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Abstract

The activities of formal modelling and reasoning are closely related. But while the rigour of building formal
models brings significant benefits, formal reasoning remains a major barrier to the wider acceptance of formalism
within design. Here we propose reasoned modelling critics – an approach which aims to abstract away from the
complexities of low-level proof obligations, and provide high-level modelling guidance to designers when proofs fail.
Inspired by proof planning critics, the technique combines proof-failure analysis with modelling heuristics. Here, we
present the details of our proposal, implement them in a prototype and outline future plans.
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1. Introduction

The use of mathematical techniques for system-level modelling and analysis brings significant benefits, as well as
challenges. While the rigour of mathematical argument can offer early feedback on design decisions, a key challenge
centres on how feedback derived from the analysis of complex proof obligations (POs) can be used to improve design
decisions. Such feedback currently requires user intervention, drawing upon skilled knowledge of the subtle interplay
that exists between modelling and reasoning. For example, consider a simple cruise control system with the safety
requirement that the brakes (brake) cannot be on while the cruise control (cc) is enabled. This can be formalised as
the following invariant:

cc = on⇒ brake = off

When the driver applies the brakes, i.e. brake := on it must be shown that the safety requirement (invariant) is
preserved, creating a PO of the form:

brake = off, cc = on " on = off

Note that this PO is false. An (unsafe) solution to this failure would be to restrict the application of the brakes via a
guard, i.e. only allow the brakes to be applied when the cruise control is disabled (cc = off). Clearly, the desirable
solution requires the introduction of an auto disable mechanism, i.e. the cruise control is disabled if the brakes are
applied (cc := off ; brake := on). While choosing between the two alternatives do not represent a significant burden to
a designer, in general many solutions may arise from proof-failure analysis. In order to make good use of a designer’s
time, modelling heuristics are needed in order to rank the alternatives.
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Here we describe an approach to formal modelling that combines proof-failure analysis with modelling heuristics.
The basic idea is to use automatic analysis of failed proofs, constrained by modelling heuristics, to generate modelling
suggestions. In this way we abstract away from complexities of low-level POs, and automatically provide designers
with high-level decision support oriented towards modelling choices. In turn this will increase the productivity of
designers as well as the accessibility of formal modelling tools. The approach has been implemented through what
we call reasoned modelling critics.

A key inspiration for our proposal is proof planning, a technique for automating the search for proofs through
the use of high-level proof outlines, known as proof plans [1]. Central to proof planning is its proof-failure analysis
and proof patching capabilities [2]. Our approach builds directly upon these features. Specifically by combining the
proof-failure analysis capabilities with modelling heuristics in order to automatically generate modelling guidance.

Our longer term aim is to combine the proof plan representation with a complementary notion of modelling
patterns, which we call reasoned modelling methods. This, combined with reasoned modelling critics, are the building
blocks of what we call reasoned modelling: the study of the interplay between formal reasoning and modelling.

While our vision is generic, our starting point is Event-B, which we motivate and introduce together with proof
planning in Section 2. Section 3 outlines the reasoned modelling critics mechanism and shows its application through
examples. Section 4 discusses the prototype implementation of the reasoned modelling critics mechanism, and Section
5 shows the results of applying the examples discussed in Section 3 to the prototype. We discuss related and future
work in Section 6 and conclude in Section 7.

This paper is an extension of [3]. Here, in addition to providing more explanation of the concepts, we provide a
prototype implementation (see Section 4) of the ideas discussed in Sections 3.1 and 3.3.

2. Background

2.1. Event-B and the Rodin toolset
Event-B provides a formal framework for modelling discrete complex systems [4], and is mechanised through the

Rodin toolset [5]. Event-B promotes an incremental style of formal modelling, where each step of a development is
underpinned by formal reasoning. As a result, there is strong interplay between modelling and reasoning and this is
partly supported by the Rodin toolset. This interplay requires skilled user interaction, i.e. typically a user will analyse
failed proofs, and translate the analysis by hand into corrective actions at the level of modelling. This is exemplified
in e.g. [4, 6]. Typical corrective actions include strengthening invariants and guards or modifying actions. Our aim is
to provide high-level decision support, by automating the generation, filtering and ranking of modelling suggestions.
Event-B models and POs are closely aligned [4], whilst Rodin [7] is an extensible framework. Event-B and the Rodin
toolset thus represent a unique opportunity for us to investigate reasoned modelling.

We will use the term models for both Event-B contexts (the static part) and machines (the dynamic part). A
machine includes invariants and the Rodin tool generates POs to ensure that all invariants are maintained by each
event of a machine. Event-B also supports refinement of machines and Rodin generates POs to ensure the consistency
of refinement. For details of the POs see [5]. We will only use the basic features of Event-B and use standard notation:

EVENT 〈name〉 =̂ BEGIN 〈action〉 END
EVENT 〈name〉 =̂WHEN 〈guard〉 THEN 〈action〉 END

where the event is only executed when the guard holds. Moreover, the term 〈action〉 is a list of simultaneous assign-
ments to machine variables, while INITIALISATION is a special event without guards defining the initial state.

2.2. Proof planning and proof critics mechanism
Proof planning builds upon the tactic-based tradition of theorem proving, where primitive proof steps are packaged-

up into programs known as tactics. Starting with a set of general purpose tactics, plan formation techniques are used
to construct a customised tactic for a given conjecture. The search for a customised tactic is constrained by a set of
methods, collectively known as a proof plan. Using preconditions, each method specifies the applicability of a general
purpose tactic. Having explicit preconditions provides insights when proof planning fails. The proof critics mecha-
nism [2] enables “interesting” failures at the level of precondition evaluation to be represented. For a given method
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a number of critics will typically exist. Each critic represents an alternative generic proof patch, e.g. conjecture gen-
eralisation. The analysis of a specific failure, and subsequent proof planning, provides guidance in the selection and
instantiation of a generic proof patch. The method and critic schemas are presented in Figure 1.

method (name)
INPUT: PO
PRECONDITIONS:

precondition 1
. . .
precondition 2

EFFECTS:
generation of output POs

OUTPUT:
POs

critic (name)
INPUT: POs
PRECONDITIONS:

precondition 1
. . .
precondition 2

PATCH:
proof patch

Methods: A method takes as input a PO. The applicability of a method is determined by
evaluating its associated preconditions. If the preconditions of a method succeed, then
the output POs (potentially empty) are computed via the effects slot.

Critics: During proof planning, both the success and failure of a method’s preconditions are
recorded. In particular, when a method fails a set of partial instantiations of the pre-
conditions are associated with the PO. The critics mechanism uses the record of partial
successes to search for patchable exceptions to the method. If the pattern represented by
a given critic’s preconditions matches with a recorded failure pattern then the associated
patch is applied. In general, a critic may require multiple failures in order to trigger a
patch. In this way, critics can apply both local and global proof-failure analysis.

Figure 1: Proof method and critic schemas

To illustrate the proof patching aspect of proof planning, consider the following PO:

k : τ, h : τ, t : list(τ), l : list(τ) " k ∈ [h|append(t, l)] (1)

where ∈ denotes list membership, while [ | ] and append denote the constructor and concatenation function for lists.
Moreover, assume the definition of ∈ gives rise to the following rewrite rules:

X = Y ⇒ X ∈ [Y |W] :⇒ true (2)
X ! Y ⇒ X ∈ [Y |W] :⇒ X ∈ W (3)

Given these rewrite rules, (1) is not directly provable. That is, a case split is required in order to allow the proof to
proceed. The instances of the method and critic schemas required for this example are given in Figure 2. We now
consider the rewrite method preconditions more closely i.e.

1. there exists an expression L at position Pos within the goal G,
2. there exists a rewrite rule such that L matches the left-hand side of the rule, and
3. any condition C attached to the rule is provable within the proof context.

Note that based upon rewrite rule (3), preconditions 1 and 2 succeed, with C, L and R being instantiated to be k ! h,
k ∈ [h|append(t, l)], and k ∈ append(t, l) respectively. However, precondition 3 fails, i.e. the condition k ! h is not
provable from the given hypotheses. This pattern of partial success triggers the casesplit critic given in Figure 2, i.e.
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method (rewrite)
INPUT: ∆ " G
PRECONDITIONS:

1. exp at(G, Pos, L)
2. rewrite rule(C ⇒ L :⇒ R)
3. provable(∆ " C)

EFFECTS:
replace at(Pos,R,G,NewG)

OUTPUT:
[∆ " NewG]

critic (casesplit)
INPUT: POs
PRECONDITIONS:

1. ∃ failed po ∈ {〈rewrite, , PO〉 ∈ POs|
failed proof(PO)}.
failed po = 〈 , Pre, 〉

2. 〈 exp at( , , ),
rewrite rule(C ⇒ :⇒ ),
fail 〉 ∈ Pre

PATCH:
insert casesplit(C, PO)

The meta-predicates used above are defined in Figure 4. Note that ∆ denotes a list of hypothe-
ses, while G and NewG denote single goal formula. Note also the use of Prolog meta-variables,
in particular the use of “ ” for anonymous variables. The scope of meta-variables extends
across all slots of the method and critic schemas.

Figure 2: An example proof method and critic

it associates the failure (fail) of precondition 3 with a casesplit patch. The application of the patch gives rise to the
following two POs:

k : τ, h : τ, t : list(τ), l : list(τ), k = h " k ∈ [h|append(t, l)] (4)
k : τ, h : τ, t : list(τ), l : list(τ), k ! h " k ∈ [h|append(t, l)] (5)

Note that the rewrite method is applicable to both POs, i.e. rewrite rule (2) applies to (4) while rewrite rule (3) applies
to (5). We should stress, that in terms of proof patching, this is a deliberately simple example – its role is purely to
illustrate proof methods and the basic critics mechanism.

Proof patching has been applied successfully to the problems of inductive conjecture generalisation and lemma
discovery [8], as well as loop invariant discovery [9]. Proof critics have also been developed for abductive reasoning,
i.e. the speculation of hypotheses in order to explain a consequence, and applied to the problem of patching faulty
conjectures [10]. The proof critics mechanism provides the starting point for reasoned modelling critics. Moreover, in
terms of exploiting existing critics, we see the work on abduction playing an important role in our reasoned modelling
critics. This is elaborated upon in Section 5.

3. From proof critics to reasoned modelling critics

As described above, our reasoned modelling critics will extend the existing proof critics mechanism. This extension
will involve two key components:

1. In order to combine proof and modelling, our new critics need access to models as well as POs. In addition,
critics will now have the option of providing modelling guidance, as well as proof patches.

2. Both methods and critics are associated with preconditions. We need to extend the meta-language of critics to
allow us to represent preconditions which specify modelling heuristics.

To support access to models and modelling guidance, an extended critic schema will be required. Our proposed
extension is described in Figure 3. In order to illustrate the new schema and the kind of meta-language extensions we
propose for reasoned modelling, we develop below some critics and show their application to simple control system
problems.
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critic (name)
INPUTS:

PO SET POs
MODEL SET Ms

PRECONDITIONS:
precondition 1
...
precondition N

OUTPUTS:
PATCH proof patch (optional)
GUIDE modelling guidance (optional)

The above schema represents our proposed refinement to the proof critic schema:

• The INPUT slot has been extended to include models, as well as proof obligations. Note that the schema allows
for a critic to access multiple models. As a consequence, critics can be developed that consider the internal
consistency of individual models as well as refinements and decompositions.

• The declarative PRECONDITIONS determine the applicability of the critic. Preconditions have access to proof
obligations as well as models. Note that these PRECONDITIONS can be seen as guards in the way this notion
is used in B/Event-B. However, our use of the term PRECONDITIONS is more closely related to proof planning
(and in general AI planning) syntax, from which our work is based on.

• The OUTPUT slot has been extended to include modelling guidance (GUIDE), as well as proof patches
(PATCH). While proof patches are automatically applied, it is envisaged that modelling guidance will be com-
municated to the designer so as to inform their decision making.

As with the original proof critics mechanism, the output slot becomes instantiated as a side-effect of the instantiation
of the input and precondition slots.

Figure 3: Reasoned modelling critic schema

3.1. Guidance for invariant proof failures via local analysis
Typically, a proof failure arising from an inconsistency in a model may be overcome in a number of ways. For
example, consider an invariant which takes the form of an implication, i.e. X ⇒ Y . If a corresponding invariant proof
fails, then the failure may be overcome by revising the model so that either,

1. X is false, or
2. Y is true.

At the level of modelling these effects can be achieved by changing the guards or actions associated with the invariant
proof, or the invariant itself. Here we focus on local changes to an event, i.e. changes to guards and actions, and
delay the discussion of global analysis and invariant changes until Section 3.3. In general, proof-failure analysis will
generate a large number of proof patches. But not all proof patches will make sense in terms of modelling. To address
this problem we wish to exploit modelling knowledge in order to rank the proof patches that are offered as guidance.
To achieve this we envisage designers providing meta-data in addition to their models. The preconditions of our new
critics can then exploit modelling heuristics as well as proof-failure heuristics.

To illustrate this idea, we develop two critics below. Each critic targets a different pattern of invariant proof failure,
as outlined above. In addition, the critics exploit a notion of variable priority – which is based upon the observation
that not all variables within a model may carry equal importance. Crucially, such “meta-data” must be supplied by the
designer. For example, being able to brake is clearly more important than driving with the cruise control enabled. This
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exp at(X,Y,Z) =̂ “Z is the subexpression at position Y within
expression X”

rewrite rule(X ⇒ Y :⇒ Z) =̂ “A conditional rewrite rule: If X holds then Y
is rewritten to Z”

insert casesplit(C, P) =̂ “Progress the proof of P by a casesplit on X”
replace at(W, X,Y,Z) =̂ “Z is obtained by replacing the subexpression

at position W within Y by X”
dom({V1 '→ D1, · · · ,Vn '→ Dn}) =̂ {V1, · · · ,Vn}
disjoint sub(S 1, S 2) =̂ dom(S 1) ∩ dom(S 2) = ∅
failed proof(P) =̂ “P is a PO which is provably false or

has failed to be proven”
provable(P) =̂ “P is a PO that is provable”
max(A) =̂ ι x. (x ∈ A ∧ ∀y ∈ A. y ≤ x)
pri var(V,M) =̂ “Priority of variable V within model M”
priority(S ,M) =̂ max({pri var(v,M) | v ∈ dom(S ) })
sub2act({V '→ D}) =̂ V := D
sub2act({V1 '→ D1, · · · ,Vn '→ Dn}) =̂ sub2act({V1 '→ D1}) || · · · || sub2act({Vn '→ Dn})
sub2grd({V '→ D}) =̂ V = D
sub2grd({V1 '→ D1, · · · ,Vn '→ Dn}) =̂ sub2grd({V1 '→ D1}) ∧ · · · ∧ sub2grd({Vn '→ Dn})
guards(E) =̂ “Conjunction of guards of event E”
sat(P) =̂ “The predicate P is satisfiable”
generalisable(H) =̂ ∃r, e1, e2, g1, g2. 〈e1, g1〉 ∈ H ∧ 〈e2, g2〉 ∈ H

∧ e1 ! e2 ∧ r ⇒ g1 ∧ r ⇒ g2 ∧ sat(r)
generalise(H) =̂ “The weakest r such that sat(r) and for the

most 〈e, g〉 ∈ H, r ⇒ p (for at least 2 events)”
add guard(G, E,M) =̂ “Adds guard G to event E of model M”
add action(A, E,M) =̂ “Adds action A to event E of model M”
add invariant(I,M) =̂ “Adds invariant I to model M”

S denotes a substitution, H denotes a set of event-guard pairs, and D is an expression. ι is the
definite description operator, meaning that max returns the largest element of the given set

Figure 4: Meta-terms for reasoned modelling critics

notion of priority can be expressed as a heuristic, and used to rank or even filter modelling suggestions. Informally,
where proof-failure analysis suggests that the value of a variable should be changed within the context of a given
event, we adopt the following heuristics:

H1: If the priority of the candidate variable is lower than the priorities of all the variables updated by the event, then
it is strongly suggestive that the change should be achieved via a new action.

H2: If the priority of the candidate variable is higher than the priorities of all the variables updated by the event, then
it is strongly suggestive that the change should be achieved via a new guard.

Where priorities are the same, no ranking of the alternatives will be provided. We represent heuristics H1 and H2
as critics in Figure 5 and Figure 6 respectively. The meta-logical terms that appear within the preconditions of these
critics are defined in Figure 4.

Note that meta-logical predicates, such as priority, require input from designers, as mentioned above. Both critics
are applicable where an invariant proof has failed, and specifically where the invariant takes the form of an implication.
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We focus on solutions that involve the addition of either guards or actions, where guards are restricted to equalities.
Later we discuss how these basic critics could be generalised.

critic (priority action speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃failed po ∈ {〈 , , , PO〉 ∈ POs | failed proof(PO)}.

failed po = 〈M, E, /INV, (∆, X ⇒ Y " σ(X ⇒ Y))〉
2. ∃τ ∈ sub. disjoint sub(τ,σ) ∧ provable(∆ " (τ ∪ σ)X ⇒ false)
3. priority(τ,M) < priority(σ,M)

OUTPUTS:
GUIDE add action(sub2act(τ), E,M)

Note that sub denotes the set of all substitutions, and elements of PO SET are quadruples 〈M, E, /INV, PO〉, i.e.
model identifier, event identifier, PO label/type, and PO. Note also that the scope of the quantification extends across
the critic slots.

Figure 5: A reasoned modelling critic based on a priority heuristic to modify an action

critic (priority guard speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃failed po ∈ {〈 , , , PO〉 ∈ POs | failed proof(PO)}.

failed po = 〈M, E, /INV, (∆, X ⇒ Y " σ(X ⇒ Y))〉
2. ∃τ ∈ sub. disjoint sub(τ,σ) ∧ provable(∆ " (τ ∪ σ)Y)
3. priority(σ,M) < priority(τ,M)

OUTPUTS:
GUIDE add guard(sub2grd(τ), E,M)

Figure 6: A reasoned modelling critic based on a priority heuristic to modify a guard

The critic representing H1 (Figure 5) has three preconditions. The first precondition holds if there exists a PO
of the required form that has failed to be proved, i.e. an invariant PO of the form X ⇒ Y , which is associated with
the event E where substitution σ represents the actions corresponding to E. The second precondition holds if there
exists a substitution (τ) which falsifies the antecedent, where τ and σ are disjoint. The third precondition expresses
a modelling constraint, i.e. the variable(s) introduced by the new substitution have lower priority than the variable(s)
updated by the existing actions. If the preconditions hold, then the guidance provided takes the form of a guard –
constructed from τ.

The critic representing H2 (Figure 6) again has three preconditions, but illustrates a slightly different failure
analysis pattern. That is, instead of making the antecedent false, the analysis tries to make the consequent true. Note
that the third precondition ensures that the variable(s) introduced by the new substitution are of a higher priority than
the variable(s) updated by the existing actions. Here the guidance provided takes the form of an action – constructed
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from τ.

3.2. The cruise control system in Event-B

MACHINE cruise control
VARIABLES brake, cc
INVARIANTS inv1: cc = on⇒ brake = off
METADATA pri var(cc) < pri var(brake)
EVENTS

INITIALISATION =̂
begin

act1: brake := off
act2: cc := off

end
EVENT enable cc =̂

begin
act1: cc := on

end
EVENT pressbrake =̂

begin
act1: brake := on

end
....
END

Note that since the machine name can be easily inferred, we write
pri var(cc) and pri var(brake) in the METADATA field, instead of
pri var(cc,cruise control) and pri var(brake,cruise control).

Figure 7: The cruise control system in Event-B.

To illustrate the application of critics introduced above, we will first formalise in Event-B the cruise-control system
that was outlined in Section 1. The key fragments of the model are presented in Figure 7 and explained below.

Recall that the status of the brakes is represented by a variable brake, while the status of the cruise control is
represented by the variable cc. Both variables are of type Val = {on, off}, where on ! off. The variable brake is on if
the user currently presses the brake (pressbrake), and off otherwise. While the variable cc is on if the cruise control is
enabled (enable cc), and off otherwise. The system invariant is represented as follows:

inv1 : cc = on⇒ brake = off

and initially both variables are off :

INITIALISATION =̂ BEGIN brake := off || cc := off END

We assume that the following priority relationship between the variables has been specified by the designer:

pri var(cc, cruise-control) < pri var(brake, cruise-control)
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critic (priority guard speculation)
INPUT

PO SET pos
MODEL SET { cruise-control }

PRECONDITIONS:
1. 〈cruise-control, enable cc, inv1/INV, po〉 ∈ pos ∧

po =
(
cc = on⇒ brake = off " {cc '→ on}(cc = on⇒ brake = off)

)
∧

failed po
(
(cc = on⇒ brake = off " brake = off

)

2. disjoint sub({brake '→ off}, {cc '→ on}) ∧
provable

(
cc = on⇒ brake = off " {brake '→ off, cc '→ on}(brake = off)

)

3. priority({cc '→ on}, cruise-control) < priority({brake '→ off}, cruise-control)
OUTPUTS:

GUIDE add guard(brake = off, enable cc, cruise-control)

Figure 8: An instantiation of the ‘priority guard speculation’ critic.

3.2.1. First failure and modelling suggestion
The model contains events that control the brakes and cruise control. The consistency proofs of invariant inv1 over

these events fails in two cases. Firstly, the event to enable the cruise control is defined as follows:

EVENT enable cc =̂ BEGIN cc := on END

This gives rise to the following proof obligation:

cc = on⇒ brake = off " {cc '→ on}(cc = on⇒ brake = off)

which can be reduced to the unprovable goal:

cc = on⇒ brake = off " brake = off.

However, the preconditions of the ‘priority guard speculation’ critic given in Figure 6 hold, and an instantiation of this
critic for this example is shown in Figure 8 (after some simplification and unfolding). This instantiation suggests the
addition of a new guard of the form brake = off. If the suggestion is accepted by the designer, then the updated event
takes the form:

EVENT enable cc =̂WHEN brake = off THEN cc := on END

3.2.2. Second failure and modelling suggestion
The second failure with respect to inv1 occurs when a driver presses the brakes, as defined by the event:

EVENT pressbrake =̂ BEGIN brake := on END

This creates the following proof obligation:

cc = on⇒ brake = off " {brake '→ on}(cc = on⇒ brake = off)

which, when simplified, becomes false:
cc = on, brake = off " false.

In this case the ‘priority action speculation’ critic given in Figure 5 triggers, and Figure 9 shows the corresponding
instantiation. As a result, the following updated pressbrake event is suggested to the designer:

EVENT pressbrake =̂ BEGIN brake := on || cc := off END
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critic (priority action speculation)
INPUT

PO SET pos
MODEL SET { cruise-control }

PRECONDITIONS:
1. 〈cruise-control, pressbrake, inv1/INV, po〉 ∈ pos ∧

po =
(
cc = on⇒ brake = off " {brake '→ on}(cc = on⇒ brake = off)

)
∧

failed po((cc = on, brake = off " false)
2. disjoint sub({cc '→ off}, {brake '→ on}) ∧

provable
(
cc = on⇒ brake = off " {brake '→ on, cc '→ off}((cc = on)⇒ false)

)

3. priority({cc '→ off, cruise-control) < priority({brake '→ on}, cruise-control)
OUTPUTS:

GUIDE add action(cc := off, pressbrake, cruise-control)

Figure 9: An instantiation of the ‘priority action speculation’ critic.

3.2.3. Generalisations of the critics
An alternative definition of the invariant is

inv2 : brake = on⇒ cc = off

which is the contrapositive of inv1. To keep our presentation as simple as possible, our critics will not trigger on POs
arising from inv2. However, this limitation could be overcome by generalising the failure analysis, i.e. allowing the
critics to consider the alternatives of falsifying an antecedent and validating a consequent. This could be achieved by
changing precondition 2 as follows:

provable
(
∆ " (τ ∪ σ)X ⇒ false

)
∨ provable

(
∆ " (τ ∪ σ)Y

)

Another limitation is that currently we only consider the addition of guards that take the form of equalities. The
‘priority guard speculation’ critic could be extended to capture a more general notion of a guard. However, this would
require a new notion of priority, which is currently not defined for arbitrary terms (only variables and substitutions).
Finally, global consistency issues have been ignored. When an action is modified, the validity of other invariants may
change, or a deadlock may arise. The critics should be updated with such consistency checks. Depending on how
global analysis is dealt with – as discussed below – the ‘priority action speculation’ critic of Figure 5 may have to also
include such a consistency predicate.

3.3. From local to global modelling suggestions
As mentioned earlier, we envisage that our critics will support global analysis, as well as the local analysis illustrated
via the cruise control example. For instance, when attempting to prove the internal coherence of a machine, local
analysis may suggest the need to add guards across multiple events. Taking a more global perspective, these local
suggestions may reveal a more general modelling suggestion. For instance, if a formula can be found that is logically
weaker than all the suggested guards, then this points to a global rather than a local problem – and the need for a
global solution, i.e. an invariant.

A concrete example of this kind of global analysis is found in Abrial’s ‘Cars on a Bridge’ example [4]1. In this
example a single-laned bridge between an island and the mainland is modelled. Since it is single-laned, cars can only
travel in a given direction at a given time – and this is controlled by two traffic-lights: ml tl is the traffic light on the

1The example is modified slightly.
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mainland; and il tl is the traffic light on the island. The lights can have two colours – green and red – and it is assumed
that green ! red. Only a finite number of cars can be on the bridge and on the island, and three variables are used
to count the cars (using sensors in later refinements): a is the number of cars on the bridge travelling towards the
island; b is the number of cars on the island; c denotes the number of cars on the bridge leaving the island, while d is
a constant denoting the total number of cars. Our discussion will focus on the four events where cars enter the bridge.
ML out1 and ML out2 captures cars entering the bridge from the mainland, and is formalised as follows:

EVENT ML out1 =̂
WHEN ml tl = green

a + b + 1 < d
THEN a := a + 1

END

EVENT ML out2 =̂
WHEN ml tl = green

a + b + 1 = d
THEN a := a + 1

ml tl := red
END

IL out1 and IL out2 captures cars entering the the bridge from the island, and is formalised as follows:

EVENT IL out1 =̂
WHEN il tl = green

b > 1
THEN b := b − 1

c := c + 1
END

EVENT IL out2 =̂
WHEN il tl = green

b = 1
THEN b := b − 1

c := c + 1
il tl := red

END

Without giving all the details2, the proofs of

il tl = green⇒ a = 0

fail over events ML out1 and ML out2, while the proofs of invariant

ml tl = green⇒ c = 0

fail over events IL out1 and IL out2. The corresponding POs have the following form:

. . . , il tl = green " σ1(ml tl = green⇒ . . .) where ml tl " dom(σ1) (6)
. . . ,ml tl = green " σ2(il tl = green⇒ . . .) where il tl " dom(σ2) (7)

A local analysis of each of these failures suggests making the antecedent false, by finding a substitution τ such that:

disjoint sub(τ,σ{1,2}) ∧ provable(∆ " (τ ∪ σ{1,2})X ⇒ false)

In (6), τ will be instantiated to {ml tl '→ red} while in (7), τ will be instantiated to {il tl '→ red}. However, there is
a common solution to these failures. Firstly, we assume that the substitutions are turned into guards (by sub2grd).
Now, if an event is constrained by the guards G1, · · · ,Gn, then adding an additional guard Gn+1 to patch a failure is
equivalent to adding the weaker guard G1 ∧ · · · ∧ Gn ⇒ Gn+1 (via modus ponens). Thus the suggested additional
guards can be “weakened” in this way with the existing guards of the events. For this particular example, we ignore
all guards except those shown in (6,7) – the other guards are irrelevant for this failure. For example, from (6) the guard
ml tl = red is derived and “weakened” to give il tl = green⇒ ml tl = red. We then try to find a common solution for
(6,7), i.e. an r such that:

r ⇒ il tl = green⇒ ml tl = red
r ⇒ ml tl = green⇒ il tl = red.

Moreover, we require that r is satisfiable, i.e. the trivial solution r = false is not considered. The only valid such
generalisation r (modulo equivalences) is:

il tl = red ∨ ml tl = red
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critic (multiple failure invariant speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃h ⊆ hs. h = {〈E,G〉 | ∃po ∈ pos. 〈 , E, /INV, po〉 ∈ POs ∧ failed proof(po)

∧ po = (∆, X ⇒ Y " σ(X ⇒ Y))
∧ ∃τ ∈ sub. disjoint sub(τ,σ) ∧ provable(∆ " (τ ∪ σ)X ⇒ false)
∧ G = guards(E)⇒ sub2grd(τ) }

2. generalisable(h) ∧ ∃i ∈ forms. i = generalise(h)
OUTPUTS:

GUIDE add invariant(i,M)

Note that hs denotes the set of all event-guard pairs, while pos and forms denote the sets of all proof obligations
(sequents) and formulae respectively.

Precondition holds if a local analysis suggests that proof failures can be overcome by the introduction of additional
guards.

Precondition 2 holds if the suggested guards can be generalised to give an invariant.

Figure 10: A global reasoned modelling critic suggesting an invariant from multiple failures

which is suggested as an invariant. This represents a key safety requirement – at all times at least one traffic-light is
red.

With regards to realising such global reasoning, we are considering two distinct alternatives via our proposed critic
schema:

1. Combine both local and global analysis of the available POs within a single critic, as illustrated in Figure 10.
2. Firstly use critics to perform local analysis of the available POs, recording any modelling suggestions. Secondly,

use separate critics to perform a global analysis, exploiting the results of the local analysis.

From a scientific point of view, the approaches are not very different – and should be seen more as an implementation
issue. Experimentation will be required in order to determine the most practical approach.

4. Implementation

As with most theories, the notion of reasoned modelling will only be fruitful with proper tool support. Here, we
describe the REMO3 tool, which implements a prototype for the reasoned modelling critic mechanism introduced
above. Since the technique proposed here has been illustrated for Event-B, the tool is necessarily integrated within
the Eclipse-based Rodin toolset — implemented in Java. However, as is the case with the ProB Rodin plug-in [11],
the main part of the program has been implemented in another programming language. In our case, we have chosen
OCaml (Objective Caml Language)4. This has been motivated by the the following factors:

• this is a prototype implementation which we expect will change (frequently). OCaml is a declarative functional
programming language which reduces the size of the source code, thus making change to the code (relatively)
easy;

2These details can be found in [4] and http://www.event-b.org.
3The REMO acronym follows from REasoned MOdelling
4See http://caml.inria.fr/ocaml/
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• a large part of the work is checking precondition, which can be handled very elegantly using inductive data
types and pattern matching, which is supported by OCaml;

• compared to other languages in the ML-family, OCaml embodies an object-oriented layer, which provides a
good encapsulation mechanism to represent models, and particularly critics;

• OCaml is used in the CORE project5, which is a sister project of ours. The use of OCaml enables us to take
advantage of the reasoning techniques developed within the CORE project. In particular, term synthesis and
integration with the CVC3 SMT solver, discussed below.

Figure 11: Tool architecture

The overall process embodied within REMO involves an analysis of the applicability of the critics with respect to
Event-B models and their failed proof obligations. The results of the analysis are presented to the user in the form of
guidance – it is the user that ultimately decides whether or not to accept the guidance. An overview of the architecture
of the tool can be found in Figure 11. The labels with bold font indicate the main components of the tool chain;
the stippled lines indicate work in progress; the square boxes represent processes; the document boxes
represent files that are used as inputs and/or outputs of a process; while the rectangle box represents input data
used in a process.

4.1. Rodin REMO Plug-in
The goal of the Rodin REMO plug-in is to provide an interface between the Rodin toolset and our REMO tool.

Specifically the plug-in has two main roles:

1. translate Event-B developments (models, contexts and proof obligations) from Rodin into the REMO tool; and
2. communicate modelling guidance and explanation back from the REMO tool into Rodin.

However, at the current state only role 1 has been implemented – role 2 is in our plan of future work, and communi-
cation is currently at the level of printed messages on a terminal window. However, a description of how we envisage
the guidance will be presented to the user by the Rodin plug-in is given throughout this section.

The input of the Rodin REMO plug-in is a Rodin development, from which the plug-in generates two files that
serve as the input of the REMO tool. The first file contains a string representation of the Event-B models (machines and
contexts) of a development, while the second file stores a string representation of all the POs (status, type, hypotheses

5See http://www.macs.hw.ac.uk/core/
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and goal) associated to each model. These files are then translated into the REMO internal representation, i.e. OCaml
objects.

Currently, the PO generator of Rodin applies some simplification before the POs are generated. This simplification
consists of replacing the substitutions given by the events to the variables in the POs. As a consequence, the file
generated by our plug-in contains the POs after the simplification has taken place. However, in the analysis of the
critics the pure PO (i.e. before the substitutions are applied) is also needed in order to do the matching between the
required POs (given by the preconditions) and the ones of the models. Currently, this information is hand-crafted in
the file; however, we plan to update the Rodin PO generator to overcome this problem.

4.2. REMO Critics
The reasoned modelling critics represent another input to the REMO tool. Each critic is implemented as a class in

OCaml that inherits from the virtual class reasonedModellingCritic. This super class encapsulates the basic elements
of a critic as shown in Figure 12.

Figure 12: Critics implementation

In particular, each critic overrides the methods checkPreconditions and generateGuidance. The first method eval-
uates the applicability of the critic through the checking of the preconditions while the second method analyses the
output of this check and produces the guidance that will be suggested to the user. This use of inheritance allows new
critics to be added relatively easily to the REMO tool.

4.3. The REMO Tool
The REMO tool is central to our implementation. It contains two components, Models/POs Analyser and Guidance

Generator, which are applied sequentially and discussed separately below.

4.3.1. Models/POs Analyser
The inputs of the Model/POs Analyser are the models, the POs and the critics. The first task of the process is to

parse the model and PO files generated by the Rodin REMO plug-in. Then the analyser evaluates the Event-B models
and their POs in order to find which critics are applicable (if any).

Note that currently when presented with unproven POs, REMO attempts to discover ways in which the proof
failures can be overcome via the automatic generation of modelling guidance. Crucially what is on offer is guidance
– whether or not the guidance is accepted is left to the user. Such guidance may address inconsistencies within a
development or complexities that give rise to POs that are beyond the Rodin provers. Alternatively, where better proof
automation is required, we aim in the longer-term to include a a proof planner which will enable us to improve upon
the level of automation provided by the current Rodin provers (see Section 6).

The process of evaluating the applicability of a critic with respect to a model consists of the following steps (this
process is further illustrated with the cruise control example in Section 5):
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1. The analyser searches for matches between each of the preconditions of the critic and the models. If more than
one match is found, two things can happen. If the precondition being evaluated is one that identifies different
failures in the model (e.g. failed POs), each match would be considered as a separate instantiation of the critic.
However, if the precondition being checked is one that identifies different solutions to the same failure (e.g.
finding a substitution that is disjoint with the other substitutions of an event), all the matches will be part of the
set of all possible solutions of a failure.

2. For each element of the set of possible solutions of each instance of a critic the subsequent preconditions are
evaluated. When all the preconditions have been checked, the analyser verifies which instances were successful
in all the preconditions.

3. The analyser collects the results of each successful instance and sends them to the guidance generator.

The REMO tool uses the CVC3 SMT solver [12] to check if a match is found for a specific precondition. This
choice of SMT solver follows from an existing OCaml interface developed within the CORE project. Currently, we
only support first-order predicates with equality, as well as arithmetic. Thus, the full underlying (set-theoretic) Event-
B mathematical notation is not supported. In the future, we plan to take advantage of both work with SMT solvers
for Event-B6, as well as the use of a proof planner (see above). Furthermore, we may possibly use generic purpose
theorem provers.

4.3.2. Guidance Generator
The guidance generator takes the raw results from the Analyser and produces a formatted, ranked (ordered) list of

alternative guidance suggestions, which will then be sent to the Rodin plug-in and presented to the user.
Two processes take place here. The first process consists of interpreting the guidance given as an input in order

to produce written explanations. These are linked to the critic preconditions of each suggestion. The purpose behind
this, is to help the user understanding the nature of the guidance, to (hopefully) make a more informed decision about
which modification to apply. We have classified the guidance produced by the generator into three categories:

1. Global guidance: This refers to a global solution that addresses multiple local failures (e.g. the addition of
an invariant to the model instead of guards in multiple events). This type of guidance is given alongside an
explanation of how the local suggestions are used to propose the general one.

2. Local guidance: This is concerned with a solution that addresses a local failure (e.g. a guard is missing from
an event). An explanation of how the failure is overcome with the solution is provided.

3. Conditional guidance: This type of guidance is related to solutions that are subject to the fulfilment of certain
conditions (e.g. priorities of variables that were not defined in the model). A list of conditions together with
explanations of why these conditions are needed is given with the suggested solution.

The second process, which is currently under development, deals with the linking of the guidance and explanation
to the Rodin plug-in.

4.3.3. Guidance and Explanation
The result of the guidance generator is a set of files capturing both the guidance and explanations for each critic

instance. These files will then be sent to the Rodin plug-in for presentation to the user.
From the user perspective, the guidance will consist of the fragment of Event-B model that is relevant to the

suggested modification. For instance, in the case of the priority action speculation critic, the guidance will contain
the current event plus the new action as shown in Figure 13. The instantiation of this schema for our running cruise
control example is shown in Figure 16.

The explanations will be represented as templates, i.e. a natural language explanation of the critic preconditions,
with slots to denote instance specific details. To illustrate, the proposed template associated to the priority action
speculation critic is shown in Figure 14. An instantiation of this template is presented in Figure 16.

Regarding conditional guidance, consider again precondition 3 of the priority action speculation critic (see Figure
5). Whether or not this precondition holds depends upon if the user has provided the relevant meta-data, i.e. priority
information with respect to their model. If a critic fails to apply because of the lack of such meta-data, the user can
still be presented with the relevant guidance, but conditional with respect to the missing meta-data.

6See http://www.cprover.org/SMT-LIB-LSM/
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Guidance
(priority action speculation critic)

EVENT event name
WHERE guards
THEN old actions

new action
END

Figure 13: Guidance provided by the priority action speculation critic analysis.

Explanation template (priority action speculation critic)

1. There exists an unproven invariant PO .
2. There exists a variable update that does not interfere

with the existing actions of event and which
makes the PO provable.

3. Update preserves the variables priority relationship .

Therefore:
Failure can be overcome by adding action to event .

Figure 14: Explanation template associated to the priority action speculation critic.

5. Results - Examples Revisited

Here, we apply the ‘cruise control’ and ‘cars on a bridge’ examples to the REMO tool, and demonstrate step by
step the analysis process. These examples are discussed separately below.

5.1. The cruise-control example – the (local) priority critics
The initial step is the evaluation of the preconditions. The analysis of the critic’s preconditions involves two parts,

a syntactic check followed by a semantic check. The syntactic checking is a filtering process that consists of searching
for elements in the models and the POs that have specific structures. After this filtering is done, the semantic checking
consists of the analysis of specific properties that these elements must satisfy in order to be an instantiation of the
precondition. Both of these checks rely heavily on pattern matching, thus illustrating the advantages of functional
languages such as OCaml.

To demonstrate, we analyse the priority action speculation critic in the ‘cruise control’ model. Precondition 1
(PC1) of this critic states:

PC1 : ∃failed po ∈ {〈 , , , PO〉 ∈ POs | failed proof(PO)}.
failed po = 〈M, E, /INV, (∆, X ⇒ Y " σ(X ⇒ Y))〉

We need to search for all failed POs, whose type is INV (i.e. invariant preservation POs) with the form X ⇒ Y
(since invariant proofs have an inductive structure, this form will be found in both the goal and the hypothesis). The
POs are represented as objects in the tool – where they are stored with their attributes, status and type. Using this
meta-information we can directly check if the type is INV. The next part checks that the form of the goal/hypothesis
is (syntactically) X ⇒ Y . This is achieved by pattern matching. Two (failed) POs succeed this check:
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po1: .... ∧ cc = on⇒ brake = off " {cc '→ on} cc = on⇒ brake = off
po2: .... ∧ cc = on⇒ brake = off " {brake '→ on} cc = on⇒ brake = off

Each of these POs represents a different failure, as a result, each of them will be treated as an instance of the
critic. Let instance1 be the instance of the critic associated to po1, and instance2 be the instance associated to po2. In
the following precondition we look for a substitution to falsify the antecedent, and the precondition is formalised as
follows:

PC2: ∃τ ∈ sub. disjoint sub(τ,σ) ∧ provable(∆ " (τ ∪ σ)X ⇒ false)

The checking of this precondition is broken into three steps:

• PC2.1: Find the possible substitutions that can be applied to the antecedent of the goal.
• PC2.2: From PC2.1 find the substitutions that are disjoint with the current substitutions of the event.
• PC2.3: From PC2.2 find the substitutions that are provable.

The antecedent of the goals of po1 and po2 is cc = on; thus, in the analysis of PC2.1 we need to find all possible
values that the variable cc can take. In order to do this, we need to identify the type of the variable, which is given by
the invariant cc ∈ state, and then we look for the members of the set state. This is analysed by looking for a “type
axiom” of the form ‘state = { , , ..., }’, or in the case this is not given, by axioms of the form ‘ ∈ state’. From this, in
the cruise control model, on and off are defined as the members of the set state. Therefore, two possible substitutions
are found for each instance of the critic: cc '→ on and cc '→ off. These are considered as two potential solutions for
each failed PO.

The next step, PC2.2, is the verification of the disjointedness of the substitutions found in PC2.1. We find that for
instance1, the suggested substitutions are not disjoint with cc '→ on, which is the substitution of event enable cc.
As a result, both solutions are considered as failures of this instance of the critic. On the contrary, in instance2, the
suggested substitutions are both disjoint with brake '→ off, which is the substitution of event pressbrake.

Finally, in PC2.3 we need to verify if the statement ∆ " (τ ∪ σ)X ⇒ false is provable for the substitutions found in
PC2.2. The instantiation of this statement generates the following conjectures:

conj1: cc = on⇒ brake = off " {cc '→ on, brake '→ on} cc = on⇒ false
conj2: cc = on⇒ brake = off " {cc '→ off, brake '→ on} cc = on⇒ false

Both conjectures are passed to CVC3 in order to be validated. The result is that conj2 is valid but conj1 is not. This
rules out cc '→ on as a possible solution of the critic. Thus, up to this point, we have instance2 as the only instance of
the critic, and cc '→ off as the only potential solution for that instance.

Finally, the last precondition verifies the priorities. The precondition is:

PC3: priority(σ,M) < priority(τ,M)

In this case, the priority of the new substitution should be less than the priority of the current substitutions (actions)
of the event. The priority of a substitution is the priority of the variable being modified; therefore, in order to perform
the analysis of the precondition, we must compare the priorities of the variables. Event pressbrake has only one
substitution brake '→ off; then, we need to check that

pri var(cc,cruise-control) < pri var(brake,cruise-control).

This is evaluated by the REMO tool through pattern matching of the meta-data defined in the model. The precondition
succeeds, creating as guidance the addition of the action cc := off in event pressbrake.

Figure 15 sums up the steps taken by the tool for the analysis of the priority action speculation critic. In the
figure, we present the evaluation of the two instances of the critic for the cruise control system. For each instance, the
branches represent the different alternatives to solve the failure while each node represents the result (or matches) of
the analysis of each precondition with respect to the specific alternative. Each branch terminates either when a failure
of a precondition is found or when all the preconditions have succeeded in that branch.

Finally, Figure 16 shows the guidance that would be provided by the tool. The analysis of the priority guard
speculation critic is performed in a similar fashion.
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Figure 15: Sequence of steps performed by REMO in the analysis of the priority action speculation critic for the cruise control example.

Guidance

EVENT pressbrake =̂
begin

act1: brake := on
act2: cc := off

end

Explanation for action speculation

1. There exists an unproven invariant PO pressbrake/inv1/INV.
2. There exists a variable update cc '→ off that does not interfere

with the existing actions brake := on of event pressbrake and which
makes the PO provable.

3. Update preserves the variables priority relationship
pri var(cc) < pri var(brake).

Therefore:
Failure can be overcome by adding action cc := off to event pressbrake.

Figure 16: Proposed guidance and explanation provided by REMO for the cruise control system.

5.2. The cars on a bridge example – the (global) multiple failure critic
The multiple failure invariant speculation critic is implemented by combining both local and global analysis within

a single critic. This methodology has been chosen since it facilitated the collection of the results of the local analysis,
as well as avoiding duplication of information since all the processes are achieved within the same critic, instead of
being distributed over many critics.

In the ‘cars on a bridge’ example, the analysis of the first precondition involves a very similar process to the process
described for the priority action speculation critic. Thus, we will focus on how the global analysis was implemented
– i.e. the second precondition of Figure 10. This precondition is used to generalise the solutions found in the first
precondition into an invariant which ideally captures all the failures – however, we only require it to capture more
than one failure over more than one event. The precondition is:
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PC2: generalisable(h) ∧ ∃i ∈ forms. i = generalise(h)

with the following definitions (as defined in Figure 4):

sat(P) =̂ “The predicate P is satisfiable”
generalisable(H) =̂ ∃r, e1, e2, g1, g2. 〈e1, g1〉 ∈ H ∧ 〈e2, g2〉 ∈ H

∧ e1 ! e2 ∧ r ⇒ g1 ∧ r ⇒ g2 ∧ sat(r)
generalise(H) =̂ “The weakest r such that sat(r) and for the

most 〈e, g〉 ∈ H, r ⇒ p (for at least 2 events)”

The definition of generalise is (deliberately) under-defined, and finding good implementation of it is a hard problem.
Below, we have implemented a rather specialised version of it, but in the future we plan to rely on abduction [10]
(see Section 2.2), possibly implement using term-synthesis [13], which using forward chaining, generates formulas
which are then checked. An efficient implementation of term-synthesis would require finding good heuristics to avoid
generating too many uninteresting formulas.

However, before that we will expand the ideas behind precondition 1 and 2 of this critic. In the first step we first
find a guard which will cause the PO to be proven. We then weaken the solution as much as we can with the existing
guards of the event (it can be even further weakened by existing invariants – but this would have complicated the
presentation too much). For example, a solution G for an event with guards G1 and G2 becomes G1 ∧G2 ⇒ G. In the
second precondition, we then try to find the weakest strengthening r which is as least as strong as two of the weakened
solutions (of two different events).

A straightforward such strengthening is to remove one or more of the guards, e.g. creating G2 ⇒ G, and this
approach is followed here, where the use of common (free) variables in the goal is used to guide the elimination of
guards. From this, we divide the analysis for this precondition into four steps:

1. The set of free variables of the goals of the events (FV) is found.
2. All conjuncts (each representing a guard of the event) that use free variables not in FV are omitted.
3. We then have four conjectures – however two and two conjectures are (syntactically) equivalent, given the

following two (different) conjectures (resulting from POs of different events):

il tl = green⇒ ml tl = red and ml tl = green⇒ il tl = red

4. A check for equivalence between the resulting conjectures is then performed. If two conjectures (from different
events) are equivalent then one of them is picked. The (equivalent) solutions are then ranked according to which
capture most different events – followed by the number of conjectures it captures (in a lexicographical order).
This highest ranked solution will then form the weakest such generalisation, and is returned. These steps can
therefore be seen as an implementation of generalise. In this case, they are all equivalent, and can be rewritten
to

ml tl = red ∨ il tl = red.

This is then presented as a global alternative to address the multiple failures.

6. Related and future work

Our notion of reasoned modelling represents a new paradigm for exploring the interplay between reasoning and
modelling. As evident from the above discussion, our general ideas on reasoned modelling are strongly influenced by
the proof planning paradigm [1], while the particular work discussed here follows from the notion of proof critics [2].
Currently, Event-B users have to manually analyse failed proof attempts and patch their models, e.g. [4, 6]. This form
of user interaction represents a significant barrier to the accessibility of the Event-B toolset.

We have discussed how we can turn failed proofs into modelling guidance. Another source of failure is counter-
examples generated by model checkers. We have previously discussed turning counter-examples from model checkers
into modelling guidance [14]. This experiment was (manually) conducted by using the ProB model checker [11] in
Rodin. The advantage of using proof failures is that the nature of the failure is clearer than from a counter-example.
However, we may be able to extend the work in [14] into critic descriptions, however, this is a matter of future work.
Moreover, we believe model checkers, ProB in our case, can have at least two roles to play within our preconditions:
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• a critic precondition can demand a counter-example. This can be used to separate the cases between say a false
invariant, and a correct invariant where the proof fails due to limitations of the theorem prover;

• additional preconditions, such as adding a guard will not introduce a deadlock, can be added to reduce the
number of suggestions to the user. Here, ProB can be integrated with our REMO tool, and used to check such
preconditions.

Previously, the application of design patterns [15] has been suggested for Event-B [16]. The ability to reuse design
patterns, and their associated proofs, has obvious benefits over the conventional notion of design patterns. Our work
with failure-analysis is more closely aligned with anti-patterns [17], i.e. common patterns of bad design, coupled with
solutions. Bad design, however, does not necessarily mean incorrect design – i.e. the POs may still be provable. For
this reason the failure-driven nature of the critics presented here differ from the conventional notion of an anti-pattern.
Another related area is ontology repair plans [18] – proof failure is explored using proof planning techniques to repair
ontologies – i.e. proof planning is used to describe evolving models.

In terms of future work, our short-term aim is to complete and fully integrate the REMO tool within Rodin.
Moreover, we aim to investigate modelling heuristics in addition to variable priorities. While we have relied upon
existing external provers, in the longer term we aim to incorporate a proof planner. This will enable us to also develop
critics that analyse successful proofs and provide guidance along the lines of conventional anti-patterns. The most
likely candidate is IsaPlanner [19], which is based on the Isabelle theorem prover.

7. Conclusion

We have motivated the need to abstract away from the complexities of proof obligations and proof-failure analysis.
To address this need, we have proposed a technique of proof management that attempts to turn proof-failure analysis
into modelling guidance via reasoned modelling critics. In doing so we aim to increase the productivity of designers
as well as the accessibility of formal modelling. Our technique is motivated by proof planning and, in particular, proof
critics. The work differs from previous work in that it provides a uniform framework in which proof-failure heuristics
can be combined with modelling heuristics. It is this combined approach that will enable us to abstract away from
the complexity of proof obligations. While our initial critics have focused on variable priorities, our framework will
be extensible, allowing designers to record meta-data relating to other kinds of modelling decisions. Our REMO
prototype represents a proof of concept, and the first step towards a reasoned modelling plug-in for the Rodin toolset.
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