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Abstract

The PiDuce project comprises a programming language and a distributed runtime
environment devised for experimenting Web services technologies by relying on solid
theories about process calculi and formal languages for XML documents and schemas.

The language features values and datatypes that extend XML documents and
schemas with channels, an expressive type system with subtyping, a pattern match-
ing mechanism for deconstructing XML values, and control constructs that are based
on Milner’s asynchronous pi calculus. PiDuce programs are compiled into typesafe
object code. The runtime environment supports the execution of PiDuce object code
over networks by relying on state-of-the-art technologies, such as XML schema and
WSDL, thus enabling interoperability with existing Web services.

We thoroughly describe the PiDuce project: the programming language and its
semantics, the architecture of the distributed runtime and its implementation. A
running prototype is available at http://www.cs.unibo.it/PiDuce/.
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1 Introduction

Web services are part of a recent emerging paradigm where computational
elements are autonomous, platform-independent and can be described, pub-
lished, discovered, and orchestrated for developing networks of collaborating
applications distributed within and across organizations. Various technologies
and languages have been proposed for designing Web services by the ma-
jor Information Technology vendors. We recall XLANG [33], BizTalk [24], and
WS-BPEL [5]. All these languages are informally specified and miss a mathe-
matical model. In fact, they sometime retain vague descriptions of activities
(e.g. the execution of compensation handlers in transactional activities), they
lack verification tools, and they give poor guarantees about possible imple-
mentations.

Process calculi, such as pi calculus [29] and join calculus [16], are possible
candidate models for Web services languages. Let us illustrate the point by
an example. Consider a book-selling service that accepts requests containing
the client identifier and the ordered book. When a request arrives, the book-
selling service invokes the services of the Credit and Deposit Departments
for verifying the client identity and the book availability. In case of success
the request is confirmed, otherwise a failure message is returned. Figure 1
shows a (simplified) description of the book-selling service in WS-BPEL (similar
definitions may be given in other Web services process languages such as
BizTalk, XLANG, etc.). The format used for this description is XML [28], a
widely-used standard for exchanging documents.

The reader familiar with process calculi will recognize the operations of se-
quence, input (receive), parallel composition (flow), output (invoke), as
well as operations that are typical of sequential languages (switch). In partic-
ular, ignoring the XML details, the book selling service may be rewritten into
a pi calculus-like language as follows:

OrderPT_in?(BookRequest, ClientId).
( CreditDeptPT_out!(ClientId) | DepositDeptPT_out!(BookRequest)

| CreditDeptPT_in?(CreditResponse).
DepositDeptPT_in?(BookResponse).

match CreditResponse, BookResponse with
true, true --> OrderPT_out!("OK")
_, _ --> OrderPT_out!("NO") )

This process and the description of Figure 1 are actually inadequate because
they oversimplify the structure of XML documents and the machinery for their
parsing. For example lines 3 and 4 in Figure 1 are technically incorrect because
the receive element has two attributes with the same name. These lines
should be expanded into:
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<sequence>
<!--Receive the initial request from client -->
<receive partnerLink="client" portType="com:OrderPT"

operation="BookSelection"
variable="BookRequest" variable="ClientID" />

<!--Make concurrent invocations to Credit \& Deposit Dep-->
<flow>
<!--Invoke Deposit Department -->
<invoke partnerLink="DepositDept" portType="ins:DepositDeptPT"

operation="VerifyBookSelection"
inputVariable="BookRequest"
outputVariable="BookResponse" />

<!--Invoke Credit Department -->
<invoke partnerLink="CreditDept" portType="ins:CreditDeptPT"

operation="VerifyCredit" inputVariable="ClientID"
outputVariable="CreditResponse" /> </flow>

<!--verify the responses -->
<switch>
<case condition="getVariableData(BookResponse) == true

&& getVariableData(CreditResponse) == true)">
<!--Reply OK to the client -->
<reply partnerLink="client" portType="com:OrderPT"

operation="SelectBook" value="OK" /> </case>
<otherwise> <!--Reply NO to the Client -->

<reply partnerLink="client" portType="com:OrderPT"
operation="SelectBook" value="NO" /> </otherwise>

</switch>
</sequence>

Fig. 1. A (simplified) description of the book selling service in WS-BPEL.

<receive partnerLink="client" portType="com:OrderPT"
operation="BookSelection" variable="BookSelectionInput"/>

<copy> <from variable="BookSelectionInput"
query="/BookSelectionInput/BookRequest"/>
<to variable="BookRequest"/> </copy>

<copy> <from variable="BookSelectionInput"
query="/BookSelectionInput/ClientId"/>
<to variable="ClientId"/> </copy>

The above code parses the tree structure of the received XML document, it
extracts two fragments located at /BookSelectionInput/BookRequest and
/BookSelectionInput/ClientId, and stores such fragments in two variables
called BookRequest and ClientId, respectively. Therefore, a process calculus
for faithfully describing Web services processes cannot overlook XML values,
XML schemas, and patterns.
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<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://buy_a_book.com/bookseller/">

<wsdl:types> <!--the schema definitions -->
<s:element name="BookSelectionRQ">

<s:sequence>
<s:element name= "BookRequest" type="s:string" />
<s:element name= "ClientId" type="s:string" />

</s:sequence>
</s:element>
<s:element name="BookSelectionRS" type="s:string" />

</wsdl:types>
<wsdl:operation name="BookSelection">
<!--the operations of the service -->
<wsdl:input message="tns:BookSelectionRQ" />
<wsdl:output message="tns:BookSelectionRS" />

</wsdl:operation>
...
<wsdl:binding> <!--the locations of the operations -->
<wsdl:operation name="BookSelection">

<soap:operation
soapAction="http://buy_a_book.com/bookseller/BookSelection"/>

</wsdl:operation>
<wsdl:binding>

</wsdl:definitions>

Fig. 2. A (simplified) WSDL of the book selling service.

The PiDuce project (www.cs.unibo.it/PiDuce) aims at developing a calculus
of processes that may construct and deconstruct XML documents. The calculus
is intended to serve as an intermediate language that is powerful enough to
encode the common operations of Web services languages, to assess their ex-
pressive power and to develop tools for their analysis. The project also aims at
designing a formally specified distributed machine running applications that
may be exported to the Web. Overall, PiDuce is not the platform for Web
service technologies, but rather it is a formal framework for experimenting
proposals, studying their theory, and implementing the relevant features.

The design of the PiDuce language, as well as the prototype implementa-
tion, presents some major technical difficulties. The first difficulty regards the
treatment of service references. These references are already present in WSDL

documents [25], which are the standard files used for publishing and discover-
ing services. Table 2 contains a (simplified) WSDL of the book-selling service.

Recently, a new version of WSDL (WSDL 2.0 [26,27] that, at the time of this
writing, is in a Candidate Recommendation status) uses service references in
the wsdl:types part of the document. This corresponds to extending types
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with service constructors that collect references with a given interface. There-
fore, a service invocation may contain a reference that the called service might
eventually compare with some local schema before using it. Such a comparison
amounts to downloading the schema of the reference and computing a sublan-
guage relation between schemas. This, in general, requires exponential time in
the size of the tree automata of the pattern [14] and may significantly degrade
the run-time efficiency of possible implementations. We alleviate this prob-
lem by designing a number of restrictions on schemas that make subschema
verification polynomial.

A second difficulty regards the implementation. In BizTalk, a service using
reliable messaging, such as MSMQ and MQSeries, may receive values from local
and remote channels – MessageQueues in BizTalk [24]. For example, the C#

fragment below may be obtained in BizTalk by drawing a receive activity on
a MSMQ adapter:

1 string queueAddress = @"ServerName\QUEUE";
2 MessageQueue q = new MessageQueue(queueAddress, false, false,
3 QueueAccessMode.Receive);
4 Message m = q.Receive();

Line 1 defines the address of a queue as consisting of a machine name – the
ServerName – and the name of the queue – QUEUE. Line 2 defines a reference q
to the address of line 1 specifying the operations that will be performed. In
particular, the last argument of MessageQueue constrains the use of q for re-
ceiving messages. The receive operation is performed in line 4. This feature is
known as input capability in process calculi, which is the mechanism where a
received reference is used as the subject of a subsequent input. Implementing
input capability in a distributed setting is a hard task because it allows the
dynamic creation of large input processes in the wrong place, thus requiring
comparatively large code migrations in order to avoid consensus problems.
PiDuce admits input capability and implements it by means of linear for-
warders [18]. The solution consists of allowing just a limited atom of input
capability – the linear forwarder. A linear forwarder is a process that simply
turns one message on a Uniform Resource Identifiers (uri) into a message on
another. For instance

uri1?(m) uri2!(m)

is a linear forwarder. To illustrate how linear forwarders enable input capabil-
ity, consider the process uri?(u) u?(v) P, where P is a continuation process.
This process is encoded as

uri?(u) new w in ( spawn { u?(m) w!(m) } w(v) Q )

where the input u?(v) has been turned into an input w?(v) on a service
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reference w created at the same location as uri, and where the forwarder
allows one output on u to interact with w instead. The key observation is that
the linear forwarder is easy to implement: it is just a small message containing
two URLs and directed to the location of u. This paper may be also seen as
a formal (alternative) implementation of input capability in BizTalk, whose
implementation details have not been published.

A third difficulty regards interoperability. This feature is a primary focus of
the PiDuce project for two reasons. First of all, it allows us to carry on actual
experiments, by letting PiDuce define and interact with real Web services.
Second, it connects a formally specified system with the current technologies,
thus providing such technologies with a foundational basis and possibly spot-
ting their weaknesses, ambiguities, and lines of extension. As an example, a
PiDuce program should be able to interoperate with the service in Figure 1.
In order to do so, it can only rely on the public description of the service
– its WSDL in Figure 2. A PiDuce client for the book-selling service written
in PiDuce must import the corresponding WSDL to ensure that the channels
used for communication with the service are typed in accordance with what
declared in the client. Symmetrically, a Web service implemented in PiDuce

must be able to export its operations by means of a WSDL resource. Overall,
such import/export procedures entail a mapping between the PiDuce schemas
and, say, XML schema, which is the language typically used in WSDL resources
to describe the valid documents exchanged with a Web service. This map-
ping is problematic because the two systems do not have the same expressive
power. For example, in PiDuce service references are first-class values; there-
fore PiDuce schemas include channel types, which are not supported in XML

schema. More generally, PiDuce schema retain features that are fundamental
in order to guarantee the typability of processes (cf. nondeterministic unions
of schemas) but which are not found in XML schema. It turns out that the effort
for making PiDuce interoperable is considerable because what is theoretically
clean and well-founded is not necessarily what the technologies provide or
what is practically widespread. In this respect the contribution of PiDuce is
original in that all the exiting languages and distributed machines either lack
a formal foundation or are mostly isolated, without a strong connection with
actual technologies.

The paper is structured as follows. Section 2 is an introduction to the PiDuce

language constructs through examples. Section 3 defines the syntax of the
language. Section 4 defines the subschema relation and the static semantics
of the PiDuce process language. Section 5 describes the pattern matching and
the operational semantics of local operations. Section 6 defines the PiDuce

distributed machine and the static and dynamic semantics of operations that
deal with remote locations. In Section 7 we close the gap between PiDuce and
Web service technologies by adding the notions of synchronous communica-
tion and service operations. Section 8 briefly describes the architecture of the
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PiDuce runtime and shows how PiDuce is interoperable. Section 9 discusses
related works and Section 10 concludes with an example of PiDuce program
that interoperates with real-world Web services. Appendixes A and B contain
proofs of the results stated in the paper. Appendix C presents an algorithmic
version of the subschema relation.

2 Getting started

The basic elements of PiDuce are introduced through a few examples. The
formal presentation is deferred to the next section.

PiDuce values represent XML documents. For example, the XML document

<msg>hello</msg><doc/>

is written in PiDuce as msg["hello"],doc[ ].

PiDuce schemas are used to type values and approximate XML-Schemas. For
example, the XML-Schema

<xsd:element name="a" type="xsd:integer"/>

describing a-labelled integers is written as a[int]. The XML-Schema

<xsd:sequence>
<xsd:element name="a" type="xsd:integer"/>
<xsd:choice>

<xsd:element name="b" type="xsd:string"/>
<xsd:element name="c"/>

</xsd:choice>
</xsd:sequence>

is written as a[int],(b[string] + c[ ]). Schemas with a repeated structure are
written in PiDuce by means of the star operator. For example, the XML-Schema

<xsd:sequence minOccurs="0" maxOccurs="unbound">
<xsd:element name="a" type="xsd:string"/>

</xsd:sequece>

is written as a[string]∗. A detailed discussion of the relationship between XML

and PiDuce schemas is undertaken in Section 8.

PiDuce processes describe Web services. For example, a printer service that
collects color and black-white printing requests is defined by
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print?*(x : Pdf + JPeg)
match x with {

y : Pdf => printbw!(y)
| z : JPeg => printc!(z) }

The print service accepts a value x of schema Pdf + JPeg (where “+” denotes
schema union), it checks whether the received value x belongs to either Pdf or
JPeg; in the first case it forwards the value x to the black-white printer, in the
second case it forwards the value x to the color printer. The basic mechanism
for interactions is message passing. For example print!(document) invokes
the service print with the value document. Service invocation is non-blocking
and asynchronous: the sender does not wait that the receiver really consumes
the message. The star after the question mark in the print service above
indicates that the service is permanent: the process is capable of handling an
unlimited number of requests.

The parallel execution of several activities is defined by the spawn construct.
For example

spawn { print!(document1) } print!(document2)

invokes print twice. Because of asynchrony, there is no guarantee as to which
invocation will be served first. More elaborated forms of control and commu-
nication, such as sequentiality and rendez-vous, can be encoded using explicit
continuation-passing style.

In PiDuce it is possible to select one input out of many. This operation,
which is similar to the homonymous system call in socket programming, to
the “pick activity” in WS-BPEL, and to the input-guarded choice in the pi
calculus, permits the definition of alternative activities. For example, consider
a printer service that after the printer request waits for the black-white or
color request and prints the document accordingly:

print?*(x : Pdf + JPeg)
select { b&w?( () ) printbw!(x)

color?( () ) printc!(x) }

(note the missing * after b&w? and color?). In general, the select operation
groups several input operations to be executed in mutual exclusion.

Service names may be created dynamically. In their simplest form, services
have exactly one operation whose name coincides with that of the service.
Services are declared as follows:

new print : 〈Pdf + JPeg〉O in P

The new operation creates a new channel at the URL address of the runtime
environment executing this code (each service URL is made unique by append-
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ing an appropriate suffix) and publishes a WSDL document describing print
as an asynchronous – one-way, in WSDL jargon – service (the capability is “O”)
accepting documents of schema Pdf + JPeg. The scope of the declaration is
restricted to P . In PiDuce channels are first-class citizens: they are values that
can be sent over and received from other channels and they can be examined
by pattern matching. With this standpoint, the operation new is intended to
declare the schema of a channel literal. Multi-operation services may be also
defined. For example the code

new cell : {get : 〈〈int〉O〉O ; set : 〈int〉O} in P

defines a service cell with the operations get and set (see Section 7). These
operations may be addressed in P by cell#get and cell#set , respectively.

3 The PiDuce language

The syntax of PiDuce includes the categories labels, expressions, schemas,
patterns, and processes that are defined in Table 1. The following countably
infinite sets are used: the set of tags, ranged over by a, b, . . . ; the set of vari-
ables, ranged over by x, y, z, . . . ; the set of schema names, ranged over by
U, V, . . . ; the set of pattern names, ranged over by Y, J, . . . . Among variables
we distinguish channels, i.e. names to be used as URLs, ranged over by u, v,
. . . .

A PiDuce program is

U1 = S1;; · · · ;;Un = Sn ;; Y1 = F1;; · · · ;;Ym = Fm ;;P

that is a sequence of schema and pattern name definitions and a process.
For simplicity we assume that the names U1, . . . , Un, Y1, . . . , Ym are pairwise
different. Sequences of schema name and pattern name definitions are repre-
sented by maps with finite domain E and F that take a name and return the
associated schema or pattern, respectively.

The sets fv(·) of free variables and bv(·) of bound variables are defined for
expressions, patterns, and processes as follows:

fv(E) is the set of variables occurring in E; bv(E) is empty;
fv(F ) is the set of variables occurring in F and, recursively, in the definition

of every pattern name occurring in F ; bv(F ) is empty;
fv(P ) is the set of variables occurring in P that are not bound. An occurrence

of x in P is bound in a branch u?(F ) P of a select or in the replicated input
u?*(F ) P if x ∈ fv(F ); an occurrence of u in P is bound in new u : 〈S〉κ in P .
bv(P ) collects the bound variables in P .
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Table 1
PiDuce syntax (B includes int, string, integer and string constants).

L ::= label
a (tag)
~ (wildcard label)
L+ L (union)
L \ L (difference)

E ::= expression
() (void)
n (integer constant)
s (string constant)
x (variable)
a[E] (labelled expression)
E,E (sequence)

S ::= schema
() (void schema)
B (basic schema)
〈S〉κ (channel schema)
L[S] (labelled schema)
S,S (sequence schema)
S + S (union schema)
S∗ (star)
U (schema name)

F ::= pattern
() (void pattern)
B (basic schema)
〈S〉κ (channel pattern)
S∗ (star pattern)
x : F (variable binder)
L[F ] (labelled pattern)
F,F (sequence pattern)
F + F (union pattern)
Y (pattern name)

P ::= process
0 (nil)
u!(E) (output)
select {ui?(Fi) Pi i∈1..n}

(select)
new u : 〈S〉κ in P

(new)
match E with {Fi ⇒ Pi

i∈1..n}
(match)

spawn {P} P (spawn)
u?*(F ) P (replication)

The definitions of alpha-conversion and substitution for bound variables are
standard. In the whole paper, we identify terms that are equal up-to alpha-
conversion. In the following, the channel u in u!(E), u?(F ) and u?*(F ) is
called subject.

Labels. Labels specify collections of tags. Let L be the set of all tags; the
semantics of labels is defined by the ·̂ function:

â = {a} ~̂ = L L̂+ L′ = L̂ ∪ L̂′ L̂ \ L′ = L̂ \ L̂′

We write a ∈ L for a ∈ L̂. Label intersection is a derived operator: L ∩ L′ def
=

~ \ ((~ \ L) + (~ \ L′)).

Expressions. Expressions are the empty sequence (), integer and string
constants, variables, labelled expressions, or sequences of expressions. The
PiDuce prototype also includes primitive operations over basic schemas. The
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formal treatment of such operations is omitted as it is standard and not in-
teresting. In the following, whenever possible, () is omitted: expressions such
as a[()] and a[E],() are shortened into a[ ] and a[E], respectively.

Channels are references to services. They represent URL addresses of the cor-
responding WSDL interfaces, such as http://www.cs.unibo.it/PiDuce.wsdl.
Section 8 discusses how WSDL interfaces are related to PiDuce services.

A relevant subset of expressions is that of values, which are are the normal-
ized expressions exchanged during communications. As in pi calculus, PiDuce
values may contain channels, which are variables. For example a[x] is a value
inasmuch as x is a channel. Values with variables in a set Z, called Z-values, are
possibly empty sequences of constants, variables in Z, and labelled Z-values.
In particular, expressions such as (),a[1] or a[1],(),b[true] or a[1],() or u
are not ∅-values. Values are ranged over by V , W , . . . , and, in the following,
the set Z is omitted when it is clear from the context.

The evaluation function ⇓Z , where Z is a set of variables, turns expressions
into values and is defined by the following rules:

() ⇓Z () n ⇓Z n s ⇓Z s

u ∈ Z
u ⇓Z u

E ⇓Z V
a[E] ⇓Z a[V ]

E ⇓Z V E ′ ⇓Z V ′

E,E ′ ⇓Z V@V ′

where the concatenation @ of two values is defined as follows:

()@V = V@() = V
V@V ′ = V ,V ′ if (V = n or V = s or V = x or V = a[V ′′])

and V ′ 6= ()

(V ,V ′)@V ′′ = V@(V ′@V ′′)

Schemas. Schemas describe collections of structurally similar values. The
syntax of schemas includes the category of basic types B that, in this paper,
are integers (int), strings (string) and integer and string constants n and s,
respectively. The basic types n and s represent the sets {n} and {s}, respec-
tively. The schema () describes the empty value. The schema 〈S〉κ describes
channels that carry messages of schema S and that may be used with capabil-
ity κ ∈ {I, O, IO}. The capabilities I, O, IO mean that the channel can be used
for performing inputs, outputs, and both inputs and outputs, respectively. For
example 〈int〉O describes the set of channels on which it is possible to send
integer values. The schema L[S] describes labelled values whose tag is in L
and containing a value of schema S. The schema S,S ′ describes sequences
having a prefix of schema S and the remaining suffix of schema S ′. In what
follows L[()], (),S and S,() are shortened into L[ ], S, and S, respectively.
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The schema S + S ′ describes the set of values whose schema is either S or S ′.
The schema S∗ describes the set of values that are described by every finite
(possibly empty) sequence S, . . . ,S. Schemas include schema names that are
bound by finite maps E from schema names to schemas such that, for every
U ∈ dom(E), the schema names in E(U) belong to dom(E). Maps E are well-
formed according to the definition below. Let tls(S) be the least function
such that:

tls(S) =


{U} ∪ tls(E(U)) if S = U

tls(T ) if S = T ∗

tls(T ) ∪ tls(T ′) if S = T + T ′ or S = T,T ′

∅ otherwise

Then E is well-formed if, for every U ∈ dom(E), U 6∈ tls(E(U)). The well-
formedness and the finiteness of the domain of E guarantee that PiDuce

schemas only define regular tree languages (such languages retain a decid-
able sublanguage relation, which is a fundamental operation in PiDuce type
checking and pattern-matching) [14].

The following definitions will be used in the rest of the paper:

Empty = ~[Empty] ;;

AnyChan = 〈Empty〉O + 〈Any〉I ;;

Any = (int + string + AnyChan + ~[Any])∗ ;;

The name Empty describes the empty set of values; AnyChan describes any
channel; Any describes any value. Empty and Any are respectively the least
and the greatest schema according to the subschema relation of Section 4
(Proposition 2(9)).

Patterns. Patterns permit the deconstruction of values using matching. The
patterns (), B, 〈S〉κ, and S∗ match values of the corresponding schemas. The
pattern x : F matches the same values matched by F and additionally it
binds such values to the variable x. The pattern L[F ] matches values of the
form a[V ], when a ∈ L and F matches V . The pattern F,F ′ matches values
V = V ′@V ′′ such that V ′ and V ′′ are matched by F and F ′, respectively. The
pattern F + F ′ matches values V that are matched by either F or F ′. The
pattern matching algorithm is deterministic:

(1) in a pattern S∗,F , the partition of V into V ′@V ′′ is such that V ′ is the
longest prefix of V that is matched by S∗ (longest match policy);

(2) in a pattern F+F ′ the match with the left-hand side pattern is attempted
first; in case of failure, the match with the right-hand side pattern is
attempted (first match policy).
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Patterns include pattern names that are bound by finite maps F from pattern
names to patterns such that, for every Y ∈ dom(F), the pattern names in F(Y)
belong to dom(F). Pattern definitions must obey the same well-formedness
restrictions of schema definitions. In addition, PiDuce patterns are linear,
namely the following three conditions hold:

(1) every pattern x : F is such that x /∈ fv(F );
(2) every pattern F,F ′ is such that fv(F ) ∩ fv(F ′) = ∅;
(3) every pattern F + F ′ is such that fv(F ) = fv(F ′).

In the following we write schof(F ) for the schema obtained by erasing all the
variables in F .

Processes. Processes are the computing entities of PiDuce. 0 is the idle
process; u!(E) evaluates E to a value and outputs it on the channel u. The
process select {ui?(Fi) Pi

i∈1..n} inputs a value on the channel ui, matches
the value with Fi yielding a substitution σ and behaves as Piσ. We always
abbreviate select {u?(F ) P} to u?(F ) P . The process new u : 〈S〉κ in P
defines a fresh channel u and binds it within the continuation P , where u may
be used as subject of input and output operations, whereas the capability κ
is exposed in the WSDL interface associated with the channel (see Section 8).
The process match E with {Fi ⇒ Pi

i∈1..n} tests whether the value to which
E evaluates is matched by one of the patterns Fi’s. The order of the branches
is relevant, so that the first matching pattern determines the continuation
(first match policy). If the match with Fk succeeds, the continuation Pkσ is
run, where σ is the substitution yielded by the pattern matching algorithm.
The process spawn {P} Q spawns the execution of P on a separate thread
and continues as Q. The replicated input u?*(F ) P consumes a message on
u, it spawns the continuation Pσ, where σ is the substitution yielded by
matching the message with the pattern F , and then it becomes available for
other messages on u.

The syntax of Table 1 will be extended in Section 6 with operations regarding
remote machines, such as the creation of channels at remote locations or the
select on remote channel.

4 The subschema relation and the type system

A basic check in the PiDuce compiler and runtime is the language containment
of schemas, called subschema relation. In [21] this notion is defined in terms of

set-containment. In particular, let [[S]]
def
= {V | V is of schema S}. Then S is

a subschema of T if [[S]] ⊆ [[T ]]. This approach is inadequate in PiDuce because

13



of the presence of channels. Indeed, the values of 〈S〉O are sets of names that
may be defined at runtime. To circumvent this problem we follow an approach
proposed in [4] and already used in pi calculus [31].

Let S ↓ R, read S has handle R, be the least relation such that:

() ↓ ()
B ↓ B,()
〈S〉κ ↓ 〈S〉κ,()
L[S] ↓ L[S],() if L 6= ∅ and, for some R, S ↓ R
S,S ′ ↓ R if S ↓ () and S ′ ↓ R
S,S ′ ↓ R,S ′ if S ↓ R and R 6= () and, for some R′, S ′ ↓ R′
S + S ′ ↓ R if S ↓ R or S ′ ↓ R
U ↓ R if E(U) ↓ R
S∗ ↓ ()
S∗ ↓ R,S∗ if S ↓ R and R 6= ()

The relation “↓” singles out the branches of the syntax tree of a schema. For
example (a[int],string + b[string],int) ↓ a[int],string. We observe that
Empty has no handle. The schema a[int],Empty has no handle as well; the
reason is that a sequence has a handle provided that every element of the
sequence has a handle. We also remark that a channel 〈S〉κ always retains a
handle. Let S be not-empty if and only if S has a handle; it is empty otherwise.

Definition 1 Let ≤ be the least partial order on capabilities such that IO ≤ I

and IO ≤ O. Let v be the least partial order on basic schemas such that n v int

and s v string. A subschema R is a relation on schemas such that S R T
implies:

(1) S ↓ () implies T ↓ ();
(2) S ↓ B,S ′ implies T ↓ B′i,T

′
i , for 1 ≤ i ≤ n, with B v B′i and S ′ R∑

1≤i≤n T
′
i ;

(3) S ↓ 〈S ′〉κ,S ′′ implies T ↓ 〈Ti〉κi,T ′i , for 1 ≤ i ≤ n, with κ ≤ κi, S
′′ R∑

1≤i≤n T
′
i , and, for every 1 ≤ i ≤ n, one of the following conditions

holds:
(a) κi = O and T ′i R S ′, or
(b) κi = I and S ′ R T ′i , or
(c) κi = IO and S ′ R T ′i and T ′i R S ′;

(4) S ↓ L[S ′],S ′′ implies that one of the following conditions holds:
(a) T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅, L̂ 6⊆ L̂′, (L \ L′)[S ′],S ′′ R T , and

(L ∩ L′)[S ′],S ′′ R T , or
(b) T ↓ Li[Ti],T ′i , for 1 ≤ i ≤ n, with L̂ ⊆ ⋂

i∈{1,...,n} L̂i and, for every
J ⊆ {1, . . . , n}, either S ′ R ∑

i∈J Ti or S ′′ R ∑
i∈{1,...,n}\J T

′
i .

Let <: be the largest subschema relation.
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The definition of subschema is commented upon below. Item 1 constraints
greater schemas to manifest a void handle if the smaller one retains such a
handle. Item 2 deals with basic schemas B,S ′: a set of handles Bi,T

′
i of the

greater schema is selected such that B is smaller than Bi and S ′ is smaller
than the union of the T ′i ’s. Item 3 is similar to item 2, except for the heads of
handles, which are channel schemas. In order to check the subschema relation
between 〈S〉κ and 〈T 〉κ′ , the capability κ must be smaller than κ′. Additionally,
in case κ′ = O the subschema is inverted on the arguments (contravariance);
in case κ′ = I the subschema is the same as for the arguments (covariance), in
case κ′ = IO the relation reduces to check the equivalence of the arguments (in-
variance). For example 〈int+ string〉O <: 〈int〉O because every channel that
may carry either integers or strings can carry integers only. On the contrary,
〈int〉I <: 〈int + string〉I because every channel that may serve invocations
carrying either integers or strings can serve invocations with integers only.

Item 4 is the most complex one. It deals with handles L[S ′],S ′′. We illustrate
the point by means of an example. The case (a) accounts for subschema rela-
tions between S = (a + b)[int],int and T = a[int],int + b[int],int. Since
T ↓ a[int],int, according to 4.a, the relation may be reduced to the check
whether ((a+b)\a)[int],int and ((a+b)∩a)[int],int are subschema of T . The
case (b) accounts for subschema relations between S = a[int + string],int
and T = a[int],int+ a[string],int. We explain this case by using an argu-
ment similar to that used in [22]. Let us admit a schema intersection opera-
tor ∩ such that S ∩T describes the values that belong to both S and T . Then
L[S],T may be rewritten as L[S],Any ∩ ~[Any],T using the fact that Any is
the greatest schema (see Proposition 2.6). Then:

L1[S1],T1 + L2[S2],T2 = (L1[S1],Any ∩ ~[Any],T1) + (L2[S2],Any ∩ ~[Any],T2)

= (L1[S1],Any + L2[S2],Any) ∩ (~[Any],T1 + ~[Any],T2)

∩ (L1[S1],Any + ~[Any],T2) ∩ (~[Any],T1 + L2[S2],Any)

where the last equality follows by distributivity of ∩ with respect to union.
Therefore, if one intends to derive that L[S],T is a subschema of L1[S1],T1 +
L2[S2],T2 when L̂ ⊆ L̂1 ∩ L̂2, it is possible to reduce to:

for every J ⊆ {1, 2} either S R
∑
j∈J

Sj or T R
∑

j∈{1,2}\J
Tj

This is exactly item 4.b when I = {1, 2}. A particular case is when I = {1}.
For example verifying that a[S],T is a subschema of (a+b)[S ′],T ′. In this case
the subsets of I are ∅ and {1} and one is reduced to prove (we let

∑
j∈∅ Sj =

Empty):(
S R Empty or T R T ′

)
and

(
S R S ′ or T R Empty

)
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That is, when S and T are not subschema of Empty, we are reduced to S R S ′

and T R T ′.

The schemas AnyChan and Any own relevant properties. AnyChan collects all
the channel schemas, no matter what they can carry; Any collects all the
values, namely possibly empty sequences of possibly labelled values, including
channels. We observe that 〈Empty〉O and 〈Any〉O are very different. 〈Empty〉O
collects every channel with either capability “O” or “IO”, 〈Any〉O refers only to
channels where arbitrary data can be sent. For instance 〈a[ ]〉O is a subschema
of 〈Empty〉O but not of 〈Any〉O. The channel schemas 〈Any〉I and 〈Empty〉I are
different as well. 〈Any〉I refers to references that may receive arbitrary data;
〈Empty〉I refers to a reference that cannot receive anything.

A few properties of <: are in order. The proofs can be found in Appendix A.

Proposition 2 (1) <: is reflexive and transitive;
(2) If S is empty, then S <: Empty;
(3) (Contravariance of 〈·〉O) S <: T if and only if 〈T 〉O <: 〈S〉O;
(4) (Covariance of 〈·〉I) S <: T if and only if 〈S〉I <: 〈T 〉I;
(5) (Invariance of 〈·〉IO) S <: T and T <: S if and only if 〈S〉IO <: 〈T 〉IO;
(6) If S <: T , then S,() <: T ; if (),S <: T , then S <: T ;
(7) If S <: T and S ′ <: T ′, then S,S ′ <: T,T ′;
(8) If (S + S ′),S ′′ <: T , then S,S ′′ <: T and S ′,S ′′ <: T ;
(9) For every S, Empty <: S <: Any and 〈S〉κ <: AnyChan and 〈Any〉IO <: 〈S〉O

and 〈Empty〉IO <: 〈S〉I.

Remark 3 The algorithm for computing the subschema relation in PiDuce is
similar to the one developed for XDuce [22]. It is computationally expensive: the
cost of the algorithm for subschema is exponential in the size of the schemas.
Paying this cost at compile time may be acceptable. However, in PiDuce the
subschema relation is invoked at runtime by pattern matching (see Section 5).
Paying an exponential cost at runtime becomes fateful because the performance
degradation might be unacceptable. For instance an attacker might block a ser-
vice by invoking it with channels of complex schemas, thus yielding a denial of
service. A set of constraints on schemas that reduce the cost of the subschema
algorithm has been designed in [11]. The PiDuce compiler warns the user when
programs use schemas that do not meet such constraints. We defer this issue
to Appendix C.

4.1 The PiDuce type system

Few preliminary notations are introduced. Let Γ, ∆, called environments, be
finite maps from variables to schemas. We write dom(Γ) for the set of names in
the domain of Γ. Let Γ+∆ be (Γ\dom(∆))∪∆, where Γ\X removes from Γ all
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Table 2
Typing rules.

Expressions :

Γ ` () : () Γ ` n : n Γ ` s : s
Γ(x) = S

Γ ` x : S
a ∈ L Γ ` E : S
Γ ` a[E] : L[S]

Γ ` E : S Γ ` E′ : S′

Γ ` E,E′ : S,S′

Processes :

(nil)

Γ;∆ ` 0

(out)

Γ ` E : S Γ + ∆ ` u : T T <: 〈S〉O

Γ;∆ ` u!(E)
(select)(
Γ + ∆ ` ui : Si (Γ;∆) + Env(Fi) ` Pi Si <: 〈schof(Fi)〉I

)i∈1..n

Γ;∆ ` select {ui?(Fi)Pi i∈1..n}
(new)

Γ + u : 〈S〉κ;∆ + u : 〈S〉IO ` P
Γ;∆ ` new u : 〈S〉κ in P

(match)

Γ + ∆ ` E : S
(
(Γ;∆) + Env(Fi) ` Pi

)i∈1..n
S <:

∑
i∈1..n schof(Fi)

Γ;∆ ` match E with {Fi ⇒ Pi
i∈1..n}

(spawn)

Γ;∆ ` P Γ;∆ ` P ′

Γ;∆ ` spawn {P} P ′

(repin)

∆ ` u : S (Γ;∆) + Env(F ) ` P
S <: 〈schof(F )〉I

Γ;∆ ` u?*(F )P

the bindings of names in X. Let also (Γ;∆)+Γ′ be the pair Γ+Γ′;∆\dom(Γ′).
Finally, let Env(·) be the least function such that:

Env(S) = ∅
Env(u : F ) = u : schof(F ) + Env(F ) (u 6∈ dom(Env)(F ))
Env(L[F ]) = Env(F )
Env(F,F ′) = Env(F ) + Env(F ′) (dom(Env)(F ) ∩ dom(Env)(F ′) = ∅)

Env(F + F ′) = Env(F ) (Env(F ) = Env(F ′))
Env(Y) = Env(F(Y))

The judgments Γ ` E : S – read E has schema S in the environment Γ – and
Γ;∆ ` P – read P is well typed in the environment Γ and local environment
∆ – are the least relations satisfying the rules in Table 2.

Rules for expressions, (nil) and (spawn) are standard. Rule (out) types
outputs. By definition of subschema, the premise T <: 〈S〉O entails that u may
carry messages of schema S. We note that u can be typed as a union of channel
schemas, for example u : 〈a[int] + ()〉O + 〈b[string] + ()〉O. When this is the
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case, E must be a subschema of every schema carried by u. In this example,
the unique possible schema for E is (). Rule (select) types input-guarded
choices. The first hypothesis types subjects. The second hypothesis types the
continuation of every summand in the environment Γ;∆ plus that defined by
the pattern. The third hypothesis checks the exhaustiveness of every pattern.
As for outputs the hypothesis Si <: 〈schof(Fi)〉I does not strictly require ui
to be a channel schema. Rule (new) types new u : 〈S〉κ in P in Γ;∆ provided
that P is typable with in Γ + u : 〈S〉κ;∆ + u : 〈S〉IO. The first component
of the pair of environments is extended with the exported schema 〈S〉κ of the
channel; this definition is used for typing expressions to be sent as messages
(see rule (out)). The second component is extended with the internal schema
of the channel 〈S〉IO; this definition is used for typing subjects of inputs and
outputs (see rules (out), (select), and (repin)). Rule (match) derives the
typing of match E with {Fi ⇒ Pi

i∈1..n} provided E and Pi are well typed
in the environments Γ + ∆ and (Γ;∆) + Env(Fi), respectively. The third
hypothesis checks the exhaustiveness of patterns with respect to the schema
of E. Rule (repin) is similar to (select) but the subject is checked to be
local.

Remark 4 The PiDuce compiler also verifies whether patterns in match op-
erators are redundant. In particular in rule ( match) the compiler verifies
that, for every 1 ≤ i ≤ n − 1, schof(Fi) <: S and, for every 2 ≤ j ≤ n,
schof(Fj) 6<:

∑
k<j schof(Fj). In case, the user is warned with suitable mes-

sages.

5 Pattern matching and local operational semantics

This section defines the semantics of patterns and processes. In order to cope
with values that may carry channels, both the pattern matching and the tran-
sition relation take an associated environment into account. As regards pro-
cesses, this section details the semantics of operations that are performed by
a single PiDuce runtime environment. The operations retaining a distributed
semantics are discussed in Section 6.

5.1 Pattern matching

Let σ and σ′ be two substitutions with disjoint domains. We write σ + σ′

to denote the substitution that is the union of σ and σ′. Every union in the
following rules is always well defined because of the linearity constraint on
patterns. Let a marker be an object of the form x/V ; let Φ be a possibly
empty sequence of patterns or markers separated by :: and let [ ] be the empty
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Table 3
Pattern matching rules.

(pm1)

∆ ` () ∈ [ ] ; ∅

(pm2)

∆ ` V ∈ Φ ; σ

∆ ` V ∈ () :: Φ ; σ

(pm3)

∆ ` V ∈ Φ ; σ V ′ = V ′′@V
∆ ` V ∈ x/V ′ :: Φ ; σ + [x 7→ V ′′]

(pm4)

b <: B ∆ ` V ∈ Φ ; σ

∆ ` b@V ∈ B :: Φ ; σ

(pm5)

∆(u) <: S ∆ ` V ∈ Φ ; σ

∆ ` u@V ∈ S :: Φ ; σ

(pm6)

a ∈ L ∆ ` V ∈ F ; σ ∆ ` V ′ ∈ Φ ; σ′

∆ ` a[V ]@V ′ ∈ L[F ] :: Φ ; σ + σ′

(pm7)

∆ ` V ∈ F :: x/V :: Φ ; σ

∆ ` V ∈ (x : F ) :: Φ ; σ

(pm8)

∆ ` V ∈ F :: Φ ; σ

∆ ` V ∈ (F + F ′) :: Φ ; σ

(pm9)

∆ ` V ∈ F ′ :: Φ ; σ ∆ ` V 6∈ F :: Φ
∆ ` V ∈ (F + F ′) :: Φ ; σ

(pm10)

∆ ` V ∈ F :: F ′ :: Φ ; σ

∆ ` V ∈ (F,F ′) :: Φ ; σ

(pm11)

∆ ` V ∈ F(Y) :: Φ ; σ

∆ ` V ∈ Y :: Φ ; σ

(pm12)

∆ ` V ∈ Sn ; ∅ ∆ ` V ′ ∈ Φ ; σ

(V ′ = W@V ′′ and W 6= ()) implies (∆ ` V@W 6∈ S∗ or ∆ ` V ′′ 6∈ Φ)
∆ ` V@V ′ ∈ S∗ :: Φ ; σ

sequence. In the following, tailing [ ]’s are always omitted.

The pattern matching of a value V with respect to a sequence Φ in an environ-
ment ∆, written ∆ ` V ∈ Φ ; σ is defined by the rules in Table 3. We write
∆ ` V ∈ Φ if there exists σ such that ∆ ` V ∈ Φ ; σ; we write ∆ ` V 6∈ Φ
if not ∆ ` V ∈ Φ. Let Sn be S, . . . ,S with n repetitions of S; let S0 be ().

Rule (pm1) matches () with the empty sequence. This rule must be read
in conjunction with (pm2), which removes void patterns in head position of
sequences. Rule (pm3) defines markings. A marking x/V ′ is inserted in Φ by
patterns x : F – see rule (pm7); it records the value V ′ that must be matched
by Φ when a variable binder is found. The rule binds x to the prefix of V ′ that
has been matched by F . Rule (pm4) matches constants with basic schemas.
Rule (pm5) matches channels with patterns that do not contain variables
and, assuming that ∆(u) is a channel schema, that are greater than a channel
schema. Rule (pm6) deals with labelled values. Rule (pm7) defines the pattern
matching of a sequence (x : F ) :: Φ. In this case, the value V must match
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with F :: Φ and the prefix of V matching with F must be bound to x. This
is the purpose of the marking that is inserted between F and Φ. Rules (pm8)
and (pm9) define the pattern matching for union patterns. They implement
the first match policy : in a pattern F +F ′ the match with F is attempted and,
if this fails, the match with F ′ is tried. Rule (pm10) turns sequence patterns
into sequences Φ. Rule (pm11) defines pattern matching of pattern names in
the obvious way. Finally, rule (pm12) defines the pattern matching for S∗ :: Φ
sequences. The pattern S∗ is equal to the choice ()+S+(S,S)+(S,S,S)+· · ·
but it is managed by a policy different than the one of rules (pm8) and (pm9).
In this case the standard policy is the longest match one: a partition V@V ′

of the value is looked for such that V is the longest prefix matching with S∗

and V ′ is a suffix matching with Φ.

Rules (pm8), (pm9), and (pm12) make the parsing for patterns F + F ′ and
S∗ deterministic. The pattern matching of Table 3 is therefore unambiguous.

Proposition 5 If ∆ ` V ∈ Φ then there exists a unique σ such that ∆ ` V ∈
Φ ; σ.

Notwithstanding this unicity property, the implementation of the pattern
matching algorithm is not straightforward. The critical rule is (pm12), be-
cause it is not obvious where the value to be matched should be split. It
is worth to remark that expanding S∗ into S,S∗ + (), thus relying on the
first match policy for the choice schema to yield the longest matching prefix,
does not always produce the desired results, as noted in [34]. Indeed, con-
sider the schema (a[ ] + a[ ],b[ ])∗,(b[ ] + ()). This would be expanded into
((a[ ] + a[ ],b[ ]),(a[ ] + a[ ],b[ ])∗ + ()),(b[ ] + ()) and the value a[ ],b[ ]
would be split into a[ ] matching with (a[ ] + a[ ],b[ ])∗ and b[ ] matching with
(b[ ]+()). However, a[ ],b[ ] is the longest prefix matching with (a[ ]+a[ ],b[ ])∗

with () matching with (b[ ] + ()). In order to implement the matching of a
value V against a pattern list S∗ :: Φ, a naive implementation may attempt
splitting the value beginning from its right end, trying first to match () with
Φ and V with S∗. If this fails, the smallest non-void suffix of V is matched
against Φ, and the remaining prefix against S∗, and so forth. More efficient
solutions are discussed in the literature [17].

5.2 The (local) transition relation

Let l, l′, . . . range over a countably infinite set of locations. We assume a
relation @ mapping channels to locations and we write u@l for u located at l.
With an abuse of notation, we extend -@l to variables. The relation x@l is
always true (since variables may be instantiated by channels located at l). The
following transition relation is defined when subjects of selects and replications
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Table 4
Local transition relation.

(tr1)

E ⇓dom(Γ) V

Γ `l u!(E)
u!(V )−→ 0

(tr2)

(ui@l)i∈I

Γ `l select {ui?(Fi)Pii∈I}
ui?(Fi)−→ Pi

(tr3)

Γ + u :〈S〉κ `l P
µ−→ Q u 6∈ fv(µ) ∪ bv(µ)

Γ `l new u : 〈S〉κ in P µ−→ new u : 〈S〉κ in Q
(tr4)

Γ + v :〈S〉κ `l P
(Γ′)u!(V )−→ Q v 6= u v ∈ fv(V ) \ dom(Γ′)

Γ `l new v : 〈S〉κ in P (Γ′+v:〈S〉κ)u!(V )−→ Q

(tr5)

E ⇓dom(Γ) V (Γ ` V 6∈ Fi)i∈1..j−1 Γ ` V ∈ Fj ; σ

Γ `l match E with {Fi ⇒ Pi
i∈1..n} τ−→ Pjσ

(tr6)

Γ `l P
µ−→ P ′ bv(µ) ∩ fv(Q) = ∅

Γ `l spawn {P} Q
µ−→ spawn {P ′} Q

(tr7)

Γ `l P
µ−→ P ′ bv(µ) ∩ fv(Q) = ∅

Γ `l spawn {Q} P
µ−→ spawn {Q} P ′

(tr8)

Γ `l P
(Γ′)u!(V )−→ P ′ Γ `l Q

u?(F )−→ Q′ dom(Γ′) ∩ fv(Q) = ∅ Γ + Γ′ ` V ∈ F ; σ

Γ `l spawn {P} Q
τ−→ new Γ′ in spawn {P ′} Q′σ

(tr9)

u@l

Γ `l u?*(F )P
u?(F )−→ spawn {P} u?*(F )P

are local to the PiDuce runtime environment. The general case is discussed in
Section 6.

Let µ range over input labels u?(F ), bound output labels (Γ)u!(V ) with
dom(Γ) ⊆ fv(V ), and τ . Let also fv(u?(F )) = {u}, fv((Γ)u!(V )) = {u} ∪
(fv(V ) \ dom(Γ)), bv(u?(F )) = fv(F ), bv((Γ)u!(V )) = dom(Γ), and fv(τ) =

bv(τ) = ∅. The (local) transition relation of PiDuce, Γ `l P
µ−→ Q, is the

least relation satisfying the rules in Table 4 plus the symmetric of the com-
munication rule (tr8).

The transition relation is also closed under alpha-conversion. For example, if

Γ `l P
(Γ′)u!(V )−→ Q then Γ `l P

(Γ′α)u!(V α)−→ Qα for every alpha-conversion α.

The transition relation of Table 4 is similar to that of the pi calculus [29],
except for the environment Γ, which is partially supplied by enclosing new

operators and partially by the global environment.

We discuss rules (tr1), (tr3), (tr4), (tr5), and (tr8); the arguments about
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the other rules are omitted. Rule (tr1) defines the semantics of u!(E). Ac-
cording to this semantics, E is evaluated into a dom(Γ)-value V and V is
delivered. Rules (tr3) and (tr4) define the semantics of outputs when they
are underneath local definitions of channels. There are two cases: (i) the lo-
cal channel does not occur in the message, (ii) the local channel does occur.
The case (i) is managed by (tr3): in this case the output operation is simply
lifted outside the new and the label of the transition does not change. The
case (ii) is managed by (tr4). The label gathers the local channels (and their
schema) that are transmitted. The third hypothesis of (tr4) verifies that the
channel v occurs in the message; in this case the environment of the label
in the conclusion is extended with v and its schema. This extension of the
label, which is different from pi calculus for the presence of schemas, is meant
to capture the property that when a Web service URL is shipped, the WSDL

document is also sent. (This WSDL contains, for instance, the protocol that
must be used to invoke the service and the schemas of arguments and of the
result.) Rule (tr5) defines the semantics of match E with {Fi ⇒ Pi

i∈1..n}.
According to this rule, E is evaluated, then the first pattern Fj matching the
value is chosen and the continuation Pj is run with the substitution returned
by the pattern matching algorithm. Rule (tr8) makes two parallel processes
emitting and receiving a message on the same channel communicate. To this
aim the message is matched against the pattern and the resulting substitution
is applied to the receiver process. It is worth to notice that our semantics
admits communications on variables that are channels. This case intends to
model those communications involving channels that have not been published
(the WSDL has not been created) as their declaration has been lifted to the
label of the transition relation, but they do not occur in the domain of the
environment. The publication happens as soon as the channel is extruded to
a remote machine (see rule (dtr1) in Section 6). 1

6 Distributed operational semantics

The underlying model of PiDuce is distributed; it consists of a number of
runtime environments – that may be PiDuce runtimes or not –, which execute
at different locations and interact by exchanging messages over channels. In
this section we describe the distributed semantics of the PiDuce language.

A PiDuce machine is a collection of runtime environments:

Γ1 `l1 P1 ‖ · · · ‖ Γn `ln Pn

such that

1 The PiDuce implementation eagerly creates the WSDL interface of a service as soon
as the corresponding new in the object code is executed.
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(1) l1, . . . , ln are pairwise different;
(2) Γ1, . . . ,Γn are localized with respect to l1, . . . , ln, namely u ∈ dom(Γi)

and u@lj implies u ∈ dom(Γj).

PiDuce machines are ranged over by M, N, etc. We also let dom(Γ1 `l1 P1 ‖ · · · ‖ Γn `ln
Pn) =

⋃
i∈1..n dom(Γi). Processes in the runtime environments extend those of

Table 1 with operations dealing with remote locations:

• input on remotely located channels : the subjects ui in select {ui?(Fi)Pi
i∈I}

may be non-local;
• new at remote location: the process new u : 〈S〉IO at l in P delegates the

runtime environment located at l, which may be remote, to create the
runtime support for u. The syntax requires the capability of the schema to
be IO because in order for the operation to be useful the continuation P
needs to be able to perform both input and output operations on u;
• import of services : the process import u :S → T = v in P downloads

the WSDL of the channel v, verifies that it is a subschema of 〈S,〈T 〉O〉O
and replaces u with v in the continuation P . The channel v represents
a synchronous – request-response in WSDL jargon – operation in a remote
service. A special case of this process is import u : 〈S〉O = v in P that
verifies the WSDL of v to be a subschema of 〈S〉O. In this section the notation
S → T may be considered as syntactic sugar for the schema 〈S,〈T 〉O〉O; the
differences between S → T and 〈S,〈T 〉O〉O have to do with interoperability
and will be discussed in Section 7.1.

Among these operators, import is the most interesting one because it permits
PiDuce processes to access existing services. For example, the code

import fact : Int → Int = "www.mathfunctions.edu/fact"

in new u : 〈int〉O
in spawn { fact!(5,u) } u?(v:Int) printInt!(v)

imports the operation fact which is provided by a Web service located at
www.mathfunctions.edu/fact, invokes fact with 5, and prints the result.

The runtime environment also uses a further operation dealing with remote
locations:

• linear forwarder u( v that forwards a message on a channel u to v. This
operator implements input operations on remotely located channels; its the-
ory has been developed in [18] and will be recalled below.

The type system of Table 2 is extended with the rules in Table 5 for new binders
at remote locations, imports and linear forwarders. Rule (newat) types the
creation of channels at remote locations; the typing rule is similar to (new).
Rules (import) and (import-a) type import of channels by checking P to
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Table 5
Typing rules for distributed PiDuce.

(newat)

(Γ;∆) + u :〈S〉IO ` P
Γ;∆ ` new u : 〈S〉IO at l in P

(import)

(Γ;∆) + u :〈S,〈T 〉O〉O ` P Γ(v) <: 〈S,〈T 〉O〉O

Γ;∆ ` import u :S → T = v in P

(import-a)

(Γ;∆) + u :〈S〉O ` P Γ(v) <: 〈S〉O

Γ;∆ ` import u : 〈S〉O = v in P

(lforwd)

Γ ` v : 〈S〉O Γ(u) <: 〈S〉I

Γ;∆ ` u( v

be well typed in (Γ;∆) + u : R (u is removed from ∆ because it is not a
local channel), where R is 〈S,〈T 〉O〉O or 〈S〉O, according to whether v is a
request-response operation or not. The rules also verify that the schema of
the imported channel, which is stored in the global environment, is compatible
with R. Rule (lforwd) types linear forwarders. The hypotheses, which require
that u and v can be used for respectively receiving and sending values, are in
correspondence with those for typing the process select {u?(x : R) v!(x)}
– where R is the schema of the messages accepted by u – with the following
additional constraints:

(1) the schema of u is taken from the global environment because u is not
local;

(2) the schema of v is taken from the global environment as well, because
the linear forwarder process is executed on a remote machine;

(3) no subschema of Γ(v) is considered because processes u( v are generated
by the PiDuce runtime and, by definition, v always has a schema of
shape 〈S〉O.

Typing is extended to machines as follows. Let [Γ]IOl be the environment

[Γ]IOl (u) =

 〈S〉
IO if u@l and Γ(u) = 〈S〉κ

undefined otherwise

The operation [Γ]IOl is meant to define the environment for local channels: it
extracts the channels local at l out of Γ and replaces the capability with IO

because IO is the capability of local channels (cf. rule (new) in Table 2). We
recall that, according to our notation, if x is a variable in dom(Γ) and Γ(x) is
a channel schema, then x ∈ dom([Γ]IOl ), too, because x@l is always true.

Let ` M, read M is well-typed, if the following properties hold:

(i) for every Γ `l P in M: Γ; [Γ]IOl ` P and
(ii) (machine consistency) if Γ `l P and Γ′ `l′ P ′ in M and u ∈ dom(Γ′)

and u@l, then u ∈ dom(Γ) and Γ(u) <: Γ′(u). (This constraint only
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regards variables with channel schemas.)

Therefore, a machine is well-typed if every runtime environment in it is well-
typed and the runtime environments access to remote channels with schemas
that are superschemas of the actual ones. This is also the case for global
accesses that are located at the same runtime environment (take l = l′ in
case (ii)). For instance, when v is located at the same runtime environment
executing import u : 〈S〉O = v in P . We notice that if ` M ‖N then ` M
and ` N.

Next we extend the (local) transition relation with the semantics of the oper-
ations dealing with remote locations. To this aim we drop the assumption in
Section 5 that subjects of selects are local to the PiDuce runtime environment,
as well as that new channels are always created locally to the runtime envi-
ronment. In order to account for the new operations we extend the notation
so that µ also ranges over the labels u : S, (u@l : S), and (Γ)u( v with
dom(Γ) ⊆ {v}, too. Let fv(u@l : S) = {u}, fv((u : S)) = ∅, fv((Γ)u( v) =
{u, v} \ dom(Γ) and let bv(u : S) = ∅, bv((u@l : S)) = {u}, bv((Γ)u( v) =
dom(Γ). We write spawni∈1..n {Pi} Q for spawn {P1} · · · spawn {Pn} Q.
As usual ] denotes disjoint union. The transition relations use the following
operations on environments:

Γ@l restricts Γ to variables located at l:

(Γ@l)(u) =

Γ(u) if u ∈ dom(Γ) and u@l

undefined otherwise

Γ \ l removes from Γ the variables located at l:

(Γ \ l)(u) =

Γ(u) if u ∈ dom(Γ) and not (u@l)

undefined otherwise

We write Γ \ l, l′ for (Γ \ l) \ l′.
Γ meet Γ′ defines an environment that includes the domains of Γ and Γ′ and

that associates to every variable a subschema of those associated by Γ and Γ′:

(Γ meet Γ′)(u) =



Γ(u) if u ∈ dom(Γ) \ dom(Γ′)
Γ′(u) if u ∈ dom(Γ′) \ dom(Γ)
S if u ∈ dom(Γ) ∩ dom(Γ′)

and S <: Γ(u) and S <: Γ′(u)
undefined otherwise

The meet operation is used in the transition relation to guess the schema of
channels in messages that are located at neither the source nor the destination
runtime environment.
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Table 6
Distributed transition relation.
rules for Γ `l P

µ−→ Q

(tr10)

(ui@l)i∈I
(
uj 6@l Γ ` uj : 〈Sj〉κ

)j∈J
J 6= ∅

Γ `l select {ui?(Fi)Pii∈I]J}
τ−→

new (vj : 〈Sj〉O)j∈J in
spawnj∈J {uj ( vj}
select { ui?(Fi)(spawnk∈J {vk?(x : Sk) uk!(x)} Pi)i∈I

vj?(Fj)(spawnk∈J\j {vk?(x : Sk) uk!(x)} Pj)j∈J }
(tr11)

l 6= l′

Γ `l new u : 〈S〉IO at l′ in P
(u@l′:〈S〉IO)−→ P

(tr12)

Γ `l import u :S = v in P
τ−→ P{v/u}

(tr13)

Γ `l u( v
u( v−→ 0

(tr14)

Γ + v :〈S〉κ `l P
u( v−→ Q

Γ `l new v : 〈S〉κ in P (v:〈S〉κ)u( v−→ Q

rules for M
∆−→ N

(dtr1)

Γ `l P
(vi:Si

i∈I)u!(V )−→ Q u@l′ (vi@l vi /∈ dom(Γ) ∪ dom(Γ′))i∈I

∆ = vi : Sii∈I + ((Γ|fv(V )) \ l′) meet ((Γ′|fv(V )) \ l)

Γ `l P ‖ Γ′ `l′ R
∆\l,l′−→ Γ + vi : Sii∈I `l Q ‖ Γ′ + ∆ `l′ spawn {u!(V )} R

(dtr2)

Γ `l P
(u@l′:〈S〉IO)−→ Q u /∈ dom(Γ′) ∪ dom(Γ)

Γ `l P ‖ Γ′ `l′ R −→ Γ + u : 〈S〉IO `l Q ‖ Γ′ + u : 〈S〉IO `l′ R
(dtr3)

Γ `l P
(Γ′′)u( v−→ Q u@l′ Γ′ ` u : 〈S〉κ dom(Γ′′) ∩ dom(Γ′) = ∅ Γ′′′ = Γ|{v} + Γ′′

Γ `l P ‖ Γ′ `l′ R −→ Γ + Γ′′ `l Q ‖ Γ′ + Γ′′′ `l′ spawn {u?(x : S) v!(x)} R
(dtr4)

Γ `l P
τ−→ Q

Γ `l P −→ Γ `l Q

(dtr5)

M
∆−→ N (dom(N) \ dom(M)) ∩ dom(Γ) = ∅ ∆@l ⊆ Γ

M ‖ Γ `l P
∆\l−→ N ‖ Γ `l P

The transition relation Γ `l P
µ−→ Q and the distributed transition relation

M
∆−→ N of PiDuce are the least relations satisfying the rules in Section 5 plus

those in Table 6 (for the sake of brevity we omit ∆ when it is the empty con-
text). The distributed transition relation is closed under commutativity and
associativity of ‖. The label ∆ on the distributed transition relation represents
a set of assumptions regarding the type of free channels that two machines
have exchanged between each other, where none of the machines hosts the
exchanged channels.
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Rule (tr10) defines selects with remote subjects. It translates the select pro-
cess on-the-fly into another one using a local select. (This translation has been
proposed for encoding distributed choice in [18].) To explain the transition we
discuss the case of a select with three branches, one with a local subject u and
the others with remote subjects v and w:

select {u?(F )P v?(F ′)Q w?(F ′′)R}

This select may be turned into a local one by creating two (local) siblings for v
and w, let them be v′ and w′, respectively, and communicating to the channel
managers of v and w the presence of these siblings. So the above process may
be translated into

new v′, w′ :S ′, T ′ in spawn {v( v′} spawn {w(w′}
select {u?(F )P v′?(F ′)Q w′?(F ′′)R}

However this translation is too rough because of the following problem. The
purpose of the linear forwarder v( v′ is to migrate to the remote location
of v and forward one message to the location of v′. Similarly for w(w′. By
rule (tr2), the branch u?(F )P may be chosen because of the presence of
a message on u. This choice destroys the branches v′?(F ′)Q and w′?(F ′′)R.
Therefore, when messages for v′ and w′ will be delivered by the remote ma-
chines, such messages will never be consumed. To avoid these misbehaviors,
one has to compensate the previous emission of linear forwarders by undoing
them with v′?(x : S ′) v!(x) and w′?(x : T ′) w!(x). In case the picked branch
is v′?(F ′)Q, by a similar argument, we have to compensate only one linear
forwarder – the w(w′. Therefore the correct translation for the distributed
select is:

new v′, w′ :S ′, T ′ in spawn {v( v′} spawn {w(w′}
select { u?(F )(spawn {v′?(x : S ′) v!(x)}

spawn {w′?(x : T ′) w!(x)} P )
v′?(F ′)(spawn {w′?(x : T ′) w!(x)} Q)
w′?(F ′′)(spawn {v′?(x : S ′) v!(x)} R) }

that is the term yielded by the (tr10) in this case. Rule (tr11) creates
a channel remotely located at l′. To this aim a channel located at l′ is
taken and the local name is replaced by this channel in the continuation.
When l = l′, the process new u : 〈S〉IO in P is simply an abbreviation for
new u : 〈S〉IO at l′ in P . In this case its semantics is defined by rules (tr3)
and (tr4). Rule (dtr2) guarantees that such a channel is fresh at the re-
mote location. Rule (tr12) imports a channel (the compiler type-checks the
continuation under the assumption u : S – see (import)). Rule (tr13) lifts
the linear forwarder to the label. This rule and rule (dtr3) define a linear
forwarder u( v as a small atom migrating to the remote location of u and
becoming the process u?(x : S)v!(x). Rule (tr14) accounts for linear for-
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warders u( v where v is local to the sender. In this case the environment of
the receiver must be extended adequately.

Rule (dtr1) models the delivery of a message to a remote runtime environ-
ment l′. When this occurs all the bound channels are created in the sender
location l and the message is put in parallel with every process running at l′.
The rule extends the environments of l and l′ with the new channels vi

i∈I . Ad-
ditionally, the environment Γ′ of l′ is extended with channels in fv(V )\{vii∈I}
that are either undefined in Γ′ or whose associated schema is too large. This
is a subtle problem to deal with. Consider a channel v ∈ fv(V ) \ {vii∈I} that
is located at l. The machine at l′ may already be aware of such channel ei-
ther because it has been imported or because it has been received during a
previous communication. The point is that Γ(v) and Γ′(v) are not equal in
general. In particular, by the definition of ` M, Γ(v) <: Γ′(v). Therefore the
rule (dtr1) updates the environment of l′ with (Γ|fv(V ))|l. A similar problem
is manifested by channels v ∈ fv(V ) \ {vii∈I} that are not located at l nor
at l′. In this case Γ(v) and Γ′(v) may be incomparable, as in general they
are superschemas of the actual schema of v, which is defined on a machine l′′

other than l and l′. Therefore we guess the right schema – the operation meet
– and publish our guess in the label of the transition. It is the rule (dtr5)
that checks the correctness of our guess when the right context environment
is found. The rule removes the checked bindings from the environment, that is
a successful distributed transition of a PiDuce machine has always labels with
empty environments. 2 The other rules have been already described, except
(dtr4) that lifts transitions in components to composite machines.

We conclude this section by asserting the soundness of the static semantics.
Proofs are reported in the Appendix B. The first property, subject reduction,
states that well-typed processes always transit to well-typed processes.

Theorem 6 (Subject Reduction) Let Γ; [Γ]IOl ` P . Then

(1) if Γ `l P
(Γ′)u!(V )−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q, (b) Γ + [Γ]IOl ` u :S,

Γ + Γ′ ` V :T and S <: 〈T 〉O;
(2) if Γ `l P

u?(F )−→ Q, then (a) (Γ; [Γ]IOl )+Env(F ) ` Q and (b) Γ+[Γ]IOl ` u :S
with S <: 〈schof(F )〉I;

(3) if Γ `l P
(Γ′)u( v−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q and (b) Γ ` u : S,

Γ + Γ′ ` v :〈T 〉O and S <: 〈T 〉I;
(4) if Γ `l P

(u@l′:〈S〉IO)−→ Q, then (Γ; [Γ]IOl ) + u :〈S〉IO ` Q;
(5) if Γ `l P

τ−→ Q, then Γ; [Γ]IOl ` Q.

2 In the implementation this problem does not arise and there is no need for the
meet operation as there is only one global environment that is shared among all the
runtime environments.

28



Let ` M. Then

(6) if M
∆−→ N, then ` N.

The first item of the subject reduction entails that the reduct Q of a (Γ′)u!(V )-
transition is typable provided the initial process P is typable. To this aim, the
environment Γ; [Γ]IOl must be suitably extended with the bindings in Γ′. This
extension is similar to the one used in the rule (new) of the type system. In
facts, bindings in Γ′ are collected by surrounding new binders – see rule (tr4).
The second item deals with inputs and entails the typability of the reduct in an
environment extended with that of patterns. The subject reduction guarantees
the exhaustivity of inputs. The third item is about linear forwarders. Such
operations are introduced by PiDuce runtimes as described by rule (tr10).
Therefore v must have schema 〈T 〉O, for some T ; the theorem guarantees that
u has a schema S “compatible” with 〈T 〉O, namely S <: 〈T 〉I. The fourth item
deals with creation of remote channels. The other items are not commented
because obvious.

The second soundness property concerns progress, that is, an output on a
channel will be consumed if an input on the same channel is available and
a message or a linear forwarder is delivered to the remote runtime when it
is present (we are assuming the absence of failures). In order to guarantee
progress, it is necessary to restrict (well-formed) environments. To illustrate
the problem, consider the following judgment:

u : 〈int + string〉κ, v : int + string `l
spawn {u!(v)} u?(x : int + string)

match x with {int⇒ P string⇒ Q}

The reader may verify that this judgment can be derived in our type system.
However, after the communication, the pattern matching fails because the
schema of v is neither a subschema of int nor of string (see rule (pm5)).
Another example is the following. Let Γ be u : a[b[ ]], V = u, and F =
a[v : b[ ]]. Then Γ ` V : S and S <: schof(F ) but there is no σ such that
Γ ` V ∈ F ; σ. In fact these circumstances never occur in practice: if a
value is sent, it may contain either labels or constants or channels. Under this
constraint, progress is always guaranteed.

We say that Γ is channeled if, for every u ∈ dom(Γ), Γ(u) is a channel schema.

Theorem 7 (Progress) Let Γ be channeled.

(1) If Γ ` V :S and S <: schof(F ), then there is σ such that Γ ` V ∈ F ; σ;

(2) If Γ; [Γ]IOl ` P , Γ `l P
(Γ′)u!(V )−→ Q′, and Γ `l P

u?(F )−→ Q′′, then there is Q
such that Γ `l P

τ−→ Q;

(3) If ` (Γ `l P ‖ M), Γ `l P
(Γ′)u!(V )−→ Q, and u is located at a location of
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M, then Γ `l P ‖ M
∆−→ Γ `l Q ‖ N, for some N. Similarly when the

label is (Γ′)u( v.

7 PiDuce and Web services

The language presented in the previous sections deals with all the fundamental
aspects of Web service definitions and interactions. However, there is still a
gap between PiDuce and the current technologies related to Web services.
Such gap is finally closed in this section by extending PiDuce with additional
constructs, though the primitive operations of the calculus are unchanged in
their essence.

7.1 Defining request-response services

The basic communication mechanism in PiDuce is the asynchronous message
passing. Other mechanisms that are primitive in Web services, such as rendez-
vous, must be programmed by means of explicit continuations. In Section 6
we have already discussed the semantics of a construct that permits to im-
port request-response operations. In that case, a request-response operation
is typed with a schema 〈S, 〈T 〉O〉O and has the following intended behavior.
When invoked, a fresh channel is sent with the actual data of type S. At the
same time, the invoker spawns an input process catching the response on the
fresh channel. This behavior is actually a well-known encoding of rendez-vous,
which is incongruous with respect to reality where request-response operations
return results using the same connection. This is the reason why an explicit
schema constructor S → T has been used rather than 〈S,〈T 〉O〉O. The PiDuce

runtime (in particular, the Web interface, see Section 8.1) implements the in-
vocations of a channel with schema S → T by extracting the actual data and
continuation channel from the sent message, establishing a connection and
sending the actual data over the connection, receiving the response from the
same connection, and forwarding it on the continuation channel.

We can adopt a similar mechanism to define a service implementing a request-
response operation. PiDuce processes are extended with

new u :S → T in P

which differs from the new of Table 1 because the associated WSDL has its
interaction pattern set to request-response, an input message part set to S,
and an output message part set T . The behavior of u is the same as for the
corresponding import.
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7.2 Channels versus services

So far a one-to-one correspondence between PiDuce channels and Web services
(hence between PiDuce channels and WSDL resources) has been assumed. This
assumption falls short in faithfully modeling real Web services where a WSDL

resource corresponds to a set of operations. To overcome this limitation we
need to extend schemas and processes in Table 1. The extension, illustrated in
Table 7, is folklore in the community except for the definition of the subschema
relation.
Table 7
PiDuce syntax with service extensions (I is finite).

S ::= schema
· · · as in Table 1
{mi : Sii∈I} (record schema)

E ::= expression
· · · as in Table 1
r#m (service operation)

P ::= process
· · · as in Table 1
new r :S in P (new)
import r : S = v in P (import)

The extended syntax uses the countably infinite sets of operation names,
ranged over by m, n, . . . . Among variables we distinguish services ranged
over by r, s, . . . . In the new syntax, u and v range over channels and expres-
sions r#m.

The schema {mi : Si
i∈I}, with I finite, describes services that offer a set of

operations mi whose schema is Si. Operation names in records are pairwise
different; the schemas Si are always channel schemas of shape 〈S〉κ or S →
T . The definition of handle and the subschema relation of Definition 1 are
extended with a further entry dealing with record schemas. Let {mi : Si

i∈I} ↓
{mi : Si

i∈I},(). A subschema R is a relation such that S R T implies the
items listed in Definition 1 and, in addition:

(5) S ↓ {mi : Si
i∈I},S ′ implies T ↓ {mj : Tj

j∈Jk},T ′k, for 1 ≤ k ≤ n, with
Jk ⊆ I and, for every j ∈ Jk, Sj R Tj and S ′ R ∑

k∈1..n T
′
k.

For example {m : 〈int〉O ; n : 〈int + string〉O} <: {n : 〈int〉O} and {m :
〈int〉O ; n : 〈string〉O},(int + string) <: {m : 〈int〉O},int + {n :
〈string〉O},string.

The process new r : {mi : Si
i∈I} in P creates a service r exposing the opera-

tions mi, i ∈ I. The continuation P addresses such operations with r#mi.
In particular, since now u and v also range over expressions of the form
r#m, outputs, selects, and replications may also have the shape r#m!(E),
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Table 8
Typing rules with service extensions.

Expressions :
Γ ` r : {mi : Sii∈I} k ∈ I

Γ ` r#mk : Sk

Processes :
(new-s)

Γ + r : {mi : Sii∈I};∆ + r : {mi : [Si]IOi∈I} ` P
Γ;∆ ` new r : {mi : Sii∈I} in P

(import-s)

(Γ;∆) + r : {mi : Sii∈I} ` P Γ(v) <: {mi : Sii∈I}
Γ;∆ ` import r : {mi : Sii∈I} = v in P

select {rj#mj?(Fj) Pj
j∈J}, and r#m?*(F ) P , respectively. The relevant

upshot for the implementation of PiDuce is that only one WSDL resource is
published and associated with the service r.

The process import r : {mi : Si
i∈I} = v in P imports the service whose WSDL

interface is located at v. This operation is successful provided that the schema
of v contains at least the operations mi, and that the schema constraints are
satisfied as described in Section 6.

The type system of Table 2 is also extended in order to cope with records.
The extension is detailed in Table 8. The operation [S]IO is defined as follows:

[S]IO =

 〈T 〉
IO if S = 〈T 〉κ

〈T,〈R〉O〉IO if S = T → R

The new rules (new-s) and (import-s) generalize (new) and (import) to
references that are services. Theorem 6 and Theorem 7 still hold for this
extension.

8 PiDuce architecture and interoperability

PiDuce runtime environments consist of three components: the virtual ma-
chine, the channel manager, and the Web interface – see Figure 3.

The virtual machine executes threads by interpreting PiDuce object code re-
sulting from the compilation of PiDuce programs. The implementation of the
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Fig. 3. PiDuce: the runtime environment.

virtual machine is standard. The virtual machine stores its data in three struc-
tures: the program pool, containing the object code of the processes that have
been loaded; the ready queue, containing threads that are ready to execute;
the blocked queue, containing threads awaiting for some message. Threads are
executed by means of a round-robin scheduler.

The channel manager handles the pool of channels that are local to the run-
time environment. It is thus responsible for any operation involving local chan-
nels, in particular creation, send, and receive operations. Within the channel
manager, each channel consists of a schema, describing the values that are
carried, a message queue containing all the messages that have been sent but
not consumed, and a request queue containing the threads waiting for a mes-
sage on that channel. Whenever a new message arrives, the first thread in the
request queue, if any, is awakened ; otherwise the message is moved into the
message queue.

The PiDuce runtime environment interacts with the external environment
through a Web interface, which is responsible for bridging PiDuce processes
and standard Web service technologies. In the outgoing direction, the Web in-
terface is responsible for publishing appropriate WSDL resources for the PiDuce
services created by the local virtual machine, for exporting PiDuce schemas
into corresponding XML-Schemas, and for marshalling PiDuce values into XML

messages. In the incoming direction, the Web interface is responsible for im-
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porting WSDL resources as PiDuce services, for decoding XML-Schemas into
PiDuce schemas, and for unmarshalling incoming XML messages into PiDuce

values. Additionally, incoming XML messages are checked to be conformant to
the schema of the channels they are targeted to, so as to prevent runtime
errors within the virtual machine. The Web interface is also responsible for
handling request-response channels and services as described in Section 7,
so that within the virtual machine communication is purely asynchronous,
whereas externally request-response services are handled in the standard way.

The modular design of this architecture has four main consequences: (1) the
channel manager and the Web interface may be used stand-alone for provid-
ing PiDuce-compatible communication primitives in (native) programs that
are written in a language other than PiDuce; (2) the virtual machine and
the channel manager are decoupled from the actual transport protocols and
technologies used in distributed communication. In this way a large part of
PiDuce may be adapted to different contexts with minimum effort; (3) commu-
nications occurring within the same runtime environment are short-circuited
and do not entail any additional overhead because they solely rely on internal
data structures, rather than passing through the Web interface; (4) the vir-
tual machine and the channel manager realize a type-safe environment: every
operation performed therein can never manifest a type error.

8.1 Mechanisms interfacing PiDuce channels and Web services

Web services are published by interfaces that are written in a standard for-
mat: the WSDL – Web Service Description Language [25]. Every WSDL interface
contains two parts: the abstract part defines the set of operations supported
by the service; the concrete part binds every operation to a concrete net-
work protocol and to a concrete location. Every operation is described by a
name and by the schema of the messages that the operation accepts and/or
produces. Albeit WSDL does not make any commitment on the schema lan-
guage to be used, XML-Schema is the schema language universally adopted.
Operations have an associated interaction pattern that conforms to one out
of four models: one-way interaction (the client invokes a service by sending a
message); notification (the service sends the message); request-response (the
client sends a message and waits for the response); solicit-response (the service
makes a request and waits for the response).

We discuss the possible WSDL interfaces by analyzing a number of examples.
Consider the process new u : 〈S〉κ in P . This process creates a channel u and
publishes it in a WSDL interface whose abstract part is:

<schema>
<complexType name="InSchema">bbS cc</complexType>
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</schema>
<message name="Input">
<part name="par" type="InSchema"/>

</message>
<portType name="service">
<operation name="operation" piduce:operationCapability="κ">

<input message="Input"/>
</operation>

</portType>

where bbS cc is the XML-Schema encoding of the PiDuce schema S (see Sec-
tion 8.2.) This operation, being one-way, defines the "Input" message only
and its schema "InSchema". It is worth to notice the use of the nonstandard
attribute piduce:operationCapability which informs PiDuce clients that
the service may support remote inputs if κ ≤ I, as such information can-
not be inferred from the WSDL interface. Since the attribute is in the piduce

namespace, it will be ignored by standard Web services. The concrete part of
the WSDL interface for u is specified by two elements, binding and service:

1 <binding name="serviceSoap" type="service">
2 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
3 <operation name="operation">
4 <soap:operation style="document"
5 soapAction="http://www.cs.unibo.it:1811/x" />
6 <input><soap:body use="literal"/></input>
7 </operation>
8 </binding>

The element binding defines the concrete message formats and the protocols
to be used for accessing the operation. Currently, PiDuce supports the SOAP-
over-HTTP binding – see line 2 of the above document. When using the SOAP-
over-HTTP binding, the Web interface communicates SOAP messages (XML
documents with the shape Envelope[Header[headers ], Body[parameters ]]

where the Header is optional) using the HTTP protocol. The soap:operation
element on line 4 has two attributes: style specifies that the operation style is
document (the current prototype supports also the RPC style); soapAction
specifies the SOAPAction header used in the HTTP request. The informa-
tion in these two attributes, together with the attribute use of the soap ele-
ment, specifies the format of the XML message to be sent. When the attribute
use is literal then the transported XML message appears directly under the
SOAP Body element without any additional encoding information. When the
attribute use is encoded then the XML message is annotated with additional
schema information. Therefore a possible SOAP message for invoking a service
having schema 〈a[int] + b[string]〉O is

<?xml version="1.0" encoding="utf-8"?>
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<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>

<a>1</a>
</env:Body>

</env:Envelope>

The element service connects a binding to a specific URL. This URL is given
by the location of the PiDuce runtime environment followed by a unique path,
which is typically formed by appending the ?wsdl suffix to the name of the
channel. For instance, the following service element asserts that the service
is located at http://www.cs.unibo.it:1811/u:

1 <service name="service">
2 <port name="service" binding="serviceSoap">
3 <soap:address location="http://www.cs.unibo.it:1811/u" />
4 </port>
5 </service>

In addition to defining new channels, PiDuce also permits to import exter-
nally defined services. The process import u :S = URL in P imports a one-
way interaction service located at URL and gives it the name u. When the
bytecode corresponding to the import process is loaded into the virtual ma-
chine, the XML-Schema of the service u is extracted from the WSDL located
at URL, it is decoded into a PiDuce schema T , and the decoded schema is
verified to be compatible with S following rule (import-a). If the attribute
piduce:operationCapability="κ" is found in the WSDL (implying that u has
been published by a PiDuce runtime), compatibility means S <: 〈T 〉κ. Other-
wise compatibility means S <: 〈T 〉O. The Web interface also verifies whether
the binding is SOAP over HTTP. In case of success the value of the attribute
location in the service element is used as target for future invocations. In
case of failure of any of the above checks, the continuation P is not executed.

When the externally defined service is request-response, it may be imported
by import u :S → T = URL in P . The schema of u is retrieved as before but,
in this case, the WSDL interface has a portType element whose shape is:

<portType name="op-request-response">
<operation name="request-response">
<input message="Input"/>
<output message="Output"/>

</operation>
</portType>

The Web interface decodes Input and Output into the schemas SI and SO,
respectively. Then it verifies that 〈S, 〈T 〉O〉O <: 〈SI, 〈SO〉O〉O. The remaining
behavior is similar to the previous case.
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8.2 From PiDuce schemas to XML-Schemas, and back

The correspondence between PiDuce schemas and XML-Schema is established
by suitable encoding and decoding procedures implemented by the Web in-
terface. By encoding we mean the translation of PiDuce schemas into XML-
Schema, and by decoding we mean the inverse transformation.

Although PiDuce schemas and XML-Schema have a significant common inter-
section, there are features of XML-Schema not supported by PiDuce schemas
and, conversely, features of PiDuce schemas that cannot be represented in
XML-Schema. Regarding XML-Schema and the decoding function:

• XML attributes have been ignored because they would have entangled PiDuce

schemas without giving any substantial contribution to their semantic rele-
vance;
• features such as keys, references, and facets have been ignored because they

are used mainly for validation (verifying that a value belongs to a given
schema) rather than for typechecking (verifying that two schemas are related
by the subschema relation).

In both cases such features are unused in the description of existing Web
services (in particular in the XML-Schemas of the exchanged messages), hence
omitting their treatment does not impede actual experimentation with PiDuce.
For this subset of XML-Schema the decoding into PiDuce schemas is mostly
straightforward. The only problematic case is for the all particle of XML-
Schema that is used for defining sequences where elements can appear in any
order. In this case the naive decoding into a PiDuce schema would result in
a schema having an exponential size with respect to the number of elements
occurring in the all particle. To alleviate this problem all is decoded as a
single PiDuce sequence where elements are canonically ordered. When a value
is received and validated by the Web interface against a PiDuce sequence orig-
inated by an all particle, the elements of the value are rearranged with the
canonical order.

As regards the encoding function, PiDuce schemas that have a natural rep-
resentation in XML-Schema are encoded by using standard elements in the
XML-Schema namespace. The remaining PiDuce schemas are encoded using
extension elements in a dedicated PiDuce namespace. In particular, extension
elements are used for

• channel schemas, because current technologies do not provide any standard
representation and description of them. We expect that this lack of expres-
siveness will be remedied in the near future, if higher-order Web services
will prove to be a valuable feature;
• schema names, when these names are not the content of labelled values,
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because such limitation of XML-Schema finds no justification in PiDuce

schemas;
• unions and differences of labels, because these operations have been intro-

duced in PiDuce mostly for pattern matching rather than for typing. In
this case the lack of corresponding constructs in XML-Schema must not be
interpreted as a weakness in XML-Schema itself. In fact, standard query and
pattern languages such as XPath [13] and XQuery [8] provide for label wild-
cards.

It is understood that any WSDL interface containing schemas with extension
elements will not be compatible with standard Web services.

9 Related work

The PiDuce prototype falls within the domain of distributed abstract machines
for pi-like calculi. Among them we recall Facile [20], the Jocaml prototype [15],
Distributed pi calculus [3], Nomadic Pict [32], the Ambient Calculus [10,30].
The differences between our model and the other ones are as follows. Facile
uses two classes of distributed entities: (co-)located processes which execute,
and channel-managers which mediate interaction. This forces it to use a hand-
shake discipline for communication. Jocaml simplifies the model by combining
input processes with channel-managers. However, it uses a quite different form
of interaction, which does not relate that closely to pi calculus communication.
It also forces a coarser granularity, in which every channel must be co-located
with at least another one. Unlike Jocaml, our machine has finer granularity
and uses the same form of interaction as the pi calculus. The other models
add explicit location constructs to the pi calculus and use agent migrations
for remote interactions.

PiDuce’s type system has been strongly influenced by the one in XDuce, a
functional language for XML processing [21]. In XDuce, values do not carry
channels, and the subschema relation is never needed at run-time. Our paper
may also be read as an investigation of the extension of XDuce values and
schemas with channels.

Several integrations of processes and semi-structured data have been studied in
recent years. Two similar contributions, that are contemporary and indepen-
dent to this one, are [12] and [2]. The schema language in [12] is the one of [6]
enriched with the channel constructors for input, output, and input-output
capability. No apparent restriction to reduce the computational complexity of
pattern matching is proposed and no prototyping effort is undertaken. The
schema language of [2] is simpler than that of PiDuce. In particular recursion
is omitted and labeled schemas have singleton labels.
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Other contributions integrating semi-structured data and processes are dis-
cussed in order. TulaFale [7], a process language with XML data, is especially
designed to address Web services security issues such as vulnerability to XML

rewriting attacks. The language has no static semantics. The integration of
PiDuce with the security features of TulaFale seems a promising direction
of research. Xdπ [19] is a language that supports dynamic Web page pro-
gramming. This language is basically pi calculus with locations enriched with
explicit primitives for process migration, for updating data, and for running a
script. The emphasis of Xdπ is towards behavioral equivalences and analysis
techniques for behavioral properties. A contribution similar to [19] is Active
XML [1] that uses an underlying model consisting of a set of peer locations with
data and services.

10 Conclusions

In this contribution we have presented the PiDuce project, a distributed im-
plementation of the asynchronous pi calculus with tree-structured datatypes
and pattern matching. The resulting language incorporates constructs that
are suitable for modeling Web services, and this motivates our choice of XML
idioms, such as XML-Schema and WSDL for types and interfaces, respectively.
In this respect, PiDuce fills the gap between theory and practice by formally
defining a programming language and showing its implementation using in-
dustrial standards.

Figure 4 shows a PiDuce client that interacts with the Web services provided
by the on-line store Amazon and the Google serach engine. The code shown
is actually an approximation of the actual client, which needs a long pream-
ble of complex schema definitions and slightly more complex messages to be
sent to the two services; the full example can be found in the latest PiDuce

distribution. The client starts by defining the relevant schemas that are pub-
lished in the WSDL’s of the two Web services (lines 1 and 2). In fact, PiDuce
provides an utility for extracting such declarations automatically, given the
URL of the service’s WSDL file. Lines 3 to 9 import the two Web services. For
each service we only import the relevant operations. In this case they are both
request-response operations, as can be noticed by the arrow schema. The URL’s
after the keyword location refer to the WSDL files provided by Amazon and
Google. Line 10 defines a local channel to be used as the continuation for the
interaction with the Amazon Web service. While PiDuce’s Web interface inter-
operates natively with request-response operations, the language only provides
for asynchronous communication primitives. Adding syntactic sugar for invok-
ing synchronous operations is trivial. Line 11 defines a special channel used
to write values on the terminal, so that the process can be monitored and the
results can be printed. Lines 12 to 15 invoke Amazon by searching for a partic-
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1 schema ProductInfo = ...
2 and GoogleSearchResult = ...
3 in import Amazon {
4 KeywordSearchRequest
5 : KeywordSearchRequest[KeywordRequest] → return[ProductInfo]
6 } location="http://soap.amazon.com/schemas2/AmazonWebServices.wsdl "
7 in import Google {
8 doGoogleSearch : q[string] → return[GoogleSearchResult]
9 } location="http://api.google.com/GoogleSearch.wsdl "

10 in new amazonReply { get : 〈return[ProductInfo]〉 }
11 in new stdout { print : 〈Any〉 } location="stdout"
12 in spawn {
13 Amazon.KeywordSearchRequest!
14 (KeywordSearchRequest[keyword["Nocturama"]], amazonReply.get)
15 }
16 amazonReply.get?(return[product : ProductInfo])
17 match product with {
18 Any, Details[Item[Any, Artists[artistList : Item[string]*],
19 Any], Any] ⇒
20 match artistList with {
21 () ⇒ stdout.print! "no artist found"
22 | Item[name : string], Any ⇒
23 Google.doGoogleSearch!(q[name], stdout.print)
24 }
25 | Any => stdout.print!("no product or artist found")
26 }

Fig. 4. A PiDuce client interacting with both Amazon and Google Web services.

ular keyword, and the process starting on line 16 waits for the response. Once
this arrives, a query is done on the received document (lines 17 to 22) and
one piece of extracted information is used to start the Google search engine
on line 23. The result is directly printed on the terminal.

Regarding the description of Web services interfaces, it is remarkable that
WSDL 1.1 (already published as a W3C Note [25]) does not consider service
references as first class values, that is natural in a distributed setting, in pi
calculus, and, thereafter, in PiDuce. This lack of expressiveness has been at
least partly amended in WSDL 2.0 [26,27] that, at the time of this writing, is
in a Candidate Recommendation status. Still, we note significant differences
between our approach and the way “Web services as values” are handled in
WSDL 2.0. For example the client receiving a service reference u must eventually
compare the schema in the WSDL of u with some local schema before using u or
forwarding u to a third party. While this comparison, called subschema relation
in this paper, is fundamental in PiDuce, it has been completely overlooked
in WSDL 2.0.
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Few remarks about XML-Schema are in order. First of all there is a large over-
lapping between XML-Schema and PiDuce schemas, which has been discussed
in Section 8. Apart from channel schemas, the other major departure from XML

schema is the support for nondeterministic labelled schemas. These schemas
make the computational complexity of the subschema relation exponential,
but they are essential for the static semantics of a basic operator in PiDuce,
the pattern-matching (see the third premise of rule (match) in Table 2). No-
ticeably, the constraint of label-determinedness on channel schemas guarantees
a polynomial cost for the subschema relation (and for the pattern matching)
at runtime (see Appendix C).

Future work in the PiDuce project is planned in two directions: the first di-
rection is rather pragmatic, and is aimed to improving interoperability and
support to existing protocols. The goal is to interface PiDuce with more real-
world Web services and to carry on more advance experimentation. The other
direction regards conceptual features that are desirable and that cannot be
expressed conveniently in the current model. In particular error handling and
transactional mechanisms. These mechanisms, which are basic in BPEL [5], per-
mit the coordination of processes located on different machines by means of
time constraints. This is a well-known problematic issue in concurrency theory.
An initial investigation about transactions in the setting of the asynchronous
pi calculus has been undertaken in [23]. A core BPEL language without such
advanced coordination mechanisms should be compilable in PiDuce without
much effort, thus equipping BPEL with a powerful static semantics. We expect
to define a translation in the near future.

Another direction of research is about dynamic XML data, namely those data
containing active parts that may be executed on clients’ machines. This is
obtained by transmitting processes during communications, a feature called
process migration. The PiDuce prototype disallows program deployments on
the network. However, the step towards migration is quite short due to the
fact that object code is in XML format. Therefore it suffices to introduce two
new schemas: the object code schema and the environment schema, and admit
channels carrying messages of such schemas.
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A Properties of the subschema relation

This appendix contains the proofs of Proposition 2. The statement is recalled
for readability sake.

Proposition 2 (1) <: is reflexive and transitive;
(2) If S is empty, then S <: Empty;
(3) (Contravariance of 〈·〉O) S <: T if and only if 〈T 〉O <: 〈S〉O;
(4) (Covariance of 〈·〉I) S <: T if and only if 〈S〉I <: 〈T 〉I;
(5) (Invariance of 〈·〉IO) S <: T and T <: S if and only if 〈S〉IO <: 〈T 〉IO;
(6) If S <: T , then S,() <: T ; if (),S <: T , then S <: T ;
(7) If S <: T and S ′ <: T ′, then S,S ′ <: T,T ′;
(8) If (S + S ′),S ′′ <: T , then S,S ′′ <: T and S ′,S ′′ <: T ;
(9) For every S, Empty <: S <: Any and 〈S〉κ <: AnyChan and 〈Any〉IO <: 〈S〉O
and 〈Empty〉IO <: 〈S〉I.

Proof : We prove items 1 (transitivity), 7, and 9.

As regards transitivity of item 1, let R be a subschema relation and let R+ be
the least relation that contains R and is closed under the following operations
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(1) if S R+ T then S R+ T +R;
(2) if S R+ T and S ′ R+ T then S + S ′ R+ T ;
(3) if S R+ T and S ↓ L[S ′],S ′′ then L′[S ′],S ′′ R+ T with L̂′ ⊆ L̂;

It is easy to verify that R+ is a subschema relation. Let R and S be two
subschema relations such that SRT and T S R. We prove that

T = {(S,R) | SR+ T and TS+R}

is a subschema relation. Let S T R. The critical case is when S ↓ L[S ′],S ′′.
According to the definition of T , there exists T such that SR+ T and TS+R.
By Definition 1, T ↓ L′[T ′],T ′′ with L̂ ∩ L̂′ 6= ∅. There are two cases:

(a) T ↓ L′[T ′],T ′′ with L̂ 6⊆ L̂′ and L̂ ∩ L̂′ 6= ∅. We are reduced to (L ∩
L′)[S ′],S ′′ T R and (L \ L′)[S ′],S ′′ T R, which are immediate by defini-
tion of T .

(b) T ↓ Li[T ′i ],T ′′i with i ∈ I and L̂ ⊆ ⋂i∈I L̂i and, for every K ⊆ I:

either S ′R
∑
k∈K

T ′k or S ′′R
∑

k∈I\K
T ′′k . (A.1)

There are two subcases:
(b1) R ↓M [R′],R′′ with L̂∩M̂ 6= ∅ and L̂ 6⊆ M̂ . In this case we must prove

(L ∩M)[S ′],S ′′ T R and (L \M)[S ′],S ′′ T R, which are immediate
by definition of T .

(b2) R ↓ Mj[R
′
j],R

′′
j with j ∈ J and L̂ ⊆ ⋂

j∈J M̂j. There are again

two subcases: (b2.1) there are i, k such that L̂i 6⊆ M̂k; (b2.2) the
contrary of (b2.1). In case (b2.1) we apply the simulation case 4.(a):
it must be (Li ∩Mk)[T

′
i ],T

′′
i S R and (Li \Mk)[T

′
i ],T

′′
i S R. As far

as (Li ∩Mk)[T
′
i ],T

′′
i S R is concerned, L̂ ⊆ L̂i ∩ M̂k. If Li ∩Mk is

not contained in every Mj we reiterate the argument (b2.1) on the
schema (Li∩Mk)[T

′
i ],T

′′
i . We end up with a set of schemas L′i[T

′
i ],T

′′
i

with i ∈ I such that L′i[T
′
i ],T

′′
i S R and the case (b2.2) holds. From

now on the arguments of the two cases are the same. We let L′i = Li.
From Li[T

′
i ],T

′′
i S R we have: for every K ′ ⊆ J :

either T ′i S
∑
k∈K′

R′k or T ′′i S
∑

k∈J\K′
R′′k (A.2)

Let K ⊆ J . Since L̂ ⊆ ⋂j∈J M̂j, we must prove:

either S ′ T
∑
k∈K

R′k or S ′′ T
∑

k∈J\K
R′′k (A.3)

For every i ∈ I, the constraint (A.2) implies

either T ′i S+
∑
k∈J

R′k or T ′′i S+
∑

k∈J\K
R′′j (A.4)
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where the relation is S+. Let HK = {h ∈ I | T ′h S+ ∑
k∈K R

′
k}. By

definition HK ⊆ I and T ′′h′ S+ ∑
k∈J\K R

′′
k for every h′ ∈ I \HK . The

constraint (A.1) implies

either S ′ R+
∑
h∈HK

T ′h or S ′′ R+
∑

h∈I\HK

T ′′h (A.5)

The constraint (A.3) follows from (A.5) and (A.4).
The case (b2.2) is similar to (b2.1) but we apply the simulation

case 4.(b)

As regards the item 7, let R be a subschema relation such that S R T and
S ′ R T ′. Let R̂ be the least relation that contains R and that is closed under
reflexivity and under the following operation:

• if S R̂ T , then S,R R̂ T,R and R,S R̂ R,T .

The relation R̂ is a subschema relation. We demonstrate the case S,R R̂ T,R
and omit the other one because trivial. Let S,R ↓ R′. If S ↓ () and R ↓ R′
then, by S R̂ T , we have T ↓ () and T,R ↓ R′. We can conclude by reflexivity
of R̂. If S ↓ B,S ′, then R′ = B,S ′,R. From S R̂ T we have that T ↓ B′i,T ′i for
1 ≤ i ≤ n, with B v B′i and S ′ R̂ ∑

1≤i≤n T
′
i . Hence T,R ↓ B′i,T ′i,R for 1 ≤

i ≤ n and now S ′,R R̂ ∑
1≤i≤n T

′
i,R by definition of R̂. The remaining cases

are similar. We conclude by remarking that (S,S ′, T,T ′) is in the transitive
closure of R̂.

As regards the item 9, let R be the least relation containing the identity and
the pairs:

(Empty, S), (S, Any), (〈S〉κ, AnyChan), (〈Any〉IO, 〈S〉O), (〈Empty〉IO, 〈S〉I)

(S, (int + string + AnyChan + ~[Any])∗), (n, int), (s, string)

The proof that R is a subschema relation is straightforward, except for the
pairs (S, Any) and (S, (int + string + AnyChan + ~[Any])∗). We analyze the
first pair, the other being similar. We show that every R such that S ↓ R is
simulated by Any. The interesting case is when R = L[S ′],S ′′. In this case
Any ↓ ~[Any],(int + string + AnyChan + ~[Any])∗ and we are in case 4.b of
Definition 1. Since S ↓ R then S is not-empty, similarly for Any. Therefore we
are reduced to (S ′, Any), (S ′′, (int+string+AnyChan+~[Any])∗) ∈ R, which
hold by definition. 2
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B Soundness of the static semantics

The basic statements below are standard preliminary results for the subject
reduction theorem.

Lemma 8 (Weakening) (1) If Γ ` E :S and x 6∈ fv(E), then Γ + x :T `
E :S;

(2) If Γ;∆ ` P and x 6∈ fv(P ), then both (a) Γ + x : S;∆ ` P and (b)
Γ + x :〈S〉κ;∆ + x :〈S〉IO ` P .

Actually, the premises of the second statement of Lemma 8 also entail Γ + x :
S;∆ + x : S ` P , but this property is never used in the following. When a
local channel is created, the property that is used is (b). A somewhat converse
statement of weakening is the following.

Lemma 9 (Strengthening) If Γ ` E :S and x 6∈ fv(E), then Γ \ x ` E :S.
Similarly, if Γ;∆ ` P and x 6∈ fv(P ), then Γ \ x;∆ \ x ` P .

The following proposition collects properties about judgments of values. We
recall that Γ is channeled when it binds variables to channel schemas.

Proposition 10 Let Γ ` V :S.

(1) If S = L[S ′],S ′′, then L is a singleton;
(2) If S <: 〈T 〉κ, then V is a variable;
(3) If Γ is channeled and S <: T1 + T2, then either S <: T1 or S <: T2;
(4) If S <: T1,T2, then there exist V1 and V2 such that V = V1@V2 and

Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <: T1 and S2 <: T2;
(5) If and S <: T ∗, then either V = () or V = V1@V2 with V1 6= () and

Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <: T and S2 <: T
∗.

Proof : Item (1) follows from the definition of judgment for expressions.

Item (2) follows from the definitions of values (a void expression or a sequence
of non-void values) and of judgment for expressions.

Regarding item (3), we proceed by induction on the derivation of Γ ` V :S.
The base case are:

• S = (). By definition of <: we have either T1 ↓ () or T2 ↓ (), then we
conclude;
• S = B. Since S ↓ B,() we have three cases. If S <: T1 or S <: T2 we

immediatly conclude. Otherwise, by definition of <:, we obtain:
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T1 ↓ Bi,Qi B v Bi 1 ≤ i ≤ n (B.1)

T2 ↓ Bj,Qj B v B′j n+ 1 ≤ j ≤ m (B.2)

() <:
∑

1≤i≤m
Qi (B.3)

Since B.3 implies Qk ↓ () for some k ∈ {1, . . . ,m}, we conclude S <: Bk,Qk

by either B.1 or B.2.
• S = 〈S ′〉κ. Similar to the previous case.

The inductive cases are:

• S = B,S1. If S <: T1 or S <: T2 we immediately conclude. Otherwise,
by definition of <:, we have T1 ↓ Bi,Qi with B v Bi for 1 ≤ i ≤ n, and
T2 ↓ Bj,Qj with B v B′j for n + 1 ≤ j ≤ m and S1 <:

∑
1≤i≤mQi. We

conclude by the inductive hypothesis.
• S = 〈S1〉κ,S2. Similar to the previous case.
• S = a[S1],S2. If S <: T1 or S <: T2 we immediately conclude. Otherwise, by

definition of <:, we have T1 ↓ Li[Qi],Q
′
i for 1 ≤ i ≤ n, and T2 ↓ Lj[Qj],Q

′
j

for n + 1 ≤ j ≤ m. Since a is a singleton (4).b of <: applies. We assume
by contradiction that a[S1],S2 6<: Li[Qi],Q

′
i for any i ∈ {1, . . . ,m} (i.e.

S1 6<: Qi ∨ S2 6<: Q′i for any i ∈ {1, . . . ,m}). Then we choose Ji as follows:
(1) J1 = ∅ implies S2 <:

∑
i∈{1,...,m}Q

′
i and, by the inductive hypothesis,

there exists k1 such that S2 <: Q
′
k1

;
(2) Jk1 = {k1}, since S1 6<: Qk1 , we have S2 <:

∑
i∈{1,...,m}\{k1}Q

′
i and, by

the inductive hypothesis, there exists k2 6= k1 such that S2 <: Q
′
k2

;
(3) Jk1,k2 = {k1, k2}, since S1 6<: Qk1 and S1 6<: Qk2 , by the inductive hy-

pothesis we have S1 6<: Qk1+Qk2 . Then we must have S2 <:
∑
i∈{1,...,m}\{k1,k2}Q

′
i

that implies, by the inductive hypothesis, k3 with k3 6= k1 and k3 6= k2

such that S2 <: Q
′
k3

;
(. . . )
(m+ 1) J{k1,k2,...,km} = {1, . . . ,m} then we have to prove S1 <:

∑
i∈{1,...,m}Qi

that, by inductive hypothesis, implies S1 <: Qk for some k ∈ {1, . . . ,m}.
But this is not possible because of the previous m judgements (S1 6<: Qk1

for (1), S1 6<: Qk2 for (2), ..., S1 6<: Qkm).
Therefore we obtain a[S1],S2 6<: T1 + T2 which contradicts the hypothesis.
• If S = a[S1], since S ↓ a[S1],() we reduce to the previous case.

Regarding item (4), we proceed by induction on V . For the base case assume
that T1 ↓ () and S <: T2 (notice that this case includes the one where V = ()).
We conclude by taking V1 = () and V2 = V . For the inductive case assume
that either T1 ↓ R implies R 6= () or that T1 ↓ () and S 6<: T2. We reason by
cases on the structure of V , we only show the case when V = b,V ′, the others
are similar. We have S = b,S ′ where Γ ` V ′ : S ′. We must have T1 ↓ B,T ′1
with b <: B and S ′ <: T ′1,T2. By induction hypothesis there exist V ′1 and V2

such that V ′ = V ′1@V2 and Γ ` V ′1 : S ′1 and Γ ` V2 : S2 and S ′1 <: T ′1 and
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S2 <: T2. We conclude by taking V1 = b,V ′1 .

Regarding item (5), if V = () we conclude immediately. Assume V 6= ().
Then we must have T ↓ R, with R 6= () and S <: R,T ∗. By item (4) we
obtain V = V1@V2 and Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <: R and S2 <: T

∗.
Since R is a handle and R 6= () we must have V1 6= (). Furthermore, since R
is a handle of T , we have R <: T hence we conclude S1 <: T . 2

Lemma 11 (Substitution) Let V be a dom(Γ)-value and Γ ` V :S.

(1) If Γ ` E :T , Γ ` x :R and S <: R, then Γ ` E{V /x} :T ′ with T ′ <: T .
(2) If Γ;∆ ` P , Γ + ∆ ` x :R and S <: R, then Γ;∆ ` P{V /x}.

Proof : The proof is by induction on the structure of the derivations of Γ ` E :T
and Γ;∆ ` P .

For (1) we only discuss the case when E is a sequence E1,E2. By definition
of `, Γ ` E1 :T1 and Γ ` E2 :T2, and by inductive hypothesis we have

Γ ` E1{V /x} :T ′1 and T ′1 <: T1 (B.4)

Γ ` E2{V /x} :T ′2 and T ′2 <: T2 (B.5)

From (B.4), and (B.5) we obtain Γ ` (E1,E2){V /x} : T ′1,T
′
2. By Proposi-

tion 2(6), T ′1,T
′
2 <: T1,T2 and we conclude.

For (2) we only discuss the case when the last rule is (out). Then P = u!(E)
and the premises of the rule are the judgments Γ ` E : T and Γ;∆ ` u : R,
and the predicate

R <: 〈T 〉O (B.6)

We must prove Γ;∆ ` u!(E){V /x}. By Γ ` E :T , the hypothesis Γ ` V : S,
S <: R, and the substitution lemma for expressions, we obtain

Γ ` E{V /x} :T ′ (B.7)

T ′ <: T (B.8)

As regards the subject of the output, there are two subcases: (a) x 6= u
and (b) x = u. Case (a) follows by (B.6), (B.8), contravariance of 〈·〉O and
transitivity of <:. Case (b) implies S = R. Therefore, by Proposition 10, V is
a variable. The lemma follows by (B.7), the hypotheses Γ ` x : S, the (B.6),
the contravariance of 〈·〉O, and the transitivity of <:. 2

The weakening, strengthening, and substitution lemmas entail a subsumption
property that is useful for the correctness of the rule (dtr1) in the subject
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reduction.

Proposition 12 If Γ + x : T;∆ ` P and x /∈ dom(∆) and S <: T then
Γ + x :S;∆ ` P .

In the rest of this appendix, we generalize all the functions defined over pat-
terns to markers and to sequences of patterns and markers Φ = F1 :: F2 ::
· · · :: Fn where a marker is treated like the empty sequence () and a sequence
F1 :: F2 :: · · · :: Fn is treated like the pattern F1,F2, . . . ,Fn which reduces
to () when n = 0. In particular, we generalize the functions schof(·), fv(·),
Env(·). The next two statements regard the soundness of the evaluation of
expressions and of pattern matching. Straightforward proofs are omitted.

Lemma 13 (Evaluation) Let Γ ` E :S. If E ⇓dom(Γ) V , then Γ ` V :T and
T <: S.

Lemma 14 (Pattern Matching) Let Γ ` V :S and Γ ` V ∈ Φ ; σ.

(1) S <: schof(Φ);
(2) If u /∈ fv(V ), then Γ + u : S ` V ∈ Φ ; σ;
(3) for every u ∈ fv(Φ), Γ ` σ(u) :T and T <: Env(Φ)(u).

Proof : items (1) and (2) are trivial. Regarding item (3), we proceed by induc-
tion on the proof tree of Γ ` V ∈ Φ ; σ. The only interesting case is when
the last rule in the proof of Γ ` V ∈ Φ ; σ is (pm7):

(pm7)

Γ ` V ∈ F :: x/V :: Φ′ ; σ

Γ ` V ∈ (x : F ) :: Φ′ ; σ

and take u = x. Eventually, in the proof tree of ∆ ` V ∈ F :: x/V :: Φ′ ; σ,
there will be an application of rule (pm5):

(pm3)

Γ ` V ′ ∈ Φ′ ; σ′ V = V ′′@V ′

Γ ` V ′ ∈ x/V :: Φ′ ; σ′ + [x 7→ V ′′]

By letting Φ′ = [ ] and V ′ = () and σ′ = ∅ we obtain a proof tree of Γ `
V ′′ ∈ (x : F ) ; σ′′. From item (1) we derive that Γ ` V ′′ : S implies
S <: schof(F ). We conclude by observing that Env(Φ)(x) = schof(F ) and
that σ(x) = V ′′. 2

Every preliminary is set for the subject reduction. For readability sake we
recall the statement.

Theorem 6 (Subject Reduction) Let Γ; [Γ]IOl ` P . Then
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(1) if Γ `l P
(Γ′)u!(V )−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q, (b) Γ + [Γ]IOl ` u :S,

Γ + Γ′ ` V :T and S <: 〈T 〉O;
(2) if Γ `l P

u?(F )−→ Q, then (a) (Γ; [Γ]IOl )+Env(F ) ` Q and (b) Γ+[Γ]IOl ` u :S
with S <: 〈schof(F )〉I;

(3) if Γ `l P
(Γ′)u( v−→ Q, then (a) Γ + Γ′; [Γ + Γ′]IOl ` Q and (b) Γ \ dom([Γ +

Γ′]IOl ) ` u : S, Γ + Γ′ ` v :〈T 〉O and S <: 〈T 〉I;
(4) if Γ `l P

(u@l′:〈S〉IO)−→ Q, then (Γ; [Γ]IOl ) + u :〈S〉IO ` Q;
(5) if Γ `l P

τ−→ Q, then Γ; [Γ]IOl ` Q.

Let ` M. Then

(6) if M
∆−→ N, then ` N.

Proof : The proof proceeds by induction on the structure of the derivation of
Γ `l P

µ−→ Q and by cases on the last rule that has been applied for the
first five items. Item (6) is similar, but the induction is on the structure of the
derivation of ` M. We omit the cases that are straightforward.

When the last rule is an instance of (tr4) we have:

Γ + v :〈S〉κ `l P
(Γ′)u!(V )−→ Q v 6= u v ∈ fv(V ) \ dom(Γ′)

Γ `l new v : 〈S〉κ in P (Γ′+v:〈S〉κ)u!(V )−→ Q

By inductive hypotheses applied to Γ + v : 〈S〉κ `l P
(Γ′)u!(V )−→ Q we obtain

Γ + v :〈S〉κ + Γ′; [Γ + v :〈S〉κ + Γ′]IOl ` Q (B.9)

Γ + v :〈S〉κ + [Γ + v :〈S〉κ]IOl ` u :S ′ (B.10)

Γ + v :〈S〉κ + Γ′ ` V :T (B.11)

S ′ <: 〈T 〉O (B.12)

The conclusion (a) follows from (B.9); the conclusion (b) follows by (B.10),
(B.11), and (B.12) because u 6= v.

When the last rule is an instance of (tr5) we have:

(tr5)

E ⇓ V (Γ ` V 6∈ Fi)i∈1..j−1 Γ ` V ∈ Fj ; σ

Γ `l match E with {Fi ⇒ Pi
i∈1..n} τ−→ Pjσ

By the hypothesis Γ; [Γ]IOl ` P , Lemma 13, and rule (match) we have:

Γ; [Γ]IOl ` V : S S <:
∑
i∈1..n

schof(Fi) (B.13)

51



By Lemma 14 applied to Γ ` V ∈ Fi ; σ and (B.13) we obtain that, for every
v ∈ fv(F ), Γ + Γ′ ` σ(v) :T ′ and T ′ <: Env(F )(v). By Lemma 11 applied to
this last judgment, we derive Γ; [Γ]IOl ` Pjσ.

When the last rule is an instance of (tr8) we have:

Γ `l P
(Γ′)u!(V )−→ P ′ Γ `l Q

u?(F )−→ Q′ dom(Γ′) ∩ fv(Q) = ∅ Γ + Γ′ ` V ∈ F ; σ

Γ `l spawn {P} Q
τ−→ new Γ′ in spawn {P ′} Q′σ

By inductive hypotheses on Γ ` P (Γ′)u!(V )−→ P ′ and Γ ` Q u?(F )−→ Q′ we have:

Γ + Γ′; [Γ + Γ′]IOl ` P ′ (B.14)

Γ + Γ′ ` V :T (B.15)

Γ + [Γ]IOl ` u :S S <: 〈schof(F )〉I S <: 〈T 〉O (B.16)

(Γ; [Γ]IOl ) + Env(F ) ` Q′ (B.17)

By Lemma 14 applied to Γ + Γ′ ` V ∈ F ; σ, (B.15), and (B.16) we
obtain that, for every v ∈ fv(F ), Γ + Γ′ ` σ(v) : T ′ and T ′ <: Env(F )(v).
By Lemma 11 applied to this last judgment, (B.16), and (B.17) we derive
(Γ; [Γ]IOl ) + Γ′ ` Q′σ. We conclude with (B.14), (spawn), and (new).

The case (tr10) is omitted because the resulting process is complex and the
demonstration requires a long uninteresting analysis of the proof tree.

When the last rule is an instance of (dtr1) we have:

(dtr1)

Γ `l P
(vi:Si

i∈I)u!(V )−→ Q u@l′ (vi@l vi /∈ dom(Γ) ∪ dom(Γ′))i∈I

∆ = vi : Si
i∈I + ((Γ|fv(V )) \ l′) meet ((Γ′|fv(V )) \ l)

Γ `l P ‖ Γ′ `l′ R
∆\l,l′−→ Γ + vi : Si

i∈I `l Q ‖ Γ′ + ∆ `l′ spawn {u!(V )} R

In order to prove ` (Γ + vi : Si
i∈I `l Q ‖ Γ′ + ∆ `l′ spawn {u!(V )} R) we

may reduce to demonstrate

Γ + vi :Si
i∈I; [Γ + vi :Si

i∈I ]IOl ` Q (B.18)

Γ′ + ∆; [Γ′]IOl′ ` spawn {u!(V )} R (B.19)

because the machine consistency follows by definition of meet and the fact
that vi are fresh. (We notice that, by definition of ∆, [Γ′+ ∆]IOl′ = [Γ′]IOl′ .) The
judgment (B.18) and

Γ + [Γ]IOl ` u :S (B.20)

Γ + vi :Si
i∈I ` V :T S <: 〈T 〉O (B.21)
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are a consequence of the inductive hypothesis on Γ `l P
(vi:Si

i∈I)u!(V )−→ Q. As
regards (B.19), by ` M we derive Γ′; [Γ′]IOl′ ` R and by Lemma 8 and Propo-
sition 12 we obtain Γ′ + ∆; [Γ′]IOl′ ` R. To demonstrate Γ′ + ∆; [Γ′]IOl′ ` u!(V )
we reason as follows ((B.19) is entailed by (spawn) applied to these last judg-
ments). By (B.20), u@l′, and the well-typedness of M, we derive

Γ′ + [Γ′]IOl′ ` u :S ′ S ′ <: S (B.22)

By (B.21), Lemmas 8 and 9 and Proposition 12 we derive

Γ′ + ∆ ` V :T ′ T ′ <: T (B.23)

The judgment (B.19) follows from (B.22) and (B.23) with the rule (out).

When the last rule is an instance of (dtr2) we have:

(dtr2)

Γ `l P
(u@l′:〈S〉IO)−→ Q u /∈ dom(Γ′) ∪ dom(Γ)

Γ `l P ‖ Γ′ `l′ R −→ Γ + u : 〈S〉IO `l Q ‖ Γ′ + u : 〈S〉IO `l′ R

We verify the well-typedness of the two runtime environments; machine con-

sistency is immediate. By the inductive hypothesis on Γ `l P
(u@l′:〈S〉IO)−→ Q

we obtain Γ; [Γl]IO + u : 〈S〉IO ` Q. This is sufficient for the correctness of
location l because Γ; [Γl]IO + u :〈S〉IO = (Γ + u :〈S〉IO); [Γl + u :〈S〉IO]IO. The
judgment (Γ′ + u : 〈S〉IO); [Γ′ + u : 〈S〉IO]IOl′ ` R follows by Lemma 8 applied
to Γ′; [Γ′]IOl′ ` R.

When the last rule is an instance of (dtr3) we have

(dtr3)

Γ `l P
(Γ′′)u( v−→ Q u@l′ Γ′ ` u : 〈S〉κ dom(Γ′′) ∩ dom(Γ′) = ∅ Γ′′′ = Γ|{v} + Γ′′

Γ `l P ‖ Γ′ `l′ R −→ Γ + Γ′′ `l Q ‖ Γ′ + Γ′′′ `l′ spawn {u?(x : S) v!(x)} R

We focus on the well-typedness of the two runtime environments. By inductive

hypothesis on Γ `l P
(Γ′′)u( v−→ Q we obtain

Γ + Γ′′; [Γ + Γ′′]IOl ` Q (B.24)

Γ + Γ′′ ` u :T (B.25)

Γ + Γ′′ ` v :〈T ′〉O (B.26)

T <: 〈T ′〉I (B.27)

By (B.24) we immediately derive that the left runtime environment is well-
typed. Therefore we focus on the right runtime environment. To demonstrate
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the correctness of its process we will eventually use (spawn). Therefore we
reduce to prove: (1) Γ′ + Γ′′′; [Γ′ + Γ′′′]IOl′ ` R and (2) Γ′ + Γ′′′; [Γ′ + Γ′′′]IOl′ `
u?(x : S)v!(x). The judgment (1) follows by the hypothesis Γ′; [Γ′]IOl′ ` R,
dom(Γ′′)∩ dom(Γ′) = ∅, by Lemma 8 and (in case v ∈ dom(Γ′)) Proposition 12.
As regards (2), the well-typedness of M entails 〈S〉κ <: T . By transitivity of

<:, 〈S〉κ <: 〈T ′〉I. Therefore κ is either I or IO and S <: T ′. Without loss of
generality, let x be fresh. Since Γ + Γ′′ = Γ + Γ′′′, (B.26) and Lemma 8 give
Γ′+Γ′′′+x :S ` v :〈T ′〉O . Then, by rule (out), we obtain Γ′+Γ′′′+x :S; [Γ′+
Γ′′′+x :S]IOl ` v!(x). Finally, it is easy to derive Γ′+Γ′′′+[Γ′+Γ′′′]IOl ` u : 〈S〉κ
from the hypothesis Γ′ ` u :〈S〉κ. We conclude with (select).

When the last rule is an instance of (dtr5) we have:

(dtr5)

M
∆−→ N (dom(N) \ dom(M)) ∩ dom(Γ) = ∅ ∆@l ⊆ Γ

M ‖ Γ `l P
∆\l−→ N ‖ Γ `l P

Since ` (M ‖ Γ `l P ) then both (1) ` M and (2) ` (Γ `l P ). By inductive

hypotheses applied to (1) and M
∆−→ N we derive ` N. The machine consis-

tency of the composite machine follows from that of ` (M ‖ Γ `l P ) and the
constraint ∆@l ⊆ Γ. 2

The proof of the Progress Theorem follows.

Theorem 7 (Progress) Let Γ be channeled.

(1) If Γ ` V :S and S <: schof(F ), then there is σ such that Γ ` V ∈ F ; σ;

(2) If Γ; [Γ]IOl ` P and Γ `l P
(Γ′)u!(V )−→ Q′ and Γ `l P

u?(F )−→ Q′′, then there is
Q such that Γ `l P

τ−→ Q;

(3) If ` (Γ `l P ‖ M), Γ `l P
(Γ′)u!(V )−→ Q, and u is located at a location of

M, then Γ `l P ‖ M
∆−→ Γ `l Q ‖ N, for some N. Similarly when the

label is (Γ′)u( v.

Proof : As regards item (1), let the size of a pattern F , written h(F ), be defined
as follows:

h(()) = h(B) = h(〈S〉κ) = h(L[F ]) = 1
h(S∗) = 1 + h(S)

h(x : F ) = 2 + h(F )
h(F1,F2) = h(F1 + F2) = 1 + h(F1) + h(F2)

h(Y) = 1 + h(F(Y))

Notice that h(F ) is well-defined when F is a well-formed pattern because a
pattern name Y cannot occur unguarded in F(Y) and L[F ] has size 1 regardless
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of F ’s size. We generalize the h function to markers and to sequences of pat-
terns and markers, where the size of a marker is 1 and the size of a sequence
Φ = F1 :: F2 :: · · · :: Fn is defined as the sum of the sizes of all of its elements.

The proof is by induction on the pair (V, h(Φ)), the idea being that at each
induction step either we reduce to pattern matching a value that is structurally
smaller than V or the size of the pattern sequence decreases. Recall that, since
S is the schema of a value, it does not contain +’s, starred schemas, and schema
names, except possibly within channel constructors.

We only show the most relevant cases. In the base case we have h(Φ) = 0 and
V = (). We conclude immediately by (pm1). Assume h(Φ) > 0, meaning that
Φ = F :: Φ′ for some F and Φ′. We reason by cases on the structure of F .

Assume F = (). We notice that schof(Φ) <: schof(Φ′) and that h(Φ′) <
h(Φ). By induction hypothesis we obtain Γ ` V ∈ Φ′ ; σ from which we
conclude by (pm2).

Assume F = L[F ′]. Then V = a[V ′]@V ′′ where a ∈ L, Γ ` V ′ : S ′, Γ ` V ′′ : S ′′,
S ′ <: schof(F ′), and S ′′ <: schof(Φ′). By induction hypothesis we obtain
Γ ` V ′ ∈ F ′ ; σ and Γ ` V ′′ ∈ Φ′ ; σ′ and we conclude by (pm6).

Assume F = F1 + F2. Notice that schof(Φ) <: schof(F1 :: Φ′) + schof(F2 ::
Φ′). By Proposition 10(3) we have that either S <: schof(F1 :: Φ′) or S <:

schof(F2 :: Φ′). If S <: schof(F1 :: Φ′) then by induction hypothesis Γ `
V ∈ F1 :: Φ′ ; σ and we conclude by (pm8). If S 6<: schof(F1 :: Φ′) then by
Lemma 14(1) we have Γ ` V 6∈ F1 :: Φ′. From S <: schof(F2 :: Φ′) and the
induction hypothesis we obtain Γ ` V ∈ F2 :: Φ′ ; σ from which we conclude
by (pm9).

Assume F = T ∗. Let V = V1@V2 so that Γ ` V1 : S1 and Γ ` V2 : S2 and S1 <:

T ∗ and S2 <: schof(Φ′). We take V1 to be the longest prefix of V with these
properties. The existence of V1 and V2 is guaranteed by Proposition 10(4). By
induction hypothesis we obtain that Γ ` V2 ∈ Φ′ ; σ.

Now we reason on the structure of V1 to show that there exists n ≥ 0 such that
Γ ` V1 ∈ T n ; ∅. Assume V1 = (). Then it is sufficient to take n = 0. Assume
V1 6= (). By Proposition 10(5) there exist V ′1 and V ′′1 such that V ′1 6= () and
Γ ` V ′1 : S ′1 and Γ ` V ′′1 : S ′′1 and S ′1 <: T and S ′′1 <: T ∗. By induction
hypothesis we obtain that Γ ` V ′1 ∈ T ; ∅ and furthermore there exists
m ≥ 0 such that Γ ` V ′′1 ∈ Tm ; ∅. Now it is sufficient to take n = m + 1
and we conclude by noticing that if Γ ` V ′1 ∈ T ; ∅ and Γ ` V ′′1 ∈ Tm ; ∅,
then Γ ` V ′1@V ′′1 ∈ T,Tm ; ∅.

Because V1 was chosen as the longest prefix of V such that S1 <: T
∗ and S2 <:

schof(Φ′), by soundness of pattern matching (Lemma 14(1)) we conclude that
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any extension of V1 with a nonempty suffix W such that V2 = W@V ′2 will lead
us to conclude either Γ ` V1@W 6∈ T ∗ or Γ ` V ′2 6∈ Φ′. Hence we conclude
by (pm12).

As regards item (2), by Theorem 6(1) applied to Γ; [Γ]IOl ` P and Γ; [Γ]IOl `l
P

(Γ′)u!(V )−→ Q′, we derive Γ + [Γ]IOl ` u : S, Γ + Γ′ ` V : T and S <: 〈T 〉O.
By Theorem 6(2) applied to Γ; [Γ]IOl ` P and Γ; [Γ]IOl `l P

u?(F )−→ Q′′, we
also derive Γ + [Γ]IOl ` u : S and S <: 〈schof(F )〉I. Since Γ is channeled,
S = 〈S ′〉κ, for some S ′, κ, and by Proposition 2, T <: schof(F ). Therefore,
by item 1, there is σ such that Γ + Γ′ ` V ∈ F ; σ. The proof now requires

a close inspection of the proof trees of Γ `l P
(Γ′)u!(V )−→ Q′ and Γ `l P

u?(F )−→
Q′′. By definition of the transition relation, these trees must have common
subtrees beginning at the root and terminating in correspondence of a subterm
spawn {P ′} P ′′ of P . At this point, the two subtrees continue with premises

Γ + Γ′′′ `l P ′
(Γ′′)u!(V )−→ Q′1 and Γ + Γ′′′ `l P ′′

u?(F )−→ Q′′2 (or conversely). Progress
holds because rule (tr8) may be applied (the constraint dom(Γ′′) ∩ fv(P ′′) =
∅ may be easily enforced by alpha-conversion) to spawn {P ′} P ′′ and the
resulting τ -transition may be lifted to P by means of rules (tr3), (tr6),
(tr7).

Item (3) is straightforward. 2

C The subschema relation and the type system

The definition of <: in Section 4 is given coinductively and it is hard to imple-
ment directly. In this section we illustrate the algorithm used in PiDuce for <:
and we demonstrate its soundness and completeness. The algorithm follows
the style of Hosoya, Pierce and Vouillon [22] has an exponential computational
cost (in the sizes of the argument schemas). In order to alleviate this cost we
define a subclass of schemas and demonstrate the existence of a polynomial
algorithm for them.

Let handles(S) = {R | S ↓ R} and let ℘(1..n) be the set of subsets of numbers
in 1..n. Table C.1 contains the inference rules that define a relation S �A T ⇒
A′, which we are going to relate with <:. The set A, called assumptions, is a set
of pairs (S, T ) representing relations that have been proved or that are being
proved. The set A′, following Brand and Henglein [9], is used for recording
already computed or being computed relations. The rules parse the structure
of handles of the left schema. Rule (empty) accounts for left schemas with no
handle (empty schemas). Rules (void), (base), (chan), (split), and (lseq)
deal with schemas that are handles (void, sequences with an initial schema that
is either basic or channel or labelled). They closely correspond to the items 1,
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Table C.1
The algorithmic subschema (arguments of shape B are always replaced by B,().
Similarly for 〈S〉κ, L[S], S+S′, U, and S∗. Arguments (),S are always replaced by
S).

(empty)

handles(S) = ∅
S �A T ⇒ A

(void)

T ↓ ()
() �A T ⇒ A

(base)

(T ↓ Bi, Ti B v Bi)i∈1..n S �A

∑
i∈{1,...,n} Ti ⇒ A′

B, S �A T ⇒ A′

(chan)

(T ↓ 〈Ti〉κi,T ′i )i∈1..n κ ≤ κi κi = O implies Ti �Ai−1 S ⇒ Ai
κi = I implies S �Ai−1 Ti ⇒ Ai

κi = IO implies S �Ai−1 Ti ⇒ A′i and Ti �A′i
S ⇒ Ai


i∈1..n

S′ �An

∑
i∈1..n T

′
i ⇒ An+1

〈S〉κ,S′ �A0 T ⇒ An+1

(split)

T ↓ L′[T ′],T ′′ L̂ 6⊆ L̂′ L̂ ∩ L̂′ 6= ∅
(L \ L′)[S],S′ �A T ⇒ A′ (L ∩ L′)[S],S′ �A′ T ⇒ A′′

L[S],S′ �A T ⇒ A′′

(lseq)

(T ↓ Li[Ti],T ′i )i∈1..n L̂ ⊆
⋂
i∈1..n L̂i J1, · · · , J2n = ℘(1..n)(

S �Ak−1

∑
i∈Jk Ti ⇒ Ak or S′ �Ak−1

∑
i∈1..n\Jk T

′
i ⇒ Ak

)k∈1..2n

L[S],S′ �A0 T ⇒ A2n

(union)

S,S′′ �A T ⇒ A′ S′,S′′ �A′ T ⇒ A′′

(S + S′),S′′ �A T ⇒ A′′

(name)

A′ = A ∪ {(U,S, T )}
E(U),S �A′ T ⇒ A′′

U,S �A T ⇒ A′′

(star)

A′ = A ∪ {(S∗,S′, T )}
(() + S,S∗),S′ �A′ T ⇒ A′′

S∗,S′ �A T ⇒ A′′

(asmp)

(S, T ) ∈ A

S �A T ⇒ A

2, 3, 4.a and 4.b of <:, respectively. The remaining rules are used for reducing
the computation to such rules. Rule (union) applies to schemas S+S ′,R and
verifies that both S,R and S ′,R are subschemas of T . Rule (name) accounts
for left schemas of shape U,S. In this case the name U is replaced by its
definition E(U), the set of assumptions is extended with the pair (U,S, T ) and
the relation � is computed on these new arguments. Rule (star) is similar
to (name) but for starred schemas. Rule (asmp) terminates proofs when the
arguments are already in the set of assumptions.

The relation � is sound with respect to <:.

Lemma 15 (Soundness) If S �∅ T ⇒ A, then S <: T .
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Proof : Let R be the relation containing

(1) pairs (S ′, T ′) such that a subtree S ′ �A′ T
′ ⇒ A′′ exists in the tree S �∅

T ⇒ A;
(2) if (B, T ′) ∈ R, then (B,(), T ′) ∈ R, too. Similarly for pairs (〈S ′〉κ, T ′),

(〈S ′〉κ, T ′), (L[S ′], T ′), (S ′ + S ′′, T ′), (U, T ′), and (S∗, T ′).

To check that R is a subschema relation, let (S ′, T ′) ∈ R and S ′ ↓ R. By
induction on the structure of the proof S ′ ↓ R it is easy to show that (R, T ) ∈
R, too. 2

We note that the rules in Table C.1 define a program, which we call the �-
program, that takes a triple (S, T, A) and attempts to build the proof tree by
recursively analyzing the structure of S and the set A. The program returns
a set A′ if the attempt succeeds, returns a failure otherwise. The �-program
terminates. To demonstrate this property we introduce some notation:

• t(S), called the set of subterms of S, is the smallest set satisfying the equa-
tions:

t(()) = {()}
t(B) = {B} ∪ {B,()}
t(U) = {U} ∪ {U,()} ∪ {t(E(U))}

t(〈S〉κ) = {〈S〉κ} ∪ {〈S〉κ,()} ∪ t(S)
t(L[S]) = {L[S]} ∪ {L[S],()} ∪ t(S)
t(S,S ′) = {T,S ′ | T ∈ t(S)} ∪ {t(S ′)}

t(S∗) = t(S) ∪ {S∗} ∪ {S,S∗} ∪ {()}
t(S + T ) = {S + T} ∪ t(S) ∪ t(T )

It is easy to demonstrate that t(S) is always finite.
• anames(S) is the set {U,T : U,T ∈ t(S)} ∪ {T ∗,T ′ : T ∗,T ′ ∈ t(S)}
• lsubt(S, T ) is the smallest set containing t(S), t(T ) and closed under the

following properties:
– if L[Q],Q′ ∈ lsubt(S, T ) and L′[Q′′],Q′′′ ∈ lsubt(S, T ) and L̂ 6⊆ L̂′ then

(L \ L′)[Q],Q′ ∈ lsubt(S, T ) and (L ∩ L′)[Q],Q′ ∈ lsubt(S, T )
– if S,S ′ ∈ t(S) and T,T ′ ∈ t(S) then S ′ + T ′ ∈ t(S);
Since t(S) and t(T ) are finite then lsubt(S, T ) is finite as well.
• ‖S‖X , called the size of S with names in X , is the function inductively

defined as:

‖S‖X =



0 if S = U ∈ X
1 if S = ()

‖E(U)‖X∪{U} if S = U 6∈ X
1 + ‖T‖X if S = 〈T 〉κ or S = L[T ] or S = T ∗

1 + ‖T‖X + ‖T ′‖X if S = T,T ′ or S = T + T ′

The number ‖S‖∅ is shortened into ‖S‖.

58



We note that ‖S‖ and |t(S)| are finite (because E is a finite map). They are
also different values in general. For instance ‖S + S‖ = 2 × ‖S‖ + 1 whilst
|t(S + S)| = |t(S)|+ 1.

Lemma 16 (1) The set handles(S) is always finite.
(2) The �-program always terminates.

Proof : As regards (1), let h(S) be the function defined as

h(S) =



0 if S is empty
1 if S = () or S = 〈T 〉κ
1 if S = L[T ] and S is not-empty
h(T ) + h(T ′) if (S = T + T ′ or S = T,T ′) and S is not-empty
1 + h(T ) if S = T ∗

1 + h(E(U)) if S is not-empty and S = U

Since E is well-formed, h(S) is finite for every schema. The proof proceeds by
induction on h(S). The base case is obvious. The inductive case is by cases
on the structure of S. We discuss the subcase S = U. We observe that, by
definition, handles(U) = handles(E(U)). By inductive hypothesis handles(E(U))
is finite; therefore handles(U) is finite as well.

As regards (2), let nS,T,A = |(anames(S) ∪ anames(T ))× lsubt(S, T ) \ A| (the
subtrees of T are considered because of the contravariance of 〈·〉O). We note
that A is contained into (anames(S) ∪ anames(T ))× lsubt(S, T ). We demon-
strate that every invocation of S �A T ⇒ A′ in the premises of the rules of
Table C.1 decreases the value (nS,T,A, ‖S‖ + ‖T‖) (the order is lexicographic)
of the conclusion. There is one problematic case: when the �-program tries to
apply (split). In this case, the value (nS,T,A, ‖S‖+ ‖T‖) for the two premises
is equal to that of the conclusion. However, after a finite number of applica-
tion of (split) – corresponding (in the worst case) to the number of labelled
handles of T , which are finite by (1) – (split) reduces to (lseq). In (lseq)
the value (nS,T,A, ‖S‖+ ‖T‖) decreases, thus guaranteeing termination. 2

Completeness of � with respect to <: is demonstrated below.

Definition 17 A triple (S, T, A) is correct if and only if: (1) S <: T and (2)
(S ′, T ′) ∈ A implies S ′ <: T ′.

Proposition 18 If (S, T, A) is correct, then one of the rules in Table C.1 is
applied by the �-program and every judgment used in the premise of the rule
is correct as well.

Proof : Together with the statement of the Proposition, we also demonstrate
that if the �-program returns a set A′, then A′ is correct: (S ′, T ′) ∈ A′ implies
S ′ <: T ′. We focus on not empty schemas S and the argument is by induction
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on the structure of S. The case of empty schemas is immediate. The case
S = () is immediate as well. As inductive cases, we omit those where S is a
sequence of length 1 because they may be reduced to the following ones by
Proposition 2(6). If S = B,S ′, then, by S <: T , there exist (T ↓ Bi,Ti)i∈1..n

such that, for every i, B ⊆ Bi and S ′ <:
∑
i∈1..n Ti. Therefore, the �-program

may apply (base) reducing to the triple (S ′,
∑
i∈1..n Ti, A). The correctness

of this triple follows by the hypotheses. The output set of the program is
correct by inductive hypothesis. The case when S = 〈S ′〉κ,S ′′ is similar to
the previous one. When S = L[S ′],S ′′ the �-program may apply (split) or
(lseq) according to condition 4.a or 4.b of Definition 1 is used in <:. Again,
the correctness of every triple used in the premises follows by the hypotheses;
the output set of every invocation of the program is correct by inductive
hypothesis. If S = S ′ + S ′′,R then, by Proposition 2(8), both S ′,R <: T
and S ′′,R <: T . Then the �-program may apply (union), thus reducing
to two triples that are still correct. Similarly, the set that are returned by
every invocation of the program are correct by inductive hypothesis. If either
S = U,S ′ or S = S ′∗,S ′′ then the �-program may apply either (name) or
(star) or (asmp). In the first two cases, the correctness of the new triple
follows by the correctness of the current triple. In the third case no new triple
is generated. 2

Completeness is an immediate consequence of Proposition 18 and Lemma 16.

Lemma 19 (Completeness) If S <: T then there exists A such that S �∅
T ⇒ A.

Rule (lseq) in Table C.1 retains a number of subtrees which is exponential
in the size of the right schema. This causes an exponential cost for the �-
program. Such a cost is an issue in Web-services, where data coming from
untrusted parties, such as WSDL documents (containing the schema of a ser-
vice), might be validated at run-time before processing. Since Web-services
documents carry references, validation has to verify that the schema of the
reference conforms with some expected schema, thus reducing itself to the sub-
schema relation. It is worth to notice that in XDuce run-time subschema checks
are avoided because programs are strictly coupled and typechecking guaran-
tees that invalid values cannot be produced. In CDuce there is the possibility
of using pattern matching on function values, thus invoking the subschema
relation at run-time. However this feature is never used in CDuce programs.

In [11] a schema language restriction has been studied so that the corre-
sponding subschema relation has a polynomial cost. Specifically, following
XML-Schema, schemas are constrained in order to retain a deterministic model
as regards tag-labelled transitions. The model is still nondeterministic with
respect to channel-labelled transitions.
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Definition 20 The set ldet of label-determined schemas is the greatest set of
schemas such that:

() ∈ ldet
B ∈ ldet
〈S〉κ ∈ ldet if S ∈ ldet
L[S] ∈ ldet if S ∈ ldet
S,T ∈ ldet if S ∈ ldet and T ∈ ldet
S∗ ∈ ldet if S ∈ ldet

S + T ∈ ldet if S ↓ L[S ′],S ′′ and T ↓ L′[T ′],T ′′implies L̂ ∩ L̂′ = ∅
and S ∈ ldet, T ∈ ldet

U ∈ ldet if E(U) ∈ ldet

By the definition a[S] + (~\ a)[T ] and ~[S] + 〈S〉κ + 〈T 〉κ′ are label-determined
schemas whilst a[ ] + (a + b)[ ] and 〈a[ ] + ~[ ]〉κ are not label-determined.
It is worth to remark that every empty schema – the schema that does not
retain any handle – is in ldet and that schemas like a[ ] + a[Empty] are also
label-determined.

We observe that, if S and T are label-determined then the proof of S �∅ T ⇒ A

never requires the rule (lseq), which was problematic for its computational
cost. Actually, in [11], the �-program has been proved to have a polynomial
cost when invoked on label-determined schemas.
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