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Abstract

Correcting design decay in source code is not a trivial task. Diagnosing and subsequently correcting inconsistencies
between a software systems’s code and its design rules (e.g., database queries are only allowed in the persistence
layer) and coding conventions can be complex, time-consuming and error-prone. Providing support for this process
is therefore highly desirable, but of a far greater complexity than suggesting basic corrective actions for simplistic
implementation problems (like the “declare a local variable for non-declared variable” suggested by Eclipse).

We present an abductive reasoning approach to inconsistency correction that consists of (1) a means for developers
to document and verify a system’s design and coding rules, (2) an abductive logic reasoner that hypothesizes possible
causes of inconsistencies between the system’s code and the documented rules and (3) a library of corrective actions
for each hypothesized cause. This work builds on our previous work, where we expressed design rules as equality
relationships between sets of source code artifacts (e.g., the set of methods in the persistence layer is the same as
the set of methods that query the database). In this paper, we generalize our approach to design rules expressed as
user-defined binary relationships between two sets of source code artifacts (e.g., every state changing method should
invoke a persistence method).

We illustrate our approach on the design of IntensiVE, a tool suite that enables defining sets of source code artifacts
intensionally (by means of logic queries) and verifying relationships between such sets.
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1. Introduction

When creating, maintaining and evolving software, it is not a trivial task for a developer to ensure that his source
code respects the design of the software.

This includes various design rules —such as the correct and consistent application of coding conventions [4],
idioms [14], design patterns [18] and design regularities [33]— that describe how the source code of the system should
be structured. Violations of these design rules can cause the software to become harder to understand and maintain,
and can sometimes even result in erroneous behaviour. A system using the Hibernate persistence framework [3], for
example, should adhere to the framework’s design rules —at the risk of not functioning properly if those rules are
violated.

Testimony to this problem is the wide variety of software tools that support verifying design rules. Tools such
as FindBugs [12], CheckStyle [11] and Lint [24] inform developers of violations of common coding guidelines and
rules of thumb. Tools like Ptidej [19] enable verifying whether design patterns are implemented consistently in the
source code. Some tools (e.g., SmallLint [6] and Eclipse’s quick fixes) even suggest corrections for the violations
they identify. However, few tools support documenting and verifying user-specified design rules. Examples include
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IntensiVE [27], NDepend [48] and Semmle [47]. None of these tools supports correcting violations of user-specified
design rules. Typically, a manual effort is required to diagnose and correct the causes of such violations [10].

In this paper we present an approach and its associated tool that supports a three-step process for semi-automatic
correction of inconsistencies between user-specified design rules and code:

1. Our approach supports documenting a system’s design rules and verifying the system’s code with respect to the
documented rules. To this end, we leverage our earlier work on the IntensiVE tool suite [27] which verifies
design rules expressed in the logic meta programming language SOUL [50].

2. Furthermore, the logic meta programming foundations of the IntensiVE tool suite allow diagnosing violations
by means of an abductive logic reasoner [17]. The abductive logic reasoner hypothesizes possible causes for
any violation identified by IntensiVE and gives feedback to the developer.

3. Finally, by associating corrective actions with each of the potential causes reported by the abductive reasoner,
our approach enables the (semi-)automated correction of design rule violations.

This work expands on our previous work [9] in which we demonstrated the applicability of abductive logic rea-
soning for diagnosing and correcting one particular kind of design rule that can be expressed using IntensiVE. The
contribution of this paper over the previous work is two-fold. First, we generalize the ideas developed in [9] to support
all the different kinds of design rules that can be expressed using IntensiVE. Second, we present a set of dedicated
tools that integrate with the IntensiVE tool suite to assist in the diagnosis and correction of inconsistencies between
design rules and source code.

This paper is structured as follows. Section 2 provides an overview of the logic meta programming foundations
of the IntensiVE tool suite that enable documenting and verifying a system’s design rules. Section 3 discusses how
any identified inconsistencies between the documented design rules and the source code can be diagnosed using
abductive reasoning. Section 4 subsequently demonstrates how associating corrective actions with the hypothesized
causes of an inconsistency enables the semi-automated correction of design rule violations. Section 5 illustrates the
complete diagnosis and correction process supported by our approach using examples taken from the implementation
of IntensiVE itself. Section 6 discusses the advantages and disadvantages of our approach. We give an overview of
related approaches in Section 7. Before concluding this paper in Section 9, future work is discussed in Section 8.

2. Documenting and Verifying Design Rules using IntensiVE

IntensiVE [8, 27, 30] is a tool suite for documenting structural design rules and verifying their validity with respect
to source code. This tool suite has been applied to design rules concerning coding conventions, implementation
idioms, design pattern implementations and architectural dependencies.

At the core of IntensiVE lies the concept of an intensional view. Such a view is a set of source code artifacts (e.g.,
classes, methods or fields) that are conceptually related (e.g., all visit methods in an instance of the Visitor design
pattern). Key to IntensiVE is that this set of artifacts is not defined by explicitly enumerating all of its elements, but
rather by means of an intensional description. Concretely, this description is a logic query that, upon evaluation, yields
the artifacts belonging to the intensional view. To this end, IntensiVE uses the Smalltalk Open Unification Language
(SOUL) [50] which is a Prolog-like logic programming language with specialized features for reasoning about the
source code of Smalltalk [7, 31], Java [7, 15], C [16] and COBOL [28] programs.

To document structural design rules, relationships can be expressed between intensional views. IntensiVE supports
three kinds of relationships, namely multiple alternative views, unary relationships and binary relationships. In what
follows, we take a more in-depth look at each of these kinds of relationships, and illustrate how they can be used to
express design rules. We take examples from the implementation of IntensiVE itself, of which the underlying design
rules have been documented using intensional views and relationships. In Section 4, we revisit these examples and
demonstrate how our approach supports diagnosis and correction of design rule violations in IntensiVE.

2.1. Multiple alternative views

Multiple alternative views are the first kind of relationship. These express equality relationships between multiple
intensional views. For each of the alternative views that participate in this kind of relationship, the set of source
code artifacts that is obtained by evaluating the definition of that intensional view should be identical. To illustrate
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Figure 1: Verification of the undoable actions design rule.

this concept, we take a look at the implementation of undoable actions in IntensiVE. In order to implement all the
user actions within the tool suite, a Command design pattern [18] is used, where each user action is implemented by
means of a separate class. A subset of the available actions within IntensiVE are undoable. These undoable actions
are characterized by a design rule that states that a class representing an undoable action needs to understand both the
messages isUndoable and undoAction. If a class only understands one of these methods, then the design rule
is violated, leading to erratic behaviour of the system. Moreover, the implementation of the isUndoable method
should consist of a single statement that returns the boolean true, in order to mark the action as undoable.

To document this design rule, we introduce two alternative intensional views, defined using the following two
SOUL queries:

1. if classChainUnderstandsMessageWithName(?class,?method,isUndoable),
booleanFlagMethod([true],?method)

2. if classChainUnderstandsMessageWithName(?class,?,undoAction)

In solutions to the first query (i.e., the elements of the first alternative intensional view), the logic variable ?class
is bound to a class of which the instances understand message isUndoable (i.e. either the class or one of its
superclasses implements a method with that name). Moreover, as required by the second condition of the query,
method ?method returns the boolean value true. This condition is defined as follows:

booleanFlagMethod(?boolean,?method) if
boolean(?boolean),
methodWithUniqueStatement(?method,RBReturnNode(RBLiteralValueNode(?boolean)))

Predicate methodWithUniqueStatement/2 is defined as follows:

methodWithUniqueStatement(?method,?statement) if
statementsOfMethod(<?statement>,?method)

The methodWithUniqueStatement/2 predicate verifies that the body of method ?method consists of a single
statement ?statement.3

3As SOUL lists are delimited by <>, <?statement> is the singleton list with element ?statement.
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Solutions to the query for the second alternative view consist of classes ?class of which the instances understand
the message undoAction.

When verifying the validity of the above relationship (i.e., when checking equality of the two resulting sets of
classes) with respect to the source code, the IntensiVE tool suite warns its user of all undoable actions that are part
of one of the alternative views, but not of the other. Figure 1 shows this kind of feedback. In the left column of the
screenshot, all elements belonging to the intensional view are listed. The remaining columns indicate which alternative
view a particular artifact belongs to. For instance, the tool reports that the ExperimentalAction implements the
undoAction method, but does not return true in the isUndoable method.

2.2. Unary intensional relationships

Next to multiple alternatives, IntensiVE also supports the notion of unary relationships. Unary relationships are
declared over a single intensional view and are used to express a number of conditions that need to be respected by
the elements belonging to this intensional view. These relationships are of the form: Qx ∈ V : conditions(x) where Q
is a logic quantifier (e.g., ∀,∃,@), V is an intensional view and conditions is logic query expressed using SOUL.

To illustrate the use of unary relationships, we document the design rule that within the source code of IntensiVE,
all methods overriding initialize should contain a super call as the first statement of their implementation, in
order to ensure that objects are correctly initialized.

An intensional view named overridden initialization is created to document this design rule. It is defined by means
of the following SOUL query:

if methodWithNameInClass(?method,initialize,?class),
overridingSelector(?class,initialize)

This query will gather all overridden initialize methods by first retrieving all the methods ?method named
initialize in the system, along with the corresponding class ?class in which the method is implemented. The
second condition restricts these classes to those that actually override the initialize method.

The actual design rule is documented by imposing a unary relationship over the intensional view overridden
initialization. Using the IntensiVE tool suite, this relationship is defined as follows:

∀ ?override ∈ Overridden initialization:
methodBeginsWithSuperCall(?override.method)

This unary relationship expresses that for all overrides ?override that are part of the Overridden initialization inten-
sional view, the first statement of the method should be a super send. To this end, the condition of this relationship
uses predicate methodBeginsWithSuperCall/1. This predicate is defined as:

methodBeginsWithSuperCall(?method) if
methodWithName(?method,?name),
argumentsOfMethod(?args,?method),
methodWithFirstStatement(?method,

RBMessageNode(RBVariableNode(super),?name,?args))

The third condition verifies if the overridden method ?override.method has as a first statement a message send (RBMessageNode)
corresponding to the method name (?name) where this message belongs to. The receiver of this message is the pseudo-
variable super and the arguments list is the same than the received by the host method (?args). The predicate
methodWithFirstStatement/2 is defined as follows:

methodWithFirstStatement(?method,?statement) if
statementsOfMethod(<?statement|?>,?method)

2.3. Binary intensional relationships

Binary intensional relationships are a generalization of the concept of unary relationships. These binary re-
lationships enable expressing design rules that involve two intensional views and that express how the artifacts
belonging to one of these views are related to those belonging to the other. Binary relations are of the form:
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Figure 2: Verification of the binary intensional relation documenting the Visitor design pattern.

Q1x ∈ V1; Q2y ∈ V2 : condition(x, y) where Q1 and Q2 are logic quantifiers, V1 and V2 are intensional views,
and condition is a SOUL query that expresses a relationship between the elements of the two intensional views.

As an illustration of the use of binary relationships, we discuss the documentation of the instance of the Visitor
design pattern [18] that is present in the implementation of IntensiVE. In order for the system to work properly, all
the accept methods that accept a Visitor should call a corresponding visit method on the Visitor using the double
dispatching idiom. To document this design rule we rely on the intensional views Accept methods and Visit methods
which are defined as follows.

First, the intensional view Accept methods groups all accept methods in the system using the following SOUL
query:

if methodWithNameInClass(?method,acceptService:, ?)

This query gathers all the methods ?method that are named acceptService:. This definition relies on the fact that
all accept methods in the system follow this naming convention.

The second intensional view, Visit methods is defined using the following query:

if classInHierarchyOf(?class,[Service]),
methodWithNameInClass(?method,{do.*},?class),

Visit methods can be characterized as all the methods ?method that are defined on a class in the hierarchy of
Service, which is the root class for all the visitors in IntensiVE (the first condition) that start with the prefix ‘do’.
To this end, the second condition uses the methodWithNameInClass/3 predicate that checks whether the name
of the visit method ?method defined on class ?class matches the regular expression {do.*}.

∀ ?accept.method ∈ Accept methods:
∃ ?visit.method ∈ Visit methods:

methodAcceptsVisitorWithMethod(?accept.method,?visit.method)

This relationship expresses that all accept methods ?accept.method should call a corresponding ?visit.method using a
double dispatch.

The predicate methodAcceptsVisitorWithMethod/2 is defined with:

methodAcceptsVisitorWithMethod(?acceptMethod,?visitMethod) if
argumentsOfMethod(<?argument>,?acceptMethod),
methodWithName(?visitMethod,?visitMethodName),
methodWithUniqueStatement(?acceptMethod,

RBReturnNode(RBMessageNode(?argument,?visitMethodName,<RBVariableNode(self)>)))

This is verified by a SOUL query that comprises three conditions. The first condition checks whether the ?ac-
cept.method takes a single argument ?argument. In the second condition, the name of the ?visit.method is retrieved and
bound to the logic variable ?visitMethodName. Finally, the third condition verifies if the ?accept.method consists of a
single statement that returns the result of sending the message ?visitMethodName to the first ?argument of the accept
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method, with as argument the pseudo-variable self. Note that this last condition expresses the double dispatching
idiom.

Similar to the verification of multiple alternatives, IntensiVE provides a dedicated sub-tool for verifying unary
and binary relationships. Figure 2 depicts the feedback provided by this tool. The top of the pane lists the pairs of
elements from both intensional views for which the relation holds. Underneath this list, there are two boxes named
not in domain and not in range that respectively contain the elements belonging to either of the intensional views,
but that do not participate in the intensional relation. In the screenshot, the list of artifacts in the not in domain box
contains all the accept methods that do not invoke a corresponding visit method using a double dispatch.

3. Diagnosing Violations of Design Rules using Abductive Reasoning

As discussed in the previous section, the IntensiVE tool suite serves as our means to document a system’s design
rules and subsequently verify their validity with respect to its source code. This section introduces abductive logic
reasoning as a means to hypothesize possible causes of inconsistencies between the documented rules and the source
code. The third component of our approach, a library of corrective actions for each hypothesized cause, will be
discussed in the next section.

3.1. Abductive Reasoning
Abductive reasoning was formally introduced by Pierce as one of the fundamental forms of human reasoning (the

others being deduction and induction) [38]. Intuitively, it can be defined as the scientific discovery of explanatory
hypotheses for anomalous phenomena or observations [37, 39]. In other words, abductive reasoning is suited for
finding a set of hypotheses (i.e. an explanation) that, when added to a given logic theory, would allow an observation
to be inferred [43].

Formally, an abductive logic theory can be defined as a tuple (P, A) where P is a logic program and A is a set of
atoms referred to as abducibles. The set of ground atoms ∆ ⊆ A is an hypothesis for the observation Q if:

• P ∪ ∆ |= Q

• P ∪ ∆ is consistent

In other words, an abductive explanation ∆ together with the original theory P should satisfy the observation Q we
want to explain. Note that abductive reasoning only produces ground atoms as hypotheses.

An example adapted from [17] and [23] illustrates abductive reasoning. Consider one would like to explain why
an object is flying (i.e., the observation). A possible hypothesis explaining this observation is that the object must
be bird. Together with the logic theory that a bird flies, this hypothesis explains the observation. However, other
hypotheses are possible. For instance, the object could be an airplane. Therefore, the hypothesis that the object must
be bird is defeasible (i.e., its validity can be refuted when further knowledge is acquired). Strategies can be devised
to guide the selection of appropriate hypotheses [37]. For instance, the hypothesis about the object being an airplane
can be discarded if the flying object is known to have feathers.

Traditional abduction only hypothesizes ground atoms that will explain an observation once they are added to
the logic theory [40]. Extended abduction [23] generalizes abduction to explain negative observations. Moreover, it
introduces negative hypotheses (i.e., ground atoms that will explain an observation once they are retracted from the
logic theory).

3.2. Abductive Resolution Procedure
The following abductive logic theory (P, A) corresponds to our example of an object that is observed to be flying:

• the logic program P:

flies(?x) if bird(?x)

• the set of abducibles A:

{bird(?x)}
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Figure 3: Visualization of the resolution process with abduction.

Figure 3 illustrates how an abductive explanation ∆: {bird(duffy)} for the observation Q: flies(duffy)
can be found procedurally using an abductive extension of the regular resolution procedure for Prolog programs.
Each rectangle in Figure 3 represents a different stage of the resolution process. Informally, the abductive resolu-
tion procedure continues where the regular resolution procedure fails by adding the failed goal to the explanation ∆

for the observation Q —if the failed goal is an abducible atom.4 Using the regular resolution procedure, the goal
flies(duffy) fails because its sub-goal bird(duffy) fails. In the figure, this is indicated with an uninter-
rupted edge between node bird(duffy) and the failure node in the bottom left corner. Rather than failing at node
bird(duffy), the abductive resolution procedure continues by adding bird(duffy) as an explanation for the
observation Q. This is indicated with an interrupted edge between the node and the abductive success node in the
bottom right corner.

Figure 4 illustrates how an explanation ∆: {−bird(tweety)} (i.e. one that exists of a negative hypothesis that
will explain the observation once it is retracted from the logic theory) for the observation Q: flies(tweety) can
be found procedurally using a resolution procedure for extended abduction —with the abductive logic programming
theory (P, A) modified as follows:

• the logic program P:

flies(?x) if bird(?x), not(abnormal(?x))
abnormal(?x) if hasBrokenWing(?x)
bird(tweety)
hasBrokenWing(tweety)

• the set of abducibles A:

{bird(?x), hasBrokenWing(?x)}

Using the regular resolution procedure, the goal flies(tweety) fails as its sub-goal not(abnormal(tweety))
fails because hasBrokenWing(tweety) succeeds. In the figure, this is indicated with an uninterrupted edge be-
tween node not(abnormal(tweety)) and the failure node in the bottom left corner. Rather than failing at node
not(abnormal(tweety)), the abductive resolution procedure succeeds by retracting hasBrokenWing(tweety)
from the theory. This is possible because hasBrokenWing/15 has been declared as an abducible. Note that circles
in the figure denote transitions between notes (i.e., the clause that was used to pass from one node to another in the
resolution process). Transitions to an abduced node are larger than the other transitions —containing either a + or a -
sign denoting that a ground atom was added to the theory or retracted from the theory respectively.

4We refer to [17] for a complete description of the abductive resolution procedure.
5Throughout this paper we use the notation predicate/arity where predicate represents the name of the predicate and arity the

number of arguments of the predicate.
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Figure 4: Visualization of the resolution process with extended abduction.
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3.3. Diagnosing Violations of Design Rules

Reiter [41] defines diagnosis as the search of the components of a system that —under the assumption that these
components are faulty— will explain inconsistencies between a description of this system and certain observations.
Following Reiter’s definition, we assume that violations of design rules are caused by faults in the system’s compo-
nents. We do not consider the possibility that the actual documentation of these design rules is incorrect.

The IntensiVE tool suite discussed in Section 2 documents design rules as relations between sets of source code
elements. The logic meta programming foundation of this suite (i.e., it relies on logic queries that quantify over the
program’s code to define those sets and relations) allows diagnosing design rule violations by means of abductive
logic reasoning. IntensiVE reports design rule violations as a set of source code elements for which the relations do
not hold. To diagnose a violation, it therefore suffices to re-evaluate the logic queries that define the violated relations
—this time using abductive logic resolution with the free variables of the query bound to the source code elements
that correspond to the violation.

To illustrate how this works in practice, consider the inconsistencies of the undoable actions design rule (cf.
Section 2.1) reported by IntensiVE (depicted in Figure 1). In particular, we take a more detailed look at the
ExperimentalAction class. It is reported as violating the design rule because it implements method (it is
an element of the second alternative intensional view), but it does not answer message isUndoable with the
boolean true (it is not contained in the first alternative intensional view). To diagnose this violation, the logic
queries defining the alternative intensional views have to be re-evaluated with logic variable ?class bound to class
ExperimentalAction —this time using abductive rather than regular resolution.

Assuming predicates statementsOfMethod/2 and methodWithNameInClass/3 are declared ab-
ducibles, the abductive logic interpreter diagnoses this violation with the explanations:

• ∆1:

{+statementsOfMethod(<RBReturnNode(RBLiteralValueNode([true]))>,
[ExperimentalAction>>isUndoable])}

• ∆2:

{-methodWithNameInClass([ExperimentalAction>>undoAction],
undoAction,
[ExperimentalAction])}

In other words, the interpreter has hypothesized two possible causes for the ExperimentalAction viola-
tion: the fact that its isUndoable method does not return the boolean true, or the fact that the class defines an
undoAction method. Hence, class ExperimentalAction should be altered to comply with the design rule by
either changing its implementation of the isUndoable method or deleting the method undoAction. The final de-
cision is left to the programmer, but previously defined corrective actions associated with these abducible predicattes
simplify this task.

3.3.1. Declaring Reification Predicates as Abducibles
SOUL offers several predicate libraries for reasoning about a system’s source code. Each library provides

predicates that reify the basic relations between the nodes in an abstract syntax tree representation of the pro-
gram (e.g., methodWithNameInClass/3). In addition, each library provides higher-level predicates that
quantify over relations between AST nodes that are not explicit in the AST representation. Examples in-
clude classChainUnderstandsMessageWithName/2 and methodBeginsWithSuperCall/1. As the
higher-level predicates are implemented in terms of the reification predicates, the abductive logic reasoner only con-
siders the latter as abducible predicates —each explanation should be minimal. Implementation-wise, predicates are
declared abducible using rules of the following form:

abducible(?abductiveIntention(?abduciblePredicate)) if ?groundingConditions

where ?abductiveIntention is the constant in or out indicating whether ?abduciblePredicate has to be added to or
removed from the logic theory respectively. Although ?abduciblePredicate can contain variables, explanations comprise
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ground atoms only. Logic variables within ?abduciblePredicate are therefore either bound in the query evaluated by the
abductive logic interpreter (i.e., the one corresponding to a design rule violation) or bound via the ?groundingConditions
conditions. For instance, true and false are the possible bindings for a variable corresponding to a boolean value
in abducible predicate methodReturnsBoolean/2:

abducible(in(methodReturnsBoolean(?method, ?boolean)) if
nonVar(?method),
method(?method),
boolean(?boolean)

boolean(true)
boolean(false)

4. Corrective Actions for Violations of Design Rules

In the previous section, we discussed how abductive logic reasoning enables diagnosing violations of design rules
documented by means of relations between intensionally defined (i.e., by means of a logic query) sets of source code
elements. This section describes how associating corrective actions (i.e., source code transformations) with each
hypothesis enables the semi-automatic correction of inconsistencies between a systems’s design and its code. In our
library, corrective actions are declared as rules of the following form:

correct(?abducedHypothesis, ?action) if ?generatorConditions

Here, ?abducedHypothesis is an hypothesis from an abduced explanation (a ground atom corresponding to an abducible
predicate) and ?action a Smalltalk expression performing the corrective action upon the user’s request. An abduced
explanation consists of abducible predicates that will explain an observation once they are added to, or removed from
the logic theory. In our problem setting, those abducibles are ground reification predicates that reify the relations be-
tween the nodes in an abstract syntax tree representation of the program. An explanation that requires a predicate to be
added to or removed from the logic theory implies changes to the program’s AST. Rather than changing the reification
of the program and subsequently constructing the modified program from the updated reification, we directly change
the program’s AST itself. This is possible because SOUL’s symbiosis with Smalltalk enables reifying an AST node as
the AST node itself (i.e., a Smalltalk object rather than a compound term) [7]. Hence, most corrective actions can be
performed by sending messages to AST nodes. To preserve the natural use of unification when quantifying over AST
nodes, a reified AST node unifies with a structurally equivalent compound term [7].

Note that multiple corrective actions can be associated with a single abduced hypothesis. For a particular hy-
pothesis ?abducedHypothesis selected by a user, our tool presents all bindings for variable ?action in solutions to the
query:

if correct(?abducedHypothesis, ?action)

In the remainder of this section, three corrective actions will be defined. They will be used afterwards in the examples
presented in Section 5.

4.1. Corrective Action for statementsOfMethod

The corrective action associated with an abduced hypothesis statementsOfMethod/2 is declared as follows:

correct(in(statementsOfMethod(?modelStatements, ?method), ?action) if
methodSignature(?method,?signature),
statementsOfMethod(?oldStatements,?method),
unifyStatements(?oldStatements,?modelStatements,?newStatements),
methodSourceCode(?signature,?newStatements,?newMethodCode),
equals(?action, [[?class compile: ?newMethodCode]])
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This corrective action executes a code transformation that will change the statements of method ?method accord-
ing to the statements ?modelStatements. The first two conditions gather information about the current state of the
method: its signature and its statements. Note that ?modelStatements could contain free variables. In that case, these
variables should be unified with the original values in the original statements of the method. Otherwise, origi-
nal values will be replaced by the values in ?modelStatements. This unification is performed by the third condition:
unifyStatements/3. The new code for the method is found in the fourth condition. The last condition creates a
corrective action. This is a Smalltalk block that —when requested by the user— instructs class ?class to recompile the
source code of a method, thus correcting the inconsistency.

4.2. Corrective Action for methodWithNameInClass
The corrective action associated with an abduced hypothesis methodWithNameInClass/3 is declared as follows:

correct(out(methodWithNameInClass(?method, ?name, ?class), ?action) if
methodWithNameInClass(?method, ?name, ?class),
equals(?action, [[MLI forSmalltalk removeMethod: ?method]])

The corrective action ?action removes method ?method from the systems’s code. Upon execution of this corrective
action, its associated abducible predicate will be retracted from the theory. Note that variable ?method will be bound
by the first condition if necessary.

4.3. Corrective Action for methodInProtocol
The corrective action associated with an abduced hypothesis methodInProtocol/2 is declared as follows:

correct(in(methodInProtocol(?method, ?protocol), ?action) if
methodWithNameInClass(?method, ?, ?class),
methodSourceCode(?method, ?methodCode),
equals(?action, [[MLI forSmalltalk

compileMethodInClass: ?class inProtocol: ?protocol withCode: ?methodCode]])

This corrective action moves method ?method to protocol ?protocol by instructing ?class to recompile the method in the
protocol ?protocol. Note that ?class will be bound in the first condition.

5. Illustrative Examples

In this section, we illustrate the complete diagnosis and correction process supported by our approach on examples
taken from the implementation of IntensiVE itself. The first three examples in this section are structured according
to the three kinds of relationships that are supported by IntensiVE for documenting design rules: multiple alternative
views, unary relations and binary relations. For each of these kinds of relationships, we revisit an example from
Section 2 and demonstrate how our approach diagnoses the problem and proposes corrective actions. Afterwards, we
take a look at a more complex example that illustrates how our approach supports corrective actions that consist of
multiple steps, and that intervene at multiple locations in the source code.

5.1. Correcting Inconsistencies in Multiple Alternative Views: Undoable Actions
We start by revisiting the undoable actions design rule which states that a class representing an undoable action

needs to understand both the messages isUndoable and undoAction. In Section 2.1, we documented this design
rule by means of multiple alternative views. The violations reported by IntensiVE for this design rule are depicted in
Figure 1. Class ExperimentalAction, for instance, was reported as a violation because it implements method
undoAction, but does not answer message isUndoable with the boolean true. In Section 3.3, we discussed
how the abductive logic interpreter diagnoses the violation of the ExperimentalAction class with explanations

• ∆1:

{+statementsOfMethod(<RBReturnNode(RBLiteralValueNode([true]))>,
[ExperimentalAction>>isUndoable])}

11



List of explanations ( Δ1, Δ2, ... Δn) List of corrective actions
for selected explanation

Description of selected corrective action

Source code before corrective action Source code after corrective action

Abductive proof tree

Figure 5: Correcting the ExperimentalAction violation of the undoable actions design rule.

—meaning that this class can be made to comply with the design rule by ensuring method isUndoable
returns true.

• ∆2:

{-methodWithNameInClass([ExperimentalAction>>undoAction],
undoAction,
[ExperimentalAction])}

—meaning that this class can be made to comply with the design rule by deleting the method undoAction.

The above explanations reflect the two possible solutions to the design rule violation. The corrective action
associated with explanation ∆1 will result in class ExperimentalAction ending up in both alternative views
rather than only in the second. To find explanation ∆1, the abductive reasoner evaluated the query defining the first
alternative view with the violating class substituting for variable ?class:

if classChainUnderstandsMessageWithName([ExperimentalAction],?method, isUndoable),
booleanFlagMethod([true], ?method)

The corrective action associated with explanation ∆2 will result in class ExperimentalAction being removed
from the second alternative view —hence no longer being present in any of the alternatives. To find this explanation,
the abductive reasoner evaluated the negation of the query defining the second alternative view with the violating class
substituting for variable ?class:

if not(classChainUnderstandsMessageWithName([ExperimentalAction], ?, undoAction))

Figure 5 depicts the actual feedback provided by our tool. The bottom pane contains the top half of the abductive
proof tree for the first explanation. It is drawn following the conventions introduced in Section 3.

The pane in the top-left corner lists the abduced explanations for the ExperimentalAction violation. Note
that the two explanations are shown: ∆1 which adds ExperimentalAction to the alternative containing all classes
that understand message isUndoable and return true (alternative UndoableActionsForIsUndoable) and
∆2 which removes ExperimentalAction from the alternative containing all classes understanding message
undoAction (alternative UndoableActionsForUndoAction).

Once users have selected an explanation, they are offered the corresponding list of corrective actions in the next
pane. These actions are gathered by evaluating the query:

12



if correct(statementsOfMethod(<RBReturnNode(RBLiteralValueNode([true]))>,
[ExperimentalAction>>isUndoable]),
?action)

In the screenshot, the user has selected the first explanation which will transform the implementation of method
isUndoable. The second row displays a textual description of the effects of executing the currently selected cor-
rective action. The third row of the tool displays the violating source code element before (on the left) and after (on
the right) the corrective action.

5.2. Correcting Inconsistencies in Unary Relationships: Overridden Initialization
By means of a unary relationship imposed on top of the overridden initialization intensional view, the design rule

stating that methods overriding initialize should contain a super call as their first statement was documented
in Section 2.2. IntensiVE identified method IntensionalViewLayoutManager>>initialize as one of the
violations of this design rule. The abductive logic interpreter diagnosed this particular violation with the following
singleton set as explanation ∆:

statementsOfMethod(<RBMessageNode(RBVariableNode(super),initialize,<>)|?>,
[IntensionalViewLayoutManager>>initialize])

This explanation indicates that the method IntensionalViewLayoutManager>>initialize can be
made to comply with the design rule by ensuring that its first statement is a super call to initialize (i.e., an
RBMessageNode). To this end, the abductive logic interpreter evaluated the query part of the unary relation-
ship defined in Section 2.2 with IntensionalViewLayoutManager>>initialize: substituting for ?over-
ride.method:

if methodBeginsWithSuperCall([IntensionalViewLayoutManager>>initialize])

The interpreter was therefore able to abduce the explanation for this violation as predicate
statementsOfMethod/2 is declared as an abducible in our library of reification predicates. Figure 6 de-
picts the actual feedback provided by our tool for the IntensionalViewLayoutManager>>initialize
violation. As before, the second pane at the top lists the corrective actions for the abduced explanation that is selected
in the first pane. At the second row, we can see in the first column the faulty implementation of the method (without
a super call) and in the second column the method with the correct code, having as a first statement a super call.

5.3. Correcting Inconsistencies in Binary Relationships: Accept Methods and Visit Methods
By means of a binary relationship imposed between the accept methods and visit methods intensional views, Sec-

tion 2.3 documented the design rule that states that all accept methods accepting a Visitor should call a corresponding
visit method on the Visitor using the double dispatching idiom. Figure 2 depicts the violations of this design rule as
identified by IntensiVE. Method Test>>acceptService: was, for instance, identified as a violation. It belongs
to the accept methods intensional view, but does not invoke a visit method using double dispatching (i.e., it is not in
the domain of the binary relation).

To diagnose this violation, the abductive logic interpreter had to re-evaluate the logic query that defines the bi-
nary relationship between the two views —this time with bindings for variables ?visit.method and ?accept.method that
substitute for an element from the relationship’s domain and an element from the relationship’s range respectively.
Therefore, variable ?visit.method should be bound to Test>>acceptService:. However, it is unclear what bind-
ing should be provided for the variable ?accept.method. We therefore offer users a list of all the elements in the
relationship’s range such that they can select the element that corresponds to the violating element in the relation-
ship’s domain —assuming that the corresponding method is indeed available in the relationship’s range. We do not
yet address the situation in which a violation of a binary relationship between two views can only be corrected by
adding a new element to the view in the range of the relation. As we selected method TestService>>doObject:
to complete the binary relation, the abductive logic interpreter diagnosed the Test>>acceptService: violation
of the relation by evaluating the following query:

if methodAcceptsVisitorWithMethod([Test>>acceptService:],[TestService>>doObject:])
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Figure 6: Correcting the IntensionalViewLayoutManager>>initialize violation of the overridden initialization design rule.

Its explanation for this design violation is the following singleton set ∆:

statementsOfMethod(<RBReturnNode(RBMessageNode([RBVariableNode(anObject)],
[#doObject:],
<RBVariableNode(self)>))>,

[Test>>acceptService:])

Figure 7 depicts the actual feedback provided by our tool. The corrective action associated with the selected
hypothesis will alter method Test>>acceptService such that its only statement is the return statement (i.e., a
RBReturnNode) that initiates the double dispatching protocol —as required by the design rule that was violated.

5.4. More complex corrective actions: IntensiVE’s saving mechanism
IntensiVE offers a mechanism to store documented regularities on persistent storage. This saving mechanism

is implemented by each of the various entities in IntensiVE. Entities have to implement a method saveOn: that
—by means of a double dispatch—has to invoke a method in the saving mechanism protocol of the class
IntensionalRootProject. The prototypical implementation of the saving mechanism is documented using
a unary relationship that is defined as:

∀ ?save.method ∈ Save methods:
argumentsOfMethod(<?arg>,?save.method),
methodWithUniqueStatement(?save.method,RBMessageNode(?arg,

?message,
<RBVariableNode(self)>)),

methodWithNameInClass(?saving,?message,[IntensionalRootProject]),
methodInProtocol(?saving,[#’saving mechanism’])

The first two conditions of the definition of this unary relation express the double dispatch protocol: they require that
the method contains as a unique statement a message send to the single argument of the save method, with self as
an argument. The other two conditions verify that the message invoked by the double dispatch is implemented in the
protocol saving mechanism of class IntensionalRootProject.

Verification of the above relation revealed that method saveIn: of class RootView violated the design regu-
larity. A manual inspection of this method indicated two problems:
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Figure 7: Correcting an inconsistency in the visitor pattern regularity.

1. The method violated the double dispatch protocol by passing another object than self as argument of the call;
2. The message that was invoked on IntensionalRootProject was not classified in the protocol saving

mechanism.

After abducing an explanation for the reported inconsistency, our tool presented the user with the following possible
sequence of corrective actions:

1. Change the argument of the double dispatch to self;
2. Move the invoked method on IntensionalRootProject to the protocol saving mechanism.

Its explanation for this design violation is the following set ∆:

statementsOfMethod(<RBMessageNode([RBVariableNode(aLayer)],
[#saveBUG:],
<RBVariableNode(self)>)>,

[RootView>>saveIn:]),
methodInProtocol([IntensionalRootProject>>saveBUG:],[#’saving mechanism’])

Figure 8 illustrates how our tool reports this explanation. Note that this example illustrates the correction of
a more complex design rule. In contrast to the examples above, which involved a single action to be taken
to correct a violation, correcting this violation of the saving mechanism design rule required two corrective
actions. Moreover, these corrective actions intervene at two separate locations in the source code: method
IntensionalRootProject>>saveBUG: and method RootView>>saveIn:.

6. Discussion

Scalability. We begin our discussion with some scalability issues that might arise and possible solutions. The use
of an abductive logic reasoning engine is inherent to our approach. Similar to a regular logic reasoner, an abductive
reasoner constructs a proof tree for each of the solutions to a logic query. However, when a branch in the proof tree
leads to a failure, the abductive reasoner will hypothesize —based on the declared abducibles— possible changes to
the logic theory that would make the query succeed. In our setting, a large search space might therefore need to be
explored in order to abduce an explanation for a violation of a design rule. This might hamper the scalability of our
approach when analyzing violations of complex design rules. In practice, however, we found that our specific use of
abduction limits the search space that needs to be explored. As they are launched against the violating software entity,
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Figure 8: Correcting an inconsistency with multiple corrective actions in the saving mechanism regularity.

most queries that serve as input to the abductive reasoner contain only few unbound variables. Nevertheless, our
current implementation of the abductive reasoner is suboptimal as it is based on a meta-interpreter on top of SOUL.
Consequently, a native implementation of an abductive logic reasoner would provide a significant speed-up.

Another scalability issue concerns the amount of information that is presented to the user. Presenting many
corrective actions for a single violation might be overwhelming. We will revisit this issue in the discussion of our
future work.

A semi-automated approach. Our approach to diagnosing and correcting violations of design rules cannot be fully
automated. First of all, most of our corrective actions are not behaviour-preserving. Developers therefore need to
retain control over the transformations that are applied to the source code. Moreover, the abductive reasoner usually
proposes multiple sequences of corrective actions for the same violation. While we envision ranking or filtering these
corrections based on heuristics, automatically selecting and applying an optimal sequence of corrective actions does
not seem feasible. Finally, particular corrective actions require further input from the user (e.g., specifying the name
of a method, selecting a corresponding element for a binary relation).

Correctness of the proposed corrective actions. Our approach can propose corrective actions that, although they
correct the hypothesized cause of a design rule violation, introduce other violations in the source code. This is a
well-known limitation of abductive logic reasoning [20] that is caused by the fact that the abductive process is local
to the failure branch in the original proof tree. We revisit this issue in the future work section of this paper.

Library of abducibles and corrective actions. As mentioned above, SOUL comes bundled with several predicate
libraries for reasoning about Smalltalk, Java, C(++) and COBOL programs. Our tool currently declares the predicates
that reify Smalltalk programs as abducibles, and associates generic corrective actions with each abducible. Defining
additional abducibles and corrective actions comprises a considerable, but one-time effort. Once abducibles and
corrective actions have been provided for a library of predicates, our approach is able to diagnose and correct any
violations of design rules that rely on those predicates or on other predicates that use them. Consequently, this is all
that would be required to port our approach to the other languages supported by SOUL.

In this paper, we have only considered SOUL’s reification predicates (i.e., those that reify AST nodes) as ab-
ducibles. The corresponding corrective actions are of an equally fine-grained nature. Violations of rules that rely
on higher-level predicates are therefore corrected using a sequence of fine-grained actions —each corresponding to
a reification predicate used by the higher-level ones. Alternatively, a higher-level predicate could be declared as an
abducible and a coarse-grained corresponding corrective action (i.e., one that manipulates several AST nodes at once)
could be provided. Such an effort might be worthwhile if the higher-level predicate is used frequently.
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7. Related Work

7.1. Detecting and Correcting Violations of Design Rules
As mentioned in the introduction, there are many tools that verify common programming best practices and rules

of thumb in source code [10] (e.g., FindBugs [12], CheckStyle [11] and Lint [24]). Some tools even suggest corrections
to well-known problems when they are detected (e.g., SmallLint [6] and Eclipse’s quick fixes). However, all of these
tools are limited to a fixed set of problems that can be detected and corrected.

Code querying tools (e.g., NDepend [48] and Semmle [47]) are ideally suited for documenting custom design
rules. Typically, however, developers have to detect violations of a design rule by manually reviewing the results
of the corresponding program queries. Architectural and design conformance checkers provide a means to verify a
high-level description of a software system (i.e., design patterns, architectural patterns, . . . ) with the implementation.
Examples of such approaches are Reflexion Models [34] and Save Life [29]. To the best of our knowledge, none of
these tools offer any semi-automatic support for correcting design violations.

Ptidej [19] is able to detect and subsequently correct imperfect instances of design patterns. To this end, its
detection mechanism automatically relaxes constraints from the pattern’s specification. Constraints that had to be
relaxed in order to find an imperfect pattern instance are considered symptomatic of design defects. Ptidej therefore
associates a JavaXL [1] transformation rule with each constraint. By applying the transformation rules associated with
the constraints that had to be relaxed, imperfect pattern instances can be corrected. Ptidej, however, only supports a
predefined set of design patterns and does not consider the program’s source code at the level of individual statements.

7.2. Abductive Reasoning in Software Engineering
To the best of our knowledge, abductive logic reasoning has not yet been applied to the diagnosis and semi-

automatic correction of inconsistencies between a system’s design and its source code.
Russo et al. [43], present a comprehensive survey on applications of abductive logic reasoning in software en-

gineering. Most of the discussed works focus on inconsistency management in requirements engineering [35], par-
ticularly the analysis of specifications (i.e., consistency analysis of the model of a system) and the revision of such
specifications (i.e., impact of changes in an initially consistent specification) [32, 36, 42, 44, 45, 46].

In general, analysis of the consistency of a specification is accomplished by verifying whether certain properties
of a system hold over a model of the system [52]. Abduction can be used to verify, for any property P(X), if the goal
P(X) ∧ ¬P(X) can be inferred from a specification. In that case, an inconsistency exists. The explanation of this goal
constitutes a diagnosis of why the specification is inconsistent.

Alternatively, in [42] inconsistencies are detected and diagnosed by trying to identify through abduction counter-
examples of all the invariants in a system. If the abductive reasoning mechanism fails to find an answer, this establishes
the validity of the invariant with respect to a system description.

In the same survey, inconsistency management techniques using abductive reasoning are divided according to
the consistency assumptions they make about the model to examine. For example, the work in [36] describes a
specification as a composition of multiple partial specifications with or without logical inconsistencies. The abductive
reasoning mechanism identifies evolutionary changes to perform on the specification, such that a particular consistency
rule is no longer violated. Quasi-classical logic [21] is used as a mechanism for reasoning in a inconsistency system
without trivialization (i.e., without inferring arbitrary information from an inconsistent specification) [5].

Regarding revision of specifications [45, 46, 44], this activity is responsible for re-establishing consistency in
order to accommodate a given change request. Abduction in this case is used to identify additional changes on a
given specification that should re-establish consistency. In [44] Satoh describes a logic approach based on abductive
reasoning for adding and deleting pollution markers [2] from a given specification in order to manage consistency after
a change has been performed. The objective of these pollution markers is considering inconsistencies as exceptions
that can be isolated from the rest of the data.

Finally, abduction has not only been demonstrated a useful technique for detecting and diagnosing inconsistencies,
but also as a mechanism for correcting them. Using abduction for theory change [22], it is possible to identify
consistent changes to be performed on a theory so that a change request is satisfied. This has been applied in the
domain of databases. Particularly, abductive reasoning has been shown to be suitable for solving the problem of
updating a deductive database [25] (a generalization of the view update problem in relational databases, which has
also been solved using abduction in [13]).
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In the domain of software modeling, Zisman et al. discuss in [53] a mechanism for checking inconsistencies
between UML specifications. Mapping related UML specifications in XMI format, the work uses abduction for
declaring as consistency properties certain goals that should succeed following a particular course of events. If a goal
does not succeed or if its proof follows another course of events than the one expected, a change-set is abduced which
indicates what axioms are to be deleted or added.

8. Future work

Our future work will focus on improving the usability of our tool. Particularly, we will investigate techniques
that aid in selecting the “best” sequence of corrective actions from those that are proposed by the abductive reasoner.
Moreover, we will investigate techniques to prune undesirable corrective actions during the abduction process.

Ranking corrective actions. While our approach is able to hypothesize corrective actions for violations of a design
rule, it does not aid in deciding which of these corrective actions to adopt. Traditionally, this well-known limitation
of abductive logic reasoning is mitigated using heuristic strategies [49, 51, 37].

In our problem setting, we envision the following particular strategy. When verifying a design rule, IntensiVE does
not only report its violations, but also provides the source code entities that do satisfy the rule. While not taken into
account by the abduction process, these complying entities can be used to rank the actions that correct the violating
entity. Corrective actions that would render the violating entity more similar to the complying entities, for instance,
could be ranked higher.

Pruning corrective actions. As mentioned above, performing an action intended to correct one particular violation
can result in another design rule being violated. As a means to circumvent this problem, Kakas [26] proposes to
specify additional integrity constraints that verify whether abduced hypotheses do not result in new violations. Such
integrity constraints preclude actions that would result in additional violations from being proposed.

Given the context of our work, all of the design rules that are documented using the IntensiVE tool suite can be
considered as additional integrity constraints. Furthermore, the unit tests of a system can be incorporated as integrity
constraints in a similar way. Corrective actions that result in a failing test to succeed could be favored. Corrective
actions that result in failure of tests could be pruned.

9. Conclusion

In this paper we have presented an approach based on abductive logic reasoning for diagnosing and correcting
violations of design rules. Design rules are documented as relationships between sets of source code elements. Key
to our approach is that such sets are defined intensionally through a logic query that quantifies over the program’s
source code. By means of logic abduction over the logic query that defines a design rule, our approach hypotheses
possible causes for each violation of a design rule. In order to correct the hypothesized causes of an inconsistency, our
approach provides a library of corrective actions. We have implemented our approach as an extension to the IntensiVE
tool suite which uses the SOUL logic meta programming language to define its intensional views. For each kind of
relationship between intensional views supported by IntensiVE, we have applied our approach on an example taken
from the implementation of the tool suite itself —thus illustrating the diagnosis and correction process supported by
our approach.
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[19] Guéhéneuc, Y.-G., 2007. Ptidej: A flexible reverse engineering tool suite. In: Proceedings of the International Conference on Software

Maintenance (ICSM). IEEE Computer Society, pp. 529–530.
[20] Hintikka, J., 1998. What is abduction? the fundamental problem of contemporary epistemology. In: Transactions of the Charles S. Peirce

Society. Vol. 34. pp. 503–533.
[21] Hunter, A., Nuseibeh, B., 1998. Managing inconsistent specifications: reasoning, analysis, and action. ACM Transactions on Software

Engineering and Methodology 7 (4), 335–367.
[22] Inoue, K., Sakama, C., 1995. Abductive framework for nonmonotonic theory change. In: Proceedings of the International Joint Conferences

on Artificial intelligence (IJCAI). Morgan Kaufmann, pp. 204–210.
[23] Inoue, K., Sakama, C., 1998. Specifying transactions for extended abduction. In: Proceedings of the International Joint Conferences on

Artificial intelligence (IJCAI). Morgan Kaufmann, pp. 394–405.
[24] Johnson, S., 2007. Lint. http://www.jutils.com/.
[25] Kakas, A. C., Mancarella, P., 1990. Database updates through abduction. In: Proceedings of the International conference on very large

databases (VLDB). Morgan Kaufmann, pp. 650–661.
[26] Kakas, R. K. A., Tony, F., 1998. The role of abduction in logic programming. In: gabbay, C. H. D., Robinson, J. (Eds.), Handbook of Logic

in Artificial Intelligence and Logic Programming. Oxford University Press.
[27] Kellens, A., 2007. Maintaining causality between design regularities and source code. Ph.D. thesis, Vrije Universiteit Brussel.
[28] Kellens, A., De Schutter, K., D’Hondt, T., Jorissen, L., Van Passel, B., 2009. Cognac: A framework for documenting and verifying the design

of cobol systems. In: Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR). IEEE Computer
Society, pp. 199–208.

[29] Knodel, J., Muthig, D., Rost, D., 2008. Constructive architecture compliance checking - an experiment on support by live feedback. In:
Proceedings of the International Conference on Software Maintenance (ICSM). IEEE Computer Society, pp. 287–296.

[30] Mens, K., Kellens, A., 2006. IntensiVE, a toolsuite for documenting and testing structural source-code regularities. In: Proceedings of the
European Conference on Software Maintenance and Reengineering (CSMR). IEEE Computer Society, pp. 239–248.

[31] Mens, K., Michiels, I., Wuyts, R., 2001. Supporting software development through declaratively codified programming patterns. In: Pro-
ceedings of the International Conference on Software Engineering and Knowledge Engineering (SEKE). Knowledge Systems Institute, pp.
236–243.

[32] Menzies, T., 1996. Applications of abduction: knowledge-level modelling. International Journal on Human Computer Studies 45 (3), 305–
335.

[33] Minsky, N., 1996. Law-governed regularities in object systems; part 1: Principles. Theory and Practice of Object Systems (TOPAS) 2 (4),
283–301.

[34] Murphy, G. C., Notkin, D., Sullivan, K., 1995. Software reflexion models: Bridging the gap between source and high-level models. In:
Proceedings on the symposium on Foundations of software engineering (FSE). ACM, pp. 18–28.

19



[35] Nuseibeh, B., Easterbrook, S., 2000. Requirements engineering: a roadmap. In: Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 35–46.

[36] Nuseibeh, B., Russo, A., 1999. Using abduction to evolve inconsistent requirements specification. Australasian Journal of Information Sys-
tems (AJIS) 6 (2).

[37] Paavola, S., 2004. Abduction as a logic and methodology of discovery: the importance of strategies. Foundations of Science 9 (3), 267+.
[38] Pierce, C. S., 1935. The Collected Papers of Charles Sanders Peirce. Harvard University Press.
[39] Pierce, C. S., 1955. Abduction and induction. In: Buchler, J. (Ed.), Philosophical Writings of Pierce. Dover Books, New York, pp. 150–156.
[40] Poole, D., 1988. A logical framework for default reasoning. Artificial Intelligence 36 (1), 27–47.
[41] Reiter, R., April 1987. A theory of diagnosis from first principles. Artificial Intelligence 32 (1), 57–95.
[42] Russo, A., Miller, R., Nuseibeh, B., Kramer, J., 2000. An abductive approach for handling inconsistencies in SCR specifications. In: Proceed-

ings of the Workshop on Intelligence Software Engineering (WISE), collocated with the International Conference on Software Engineering
(ICSE).

[43] Russo, A., Nuseibeh, B., 2000. On the use of logical abduction in software engineering. In: Chang, S. K. (Ed.), Handbook on Software
Engineering and Knowledge Engineering. World Scientific Publishing Corporation.

[44] Satoh, K., 1998. Adding and deleting pollution marker by abductive logic programming. In: Proceedings of the Asia-Pacific Workshop on
Intelligent Software Engineering (APWISE), collocated with the Pacific Rim International Conference on Artificial Intelligence (PRICAI).
pp. 48–53.

[45] Satoh, K., 1998. Computing minimal revised logic program by abduction. In: Proceedings of the International Workshop on the Principles of
Software Evolution (IWPSE), collocated with the International Conference on Software Engineering (ICSE). pp. 177 – 182.

[46] Satoh, K., 2000. Consistency management in software engineering by abduction. In: Proceedings of the Workshop on Intelligent Software
Engineering (WISE), collocated with the International Conference on Software Engineering (ICSE). pp. 90–99.

[47] Semmle Ltd., 2010. SemmleCode. http://semmle.com/.
[48] smacchia.com S.A.R.L, 2010. NDepend. http://www.ndepend.com/.
[49] Sullivan, P., 1991. On falsification interpretation of peirce. Transactions of the Charles S. Peirce Society 27, 197–219.
[50] Wuyts, R., 2001. A logic meta-programming approach to support the co-evolution of object-oriented design and implementation. Ph.D. thesis,

Vrije Universiteit Brussel.
[51] Yu, C. H., April 1994. Abduction? deduction? induction? is there a logic of exploratory data analysis? Tech. rep., Annual Meeting of

American Educational Research Association.
[52] Zave, P., Jackson, M., 1997. Four dark corners of requirements engineering. Transaction on Software Engineering Methodology 6 (1), 1–30.
[53] Zisman, A., Kozlenkov, A., 2001. Knowledge base approach to consistency management of UML specifications. In: Proceedings of the

International Conference on Automated Software Engineering (ASE). IEEE Computer Society, p. 359.

20


