
M. Oriol and B. Meyer (Eds.): TOOLS EUROPE 2009, LNBIP 33, pp. 136–156, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Early Crosscutting Metrics as Predictors of
Software Instability

José M. Conejero1, Eduardo Figueiredo2, Alessandro Garcia3,
Juan Hernández1, and Elena Jurado1

1 Quercus Software Engineering Group, University of Extremadura, Spain
2 Computing Department, Lancaster University, United Kingdom

3 Informatics Department,Pontifical Catholic University of Rio de Janeiro, Brazil
{chemacm,juanher,elenajur}@unex.es,

e.figueiredo@lancaster.ac.uk, afgarcia@inf.puc-rio.br

Abstract. Many researchers claim that crosscutting concerns, which emerge in
early software development stages, are harmful to software stability. On the
other hand, there is a lack of effective metrics that allow software developers to
understand and predict the characteristics of “early” crosscutting concerns that
lead to software instabilities. In general, existing crosscutting metrics are de-
fined for specific programming languages and have been evaluated only against
source-code analysis, when major design decisions have already been made.
This paper presents a generic suite of metrics to objectively quantify key cross-
cutting properties, such as scattering and tangling. The definition of the metrics
is agnostic to particular language intricacies and can be applied to all early
software development artifacts, such as usecases and scenarios. We have per-
formed a first stability study of crosscutting on requirements documents. The
results pointed out that early scattering and crosscutting have, in general, a
strong correlation with major software instabilities and, therefore, can help de-
velopers to anticipate important decisions regarding stability at early stages of
development.

Keywords: Concern Metrics, Modularity, Stability, Requirements Engineering.

1 Introduction

There is growing empirical evidence that software stability is often inversely propor-
tional to the presence of crosscutting concerns [8, 9, 12, 13]. A software system is
stable if, when observed over two or more versions of the software, the differences
between its quality measures are insignificant [14]. It is claimed that crosscutting con-
cerns often lead to harmful software instabilities, such as increased modularity anoma-
lies [9, 13] and higher number of introduced faults [8]. The problem of crosscutting
concerns is usually described in terms of scattering and tangling [3]. Scattering occurs
when the realization of a concern is spread over the software modules whilst tangling
occurs when the concern realization is mixed with other concerns in a module.

Most of the crosscutting concerns manifest in early development artifacts, such
as requirements descriptions [3] and architectural models [18, 11], due to their

 Early Crosscutting Metrics as Predictors of Software Instability 137

widely-scoped influence in software decompositions. They can be observed in
every kind of requirements and design representations, such as usecases and com-
ponent models [3, 18, 11, 2]. Over the last years, aspect-oriented software develop-
ment (AOSD) [15] has emerged with the goal of supporting improved modularity
and stability of crosscutting concerns throughout the software lifecycle. However,
the use of aspect-oriented decompositions cannot be straightforwardly applied
without proper assessment mechanisms for early software development stages. This
became more evident according to recent empirical studies of AOSD based on
source-code analysis (e.g. [9, 12, 13]). First, not all types of crosscutting concerns
were found to be harmful to design stability. Second, there are certain measurable
characteristics of crosscutting concerns that seem to recurrently lead to design in-
stabilities [9, 13].

However, there is little or no knowledge about how characteristics of crosscutting
concerns, observable in early artefacts, are correlated with design instabilities. Most
of the systematic studies of crosscutting concerns (e.g. [8, 9, 12, 13]) concentrate on
the analysis of source code, when architectural decisions have already been made.
Even worse, a survey of existing crosscutting metrics has pointed out that they are
defined in terms of specific OO and aspect-oriented (AO) programming languages
[10]. However, inferring design stability after investing in OO or AO implementations
can be expensive and impractical. In addition, crosscutting metrics defined for early
design representation are very specific to certain models, such as component-and-
connector models [18]. These metrics are overly limited as many crosscutting con-
cerns are visible in certain system representations, but not in others [10].

In this context, the major contributions of this paper are threefold. First, it presents
a language-agnostic metrics suite for early quantification of crosscutting (Section 3).
This is particular useful with the transition to model-driven software engineering
gaining momentum, where analysis of crosscutting concerns should also be underta-
ken in early system representations. The definition of the metrics is based on a con-
ceptual framework (Section 2) that is independent of specific requirements and archi-
tectural models. Second, canonical instantiations of the crosscutting metrics are given
for usecases. Third, we also present a first exploratory study investigating the correla-
tion of early crosscutting measures and design instabilities (Section 4). The results
obtained help developers to anticipate important decisions regarding stability at early
stages of development. Finally, Sections 5 and 6 discuss related work and conclude
this paper.

2 Characterizing and Identifying Crosscutting Concerns

The operational definitions of concern-oriented metrics need to be conceived in an
unambiguous manner. However, concern properties, such as crosscutting and scatter-
ing, are often not formally defined. Our proposed concern-oriented metrics (Section 3)
are based on a previously-defined conceptual framework [3] that supports the characte-
rization and identification of crosscutting. Section 2.1 describes the key definitions of
this conceptual framework. Section 2.2 illustrates its instantiation to requirements-level
artefacts of a software system.

138 J.M. Conejero et al.

2.1 A Conceptual Framework for Crosscutting

Our previous work [3] presented a conceptual framework where a formal definition of
crosscutting was provided. This framework is based on the study of matrices that
represent particular features of a traceability relationship between two different do-
mains. These domains, generically called Source and Target, could be, for example,
concerns and usecases respectively or, in a different situation, design modules and
programming artefacts. We used the term Crosscutting Pattern to denote this situation
(see Fig. 1).

Fig. 1. Abstract meta-model of the crosscutting pattern

The relationship between Source and Target can be formalized by two functions f
and g, where g can be considered as a special inverse function of f.

Let f: Source ⎯→⎯ P (Target) and g: Target P (Source) be these func-
tions defined by:

∀ s ∈ Source, f(s) = {t ∈ Target :there exists a trace relation between s and t }

∀ t ∈ Target, g(t) = {s ∈ Source : there exists a trace relation between s and t}.

The concepts of scattering, tangling, and crosscutting are defined as specific cases
of these functions.

Definition 1. [Scattering] We say that an element s ∈ Source is scattered if card(f(s))
> 1, where card refers to cardinality of f(s). In other words, scattering occurs when, in
a mapping between source and target, a source element is related to multiple target
elements.

Definition 2. [Tangling] We say that an element t ∈ Target is tangled if card(g(t))>1.
Tangling occurs when, in a mapping between source and target, a target element is
related to multiple source elements.

There is a specific combination of scattering and tangling which we call crosscutting.

Definition 3. [Crosscutting] Let s1, s2 ∈ Source, s1 ≠ s2, we say that s1 crosscuts s2
if card(f(s1)) > 1 and ∃ t ∈ f(s1): s2 ∈ g(t). Crosscutting occurs when, in a mapping
between source and target, a source element is scattered over target elements and
where in at least one of these target elements, some other source element is tangled.
In [6] we formally compared our definition with others existing in the literature, such
as [17].

⎯→⎯

 Early Crosscutting Metrics as Predictors of Software Instability 139

2.2 Identification of Crosscutting

In [3], we defined the dependency matrix to represent function f. An example of de-
pendency matrix with five source and six target elements is shown in Table 1. A 1 in
a cell means that the target element of the corresponding column contributes to or
addresses the source element of the corresponding row. Based on this matrix, two
different matrices called scattering matrix and tangling matrix are derived.

Table 1. Example dependency matrix

dependency matrix
 Target
 t[1] t[2] t[3] t[4] t[5] t[6]

So
ur

ce

s[1] 1 0 0 1 0 0
s[2] 1 0 1 0 1 1
s[3] 1 0 0 0 0 0
s[4] 0 1 1 0 0 0
s[5] 0 0 0 1 1 0

The crosscutting product matrix is obtained through the multiplication of scattering

matrix and tangling matrix. The crosscutting product matrix shows the quantity of
crosscutting relations (Table 2) and is used to derive the final crosscutting matrix
(Table 3). A cell in the final crosscutting matrix denotes the occurrence of crosscut-
ting, but abstracts the quantity of crosscutting. More details about the conceptual
framework and the matrix operations can be found in [3].

Table 2. Crosscutting product matrix

 Source
 s[1] s[2] s[3] s[4] s[5]

So
ur

ce

s[1] 2 1 1 0 1
s[2] 1 3 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 1 0
s[5] 1 1 0 0 2

Table 3. Crosscutting matrix

 Source
 s[1] s[2] s[3] s[4] s[5]

So
ur

ce

s[1] 0 1 1 0 1
s[2] 1 0 1 1 1
s[3] 0 0 0 0 0
s[4] 0 1 0 0 0
s[5] 1 1 0 0 0

3 Concern-Oriented Metrics for Early Development Assessment

In this section, we propose a concern-oriented metric suite based on the framework
presented in Section 2. These metrics allow developers to quantify the degree of scat-
tering, tangling, and crosscutting at earlier development stages of a software system,
such as requirements and architecture modeling. The metrics defined are based on the
relation between source and target domains represented by the crosscutting pattern.
In order to illustrate the metrics, we rely on requirements descriptions of a running
example (MobileMedia).

3.1 The MobileMedia System

The MobileMedia [9] is a product line system built to allow the user of a mobile de-
vice to perform different options, such as visualizing photos, playing music or videos,

140 J.M. Conejero et al.

and sending photos by SMS (among other concerns). It has about 3 KLOC. The sys-
tem has been built as a product line in 8 different releases. In this section we show a
simple usecase diagram (Fig. 2) which corresponds to a part of the usecase diagram
used for release 0 in the MobileMedia system. In this part of the diagram, the actions
for adding albums and photos to the system are implemented. These actions include
the option for providing a label. Some actions for recording the data into a persistent
storage are also included. Then, we consider that four main concerns are involved in
this part of the system: album, photo, label, and persistence.

Fig. 2. Simplification of the usecase diagram for release 0 in MobileMedia

In Table 4, we show a simplified description of the usecases shown in Fig. 2. We
have shadowed in light and dark grey colors the flows and relations in these usecases
corresponding to Label and Persistence concerns, respectively. Although there are
other two concerns involved in the example (album and photo), we have not sha-
dowed any flow related to them to keep the example clear.

Table 4. Usecase descriptions for Add Album, Add Photo and Provide Label usecases

Usecase: Add Album Usecase: Add Photo Usecase: Provide
Label

Usecase: Store Data

Actor: Mobile Phone
(system) and User
Description: The user
can store (add) an
album to the mobile
phone
Pre/Posconditions:
(…)
Basic flows:
1. (add)The user selects
the option to add an
album.

2. (label) User provides
label to the new cre-
ated album

3. (saved) A new album
is available

4. (listing) The list of
photos is displayed

Includes:
1.Provide Label usecase
2. Store Data usecase

Actor: Mobile Phone
(system) and User
Description: User can
store (add) a photo in an
album available
Pre/Posconditions: (…)
Basic flows:
1. (select) The user
selects an album to store
the photo.

2. (add)The user selects
the option to add photo.
3. (path) User provides
the path for uploading
the photo.
4. (label) User assigns a
label to the photo.
5. (saved) The new photo
is stored in the album.
Includes:
1. Provide Label usecase
2. Store Data usecase

Actor: Mobile Phone
(system) and User
Description: The user
provides label for the
photo and album
Pre/Posconditions:
(…)
Basic flows:
1. (label) The users
provides a name for a
photo or an album

2. (save) The edited
label is saved

Includes:
1. Store Data usecase

Actor: Mobile Phone
(system)
Description: The data
of a photo or an album
must be stored into the
device storage
Pre/Posconditions:
(…)
Basic flow:
1. (space) The device
select a space in the
storage

2. (save) The data are
saved in the storage

 Early Crosscutting Metrics as Predictors of Software Instability 141

In order to clarify the metrics presented in next sections, each metric is illustrated
using the previously described example. In particular, we show the values of each
metric for the partial usecase diagram (Fig. 2) and usecase descriptions (Table 4).

3.2 Metrics for Scattering

According to Definition 1 in Section 2.1, Nscattering of a source element sk as the
number of 1’s in the corresponding row (k) of the dependency matrix: | |

 (1)

where |T| is the number of target elements and dmkj dm is the value of the cell [k,j]
of the dependency matrix. We may also express this metric according to the functions
defined in Section 2.1 as NScattering (sk) = card {t є Target : f’(sk)=t}, i.e. card(f(sk)).
This metric measures how scattered a concern is. In the example shown in Section
3.1, the NScattering for Label and Persistence concerns is 3 and 4, respectively. As
we can see in Table 4, all the usecases descriptions have some flows or relations sha-
dowed with dark grey (related to Persistence), however there are only 3 usecases with
light grey (related to Label). Then we may assure that the Persistence concern is more
scattered than Label.

This NScattering metric can be normalized in order to obtain a value between 0
and 1. Then, we define Degree of scattering of the source element sk as:

 ∑| || | | | 1
0 | | 1 (2)

The closer to zero this metric for a source element (i.e., a concern), the better en-
capsulated the source element. Conversely, when the metric has a value closer to 1,
the source element is highly spread over the target elements and it is worse encapsu-
lated. This metric could have been also defined in terms of the scattering matrix (in-
stead of dependency matrix).

In order to have a global metric for how much scattering the system’s concerns
are, we define the concept of Global scattering (Gscattering) which is obtained
just by calculating the average of the Degree of scattering values for each source
elements: ∑| | | | (3)

where |S| is the number of analyzed source elements. In our particular case, it
represents the number of concerns of interest in the system.

142 J.M. Conejero et al.

3.3 Metrics for Tangling

Similarly to Nscattering for scattering, we also defined the Ntangling metric for the
target element tk, where |S| is the number of source elements and dmjk is the value of
the cell [i,k] of the dependency matrix: | |

 (4)

Again, according to the functions introduced in Section 2.1, Ntangling (tk) = card
{s є Source : f’(s)=tk}, i.e., card(f(tk)). Then, this metric measures the number of
source elements addressed by a particular target element. In the MobileMedia exam-
ple (Section 3.1), the NTangling for the Add Album and Store Data usecases are 2
and 1, respectively. As we can see in Table 4, Store Data usecase is only shadowed in
dark grey color so that it just addresses the Persistence concern (whilst Add Album
addresses Persistence and Label).

We follow the same steps performed for the scattering metrics and to define two
tangling metrics: Degree of tangling and Gtangling. These metrics represent the nor-
malized tangling for the target element tk and the global tangling, respectively:

 ∑| || | | | 10 | | 1 (5)

 ∑| | | | (6)

Like Degree of scattering, the Degree of tangling metric may take values between
0 and 1, where the value 0 represents a target element addressing only one source
element. The number of source elements addressed by the target element increases as
the metric is closer to 1.

3.4 Metrics for Crosscutting

Finally, this section defines three metrics for crosscutting: Crosscutpoints, NCrosscut
and Degree of crosscutting. These metrics are extracted from the crosscutting product
matrix and the crosscutting matrix of the framework presented in Section 2.1.

The Crosscutpoints metric is defined for a source element sk as the number of tar-
get elements where sk is crosscutting to other source elements. This metric is calcu-
lated from the crosscutting product matrix (remember that this matrix is calculated by
the product of scattering and tangling matrices). The Crosscutpoints metric for sk
corresponds to the value of the cell in the diagonal of the row k (cell [k,k] or ccpmkk).

 (7)

According to our running example of Section 3.1, we can see that Crosscutpoints
metric for Persistence has a value of 3. Note that there are three usecases descriptions

 Early Crosscutting Metrics as Predictors of Software Instability 143

(Table 4) which are shadowed with both light and dark color (Add Album, Add Photo
and Provide Label). Then, the Persistence and Label concerns cut across each other in
these usecases.

The NCrosscut metric is defined for the source element sk as the number of source
elements crosscut by sk. The NCrosscut metric for sk is calculated by the addition of
all the cells of the row k in the crosscutting matrix: | |

 (8)

In our example, NCrosscut for Persistence is 1 since it is crosscutting just to the
Label concern. Finally, the two crosscutting metrics above allow us to define the
Degree of crosscutting metric of a source element sk. Note that, Degree of crosscut-
ting is normalized between 0 and 1, so that those source elements with lower values
for this metric are the best modularized. | | | | (9)

We summarize all our metrics in Table 5. In this table we show the definition of
each metric and the relation with the matrices used by the crosscutting pattern.

Table 5. Summary of the concern-oriented metrics based on the Crosscutting Pattern

Metric Definition Relation with matrices Calculation

NScattering (sk)
Number of target elements
addressing source element sk

Addition of the values of
cells in row k in depen-
dency matrix (dm)

= ∑| |

Degree of
scattering (sk)

Normalization of NScattering
(sk) between 0 and 1

 =

∑| || | ∑| | 10 ∑| | 1

Gscattering (sk)
Average of Degree of scatter-
ing of the source elments

 ∑ | | | |

NTangling (tk)
Number of source elements
addressed by target element tk

Addition of the values of
cells in column k in
dependency matrix (dm)

= ∑| |

Degree of
tangling (tk)

Normalization of NTangling
(tk) between 0 and 1

 =
∑| || | ∑| | 10 ∑| | 1

Gtangling (tk)
Average of Degree of tan-
gling of the target elments

∑ | | | |

Crosscutpoints
(sk)

Number of target elements
where the source element sk
crosscuts to other source
elements

Diagonal cell of row k in
the crosscutting product
matrix (ccpm)

=

NCrosscut (sk)
Number of source elements
crosscut by the source ele-
ment sk

Addition of the values of
cells in row k in the
crosscutting matrix (ccm)

= ∑| |

Degree of
crosscutting (sk)

Addition of the two last
metrics normalized between 0
and 1

 =
∑| || | | |

144 J.M. Conejero et al.

4 Evaluation and Discussion

In this section we present a first empirical study using the metrics presented in Sec-
tion 3. The main goal of the analysis presented is to observe how early crosscutting
metrics may help in predicting instabilities. Then, these metrics provide indications
that the crosscutting concerns identified should be modularized, e.g., using aspects
[2]. This hypothesis is tested by using a double validation: (1) an internal validation of
the crosscutting metrics with respect to their ability of accurately quantifying certain
crosscutting properties, and (2) an external validation of the crosscutting metrics in
terms of their predictability of software stability [14].

4.1 Survey of Related Metrics

In this section we briefly discuss several concern-oriented metrics [7, 8, 19, 22] which
have been used in our internal and external validations. These metrics are summarized
in Table 6. Unlike the metrics presented in this paper, the metrics summarized in
Table 6 are mainly defined in terms of specific design or implementation artefacts.
Accordingly, we have adapted these metrics to the requirements level in order to
compare the results obtained by our metrics with those obtained by the rest of metrics
(in Section 4.2). The adaptation has mainly consisted of a change in the target element

Table 6. Survey of metrics defined by other authors

Authors Metric Definition

Sa
nt

’A
nn

a
et

 a
l.

[1
9]

Concern Diffusion over
Components (CDC)

It counts the number of components addressing a concern.

Concern Diffusion over
Operations (CDO)

It counts the number of methods and advices addressing a con-
cern.

Concern Diffusion over Lines
of Code (CDLOC)

It counts the number of lines of code related to a particular con-
cern.

[1
8]

Lack of Concern Cohesion
(LOCC)

It counts the number of concerns addressed by the assessed com-
ponent.

Component-level Interlacing
Between Concerns (CIBC)

It counts the number of other concerns with which the assessed
concerns share at least a component.

D
uc

as
se

 e
t a

l.
[7

] Size
It counts the number of internal members of classes (methods or
attributes) associated to a concern.

Spread
It counts the number of modules (classes or components) related
to a particular concern

Focus
It measures the closeness between a module and a property or
concern

Touch
It assesses the relative size of a concern or a property (Size of
property divided into total size of system)

W
on

g
et

 a
l.

[2
2]

Concentration (CONC) It measures how much a concern is concentrated in a component

Dedication (DEDI) It quantifies how much a component is dedicated to a concern.

Disparity (DISP)
It measures how many blocks related to a particular property (or
concern) are localised in a particular component

E
ad

dy
 e

t
al

. [
8]

 Degree of scattering (DOS)
It is defined as the variance of the Concentration of a concern
over all program elements with respect to the worst case

Degree of tangling (DOT)
It is defined as the variance of the Dedication of a component for
all the concern with respect to the worst case

 Early Crosscutting Metrics as Predictors of Software Instability 145

used for the different measures. For example, where a metric was defined for measur-
ing concepts using components or classes, we have adapted the metric to the require-
ments domain by using usecases as the target entity. We have also taken into account
the different granularity levels used by the metrics. For instance, there are some me-
trics which use operations or lines of code (instead of components or classes) as the
target entity. In order to adapt these metrics, we changed operations by usecase flows
or steps, since flows represent a finer granularity level (similar to operations or lines
of code) than usecases. Then, the granularity level used at requirements keeps consis-
tent with the used by the original metrics.

4.2 Internal Validation

In this section we show the results obtained by calculating our metrics to the Mobi-
leMedia system [9]. The application has been used for performing different analyses
in software product lines mainly at architectural and programming level [9]. Our work
complements those previous analyses since we focus on modularity at the require-
ments level. The reason for calculating the metrics at this level is to identify the con-
cerns with a higher Degree of crosscutting (a poor modularity) as soon as possible.
Then, the developer may anticipate important decisions regarding quality attributes at
early stages of development.

Table 7. Different releases of MobileMedia

Release Description
r0 MobilePhoto core
r1 Error handling added

r2 Sort Photos by frequency and Edit Label
concerns added

r3 Set Favourites photos added
r4 Added a concern to copy photo to an album
r5 Added a concern for sending photos by SMS
r6 Added the concern for playing music

r7 Added the concern for playing videos and
capture media

Table 8. Concerns and releases where are
included

Concern Releases Concern Releases
Album r0 - r7, Copy r4 - r7
Photo r0 - r7, SMS r5 - r7
Label r0 - r7, Music r6, r7
Persistence r0 - r7, Media r6, r7
Error Handling r1 - r7 Video r7
Sorting r2 - r7 Capture r7
Favourites r3 - r7

As discussed in Section 3.1, MobileMedia has evolved to 8 successive releases by

adding different concerns to the product line. For instance, release 0 implements the
original system with just the functionality of viewing photos and organizing them by
albums. In Table 7 we show the different releases with the concerns added in each
release (see [9] for more details). The reasons for choosing this application for our
first analysis are several. (1) The MobileMedia application is a product line, where
software instability is of upmost importance; instabilities affect negatively not only the
Software Product Line (SPL) architecture, but also all the instantiated products. (2)
The software architecture and the requirements had all-encompassing documentation;
e.g., the description of all the usecases were made available as well as a complete
specification of all the component interfaces. (3) The architectural components were
independently defined and provided by the real developers, rather than ourselves. The
architectural part could be used by a second study to analyze traceability of crosscut-
ting concerns (observed using our metrics). (4) The developers had implemented an

146 J.M. Conejero et al.

aspect-oriented version of the system, which may be also used in a different analysis
for comparing the metrics applied in different paradigms.

We have calculated the metrics presented in Section 3 for the requirements of each
release. We have considered the different concerns of each release and the usecases
implementing the system as the source and target domains, respectively. Table 8
shows the concerns used for the analysis and the releases in which these concerns
were included. We do not show the usecases diagrams for each release due to space
constraints, the whole analysis of the experiment may be found in [1].

4.2.1 Calculating the Metrics
Based on the two domains (concerns and usecases as source and target, respectively)
we build the dependency matrix for each release showing the usecases contributing to
the different concerns. Our metrics and those summarized in Table 6 are automatical-
ly calculated using as input the dependency matrix. Based on this dependency matrix,
we derive the rest of matrices presented in Section 2.2 (Scattering, Tangling, Cross-
cutting Product, and Crosscutting Matrices). Due to space reasons, we just show the
dependency matrix for the MobileMedia system in release 7, which includes all the
concerns of the system (Table 9).

Table 9. Dependency matrix for the MobileMedia system in release 7

 Usecases

A
dd

 A
lb

um

D
el

et
e

A
lb

um

A
dd

 M
ed

ia

D
el

et
e

M
ed

ia

V
ie

w
 P

ho
to

V
ie

w
 A

lb
um

Pr
ov

id
e

L
ab

el

St
or

e
D

at
a

R
em

ov
e

D
at

a

R
et

ri
ev

e
D

at
a

E
di

t L
ab

el

C
ou

nt
 M

ed
ia

V
ie

w
 S

or
te

d
M

ed
ia

Se
t F

av
ou

ri
te

V
ie

w
 F

av
ou

ri
te

s

C
op

y
M

ed
ia

Se
nd

 M
ed

ia

R
ec

ei
ve

 M
ed

ia

M
us

ic
 C

on
tr

ol

A
cc

es
s

M
ed

ia

Pl
ay

 V
id

eo

C
ap

tu
re

 M
ed

ia

C
on

ce
rn

s

Album 2 2 1 3
Photo 1
Label 2 2 1 1 1 2 1
Persistence 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2
Error Handling 2 2 3 2 2 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1
Sorting 1 1 1 2 1
Favourites 2 1 1
Copy 1 1 1
SMS 1 1 1 1
Music 3
Media 1 2 1 3 2 3 1
Video 1
Capture 1

Although our original dependency matrix is a binary matrix, in this case we have

used a not-binary matrix in order to allow the calculation of metrics which utilize a
granularity level different from usecase. That means that a cell represents the number
of control flows or steps of the usecase addressing a particular concern. For instance,
in Table 9 we can see how the View Album usecase has 3 and 1 control flows ad-
dressing the Album and Label concerns, respectively. In order to relate concerns and

 Early Crosscutting Metrics as Predictors of Software Instability 147

usecases (i.e. fill in the dependency matrix), we have used a shadowing technique (see
an example in Section 3.1) which was used at source code level in [9].

Using the dependency matrix for each release, we automatically calculate all metrics
for these releases. In Table 10 we show the average of the metrics for all releases. In
this table we have shown only the metrics calculated for concerns (source elements in
the Crosscutting Pattern). In [1] we show the calculation for all the metrics presented
in Table 6. We have performed a pairwise systematic comparison of the metrics and an
in-depth discussion is presented at the website [1]. In next section we focus on the key
results.

Table 10. Average of the metrics for all the releases

Releases Average of all releases
Authors Ours Sant’Anna Ducasse Eaddy

 Metrics

Concerns

N
sc

at
te

ri
ng

D
eg

re
e

of
 s

ca
tte

ri
ng

C
ro

ss
cu

tp
oi

nt
s

N
C

ro
ss

cu
t

D
eg

re
e

of
 c

ro
ss

cu
t-

tin
g

C
on

ce
rn

 D
if

us
su

io
n

ov
er

 U
se

ca
se

s

C
on

ce
rn

 D
if

us
si

on

ov
er

 F
lo

w
s

U
se

ca
se

 le
ve

l
In

te
rl

ac
in

g
be

tw
ee

n
C

on
ce

rn
s

Si
ze

Sp
re

ad

Fo
cu

s

D
eg

re
e

of
 S

ca
tte

-
ri

ng

Album 3,63 0,26 3,63 5,25 0,39 3,63 8 5,25 8 3,63 0,25 0,77
Photo 4,13 0,3 3,88 4,13 0,38 4,13 7,38 5,38 7,38 4,13 0,24 0,62
Label 5,38 0,34 5,38 6 0,46 5,38 7,88 6,13 7,88 5,38 0,25 0,82
Persistence 12,8 0,85 12,4 6,38 0,77 12,8 25,1 6,38 25,1 12,8 0,39 0,98
Error Handling 15,9 0,98 15,9 7 0,89 15,9 27,6 7 27,6 15,9 0,36 0,99
Sorting 4,33 0,25 4,33 7,33 0,43 4,33 5,33 7,33 5,33 4,33 0,34 0,78
Favourites 3 0,17 3 6 0,32 3 4 6 4 3 0,26 0,66
Copy 2,5 0,13 2,5 6,25 0,29 2,5 2,5 6,25 2,5 2,5 0,09 0,61
SMS 3,67 0,18 3,67 6,67 0,32 3,67 3,67 6,67 3,67 3,67 0,16 0,76
Music 1 0 0 0 0 1 3 0 3 1 1 0
Media 6,5 0,31 6,5 8,5 0,44 6,5 12,5 8,5 12,5 6,5 0,25 0,85
Video 1 0 0 0 0 1 1 0 1 1 1 0
Capture 1 0 0 0 0 1 1 2 1 1 0,33 0
Globals/Avg 0,27 0,34

4.2.2 Discussion on Internal Validation
The main goal of the measures shown in previous section is to analyze the accuracy of
the crosscutting metrics. However, by means of this validation we have also extracted
important conclusions about the used metrics. First of all, we have observed through
an analytical comparison (which was confirmed by an analysis of the MobileMedia
data) that some of our proposed metrics are generic enough to embrace existing code-
level metrics currently used in studies based on source-code analysis [8, 9, 12, 13].
Examples of these metrics are Sant`Anna’s Concern Diffusion over Components or
Eaddy’s Degree of Scattering. A full pairwise comparison and discussion about the
metrics is presented in [1].

In Table 10 we have shown the metrics which are more interesting for extracting
conclusions on source elements (concerns). Fig. 3 shows three charts where Degree of
scattering and Degree of crosscutting metrics are represented. Using these charts we
observed that the metrics tend towards the same values for the same concerns.

148 J.M. Conejero et al.

One important conclusion that we have extracted from the analysis is the need for
using the Degree of crosscutting metric (exclusive of our metrics suite). This metric is
calculated using Crosscutpoints and NCrosscut metrics (see Section 3.4), and it is a
special combination of scattering and tangling metrics.

a) b)

 c)

Fig. 3. Charts showing Degree of scattering (ours and Eaddy’s) and Degree of crosscutting

Fig. 4 shows the Degree of scattering and Degree of tangling metrics for releases 0
and 1. Note that in these releases, the Album concern presents the same value for
Degree of scattering. However, the Degree of crosscutting metric for this concern is
higher in release 1 than in release 0 (see Fig. 5). This is due to the tangling of the
usecases where the Album concern is addressed (see in Fig. 4b). Accordingly, we
observed that the Album concern is worse modularized in release 1 than in release 0
(there are other examples, such as Persistence or Photo). Note that this situation could
not be discovered using only the Degree of scattering metric. Although the combina-
tion of the Degree of scattering and Degree of tangling metrics could help to disclose
the problem, it would be a tedious task since the metrics do not provide information
about which target elements are addressing each source element. Thus, the utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
lb

um

Ph
ot

o

La
be

l

Pe
rs

is
te

nc
e

Ex
ce

pt
io

n
H

an
dl

in
g

So
rt

in
g

Fa
vo

ur
ite

s

Co
py

SM
S

M
us

ic

M
ed

ia

Vi
de

o

Ca
pt

ur
e

Degree of scattering

A
lb

um

Ph
ot

o

La
be

l

Pe
rs

is
te

nc
e

Ex
ce

pt
io

n
H

an
dl

in
g

So
rt

in
g

Fa
vo

ur
ite

s

Co
py

SM
S

M
us

ic

M
ed

ia

Vi
de

o

Ca
pt

ur
e

Degree of crosscutting

A
lb

um

Ph
ot

o

La
be

l

Pe
rs

is
te

nc
e

Ex
ce

pt
io

n …

So
rt

in
g

Fa
vo

ur
ite

s

Co
py

SM
S

M
us

ic

M
ed

ia

Vi
de

o

Ca
pt

ur
e

Eaddy's Degree of scattering

 Early Crosscutting Metrics as Predictors of Software Instability 149

of Degree of crosscutting allows the detection of this problem just observing the val-
ues for this metric. The same analysis could be done for Eaddy’s metrics since they
do not have a specific metric for crosscutting (see the Album concern in releases 0
and 1, in Fig. 3c).

a) b)

Fig. 4. Degree of scattering and Degree of tangling for releases 0 and 1

Fig. 5. Degree of crosscutting for releases 0 and 1

4.3 External Validation

To date, there is no empirical study that investigates whether scattering and crosscut-
ting negatively affect to software stability. In this section, our analysis shows that the
concerns with a higher degree of scattering and crosscutting are addressed by more
unstable usecases than concerns with lower degree of scattering and crosscutting.
Stability is highly related to change management so that the more unstable a system
is, the more complicated the change management becomes (decreasing quality of the
system) [4]. Then, we can infer that crosscutting has also a negative effect on soft-
ware quality. In this analysis we mainly focus on changes in the functionality of the
system. We do not focus on changes performed to correct bugs or in maintainability
tasks (we do not rule out this kind of changes in future analyses).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
lb

um
Ph

ot
o

La
be

l
Pe

rs
is

te
nc

e
Ex

ce
pt

io
n

H
an

dl
in

g
So

rt
in

g
Fa

vo
ur

ite
s

Co
py

SM
S

M
us

ic
M

ed
ia

Vi
de

o
Ca

pt
ur

e

release0
release1

Degree of scattering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
dd

 A
lb

um
D

el
et

e
A

lb
um

A
dd

 P
ho

to
D

el
et

e
Ph

ot
o

Vi
ew

 P
ho

to
Vi

ew
 A

lb
um

Pr
ov

id
e

La
be

l
St

or
e

D
at

a
Re

m
ov

e
D

at
a

Re
tr

ie
ve

 D
at

a
Ed

it
La

be
l

Co
un

t P
ho

to
Vi

ew
 S

or
te

d
Ph

ot
os

Se
t F

av
ou

rit
e

Vi
ew

 F
av

ou
rit

e
Co

py
 P

ho
to

Se
nd

 P
ho

to
Re

ce
iv

e
Ph

ot
o

M
us

ic
 C

on
tr

ol
A

cc
es

s
M

ed
ia

Pl
ay

 v
id

eo
Ca

pt
ur

e
M

ed
ia

Degree of Tangling release 0
release 1

0
0.2
0.4
0.6
0.8

1

A
lb

um

Ph
ot

o

La
be

l

Pe
rs

is
te

nc
e

Ex
ce

pt
io

n …

So
rt

in
g

Fa
vo

ur
ite

s

Co
py

SM
S

M
us

ic

M
ed

ia

Vi
de

o

Ca
pt

ur
e

release0
release1

Degree of crosscutting

150 J.M. Conejero et al.

4.3.1 Relating Crosscutting Metrics with Stability
In order to perform our empirical study, we have shown in Table 11 the usecases
(rows) which change in the different releases (columns). A change in a usecase is due
mainly to either the concerns which it addresses have evolved or it has been affected
by the addition of a new concern to the system. In this table a 1 in a cell represents
that in that release, the corresponding usecase has changed. As an example, in release
1 (r1) all the cells in the column present the value 1. This is due to the fact that error
handling is added in this release, and this concern affects to all the usecases. An “a” in
a cell represents that the usecase is added in that release. There are also some usecases
which change their names in a release. These usecases are marked in the “Renaming”
column, where the release which introduces the change in the name is shown (e.g.
Add Photo usecase changes its name to Add Media in release 6). Finally, usecases
with a number of changes higher than a threshold value (e.g. 2 in our analysis) are
marked as unstable.

Table 11. Changes in usecases in the different releases

 Releases
Renaming Requirements Element r0 r1 r2 r3 r4 r5 r6 r7 #Changes Unstable?

 Add Album a 1 0 0 0 0 0 0 1 no
 Delete Album a 1 0 0 0 0 0 0 1 no

r6 Add Photo [Media] a 1 0 0 0 0 1 0 2 yes
r6 Delete Photo [Media] a 1 0 0 0 0 1 0 2 yes
 View Photo a 1 1 0 1 1 1 0 5 yes
 View Album a 1 1 1 0 0 1 0 4 yes
 Provide Label a 1 0 0 0 0 0 0 1 no
 Store Data a 1 0 0 0 0 0 0 1 no
 Remove Data a 1 0 0 0 0 0 0 1 no
 Retrieve Data a 1 0 0 0 0 0 0 1 no
 Edit Label a 0 0 0 0 0 0 no

r6 Count Photo [Media] a 0 0 0 1 0 1 no
r6 View Sorted Photo a 0 0 0 1 0 1 no
 Set Favourites a 0 0 0 0 0 no
 View Favourites a 0 0 0 0 0 no

r6 Copy Photo [Media] a 0 1 0 1 no
r6 Send Photo [Media] a 1 0 1 no
r6 Receive Photo [Media] a 1 0 1 no
 Play Music a 0 0 no
 Access Media a 0 0 no
 Play Video a 0 no
 Capture Media a 0 no

Once the changes affecting each usecase are known, the number of unstable use-

cases which realise each concern is calculated. Table 12 shows the unstable usecases
(those with two changes or more) in the columns and the concerns in the rows. A cell
with 1 represents that the usecase addresses the corresponding concern. The last col-
umn of the table shows the total number of unstable usecases contributing to each
concern.

We relate the number of unstable usecases for each concern with the degree of
scattering and crosscutting for such concerns. In particular, Fig. 6 shows the linear

 Early Crosscutting Metrics as Predictors of Software Instability 151

regression between the number of unstable usecases and the Degree of scattering and
Degree of crosscutting metrics, respectively. We have used the least squares criteria
to estimate the linear regression between the variables assessed so that the higher the
degree of scattering or crosscutting for a concern, the more unstable usecases address-
ing such a concern. We can anticipate that usecases addressing scattered or crosscut-
ting concerns are more prone to be unstable.

Table 12. Number of unstable usecases addressing each concern

 Usecases
 Add Media Delete Media View Photo View Album Unstable usecases

C
on

ce
rn

s

Album 1 1 2
Photo 1 1 1 1 4
Label 1 1 2
Persistence 1 1 1 1 4
Error Handling 1 1 1 1 4
Sorting 1 1 2
Favourites 1 1
Copy 1 1
SMS 1 1
Music 0
Media 1 1 1 3
Video 0
Capture 0

We have also related Eaddy’s Degree of Scattering metric with stability (Fig. 7).

This figure complements the internal validation previously presented by showing
consistency in the correlations of Fig. 6a) and Fig. 7 (they follow the same tendency).

4.3.2 Discussion on External Validation
In this section we present some conclusions extracted from the analysis performed in
previous sections. As we can see in Fig. 6 and Fig. 7 correlations follow a linear ten-
dency so that the higher the degree of scattering or crosscutting for a concern, the
more unstable usecases addressing this concern. This analysis allows the developer to
decide which parts of the system are more unstable just observing the degree of scat-
tering or crosscutting. Also, since the analysis is performed in requirements, the
developer may anticipate important decisions about stability at this early stage of
development, improving the later architecture or detailed design of the system.

Fig. 6 and Fig. 7 also show the value for Pearson’s r (a common measure of the li-
near dependence between two variables) [21]. The values of r shown in Fig. 6a) and
Fig. 6b) are 0.844 and 0.879 respectively. These values indicate that Degree of scat-
tering and Degree of crosscutting are highly correlated with the number of unstable
components. Using the critical values table for r [21], we calculated the probability
after N measurements (in our case 13) that the two variables are not correlated. For
Fig. 6a) and Fig. 6b), the value obtained for this probability is 0.1%. Accordingly, the
probability that these variables are correlated is 99.9%. For Fig. 7, we obtained that r
is 0.788. Analogously, Eaddy’s Degree of Scattering is also linearly correlated with

152 J.M. Conejero et al.

a) b)

Fig. 6. Correlation between Degree of scattering and Degree of crosscutting and stability

Fig. 7. Correlation between Eaddy’s Degree of Scattering and stability

the number of unstable components. In particular, the probability that the variables
assessed in Fig. 7 are not correlated is only 0.8%.

We observed that, in general, we obtained a better correlation for the Degree of
crosscutting with stability than for Degree of scattering with stability. After analyzing
the data, we observed that the correlations between Degree of scattering metrics (both
ours and Eaddy’s) and stability were much influenced by those concerns either with-
out scattering or completely scattered. As an example, we can see in Fig. 6a) that
there is a point with a Degree of scattering of almost 1 while most of the points
present a Degree of scattering lower than 0.4. This situation is even more evident in
Fig. 7 where the correlation coefficient obtained is lower than for the other correla-
tions. The reason is the aforementioned commented: the difference between the val-
ues obtained for this metric in cases without scattering and the rest of cases. This
metric obtained high values (greater than 0.5) for almost all the concerns assessed.
However, when a concern does not present scattering the result of the metric is 0,
highly influencing the correlation. Finally, we concluded that Degree of crosscutting
presents a better correlation with stability since this metric somehow takes into ac-
count not only scattering but also tangling. This conclusion supports the need for
having a specific metric for assessing crosscutting.

r = 0,844

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ns

ta
bl

e
us

ec
as

es

Degree of Scattering

r = 0,879

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ns

ta
bl

e
us

ec
as

es

Degree of Crosscutting

r = 0,788

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ns

ta
bl

e
us

ec
as

es

Eaddy's Degree of Scattering

Photo

Photo

Photo

 Early Crosscutting Metrics as Predictors of Software Instability 153

We have also annotated in all the correlations a point called Photo. These points
are the most digressed from the linear regression in all the figures. We observed that
although this concern (Photo) presents values for the scattering and crosscutting met-
rics not very high, the number of unstable usecases was high. After analyzing this
situation, we observed that this concern presents a high degree of scattering and
crosscutting in the six first releases. After release 5, a new concern is added (Media)
which is responsible for addressing the actions common to photo, music and video,
and carrying out many actions previously assigned to the Photo concern. This is why
Degree of scattering and crosscutting for Photo drastically decrease in releases 6 and
7. It highly influences to the average of the metrics and this is the reason why al-
though having non-relatively high values for the metrics; the number of unstable
usecases remains high.

5 Related Works

In [19], Sant’Anna et al. introduce different metrics (summarized in Table 6), namely
Concern Diffusion over Components (CDC), Concern Diffusion over Operations and
Concern Diffusion over Lines of Code. These metrics allow the developer to assess
the scattering of a concern using different levels of granularity. The authors also de-
fine the Lack of Concern-based Cohesion to assess the tangling in the system. How-
ever, these metrics are mainly defined to assess modularity using specific deployment
artefacts so that they are focused on specific abstraction levels (design or program-
ming). In [18], the same authors adapted the metrics to the architectural level and
introduced new metrics. However, the metrics still keep tied to specific deployment
artefacts and they are not generic enough to be used at any abstraction level. In [9],
the metrics are used for analyzing stability in product lines. However, the work is
very tied to the programming level, relegating the benefits of the metrics to the latest
phases of development. In [7], Ducasse et al. introduce four concern measures: Size,
Touch, Spread and Focus (see Table 6). Again, these metrics are tied to the imple-
mentation.

Wong et al. introduce in [22] three concern metrics called Disparity, Concentration
and Dedication (Table 6). Eaddy et al., use an adaptation of Concentration and Dedi-
cation metrics for defining two new concern metrics [8]: Degree of Scattering (DOS)
and Degree of Tangling (DOT). Whilst DOS is defined as the variance of the Concen-
tration of a concern over all program elements with respect to the worst case, DOT is
defined as the variance of the Dedication of a component for all the concern with
respect to the worst case. Both works are focused on assessing modularity at pro-
gramming level as well.

In [16] Lopez-Herrejon and Apel define two concern metrics: Number of Features
(NOF) and Feature Crosscutting Degree (FCD), measuring number of features and
number of classes or components crosscut by a particular concern respectively. Cec-
cato and Tonella also introduce a metric called Crosscutting Degree of an Aspect
(CDA) [5] which counts the number of modules affected by an aspect. These metrics
are defined to assess attributes of an aspect-oriented implementation. They could not
be used to anticipate decisions in not aspect-oriented systems.

154 J.M. Conejero et al.

In [20], the authors use a tool to analyze change impact in Java applications. This
tool allows the classification of changes so that they detect the more failure inducing
changes. However, like most of the aforementioned approaches, this work is focused
on programming level when the system is already designed.

6 Conclusions and Future Work

In this paper, we proposed a concern-oriented metrics suite to complement traditional
software metrics. The metrics proposed are based on the crosscutting pattern pre-
sented in our previous work which establishes a dependency between two generic
domains, source and target, based on traceability relations. This metric suite allows
the developer to perform a modularity analysis, identifying the crosscutting concerns
in a system but also quantifying the degree of crosscutting of each concern. The me-
trics are generic and they are not tied to a specific deployment artifact. Then, they
may be used at different abstraction levels, allowing developers to assess modularity
and infer quality properties at early stages of development. Even, with the transition
to model-driven software engineering gaining momentum, the assessment of abstract
models (usecases or components models) becomes more important.

Through the internal validation, we observed not only that our metrics are consis-
tent with other metrics but also that they complement other metrics since they are not
defined in terms of any deployment artefact. Moreover, we showed the need for intro-
ducing a specific metric for crosscutting. The external validation was focused on
demonstrating the utility of the metrics for other software quality attributes. In partic-
ular, we show how the Degree of scattering and Degree of crosscutting metrics
present a linear correlation with stability and that the Degree of crosscutting metric is
better correlated with stability than Degree of scattering.

As future work, we plan to perform several empirical studies. In a first study we
expect to compare the results obtained by our metrics at requirements level with those
obtained at different abstraction levels (e.g., architectural level, design or implementa-
tion). Also, the application of the metrics at source-code level would allow us to com-
pare our results with the obtained by other studies were authors analyze instability at
this level (e.g., [9, 13]). By this analysis we could test different hypotheses, such as,
whether similar properties of crosscutting concerns are found to be indicators of in-
stabilities or what probabilities of early crosscutting measurements lead to false warn-
ings (i.e. false positives or negatives) at source-code level. In these analyses we may
also utilize an aspect-oriented version of the system assessed to check the improve-
ments obtained by the utilization of different paradigms. We also plan to apply the
metrics in several case studies (projects) demonstrating that the results obtained are
not just coincidental.

Acknowledgements

This work has been supported in part by the European Commission grant IST-2-
004349: European Network of Excellence on AOSD (AOSD-Europe) and by MEC
under contract: TIN2008-02985. Eduardo is supported by CAPES, Brazil.

 Early Crosscutting Metrics as Predictors of Software Instability 155

References

1. Analysis of modularity in the MobileMedia system (2008),
http://quercusseg.unex.es/chemacm/research/
analysisofcrosscutting

2. Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid, A., Tekinerdogan, B.: Disco-
vering Early Aspects. IEEE Software 23(1), 61–70 (2006)

3. van den Berg, K., Conejero, J., Hernández, J.: Analysis of Crosscutting in Early Software
Development Phases based on Traceability. In: Rashid, A., Aksit, M. (eds.) Transactions
on AOSD III. LNCS, vol. 4620, pp. 73–104. Springer, Heidelberg (2007)

4. van den Berg, K.: Change Impact Analysis of Crosscutting in Software Architectural De-
sign. In: Workshop on Architecture-Centric Evolution at 20th ECOOP, Nantes (2006)

5. Ceccato, M., Tonella, P.: Measuring the Effects of Software Aspectization. In: Proceedings
of the 1st Workshop on Aspect Reverse Engineering, Delft University of Technology, the
Netherlands (2004)

6. Conejero, J., Hernandez, J., Jurado, E., van den Berg, K.: Crosscutting, what is and what is
not? A Formal definition based on a Crosscutting Pattern. Technical Report TR28_07,
University of Extremadura (2007)

7. Ducasse, S., Girba, T., Kuhn, A.: Distribution Map. In: Proc. of the Int’l Conference on
Software Maintenance (ICSM), Philadelphia, USA (2006)

8. Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagappan, N., Aho,
A.: Do Crosscutting Concerns Cause Defects? IEEE Transactions on Software Engineer-
ing 34(4), 497–515 (2008)

9. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Filho, F., Dantas, F.: Evolving Software Product Lines with As-
pects: An Empirical Study on Design Stability. In: Proceedings of the 30th International
Conference on Software Engineering (ICSE), Leipzig, Germany (2008)

10. Figueiredo, E., Sant’Anna, C., Garcia, A., Bartolomei, T., Cazzola, W., Marchetto, A.: On
the Maintainability of Aspect-Oriented Software: A Concern-Oriented Measurement
Framework. In: Proceedings of CSMR 2008, pp. 183–192 (2008)

11. Garcia, A., Lucena, C.: Taming Heterogeneous Agent Architectures. Commun.
ACM 51(5), 75–81 (2008)

12. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., Staa, A.: Modularizing
design patterns with aspects: A quantitative study. In: Rashid, A., Aksit, M. (eds.) Transac-
tions on Aspect-Oriented Software Development I. LNCS, vol. 3880, pp. 36–74. Springer,
Heidelberg (2006)

13. Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 176–200. Springer, Heidelberg (2007)

14. Kelly, D.: A Study of Design Characteristics in Evolving Software Using Stability as a
Criterion. IEEE Trans. Software Eng. 32(5), 315–329 (2006)

15. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

16. Lopez-Herrejon, R., Apel, S.: Measuring and Characterizing Crosscutting in Aspect-Based
Programs: Basic Metrics and Case Studies. In: Proc. of the Int’l Conference on Fundamen-
tal Approaches to Software Engineering (2007)

156 J.M. Conejero et al.

17. Masuhara, H., Kiczales, G.: Modeling Crosscutting in Aspect-Oriented Mechanisms. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg (2003)

18. Sant’Anna, C., Figueiredo, E., Garcia, A., Lucena, C.J.P.: On the modularity of software
architectures: A concern-driven measurement framework. In: Oquendo, F. (ed.) ECSA
2007. LNCS, vol. 4758, pp. 207–224. Springer, Heidelberg (2007)

19. Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., von Staa, A.: On the Reuse and Main-
tenance of Aspect-Oriented Software: an Assessment Framework. In: Proc. of the Brazili-
an Symposium on Software Engineering (SBES), Manaus, Brazil (2003)

20. Stoerzer, M., Ryder, B.G., Ren, X., Tip, F.: Finding Failure-Inducing Changes in Java
Programs using Change Classification. In: Proc. of 14th International Symposium on
Foundations of Software Engineering, Portland, USA, pp. 57–68. ACM, New York (2006)

21. Taylor, J.: An Introduction to Error Analysis. The Study of Uncertainties in Physical Mea-
surements, 2nd edn. University Science Books (1997); ISBN: 0-935702-75-X

22. Wong, W., Gokhale, S., Horgan, J.: Quantifying the Closeness between Program Compo-
nents and Features. Journal of Systems and Software (2000)

	Early Crosscutting Metrics as Predictors of Software Instability
	Introduction
	Characterizing and Identifying Crosscutting Concerns
	A Conceptual Framework for Crosscutting
	Identification of Crosscutting

	Concern-Oriented Metrics for Early Development Assessment
	The MobileMedia System
	Metrics for Scattering
	Metrics for Tangling
	Metrics for Crosscutting

	Evaluation and Discussion
	Survey of Related Metrics
	Internal Validation
	External Validation

	Related Works
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

