D (or more generally, n-dimensional) arrays of
pixels. Each pixel encodes the color at the particular point in the
image. The color is typically represented as the values of a set of
color channels, whose interpretation is defined by a color space.
For example, the color red can be represented as 100% red, 0%
green, and 0% blue using the RGB color space. The same color
in the CMYK color space can be approximated with 0% cyan,
96% magenta, 90% yellow, and 0% black. Typically all pixels in
an image are represented with the same color space.

GIL must support significant variation within image represen-
tations. Besides color space, images may vary in the ordering of
the channels in memory (RGB vs. BGR), and in the number of bits
(depth) of each color channel and its representation (8 bit vs. 32
bit, unsigned char vs. float). Image data may be provided in inter-
leaved form (RGBRGBRGB...) or in planar form where each color
plane is separate in memory (RRR..., GGG... BBB...); some algo-
rithms are more efficient in planar form whereas others perform
better in interleaved form. In some image representations each row
(or the color planes) may be aligned, in which case a gap of un-
used bytes may be present at the end of each row. There are rep-
resentations where pixels are not consecutive in memory, such as a
sub-sampled view of another image that only considers every other
pixel. The image may represent a rectangular sub-image in another
image or an upside-down view of another image, for example. The
pixels of the image may require some arbitrary transformation (for
example an 8-bit RGB view of 16-bit CMYK data). The image data
may not be at all in memory (a virtual image, or an image inside
a JPEG file). The image may be synthetic, defined by an arbitrary
function (the Mandelbrot set), and so forth.

Note that GIL makes a distinction between images and image
views. Images are containers that own their pixels, views do not.
Images can return their associated views and GIL algorithms op-
erate on views. For the purpose of this paper, these differences are
not significant, and we use the terms image and image views (or
just views) interchangeably.

The exact image representation is irrelevant to many image pro-
cessing algorithms. To compare two images we need to loop over
the pixels and compare them pairwise. To copy one image into an-
other we need to copy every pixel pairwise. To compute the his-
togram of an image, we need to accumulate the histogram data over
all pixels. To exploit these commonalities, GIL follows the generic
programming approach, exemplified by the STL, and defines ab-
stract representations of images as concepts. In the terminology of
generic programming, a concept is the formalization of an abstrac-
tion as a set of requirements on a type (or types) [4, 16]. A type
that implements the requirements of a concept is said to model the
concept. Algorithms written in terms of image concepts work for
images in any representation that model the necessary concepts. By
this means, GIL avoids multiple definitions for the same algorithm
that merely accommodate for inessential variation in the image rep-
resentations.

GIL supports a multitude of image representations, for each of
which a distinct typedef is provided. Examples of these types are:

• rgb8 view t: 8-bit mutable interleaved RGB image
• bgr16c view t: 16-bit immutable interleaved BGR image
• cmyk32 planar view t: 32-bit mutable planar CMYK image
• lab8c step planar view t: 8-bit immutable LAB planar image

in which the pixels are not consecutive in memory

The actual types associated with these typedefs are somewhat in-
volved and not presented here.

GIL represents color spaces with distinct types. The naming of
these types is as expected: rgb t stands for the RGB color space,
cmyk t for the CMYK color space, and so forth. Channels can
be represented in different permutations of the same set of color
values. For each set of color values, GIL identifies a single color
space as the primary color space — its permutations are derived
color spaces. For example, rgb t is a primary color space and bgr t
is its derived color space.

GIL defines two images to be compatible if they have the same
set and type of channels. That also implies their color spaces must
have the same primary color space. Compatible images may vary
any other way - planar vs. interleaved organization, mutability, etc.
For example, an 8-bit RGB planar image is compatible with an 8-bit
BGR interleaved image. Compatible images may be copied from
one another and compared for equality.

3.1 GIL Algorithms
We demonstrate the operation of GIL with a simple algorithm,
copy pixels(), that copies one image view to another. Here is one
way to implement it:2

template <typename View1, typename View2>
void copy pixels(const View1& src, const View2& dst) {

std::copy(src.begin(), src.end(), dst.begin());
}

A requirement of copy pixels is that the two image view types be
compatible and have the same dimensions, and that the destination
be mutable. An attempt to instantiate copy pixels with incompati-
ble images results in a compile-time error.

Each GIL image type supports the begin() and end() mem-
ber functions as defined in the STL’s Container concept. Thus the
body of the algorithm just invokes the copy() algorithm from the
C++ standard library. If we expand out the std::copy() function,
copy pixels becomes:

template <typename View1, typename View2>
void copy pixels(const View1& src, const View2& dst) {

typedef typename View1::iterator src it = src.begin();
typedef typename View2::iterator dst it = dst.begin();
while (src it != dst.end()) {
∗dst it++ = ∗src it++;

}
}

Each image type is required to have an associated iterator type
that implements iteration over the image’s pixels. Furthermore,
each pixel type must support assignment. Note that the source and
target images can be of different (albeit compatible) types, and
thus the assignment may include a (lossless) conversion from one
pixel type to another. These elementary operations are implemented
differently by different image types. A built-in pointer type can
serve as the iterator type of a simple interleaved image3, whereas
in a planar RGB image it may be a bundle of three pointers to
the corresponding color planes. The iterator increment operator
++ for interleaved images may resolve to a pointer increment, for
step images to advancing a pointer by a given number of bytes,
and for a planar RGB iterator to incrementing three pointers. The
dereferencing operator ∗ for simple interleaved images returns a
reference type; for planar RGB images it returns a planar reference
proxy object containing three references to the three channels. For
a complex image type, such as one representing an RGB view
over CMYK data, the dereferencing operator may perform color
conversion.

2 Note that GIL image views don’t own the pixels and don’t propagate their
constness to the pixels, which explains why we take the destination as a
const reference. Mutability is incorporated into the image view type.
3 Assuming the image has no gap at the end of each row



Due to the instantiation model, the calls to the implementations
of the elementary image operations in GIL algorithms can be re-
solved statically and usually inlined, resulting in an efficient algo-
rithm specialized for the particular image types used. GIL algo-
rithms are targeted to match the performance of code hand-written
for a particular image type. Any difference in performance from
that of hand-written code is usually due to abstraction penalty, for
example, the compiler failing to inline a forwarding function, or
failing to pass small objects of user-defined types in registers. Mod-
ern compilers exhibit zero abstraction penalty with GIL algorithms
in many common uses of the library.

3.2 Dynamic dispatching in GIL
Sometimes the exact image type with which the algorithm is to be
called is unknown at compile time. For this purpose, GIL imple-
ments the variant template, i.e. a discriminated union type. The
implementation is very similar to that of the Boost Variant Li-
brary [12]. One difference is that the Boost variant template can be
instantiated with an arbitrary number of template arguments, while
GIL variant accepts exactly one argument 4. This argument itself
represents a collection of types and it must be a model of the Ran-
dom Access Sequence concept, defined in MPL. For example, the
vector template in MPL models this concept. A variant object in-
stantiated with an MPL vector holds an object whose type can be
any one of the types contained in the type vector.

Populating a variant with image types, and instantiating another
template in GIL, any image view, with the variant, yields a GIL
image type that can hold any of the image types in the variant.
Note the difference to polymorphism via inheritance and dynamic
dispatching: in polymorphism via virtual member functions, the
set of virtual member functions, and thus the set of algorithms,
is fixed but the set of data types implementing those algorithms
is extensible; with variant types, the set of data types is fixed, but
there is no limit to the number of algorithms that can be defined
for those data types. The following code illustrates the use of the
any image view type:5

typedef variant<mpl::vector<rgb8 view t, bgr16c view t,
cmyk32 planar view t,
lab8 step planar view t> > my views t;

any image view<my views t> v1, v2;
jpeg read view(file name1, v1);
jpeg read view(file name2, v2);

...
copy pixels(v1, v2);

Compiling the call to copy pixels involves examining the run
time types of v1 and v2 and dispatching to the instantiation of
copy pixels generated for those types. Indeed, GIL overloads al-
gorithms for any image view types, which do exactly this. Con-
sequently, all run time dispatching occurs at a higher level, rather
than at the inner loops of the algorithms; any image view contain-
ers are practically as efficient as if the exact image type was known
at compile time. Obviously, the precondition to dispatching to a
specific instantiation is that the instantiation has been generated.
Unless we are careful, this may lead to significant template bloat,
as illustrated in the next section.

3.3 Template bloat originating from GIL’s dynamic
dispatching

To ease the definition of lists of types for the any image view tem-
plate, GIL implements type generators. One of these generators is

4 The Boost Variant Library offers similar functionality with the
make variant over metafunction.
5 The mpl::vector instantiation is a compile-time data structure, a vector
whose elements are types; in this case the four image view types.

cross vector image view types, which generates all image types
that are combinations of given sets of color spaces and channels,
and the interleaved/planar and step/no step policies, as the follow-
ing example demonstrates:

typedef mpl::vector<rgb t,bgr t,lab t,cmyk t>::type ColorSpaceV;
typedef mpl::vector<bits8,bits16,bits32>::type ChannelV;

typedef any image view<cross vector image view types<
ColorSpaceV, ChannelV,
kInterleavedAndPlanar, kNonStepAndStep> > any view t;

any view t v1, v2;

v1 = rgb8 planar view t(..);
v2 = bgr8 view t(..);

copy pixels(v1, v2);

This code defines any image t to be one of 4× 3× 2× 2 = 48
possible image types. It can have any of the four listed color spaces,
any of the three listed channel depths, it can be interleaved or
planar and its pixels can be adjacent or non-adjacent in memory.
The above code generates 48 × 48 = 2304 instantiations. Without
any special handling, the code bloat will be out of control.

In practice, the majority of these combinations are between in-
compatible images, which in the case of run-time instantiated im-
ages results in throwing an exception. Nevertheless, such exhaus-
tive code generation is wasteful since many of the cases generate
essentially identical code. For example, copying two 8-bit inter-
leaved RGB images or two 8-bit interleaved LAB images (with the
same channel types) results in the same assembly code — the inter-
pretation of the channels is irrelevant for the copy operation. The
following section describes how we can use metaprograms to avoid
generating such identical instantiations.

4. Reducing the Number of Instantiations
Our strategy for reducing the number of instantiations is based on
decomposing a complex type into a set of orthogonal parameter di-
mensions (such as color space, channel depth, constness) and iden-
tifying which dimensions are important for a given operation. Di-
mensions irrelevant for a given operation can be cast to a single
”base” parameter value. For example, for the purpose of copying,
all LAB and RGB images could be treated as RGB images. As men-
tioned in Section 2, for each algorithm we define a partition among
the data types, select the equivalence class representatives, and only
generate an instance of the algorithm for these representatives. We
call this process type reduction.

Type reduction is implemented with metafunctions which map a
given data type and a particular algorithm to the class representative
of that data type for the given algorithm. By default, that reduction
is identity:

template <typename Op, typename T>
struct reduce { typedef T type; };

By providing template specializations of the reduce template for
specific types, the library author can define the partition of types
for each algorithm. We return to this point later. Note that the
algorithm is represented with the type Op here; we implement GIL
algorithms internally as function objects instead of free-standing
function templates. One advantage is that we can represent the
algorithm with a template parameter.

We need a generic way of invoking an algorithm which will
apply the reduce metafunction to perform type reduction on its
arguments prior to entering the body of the algorithm. For this
purpose, we define the apply operation function6:

6 Note that reinterpret cast is not portable. To cast between two arbitrary
types GIL uses instead static cast<T∗>(static cast<void∗>(arg)). We
omit this detail for readability.



struct invert pixels op {
typedef void result type;

template <typename View>
void operator()(const View& v) const {

const int N = View::num channels;
typename View::iterator it = v.begin();
while (it != v.end()) {

typename View::reference pix=∗it;
for (int i=0; i<N; ++i)

pix[i]=invert channel(pix[i]);
++it;

}
}

};
template <typename View>
inline void invert pixels(const View& v) {

apply operation(v, invert pixels op());
}

Figure 1. The invert pixels algorithm.

template <typename Arg, typename Op>
inline typename Op::result type
apply operation(const Arg& arg, Op op) {

typedef typename reduce<Op,Arg>::type base t;
return op(reinterpret cast<const base t&>(arg));

}

This function provides the glue between our technique and the algo-
rithm. We have overloads for the one and two argument cases, and
overloads for variant types. The apply operation function serves
two purposes — it applies reduction to the arguments and invokes
the associated function. As the example above illustrates, for tem-
plated types the second step amounts to a simple function call. In
Section 5 we will see that for variants this second step also re-
solves the static types of the objects stored in the variants, by going
through a switch statement.

Let us consider an example algorithm, invert pixels. It inverts
each channel of each pixel in an image. Figure 1 shows a possible
implementation (which ignores performance and focuses on sim-
plicity) that can be invoked via apply operation.

With the definitions this far, nothing has changed from the per-
spective of the library’s client. The invert pixels() function merely
forwards its parameter to apply operation(), which again forwards
to invert pixels op(). Both apply operation() and invert pixels()
are inlined, and the end result is the same as if the algorithm im-
plementation was written directly in the body of invert pixels().
With this arrangement, however, we can control instantiations with
defining specializations for the reduce metafunction. For example,
the following statement will cause 8-bit LAB images to be reduced
to 8-bit RGB images when calling invert pixels:

template<>
struct reduce<invert pixels op, lab8 view t> {

typedef rgb8 view t type;
};

This approach extends to algorithms taking more than one argu-
ment — all arguments can be represented jointly as a tuple. The
reduce metafunction for binary algorithms can have specializations
for std::pair of any two image types the algorithm can be called
with — Section 4.1 shows an example. Each possible pair of input
types, however, can be a large space to consider. In particular, us-
ing variant types as arguments to binary algorithms (see Section 5)
generates a large number of such pair types, which can take a toll
on compile times. Fortunately, for many binary algorithms it is pos-
sible to apply unary reduction independently on each of the input

arguments first and only consider pairs of the argument types af-
ter reduction – this is potentially a much smaller set of pairs. We
call such preliminary unary reduction pre-reduction. Here is the
apply operation taking two arguments:

template <typename Arg1 typename Arg2, typename Op>
inline typename Op::result type
apply operation(const Arg1& arg1, const Arg2& arg2, Op op) {

// unary pre−reduction
typedef typename reduce<Op,Arg1>::type base1 t;
typedef typename reduce<Op,Arg2>::type base2 t;

// binary reduction
typedef std::pair<const base1 t∗, const base2 t∗> pair t;
typedef typename reduce<Op,pair t>::type base pair t;

std::pair<const void∗,const void∗> p(&arg1,&arg2);
return op(reinterpret cast<const base pair t&>(p));

}

As a concrete example of a binary algorithm that can be invoked
via apply operation, the copy pixels() function can be defined as
follows:

struct copy pixels op {
typedef void result type;

template <typename View1, typename View2>
void operator()(const std::pair<const View1∗,

const View2∗>& p) const {
typedef typename View1::iterator src it = p.first→ begin();
typedef typename View2::iterator dst it = p.second→ begin();
while (src it != dst.end()) {
∗dst it++ = ∗src it++;

}
}

};

template <typename View1, typename View2> inline void
copy pixels(const View1& src, const View2& dst) {

apply operation(src, dst, copy pixels op());
}

We note that the type reduction mechanism relies on an unsafe cast
operation, which relies on programmers assumptions not checked
by the compiler or the run time system. The library author defining
the reduce metafunction must thus know the implementation de-
tails of the types that are being mapped to the class representative,
as well as the implementation details of the class representative. A
client of the library defining new image types can specialize the
reduce template to specify a partition within those types, without
needing to understand the implementations of the existing image
types in the library.

4.1 Defining reduction functions
In general, the reduce metafunction can be implemented by what-
ever means is most suitable, most straightforwardly by enumerat-
ing all cases separately. Commonly a more concise definition is
possible. Also, we can identify “helper” metafunctions that can
be reused in the type reduction for many algorithms. To demon-
strate, we describe our implementation for the type reduction of
the copy pixels algorithm. Even though we use MPL in GIL exten-
sively, following the definitions requires no knowledge of MPL;
here we use a traditional static metaprogramming style of C++,
where branching is expressed with partial specializations.

The copy pixels algorithm operates on two images — we thus
apply the two phase reduction strategy discussed in Section 4, first
pre-reducing each image independently, followed by the pair-wise
reduction.

To define the type reductions for GIL image types, reduce must
be specialized for them:



template <typename Op, typename L>
struct reduce<Op, image view<L> >

: public reduce view basic<Op, image view<L>,
view is basic<image view<L> >::value> {};

template <typename Op, typename L1, typename L2>
struct reduce<Op, std::pair<const image view<L1>∗,

const image view<L2>∗> >
: public reduce views basic<

Op, image view<L1>, image view<L2>,
mpl::and <view is basic<image view<L1> >,

view is basic<image view<L2> > >::value> {};

Note the use the use metafunction forwarding idiom from the
MPL, where one metafunction is defined in terms of another meta-
function by inheriting from it, here reduce is defined in terms of
reduce view basic.

The first of the above specializations will match any GIL
image view type, the second any pair7 of GIL image view types.
These specializations merely forward to reduce view basic and
reduce views basic—two metafunctions specific to reducing GIL’s
image view types. view is basic template defines a compile time
predicate that tests whether a given view type is one of GIL’s built-
in view types, rather than a view type defined by the client of the
library. We can only define the reductions of view types known to
the library, the ones satisfying the prediacte—for all other types
GIL applies identity mappings using the following default defini-
tions for reduce view basic and reduce views basic:

template <typename Op, typename View, bool IsBasic>
struct reduce view basic { typedef View type; };
template <typename Op, typename V1, typename V2,

bool AreBasic>
struct reduce views basic {

typedef std::pair<const V1∗, const V2∗> type;
};

The above metafunctions are not specific to a particular type reduc-
tion and are shared by reductions of all algorithms.

The following reductions that operate on the level of color
spaces are also useful for many algorithms in GIL. Different color
spaces with the same number of channels can all be reduced to one
common type. We choose rgb t and rgba t as the class represen-
tatives for three and four channel color spaces, respectively. Note
that we do not reduce different permutations of channels. For ex-
ample, we cannot reduce bgr t to rgb t because that will violate
the channel ordering.

template <typename Cs> struct reduce color space {
typedef Cs type;

};
template <> struct reduce color space<lab t> {

typedef rgb t type;
};
template <> struct reduce color space<hsb t> {

typedef rgb t type;
};
template <> struct reduce color space<cmyk t> {

typedef rgba t type;
};

We can similarly define a binary color space reduction — a meta-
function that takes a pair of (compatible) color spaces and returns
a pair of reduced color spaces. For brevity, we only show the inter-
face of the metafunction:

7 We represent the two types as a pair of constant pointers because it makes
the implementation of reduction with a variant (described in Section 5)
easier.

template <typename SrcCs, typename DstCs>
struct reduce color spaces {

typedef ... first t;
typedef ... second t;

};

The equivalence classes defined by this metafunction represent
the color space pairs where the mapping of channels from first
to second color space is preserved. We can represent such map-
pings with a tuple of integers. For example, the mapping of
pair<rgb t,bgr t> is 〈2, 1, 0〉, as the first channel r maps from the
position 0 to position 2, g from position 1 to 1, and b from 2 to 1.
Mappings for pair<bgr t,bgr t> and pair<lab t,lab t> are rep-
resented with the tuple 〈0, 1, 2〉. We have identified eight mappings
that can represent all pairs of color spaces that are used in practice.
New mappings can be introduced when needed as specializations.

With the above helper metafunctions, we can now define the
type reduction for copy pixels. First we define the unary pre-
reduction that is performed for each image view type indepen-
dently. We perform reduction in two aspects of the image: the color
space is reduced with the reduce color space helper metafunc-
tion, and both mutable and immutable views are unified. We use
GIL’s derived view type metafunction (we omit the definition for
brevity) that takes a source image view type and returns a related
image view in which some of the parameters are different. In this
case we are changing the color space and mutability:

template <typename View>
struct reduce view basic<copy pixels fn,View,true> {
private:

typedef typename
reduce color space<typename View::color space t>::type Cs;

public:
typedef typename derived view type<

View, use default, Cs, use default, use default, mpl::true
>::type type;

};

Note that this reduction introduces a slight problem — it would
allow us to copy (incorrectly) between some incompatible images
— for example from hsb8 view t into lab8 view t, as they both
will be reduced to rgb8 view t. However, such calls should never
occur, as calling copy pixels with incompatible images violates its
precondition. Even though this pre-reduce significantly improves
compile times, due to the above objection we did not use it in our
measured experiments.

The first step of binary reduction is to check whether the two
images are compatible; the views are compatible predicate pro-
vides this information. If the images are not compatible, we reduce
to error t — a special tag denoting type mismatch error. All algo-
rithms throw an exception when given error t:

template <typename V1, typename V2>
struct reduce views basic<copy pixels fn, V1, V2, true>

: public reduce copy pixop compat<V1,V2,
mpl::and <views are compatible<V1,V2>,
view is mutable<V2> >::value > {};

template <typename V1, typename V2, bool IsCompatible>
struct reduce copy pixop compat {

typedef error t type;
};

Finally, if the two image views are compatible, we reduce their
color spaces pairwise, using the reduce color spaces metafunction
discussed above. Figure 2 shows the code, where the metafunction
derived view type again generates the reduced view types that
change the color spaces, but keep other aspects of the image view
types the same.

Note that we can easily reuse the type reduction policy for
copy pixels for other algorithms for which the same policy applies:



template <typename V1, typename V2>
struct reduce copy pixop compat<V1, V2, true> {
private:

typedef typename V1::color space t Cs1;
typedef typename V2::color space t Cs2;
typedef typename

reduce color spaces<Cs1,Cs2>::first t RCs1;
typedef typename

reduce color spaces<Cs1,Cs2>::second t RCs2;

typedef typename
derived view type<V1, use default, RCs1>::type RV1;

typedef typename
derived view type<V2, use default, RCs2>::type RV2;

public:
typedef std::pair<const RV1∗, const RV2∗> type;

};

Figure 2. Type reduction for copy pixels of compatible images.

template <typename V, bool IsBasic>
struct reduce view basic<resample view fn, V, IsBasic>

: public reduce view basic<copy pixels fn, V, IsBasic> {};

template <typename V1, typename V2, bool AreBasic>
struct reduce views basic<resample view fn, V1, V2, AreBasic>

: public reduce views basic<copy pixels fn, V1, V2, AreBasic> {};

5. Minimizing Instantiations with Variants
Type reduction is most necessary, and most effective with variant
types, such as GIL-s any image view, as a single invocation of
a generic algorithm would normally require instantiations to be
generated for all types in the variant, or even for all combinations
of types drawn from several variant types. This section describes
how we apply the type reduction machinery in the case of variant
types.

Variants are comprised of three elements — a type vector of
possible types the variant can store (Types), a run-time value
(index) to this vector indicating the type of the object currently
stored in the variant, and the memory block containing the instan-
tiated object (bits). Invoking an algorithm, which we represent as
a function object, amounts to a switch statement over the value of
index, each case N of which casts bits to the N-th element of Types
and passes the casted value to the function object. We capture this
functionality in the apply operation base template:8

template <typename Types, typename Bits, typename Op>
typename Op::result type
apply operation base(const Bits& bits, int index, Op op) {

switch (index) {
...
case N: return op(reinterpret cast<const

typename mpl::at c<Types, N>::type&>(bits));
...
}

}

As we discussed before, such code instantiates the algorithm with
every possible type and can lead to code bloat. Instead of calling
this function directly from the apply operation function template
overloaded for variants, we first subject the Types vector to reduc-
tion:

8 The number of cases in the switch statement equals the size of the Types
vector. We use the preprocessor to generate such functions with different
number of case statements and we use specialization to select the correct
one at compile time.

template <typename Types, typename Op>
struct unary reduce {

typedef ... reduced t;
typedef ... unique t;
typedef ... indices t;

static int map index(int index) {
return dynamic at c<indices t>(index);

}
template <typename Bits>
static typename Op::result type
apply(const Bits& bits, int index, Op op) {

return apply operation base<unique t>
(bits,map index(index),op);

}
}

Figure 3. Unary reduction for variant types.

template <typename Types, typename Op>
inline typename Op::result type
apply operation(const variant<Types>& arg, OP op) {

return unary reduce<Types,Op>::
template apply(arg. bits,arg. index,op);

}

The unary reduce template performs type reduction, and its apply
member function invokes apply operation base with the smaller,
reduced, set of types. The definition of unary reduce is shown in
Figure 3. The definitions of the three typedefs are omitted, but they
are computed as follows:

• reduced t — a type vector that holds the reduced types corre-
sponding to each element of Types. That is, reduced t[i] ==
reduce<Op, Types[i]>::type

• unique t — a type set containing the same elements as the type
vector reduced t, but without duplicates.

• indices t — a type set containing the indices (represented
as MPL integral types, which wrap integral constants into
types) mapping the reduced t vector onto the unique t set,
i.e., reduced t[i] == unique t[indices t[i]]

The dynamic at c function is parameterized with a type vector
of MPL integral types, which are wrappers that represent integral
constants as types. The dynamic at c function takes an index to the
type vector and returns the element in the type vector as a run-time
value. That is, we are using a run-time index to get a run-time value
out from a type vector. The definitions of dynamic at c function
are generated with the preprocessor; the code looks similar to the
following9:

template <typename Ints>
static int dynamic at c(int index) {

static int table[] = {
mpl::at c<Ints,0>::value,
mpl::at c<Ints,1>::value,
...

};
return table[index];

}

Some algorithms, like copy pixels, may have two arguments each
of which may be a variant. Without any type reduction, applying a

9 In reality the number of table entries must equal the size of the type vector.
We use the Boost Preprocessor Library [17] to generate function objects
specialized over the size of the type vector, whose application operators
generate tables of appropriate sizes and perform the lookup. We dispatch to
the right specialization at compile time, thereby assuring the most compact
table is generated.



binary variant operation is implemented using a double-dispatch —
we first invoke apply operation base with the first variant, pass-
ing it a function object, which, when invoked, will in turn call
apply operation base on the second argument, passing it the orig-
inal function. If N is the number of types in each input variant, this
implementation will generate N2 instantiations of the algorithm
and N + 1 switch statements having N cases each.

We can, however, possibly achieve more reduction if we con-
sider the argument types together, rather than each independently.
Figure 4 shows the definition of the overload for the binary
apply operation function template. We leave several details with-
out discussion, but the general strategy can be observed from the
code:

1. Perform unary reduce on each input argument to obtain the set
of unique reduced types, unique1 t and unique2 t. A binary
algorithm can define pre-reductions for its argument types, such
as the color space reductions described in Section 4.1. Any pre-
reductions at this step are beneficial, as they reduce the amount
of compile-time computations preformed in the next step.

2. Compute bin types, a type vector for the cross-product of the
unique pre-reduced types. Its elements are all possible types of
the form std::pair<const T1∗, const T2∗> with T1 and T2
drawn from unique1 t and unique2 t respectively.

3. Perform unary reduction on bin types, to obtain unique t —
the set of unique pairs after reducing each pair under the binary
operation.

Finally, to invoke the binary operation we use a switch statement
over the unique pairs of types left over after reduction. We map the
two indices to the corresponding single index over the unique set of
pairs. This version is advantageous because it instantiates far fewer
than N2 number of types and uses a single switch statement instead
of two nested ones.

6. Experimental Results
To assess the effectiveness of type reduction in practice, we mea-
sured the executable sizes, and compilation times, of programs that
called GIL algorithms with objects of variant types when type re-
duction was applied, and when it was not applied.

6.1 Compiler Settings
For our experiments we used the C++ compilers of GCC 4.0 on OS
X 10.4 and Visual Studio 8 on Windows XP. For GCC we used the
optimization flag −O2, and removed the symbol information from
the executables with the Unix strip command prior to measuring
their size. Visual Studio 8 was set to compile in release mode, using
all settings that can help reduce code size, in particular the ”Min-
imize Size” optimization (/O1), link-time code generation (/Gl),
and eliminating unreferenced data (/OPT:REF). With these the
compiler can in some cases detect that two different instances of
template functions generate the same code, and avoid the duplica-
tion of that code. This makes template bloat a lesser problem in
the Visual Studio compiler, as type reduction possibly occurs di-
rectly in the compiler. We show, however, improvement even with
the most aggressive code-size minimization settings.

6.2 Test Images
For testing type reduction with unary operations, we use an exten-
sive variant of GIL image views, varying in color space (Grayscale,
RGB, BGR, LAB, HSB, CMYK, RGBA, ABGR, BGRA, ARGB),
in channel depth (8-bit, 16-bit and 32-bit) and in whether the pixels
are consecutive in memory or offset by a run-time specified step.
This amounts to 10 × 3 × 2 = 60 combinations of interleaved im-
ages. In addition, we include planar versions for the primary color

template <typename Types1, typename Types2, typename Op>
struct binary reduce {

typedef unary reduce<Types1,Op> unary1 t;
typedef unary reduce<Types2,Op> unary2 t;
typedef typename unary1 t::unique t unique1 t;
typedef typename unary2 t::unique t unique2 t;

typedef cross product pairs<unique1 t, unique2 t> bin types;
typedef unary reduce<bin types,Op> binary t;
typedef typename binary t::unique t unique t;

static inline int map indices(int index1, int index2) {
int r1=unary1 t::map index(index1);
int r2=unary1 t::map index(index2);
return bin reduced t::map index(

r2∗mpl::size<unique1 t>::value + r1);
}

public:
template <typename Bits1, typename Bits2>
static typename Op::result type
apply(const Bits1& bits1, int index1,

const Bits2& bits2, int index2, Op op) {
std::pair<const void∗,const void∗> pr(&bits1, &bits2);

return apply operation base<unique t>
(pr, map indices(index1,index2),op);

}
};
template <typename T1, typename T2, typename BinOp>
inline typename BinOp::result type apply operation(

const variant<T1>& arg1, const variant<T2>& arg2, BinOp op)
{

return binary reduce<T1,T2,Op>::
template apply(arg1. bits,arg1. index,

arg2. bits,arg2. index, op);
}

Figure 4. Binary reduction for variant types.

spaces (RGB, LAB, HSB, CMYK and RGBA) which adds another
5 × 3 × 2 = 30 combinations for a total of 90 image types.10

Binary operations result in explosion in the number of combi-
nations to consider for type reduction. The practical upper limit for
direct reduction, with today’s compilers and typical desktop com-
puters, is about 20×20 combinations; much beyond that consumes
notable amounts of compilation resources.11 Thus, for binary oper-
ations we use two smaller test sets. Test B consists of ten images —
Grayscale, BGR, RGB, step RGB, planar RGB, planar step RGB,
LAB, step LAB, planar LAB, planar step LAB, all of which are in
8-bit. Test C consists of twelve 8-bit images — in RGB, LAB and
HSB, each of which can be planar or interleaved, step or non-step.

To summarize: the test set A contains 90 image types, B con-
tains 10 image types, and C contains 12 image types.

6.3 Test Algorithms
We tested with three algorithms — invert pixels, copy pixels and
resample view.

10 We split the images in two sets because GIL does not allow planar
versions of grayscale (as it is identical to interleaved) or derived color
spaces (because they can be represented by the primary color spaces by
rearranging the order of the pointers to the color planes in the image
construction).
11 GIL determines how complex a given binary type reduction will be and
suppresses computing it directly when the number of combinations exceeds
a limit. In such a case, the binary operation is represented via double-
dispatch as two nested unary operations. This allows more complex binary
functions to compile, but the type reduction may miss some possibilities for
sharing instantiations.



Sn Sr Decrease in %
Test 1. 201.6 107.5 47%
Test 2. 252.8 75.9 70%
Test 3. 259.8 144.0 45%
Test 4. 318.7 98.8 69%
Test 5. 62.2 31.2 50%

Table 1. Size, in kilobytes, of the generated executable in the five
test programs compiled with GCC 4.0 C++ compiler, without (Sn)
and with (Sr) type reduction. The fourth column shows the percent
decrease in the size of the generated code that was achieved with
type reduction.

The unary algorithm invert pixels inverts each channel of each
pixel in an image. Although less useful than other algorithms,
invert pixels is simple and allows us to measure the effect of our
technique without introducing too much GIL-related code. As a
channel-independent operation, invert pixels does not depend on
the color space or ordering of the channels. We tested invert pixels
with the test set A: type reduction maps the 90 image types in test
set A down to 30 equivalence classes.

The copy pixels algorithm, as discussed in Sections 3 and 4, is
a binary algorithm performing channel-wise copy between compat-
ible images and throws an exception when invoked with incompati-
ble images. Applied to test images B, our reduction for copy pixels
reduces the image pair types from 10 × 10 = 100 down to 26
(25 plus one ”incompatible image” case). Without this reduction
there are 42 compatible combinations and 58 incompatible ones.
The code for the invalid combinations is likely to be shared even
without reduction. Thus our reduction transforms 43 cases into 26
cases, which is approximately a 40% reduction.

For test images C, our reduction for copy pixels reduces the
image pairs from 12 × 12 = 144 down to 17 (16 plus the ”in-
compatible image” case). Without the reduction, there would be 48
valid and 96 invalid combinations. Thus our reduction transforms
49 into 17 cases, which is approximately a 65% reduction.

We also use another binary operation — resample view. It
resamples the destination image from the source under an arbitrary
geometric transformation and interpolates the results using bicubic,
bilinear or nearest-neighbor methods. It is a bit more involved than
copy pixels and is therefore less likely to be inlined. It shares
the same reduction rules as copy pixels (works for compatible
images and throws an exception for incompatible ones). We test
resample pixels with test images B and C (again, A is too big for
a binary algorithm to handle).

In summary we are running 5 tests: (1) copy pixels on test
images B, (2) copy pixels on test images C, (3) resample view
on test images B, (4) resample view on test images C, and (5)
invert pixels on test images A.

6.4 Test Results
Our results are obtained as follows: For each of the five tests in an
otherwise empty program, we construct an instance of any image
with the corresponding image type set and invoke the correspond-
ing algorithm. We measure the size of the resulting executable and
subtract from it the size of the executable if the algorithm is not
invoked (but the any image view instance is still constructed). The
resulting difference in code sizes can thus be attributed to just the
code generated from invoking the algorithm. We compute these dif-
ferences for both platforms, with and without the reduction mech-
anism, and report the results on Tables 1 and 2.

The results show that we are, on the average, cutting the exe-
cutable size by more than half under GCC and as much as 70% at
times. Since Visual Studio can already avoid generating instantia-
tions whose assembly code is identical, our gain with this compiler

Sn Sr Decrease in %
Test 1. 42.0 34.5 18%
Test 2. 41.5 26.0 37%
Test 3. 46.0 42.0 8%
Test 4. 33.5 34.0 -1%
Test 5. 24.0 16.5 31%

Table 2. Size, in kilobytes, of the generated executable in the
five test programs compiled with Visual Studio 8’s C++ compiler,
without (Sn) and with (Sr) type reduction. The fourth column
shows the percent decrease in the size of the generated code that
was achieved with type reduction.

Visual Studio 8 GCC
Test 1. 106% 116%
Test 2. 78% 97%
Test 3. 87% 118%
Test 4. 75% 103%
Test 5. 194% 307%

Table 3. The effect of type reduction to compilation times in the
five test programs. The percentages are computed as 100×Tr/Tn,
where Tn is the compilation time without type reduction and Tr the
compilation time using type reduction.

is less pronounced. However, we can still observe reduction in the
executable size, as much as 32% at times. We believe this is due to
two factors — first, Visual Studio’s optimization cannot be applied
when the code is inlined (which is the case for tests 1, 2 and 5).
Indeed those tests show the largest gain. But even for non-inlined
code in test 3 we observed a notable reduction. We believe this
is due to the simplification of the switch statements. Test 3 with-
out reduction generates 11 (nested) switch statements of 10 cases
each, whereas we only generate one switch statement with 26 cases.
We also tried inlining resample view under Visual Studio and got
roughly 30% code reduction for tests 3 and 4, (in addition to being
about 20% faster to compile, and slightly faster to execute since we
avoid two function calls and a double-dispatch).

We also measured the time to compile each of the five tests
of both platforms when reduction is enabled and compared it to
the time when no reduction is enabled. The results are reported in
Table 3. We believe there are two main factors in play. On the one
hand our reduction techniques involve some heavy-duty template
meta-programming, which slows down compiling. On the other
hand, the number of instantiated copies of the algorithm is greatly
reduced, which reduces the amount of work for the later phases
of compiling, in particular if the algorithm’s implementation is of
substantial size. In addition, a large portion of the types generated
during the reduction step are not algorithm-dependent and might be
reused when another related algorithm is compiled with the same
image set. Finally, when compile times are a concern, our technique
may be enabled only towards the end of the product cycle.

7. Conclusions
Combining run-time polymorphism and generic programming with
the instantiation model of C++ is non-trivial. We show how variant
types can be used for this purpose but, without caution, this easily
leads to a severe code bloat. As its main contribution, the paper
describes library mechanism for significantly reducing code bloat
that results from invoking generic algorithms with variant types,
and demonstrates their effectiveness in the context of a production
quality generic library.

We discussed the problems of the traditional class-centric ap-
proach to addressing code bloat: template hoisting within class hi-



erarchies. This approach requires third-party developers to abide
by a specific hierarchy in a given module, and can be inflexible —
one hierarchy may allow template hoisting for certain algorithms
but not for others. Moreover, complex relationships involving two
or more objects may not be representable with a single hierarchy.

We presented an alternative, algorithm-centric approach to ad-
dressing code bloat, which allows the definition of partitions among
types, each specific to one or more generic algorithms. The algo-
rithms need to be instantiated only for one representative of the
equivalence class in each partition. Our technique does not enforce
a particular hierarchical structure that extensions to the library must
follow. The rules for type reduction are algorithm-dependent and
implemented as metafunctions. The clients of the library can define
their own equivalence classes by specializing a particular type re-
duction template defined in a generic library, and have the induced
type reductions be applied when using the generic algorithms. Also,
new algorithms can be introduced by third-party developers and
all they need to do is define the reduction rules for their algo-
rithms. Algorithm reduction rules may be inherited; we discussed
the copy pixels and resample view algorithms which have identi-
cal reduction rules.

The primary disadvantage of our technique is that it relies on
a cast operation, the correctness of which is not checked. The
reduction specifications declare that a given type can be cast to
another given type when used in a given algorithm. That requires
intimate knowledge of the type and the algorithm. Nevertheless,
we believe the generality and effectiveness of algorithm-centric
type reduction justify the safety concerns. We demonstrated that
this technique can result in reducing the size of the generated code
in half for compilers that don’t support template bloat reduction.
Even for compilers that employ aggressive pruning of duplicate
identical template instantiations, our technique can result in further
noticeable decrease in code size.

The framework presented in this paper is essentially an active
library, as defined by Czarnecki et al. [7]. It draws from both
generic and generative programming, static metaprogramming with
C++ templates in particular. We accomplish a high degree of reuse
and good performance with the generic programming approach to
library design. Static metaprogramming allows us to fine tune the
library’s internal implementation — for example, to decrease the
amount of code to be generated.

Our future plans include experimenting with the framework
in domains other than imaging. We have experience on generic
libraries for linear algebra, which seems to be a promising domain,
sharing similarities with imaging: a large number of variations
in many aspects of the data types (matrix shapes, element types,
storage orders, etc.).

Acknowledgments
We are grateful for Hailin Jin for his contributions to GIL and in-
sights on early stages of this work. This work was in part supported
by the NSF grant CCF-0541014.

References
[1] Adobe Source Libraries, 2006. opensource.adobe.com.
[2] David Abrahams and Aleksey Gurtovoy. C++ Template Metapro-

gramming: Concepts, Tools, and Techniques from Boost and Beyond.
Addison-Wesley, 2004.

[3] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel
Tanase, Nathan Thomas, Nancy Amato, and Lawrence Rauchwerger.
STAPL: An adaptive, generic parallel C++ library. In Languages and
Compilers for Parallel Computing, volume 2624 of Lecture Notes in
Computer Science, pages 193–208. Springer, August 2001.

[4] Matthew H. Austern. Generic programming and the STL: Using
and extending the C++ Standard Template Library. Professional

Computing Series. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[5] Lubomir Bourdev and Hailin Jin. Generic Image Library, 2006.
opensource.adobe.com/gil.

[6] Martin D. Carroll and Margaret A. Ellis. Designing and Coding
Reusable C++. Addison-Wesley, 1995.

[7] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glck, David Vande-
voorde, and Todd Veldhuizen. Generative programming and active
libraries (extended abstract). In M. Jazayeri, D. Musser, and R. Loos,
editors, Generic Programming. Proceedings, volume 1766 of Lecture
Notes in Computer Science, pages 25–39. Springer-Verlag, 2000.

[8] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming Methods, Tools, and Applications. Addison-Wesley, 2000.

[9] ECMA. C# Language Specification, June 2005. http://www.
ecma-international.org/publications/files/ECMA-ST/
Ecma-334.pdf.

[10] ECMA International. Standard ECMA-367: Eiffel analysis, design
and programming Language, June 2005.

[11] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr.
On the design of CGAL, a computational geometry algorithms
library. Software – Practice and Experience, 30(11):1167–1202,
2000. Special Issue on Discrete Algorithm Engineering.

[12] Eric Friedman and Itay Maman. The Boost.Variant library.
http://www.boost.org/libs/variant, January 2004.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[14] Aleksei Gurtovoy and David Abrahams. The Boost C++ metapro-
gramming library. www.boost.org/libs/mpl, 2002.

[15] International Organization for Standardization. ISO/IEC 14882:1998:
Programming languages — C++. Geneva, Switzerland, 1998.

[16] D. Kapur and D. Musser. Tecton: a framework for specifying and
verifying generic system components. Technical Report RPI–92–20,
Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, New York 12180, July 1992.

[17] Vesa Karvonen and Paul Mensonides. The Boost.Preprocessor library.
http://www.boost.org/libs/preprocessor, 2002.

[18] Andrew Kennedy and Don Syme. Design and implementation of
generics for the .NET Common Language Runtime. In PLDI ’01:
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 1–12, New York, NY,
USA, 2001. ACM Press.

[19] David A. Musser and Alexander A. Stepanov. Generic Programming.
In Proceedings of International Symposium on Symbolic and
Algebraic Computation, volume 358 of Lecture Notes in Computer
Science, pages 13–25, Rome, Italy, 1988.

[20] W. R. Pitt, M. A. Williams, M. Steven, B. Sweeney, A. J. Bleasby,
and D. S. Moss. The Bioinformatics Template Library–generic
components for biocomputing. Bioinformatics, 17(8):729–737, 2001.

[21] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[22] Jeremy Siek and Andrew Lumsdaine. The Matrix Template Library:
A generic programming approach to high performance numerical
linear algebra. In International Symposium on Computing in Object-
Oriented Parallel Environments, 1998.

[23] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. Generic
programming for high performance numerical linear algebra. In
Proceedings of the SIAM Workshop on Object Oriented Methods
for Inter-operable Scientific and Engineering Computing (OO’98).
SIAM Press, 1998.

[24] A. Stepanov and M. Lee. The Standard Template Library. Technical
Report HPL-94-34(R.1), Hewlett-Packard Laboratories, April 1994.
http://www.hpl.hp.com/techreports.

[25] Todd L. Veldhuizen. Using C++ template metaprograms. C++
Report, 7(4):36–43, May 1995. Reprinted in C++ Gems, ed. Stanley
Lippman.


