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Abstract

Attribute grammar specification languages, like many domain specific languages,
offer significant advantages to their users, such as high-level declarative constructs
and domain-specific analyses. Despite these advantages, attribute grammars are of-
ten not adopted to the degree that their proponents envision. One practical obstacle
to their adoption is a perceived lack of the both domain-specific and general pur-
pose language features needed to address all of the different aspects of a problem.
Here we describe Silver, an extensible attribute grammar specification language,
and show how it can be extended with general purpose features such as pattern
matching and domain specific features such as collection attributes and constructs
for supporting data-flow analysis of imperative programs. Silver is implemented in
itself by a Silver attribute grammar and utilizes forwarding to implement the exten-
sions in a cost-effective manner. The result is an attribute grammar specification
language with a rich set of language features.

1 Introduction

Domain specific languages offer several significant advantages to their users
over general purpose programming languages [5]. They allow problem solu-
tions to be expressed using the notational constructs of the problem domain.
These languages are often declarative in nature, resulting in concise programs.
Also, important optimizations and analysis are often only feasible when the
domain specific information is directly represented in the language constructs
of the DSL. But, domain specific languages have some disadvantages as well.
Van Deursen et. al. [5, page 27] describe several and we quote three that pose
particular challenges to DSL implementers here:

• “The costs of designing, implementing and maintaining a DSL.”

1 This work is partially funded by NSF CAREER Award #0347860, NSF CCF Award
#0429640, and the McKnight Foundation.
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• “The difficulty in finding the proper scope for a DSL.”

• “The difficulty of balancing between domain-specificity and general purpose
programming language constructs.”

Although many DSLs are widely used, these disadvantages (and others) some-
times prohibit the level of adoption envisioned by the DSL implementers.

In the domain of language analysis and translation, attribute grammar
specification languages offer many advantages but are also not as widely used
as they might be. Attribute grammars (AG) were developed almost 40 years
ago by Knuth [10] and there has been a steady stream of research in such
systems since then, see [17,7,2] to cite just a very few. The continued interest
is due to the fact that they provide a high-level, declarative means for solving
a wide variety of language analysis and translation problems. Evidence of
this can be seen in their use in implementing language processing tools for
full-fledged popular languages such as Java 1.4 [6,7] and Icon [9].

Our experience using attribute grammars is primarily with our own sys-
tem, Silver. We have developed an attribute grammar specification language
called Silver to incorporate an extension to AGs called forwarding [14] that
has proven useful in the specification of extensible programming and model-
ing/specification languages. We have used Silver to specify an extensible im-
plementation of Java 1.4 [16] and several modular language extensions. One
embeds SQL into Java and performs static type-checking of the embedded
SQL queries [13]. We have also built an extensible version of (a substantial
subset of) the synchronous language Lustre (used in embedded safety-critical
systems) and various language extensions [8].

In the early stages of this work, using a prototype implementation of Silver
we found the challenges described by van Deursen et. al. [5] and listed above
to ring especially true. For example, we found situations where we wanted
some of the general purpose features we enjoy in modern functional languages
such as parametric polymorphism and pattern matching. We wanted features
sometimes found in other AG systems like collections [2] or auto-copy rules
for inherited attributes to reduce boilerplate AG code. We also wanted ad-
ditional features for specific problem domains addressed by AGs: performing
data-flow analysis on imperative programs, for example. In our prototype
attribute grammar implementations we found that we had created languages
that were quite useful for problems that fit completely in the language’s ap-
plication domain but that felt brittle and overly constraining for aspects of
the applications that did not fit squarely in the traditional domain of at-
tribute grammars. This is view is that not uncommon and others [4, page
185] have noted that AGs can sometimes feel cumbersome and restrictive
when compared to modern languages. Thus determining the scope of Silver,
determining what domain specific and general purpose features should be im-
plemented, and determining how to do it in a cost effective manner are all
important considerations.
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1.1 Extensible Languages

These are similar to the challenges that extensible languages are designed to
address: lack of features, ease of implementation, modularity so that sets of
features can be easily composed to create a domain-adapted general purpose
languages. We thus decided to implement Silver as an extensible language in
order to mitigate some these challenges. Through a series of boot-strapping
steps we were able to implement Silver as an AG specification written in Silver.

In this paradigm, languages are not treated as monolithic entities. Instead,
new language features are implemented and deployed as modular language ex-

tensions that are added later, perhaps by the language user, to a host language.
In our approach, the host language is implemented as an AG specification and
language extensions are implemented as AG fragments. Language extensions
may introduce new language constructs (notations), new semantic analyses
that, for example, perform some error checking, or new translations to differ-
ent target languages. A key characteristic of the language extensions that are
supported is that new language constructs need to be translated to semanti-
cally equivalent constructs in the host language. Thus the host language must
satisfy some notion of completeness.

Many extension constructs are implemented as local transformations that
translate the extension to semantically equivalent constructs in the host lan-
guage. This provides an implicit specification of the semantics (that is at-
tributes) of the extension. This is done via forwarding [14] which also allows
explicit specification of semantics (attributes) at the extension language level.

Some features cannot be implemented by purely local transformations and
require non-local transformations. Because we want language extensions to be
composable, in the sense that the order in which extension language constructs
are translated down to host language constructs should not matter, Silver does
not support the sort of global transformations that cause radical rewrites of the
of the original syntax tree. 2 Constructs that employ a certain type of global
transformations for translation to the host language can be easily composed,
however, if they satisfy two requirements. First, the global transformation for
construct c in a program p to program pH in the host language must be strictly
additive; that is, new constructs may be added on a global scale in creating
pH but these do not involve a radical reorganization of p’s global structure.
Second, the constructs added to p cannot conflict with global additions made
by other features. Two transformations that add new declarations to the
beginning of a program to support the local transformations of satisfy these
requirements. Our attribute grammar-based methodology uses (higher-order)
collection attributes and forwarding on key productions in the core language
specification to enable the addition of new constructs on a global scale.

2 However, if one is willing to specify an order in which the global transformations of
different extensions are to be made, then one can use higher-order attributes in Silver to
implement the global restructuring to construct a new transformed tree.
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1.2 Development of Silver

A core attribute grammar language serves as the host language for the full-
featured version of Silver. In addition to the traditional constructs introduced
by Knuth [10] the core Silver language includes higher-order attributes [17]
that allow attributes to store (undecorated) syntax trees. This is useful for
creating new trees in building, for example, optimized versions of a program
or for constructing data structures such as representations of types used for
type-checking. To support interesting language extensions, the core host Sil-
ver language must be Turing complete and thus higher-order attributes are
essential. The core language also includes forwarding [14], a feature we intro-
duced that allows productions to implicitly define the value of attributes by
translation and aspect productions allow new attributes to be defined for an
existing production typically defined in a different grammar or file. Core Sil-
ver also has a module system used in composing host language and extension
specifications. Section 2.1 discusses core Silver.

Several general purpose and domain-specific language extensions have been
made to core Silver to create the full features version. These include pattern
matching on trees (by production), type-safe polymorphic lists, collection at-
tributes [2], and convenience constructs such as auto-copy inherited attributes.
Additional extensions provide constructs for building control flow graphs for
imperative programs and performing dataflow analysis via model checking [15].
These extensions are discussed in Section 2.2 and 3. We will not provide formal
definitions of attribute grammars [10], higher-order attributes [17], forward-
ing [14], or collection attributes [2] but will instead describe their functionality
through examples. Formal descriptions can be found in the cited papers.

The end result is that Silver is an extensible full-featured attribute gram-
mar specification language with many domain-specific and general purpose
language features; it is constructed from a simple core AG language and com-
posable, modular language extensions.

2 Silver attribute grammar specification language

In this section we describe the language features in core Silver and the features
added as language extensions. We describe and motivate several of these fea-
tures by providing a partial specification of a small C-like imperative language
named SimpleC written in the full, extended Silver language.

2.1 Core Silver

A Silver grammar module contains AG declarations for non-terminals, ter-
minals, productions, and attributes. Module names are based on Internet
domain names, as in Java packages, to avoid name clashes. Module names
indicate directories, not files, and the implementation of a Silver module may
be spread across several files in the specified directory. Each file begins with a
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grammar edu:umn:cs:melt:simplec;

start nonterminal Prog ;

nonterminal Dcl, Dcls, Type,

Stmt, Stmts, Expr ;

terminal Id /[a-zA-Z] [a-zA-Z0-9]+/;

terminal AndOp ’&&’ precedence = 10,

association = none ;

terminal OrOp ’||’ precedence = 8,

association = none ;

terminal NotOp ’!’ precedence = 12;

syn attr c :: String ;

attr c occurs on Prog, Dcl, Dcls,

Type, Stmt, Stmts, Expr;

nonterminal TRep ;

syn attr typerep :: TRep ;

attr typerep occurs on Expr ;

concrete prod program

p::Prog ::= d::Dcls

{ p.c = "#include<stdio.h>" ++ d.c;

p.errors := d.errors;

d.env = [ :: Binding ];}

concrete prod logical_and

e::Expr ::= l::Expr ’&&’ r::Expr

{ e.c = ...; e.errors := ... ;

e.typerep = booleanType(); }

concrete prod logical_not

e::Expr ::= ’!’ ce::Expr

{ e.c = ...; e.errors := ... ;

e.typerep = booleanType(); }

abstract prod funcType

ft::TRep ::= in::TRep out::TRep {...}

abstract prod booleanType

bt::TRep ::= {...}

abstract prod arrayType

at::TRep ::= component::TRep {...}

abstract prod errorType

et::TRep ::= {...}

concrete prod funcCall

e::Expr ::= f::Id ’(’ arg::Expr ’)’

{ e.c =...; e.errors := arg.errors;}

concrete prod logical_or

e::Expr ::= l::Expr ‘||’ r::Expr

{ e.errors := ... ;

e.typerep = booleanType();

forwards to logical_not (

logical_and (logical_not(l),

logical_not(r)));

-- l || r => ! (! l && ! r)

}

Fig. 1. A portion of the SimpleC specifications written in (primarily) core Silver.

declaration of the grammar name. Figure 1 contains the partial specification
of SimpleC, its name given by the grammar declaration. After the grammar
declaration (and any import statements that include AG declarations from
other grammar modules) a Silver file consists of a series of AG declarations.
Order does not matter as declarations in a file are visible in the entire file and
in other files in that same module. Line comments begin with “--”.

Reading from the beginning of Figure 1 we see the declaration of non-
terminal symbols Prog (the grammar start symbol), Dcl (declaration), Dcls,
Type (type expressions), Stmt (statement), Stmts, and Expr (expression).
Next is the declaration of the terminal symbol Id and the regular expression
(denoted /regex/) used by the generated scanner to identify identifiers. Key-
word and punctuation terminal symbols, like AndOp, that match a fixed string
(denoted ’fixed lexeme’) instead of a regular expression can be specified by
their fixed string directly in productions, as in the production logical and.

Next a synthesized attribute c of type String is declared. It contains
the translation of SimpleC constructs to C and decorates the non-terminals
specified in the occurs on clause. The attribute typerep is a higher-order
attribute that holds trees whose root is a non-terminal of type TRep. The type

5



Van Wyk, Bodin, Gao, Krishnan

of an Expr is represented by these trees.

Following are a few sample production declarations. Productions with
the concrete modifier are used to generate the input specification to a parser
generator. Different extensions to Silver integrate different parser and scanner
generators into Silver. These extensions provide translations of concrete pro-
ductions and terminal declarations to the input language of a parser/scanner
generator. Productions marked as abstract or aspect are not used in the
parser specification. The first production is named program, its left hand
side non-terminal is Prog and is named p. The production’s right hand side
contains the Dcls non-terminal named d. Attribute definitions are given be-
tween the curly braces ({ and }). Here, the attribute c on p is defined as
indicated. Definitions of other attributes that use features added as language
extensions such lists ([...]) and collections (:=) are also shown but described
below in Section 2.2. Attributes can be defined on concrete and abstract pro-
ductions; for SimpleC we evaluate attributes on the concrete syntax tree since
it is a simple language. For more complex languages, one may separate the
concrete and abstract syntax so that the only attributes on the concrete pro-
ductions are used to construct the AST over which attributes are evaluated.
Productions for conjunction and negation follow. These define the higher or-
der attribute typerep to be the tree constructed by the abstract production
booleanType to indicate that they are boolean expressions. Following are the
abstract productions used to construct different type representations.

The concrete production for functions calls follows. Its definition of typerep
is not specified here, but is given in the aspect production with the same name
in Figure 2. Aspect productions allow attributes to be defined for concrete or
abstract productions specified in different locations in the same file, different
file, or even different module. The pattern matching case expression is an
extension to Silver and discussed below.

The logical or production uses forwarding [14] to implement the local
transformation that maps l || r to !(!l && !r). Forwarding allows a pro-
duction to define a distinguished syntax tree that provides default values for
synthesized attributes that it does not explicitly define with an attribute def-
inition. When a tree node is queried for an attribute that is not explicitly
defined, it “forwards” that query to this tree which will return its value. In
logical or this tree is the semantically equivalent expression constructed
from logical and and logical not productions. The errors and typerep

attributes are defined explicitly so that a error message can be reported on
the code written by the programmer. The value of the c attribute is defined
implicitly and retrieved from the forwards-to tree. Forwarding is used in the
implementation of language extensions to define their translation to the host
language. Forwarding suffices for translations that require only a local trans-
formation. Productions defining statements, declarations, and other expres-
sions are what one might expect and are not shown. Also, several definitions
that would have the expected value are elided with ellipses (...).
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autocopy inh attr env::[ Binding ];

nonterminal Binding with typerep ;

syn attr name :: String

occurs on Binding ;

syn attr errors :: [ String ]

collect with ++ ;

attr errors occurs on Prog, Dcl,

Dcls, Type, Stmt, Stmts, Expr ;

aspect prod funcCall

e::Expr ::= f::Id ’(’ arg::Expr ’)’

{ e.typerep = case ftype of

funcType(in, out) => out

| _ => errorType();

e.errors <- case ftype of

funcType(in, out) => [ :: Error ]

| _ => [ "Error: " ++ f.pp ++

" must be a function."];

prod attr ftype :: TRep;

ftype = ... lookup f in env ... ; }

Fig. 2. A portion of the SimpleC specifications written in full Silver.

2.2 Full Silver: core Silver with language extensions

The definitions of attributes errors and env in Figure 1 and the specification
in Figure 2 make use of Silver features that were added as extensions to the
core Silver language. The inherited environment (symbol-table) attribute env
defined in Figure 2 uses two extensions. First, it is an autocopy attribute
and thus if no explicit definition for env is given in a production, then one
is automatically generated that copies the value of env from the left hand
side nonterminal node to its appropriate children. Second, its type uses the
type-safe polymorphic list extension to specify that env is a list of Binding

values. The simple nonterminal Binding declaration is an extension that uses
the with clause to indicate that the typerep attribute decorates Binding.

Collection attributes in Silver are similar to those defined by Boyland [2]
and are associated with an associative operator used to fold together contri-
butions to the attribute. Collection attributes are declared using the collect
with clause that specifies the collection operator. The Silver collection as-
signment operator := (which differs from the standard definition operator =)
is used in several productions to define the attributes initial (or unit) value.
Aspect productions may use the collection contribution operator <- to fold
additional values into the attribute. A fold operation of type ((a × a →
a) × a × [a]) → a uses the operator, unit value, and list of contributed values
assigned in different aspects to compute the final value of the attribute. A col-
lection attribute with operator ⊕, unit value vu and values assigned in aspects
v1, v2, ..., vn has the final value of vu ⊕ v1 ⊕ v2⊕, ...,⊕vn. Although the oper-
ator does not have to be commutative, the order in which aspect-contributed
values are combined is not specifiable in Silver and thus this order must not
matter. In Figure 2 the errors attribute of type [String] is collected by
the list concatenation operator ++. In the funcCall production in Figure 1
the initial value is the errors on the argument arg. This is combined with the
errors defined in the aspect in Figure 2.

Pattern matching is a mechanism for data structure decomposition used in
combination with algebraic datatype definitions and found in several languages
including ML and Haskell. In Silver, and in AGs in general, non-terminals cor-
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respond to algebraic types and productions correspond to value constructors
for variants of the datatype. For example, Figure 2 shows a partial specifica-
tion for type checking SimpleC function calls. The type for SimpleC expres-
sions is represented by the datatype (non-terminal) TRep and each abstract
production with a TRep left-hand side non-terminal defines a variant of the
datatype. To perform type checking on function calls, the input type and out-
put type would be extracted from the constructed functional type; on array
access expressions, the array’s component type must be extracted. Without
pattern matching, synthesized attributes would need to be defined for these
component types. But this cannot be done in a type-safe manner since on any
TRep production most such attributes would not be properly defined; e.g., we
would either not define a funcOutputType attribute on arrayType produc-
tions, or define it with some sort of error-value. Pattern matching provides a
type-safe solution and is used in the aspect production funcCall in Figure 2
to specify that the type of a function call is the output type of the type of
the function being called. In the case that the type of the identifier f is not
a function, an error is generated. A production attribute (prod attr) is used
to hold the type of the function. It is a “local” attribute visible only in the
production body and in aspect productions of the defining production.

3 Implementing Silver and its language extensions

This section shows how two Silver extensions, the simple nonterminal-with
declaration and pattern matching, are implemented as langauge extensions
and composed with core Silver. The full-featured version of Silver used to
specify SimpleC is constructed from the host language core Silver and the
extensions described above. This core host language is implemented as an
attribute grammar in the module silver:core. The extensions to Silver
are implemented as attribute grammar fragments that extend silver:core.
Silver is implemented in Silver via bootstapping. For example, we built collec-
tions as an extension to Silver and use it to enable other language extensions,
such as the pattern matching extension shown below. A few declarations in
the specification of core Silver are shown in Figure 3. It declares non-terminals
for a Silver file and attribute grammar declaration(s) (AGDcl, AGDcls) that
are used in the abstract production declarations for non-terminals (ntDcl)
and occurs-on declarations (occursDcl). The grammar is implemented by a
translation to Haskell specified by the haskell attribute defined on core Silver
productions.

3.1 The With-Clause

A non-terminal declaration using the with-clause in Silver additionally speci-
fies that the listed attributes occur on the declared non-terminal. It is a sim-
ple extension that requires only a local transformation to translate into core
Silver. The declaration nonterminal Binding with typerep; in Figure 2
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grammar silver:core ;

start nonterminal File ;

nonterminal AGDcls, AGDcl;

abstract prod fileRoot

f::File ::= g::GrammarSpec

i::Imports dcls::AGDcls

{ f.haskell = ...;

dcls.env = i.defs ++ dcls.defs; }

syn attr haskell :: String ;

abstract prod agDclSeq

ds::AGDcl ::= d1::AGDcl d2::AGDcl

{ ... }

abstract prod ntDcl

d::AGDcl ::= nt::Id { ... }

abstract prod occursDcl

d::AGDcl ::= attr::Id nt::Id { ... }

Fig. 3. Sample specifications of the silver:core language.

translates to nonterminal Binding; attr typerep occurs on Binding;.
The implemenation of a simplified version of the with-clause extension (that
specifies only one nonterminal and one attribute) is shown in Figure 4 as part
of the silver:exts:convenience module. The production withDcl explic-
itly defines an attribute errors so that error messages can be issued in terms
of the specification written by the developer; other attribute values are implic-
itly defined by and obtained from its forwards-to tree, the abstract syntax of
its semantically equivalent series of non-terminal and occurs on declarations.

grammar silver:exts:convenience ;

abstract prod withDcl d::AGDcl ::= nt::Id attr::Id

{ d.errors = ... check that nt and a are defined with correct type ...

forwards to agDclSeq ( ntDcl(nt), occursDcl(attr, nt) ) }

Fig. 4. Partial Silver specification for the simplified with-clause extension.

3.2 Pattern Matching

In order to implement pattern matching as a composable, modular language
extension to core Silver, both local and additive global transformations are re-
quired in translating pattern matching constructs into core Silver. Note that
only a small part of the core Silver and pattern matching specicationss are
shown in an effort to provide a relatively detailed description of one aspect of
the implementation as opposed to a broad but shallow overview. Consider the
case expression that defines typerep in the aspect production funcCall in
Figure 2. A local transformation, implemented via forwarding, translates this
construct to the core Silver nested if-then-else expression shown in Fig-
ure 5, the details of which are described below. The global transformations

if ftype.prodName == "funcType"

then cast(TRep,get_nth(ftype.childList,1))

else if true then errorType()

else error("No matching pattern for case expression.");

Fig. 5. Result of local transformation of pattern matching case to core Silver.

add the declarations, occurs-on declarations, and definitions of the attributes
prodName and childList used in the translation of pattern matching case

constructs, like the one in Figure 5. These are added on a global scale to the
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object grammar. Part of the transformed SimpleC grammar is shown in Fig-
ure 6. The local transformations, as we have seen in the SimpleC logical or

and Silver withDcl constructs, are easily implemented via forwarding. This is
breifly covered below before the discussion of the implementation of the global
transformations which is the main topic of this section.

grammar edu:umn:cs:melt:simplec ;

...

syn attr prodName :: String ; syn attr childList :: [ AnyType ] ;

attr prodName, childList occurs on TRep ;

...

abstract prod funcType ft::TRep ::= in::TRep out::TRep

{ ft.prodname = "funcType" ;

ft.children = [ cast(AnyType,in), cast(AnyType,out) ] ; ... }

abstract prod boolType bt::TRep ::=

{ ft.prodname = "boolType" ;

ft.children = [ :: AnyType ] ; ... }

...

aspect prod funcCall

{ e.typerep = ... Fig. 5 .. ; ... }

Fig. 6. Result of local and global transformation mapping the SimpleC grammar to
core Silver.

The local transformation is implemented using forwarding in much the
same manner as with the simplified with declaration shown above. The pro-
ductions defining case expressions use a higher-order attribute (not shown)
to construct the nested if expression that the case expression forwards to.
This expression uses two attributes; prodName of type String that holds the
name of the production used to construct the tree, and childList, a list
of AnyType values that are the non-terminal trees and terminals that were
the right-hand side arguments to the production. In Figure 5, we test the
prodName attribute to determine which pattern matches ftype. If it was
constructed by the production funcType then the get nth function extracts
proper list element which is cast back to the proper type (TRep). This makes
use of a type-unsafe AnyType type in core Silver that is useful in language ex-
tensions such as this one. (Section 3.3 discusses how type-safety is restored in
the extended version of Silver used for specifying languages other than Silver
and used in our specifications of SimpleC and Java 1.4.) The type AnyType

wraps terminal, non-terminal and primitive types in a single type and the
cast operator is use to wrap or unwrap these values.

We focuse on the global transformation that adds attribute definitions for
prodName and childList to productions in the object grammar. The trans-
formations that add the declarations and occurs-on declarations are done in a
similar manner. These transformation is additive and do not impede or con-
flict with other additive global transformations since it only adds declarations
and attribute definitions to productions. (It is the responsibility of the devel-
oper of the global transformation to ensure that it can in fact be composed

10



Van Wyk, Bodin, Gao, Krishnan

with other extensions. Name clashes are the primary concern but these are
easily handled as the implementation of Silver uses of fully-qualified names
based on unique module names.)

grammar silver:core ;

abstract prod prodDcl p::AGDcl ::= n::Id sig::Signature b::ProdStmts

{ prod attr moreStmts :: ProdStmts collect with prodStmtsSeq ;

moreStmts := prodStmtsEmpty();

forwards to prodDcl_expanded (n, sig, prodStmtsSeq(b, moreStmts) ) ; }

abstract prod prodDcl_expanded p::AGDcl ::= n::Id sig::Signature b::ProdStmts

{ p.haskell = ...; ... }

abstract prod prodStmtsSeq p::ProdStmts ::= p1::ProdStmts p2::ProdStmts {...}

abstract prod prodStmtsEmpty p::ProdStmts ::= {...}

Fig. 7. Building extensibility into production declarations.

Silver is designed for certain types of extensibility in order to support
global transformations that add new constructs into the object grammar (e.g.
SimpleC). The extension points which allow this are implemented by a pair
of productions, one that collects the new constructs, and one is used in con-
structing the translation to core Silver. For production declarations, these two
productions (prodDcl and prodDcl expanded) are shown in Figure 7. The ab-
stract production prodDcl is used by Silver’s parser to construct the original
AST of the object grammar. The AST of the funcType production in Fig-
ure 1 is constructed using this production. prodDcl has a collection attribute
moreStmts that collects all the new attribute definitions that are to be added
by global transformations, such as those defined in the pattern matching ex-
tension. As we will see in Figure 8, the grammar defining pattern matching has
a prodDcl aspect production contributes to this collection attribute the defini-
tions of prodName and childList. The statements collected in moreStmts are
folded together using the sequence production prodStmtsSeq. These and the
existing statements in the body of the production in the original AST (b) are
combined to form the set of production statements that appear in the trans-
lation to core Silver. The second production in the pair, prodDcl expanded,
uses these as the body of the production-declaration tree that the “collecting”
production prodDcl forwards to. For the funcType production of SimpleC in
Figure 11111, this forwarded-to tree forms its translation to core Silver and is
the result of the global transformations. It is shown in Figure 6).

Figure 8 shows a small part of the silver:exts:patternmatching gram-
mar module that specifies the global transformation that add definitions of the
new attributes to existing object grammar productions. This is accomplished
by an aspect production on prodDcl that adds the new attribute definitions to
the moreStmts attribute using the collection operator <-. We give a stylized
specification of the actual productions; in between the double quotes (“...”)
elements in typewriter font depict the concrete syntax of the attribute defini-
tion statements being added to the collection attribute and elements in italics
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are instantiated with values from the production. The composition of the core
Silver grammar and the pattern matching grammar has the effect of adding
attribute definitions for attributes prodName and childList to each produc-
tion declaration of an object language specification. Note that in defining
contributions to collection attributes like moreStmts the developer does need
to take care to not introduce any new attribute dependencies that might cause
a circular attribute dependency.

grammar silver:exts:patternmatching ;

aspect prod prodDcl p::AGDcl ::= n::Id sig::Signature b::ProdStmts

{ moreStmts <- “ sig.lhs.name.prodName = n.lexeme;” ;

moreStmts <- “ sig.lhs.name.childList = sig.rhs.childList;” ; }

Fig. 8. Adding object language declarations for pattern matching.

3.3 Composing core Silver and its extensions to create full featured Silver

To build a full featured extended version of Silver that has the convenience ex-
tensions such as the with-clause and auto-copy inherited attributes, collection
attributes, pattern matching, and type-safe polymorphic lists we compose the
core Silver language and these extensions in the following Silver specification:

grammar silver:full;

import silver:core with syntax hiding cast_cs anyType_cs;

import silver:exts:convenience with syntax;

import silver:exts:collection with syntax;

import silver:exts:patternmatching with syntax;

import silver:exts:list with syntax;

abstract production main m::Main ::= args::String

{ forwardsTo silver_driver(args, parse); }

This specification composes the attribute grammars that are imported and
composes their concrete specifications (when imported with the with syntax

clause). The semantics of import are as if the imported extension (but not
what it imports) was textually included directly in the importing file. The
hiding clause is a mechanism for excluding certain items from being imported
into a grammar specification. This is used above to ensure that silver:full
is type-safe by not importing into the grammar the concrete syntax of the
type-unsafe constructs AnyType and cast.

The main production plays a role that is similar to main in C and takes
the command line arguments as its String-type parameter. This production
forwards to the silver driver production that control compilation of Silver
grammars. It passes this it arguments and the parser that recognizes the
language composed of the concrete syntax specifications that are imported.

The specifications shown throught this section are by necessity been rather
brief and we have omitted some non-critical aspects of Silver, its extensions,
and their implementation. The complete specifications for Silver and its ex-
tensions can be found at www.melt.cs.umn.edu.
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4 Conclusion

4.1 Related Work

There are many ways to implement DSLs and Silver is not the only declarative
system that support modular language design. Well-developed AG systems
such as LRC [11], JastAddII [7], and Eli [9] support a wide range of useful
attribute grammar features such as JastAddII’s reference attributes for retriev-
ing attribute values from remote nodes in the tree and and Eli’s constituents

for easily collecting information from nodes in a productions sub-trees. How-
ever, these systems do not support forwarding and thus the modularity and
ease-of-composition of language features specified as AG fragments is often
achieved by writing attribute definitions that “glue” new fragments into the
host language AG. To the best of our knowledge, JastAddII is the only AG
tool that allows for the implicit specification of semantics by translation to a
host or core language. This is done by the application of (destructive) rewrite
rules. But attributes values are returned from the rewritten trees only, and
thus one cannot both implicitly (via forwarding) and explicitly (via attribute
definitions) specify the relevant semantics of new language constructs. Note
that local attributes can be computed during rewriting to drive the rewriting
process. These rewrites are not restricted to ensure composability and thus
can be used in a wider variety of applications.

The general purpose features of pattern matching and polymorphic lists
added to Silver are not strictly necessary in Turing complete AG systems
with higher-order attributes. They are also not found in AG systems that
have a “back-door” to the implementation language. This approach is taken
by JastAddII (implemented in Java), Eli [9] (C), and others. But this leads
to AG systems that have a “split-personality” in that part of the problem
is solved as an AG and part in the implementation language. Also, certain
AG analyses, such as circularity analysis, are valid under the assumption that
the un-checked implementation language code does not introduce cycles. For
general purpose tasks, the back-door approach is not necessarily a bad idea.
But it provides no support for adding additional domain-specific constructs,
such as for pattern matching or collection attributes.

More generally, there are other approaches for specifying languages and
language extensions. and macro systems (traditional syntactic, hygienic and
programmable [18]) allow the addition of new constructs to a language but
with the exception of a few modern macro systems, e.g. [1], they lack an
effective way to specify semantic analysis and report domain specific error
messages. Other well-developed declarative systems based on term rewriting
include ASF+SDF [12] which has been used in many applications. Another
is Visser’s JavaBorg[3] that allows one to extend a host language by adding
concrete syntax for objects. Specifying semantic analyses, like error checking,
as rewrite rules is less straightforward than it is using attributes and it is not
clear that different extensions can be as easily combined.
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4.2 Discussion

We have introduced Silver, a full-featured extensible attribute grammar speci-
fication language that has been used to defined implementations of and exten-
sions to Java 1.4 [16], a subset of Lustre [8], and Silver itself. Different full fea-
tured versions of Silver are implemented as the composition of a core Silver lan-
guage and various general purpose and domain-specific langauge extensions.
It supports the specification of composable local and additive global transfor-
mations. Higher-order attributes, forwarding, and collection attributes have
not previously been available in a single AG system and were initially devel-
oped by different research groups. While none of these features is themselves
new, a framework in which one can easily combine different general purpose
and domain specific features is. These general-purpose and domain-specific
additions to core Silver reflect the need for language evolution. In Silver, the
evolution is achieved by adding these new features as modular extensions to
the host language, core Silver.

Silver’s ability to specify both local and additive global transformations is
quite useful in implementing expressive language features. Forwarding pro-
vides a significant degree of flexibility in determining which semantics and
translations (also implemented as collection of attributes) are defined explic-
itly and which are defined implicitly. A macro-like extension would define no
synthesized attributes and get all semantics defined by the forwards-to con-
struct. Forwarding and collection attributes allows the host language designer
to build extension points which language extension use to implement the addi-
tive global transformations that are often needed for more powerful language
extensions.

Although we have demonstrated how several interesting enhancements to
Silver can be implemented as language extensions, not all changes can be so
easily accomplished. Consider adding type-inference as a language extension.
While it is relatively straightforward to define new attributes that imple-
ment type inference, integrating this into an existing typed language requires
changes to how existing constructs know what their type is; that is, what
attribute, an existing one, or a new one, contains the type representation for
a construct. Silver does not have type inference and it is not part of the poly-
morphic list extension. Thus, the empty list expression explicitly specifies the
type of the list elements.
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