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Combining Traits with Boxes and Ownership Types in a Java-like Setting I

Lorenzo Bettinia, Ferruccio Damiani∗,a, Kathrin Geilmannb, Jan Schäferb

aDipartimento di Informatica, Università di Torino
bDepartment of Computer Science, University of Kaiserslautern

Abstract

The box model is a light-weight component model for the object-oriented paradigm, which structures the flat object-
heap into hierarchical runtime components called boxes. Boxes have clear runtime boundaries that divide the objects
of a box into objects that can be used to interact with the box (the boundary objects) and objects that are encapsulated
and represent the state of the box (the local objects). The distinction into local and boundary objects is statically
achieved by an ownership type system for boxes that uses domain annotations to classify objects into local and bound-
ary objects and that guarantees that local objects can never be directly accessed by the context of a box. A trait is a
set of methods divorced from any class hierarchy. Traits are units of fine-grained reuse that can be composed together
to form classes or other traits. This paper integrates traits into an ownership type system for boxes. This combination
is fruitful in two ways: it can statically guarantee encapsulation of objects and still provides fine-grained reuse among
classes that goes beyond the possibilities of standard inheritance. It also solves a specific problem of the box owner-
ship type system: namely that box classes cannot inherit from standard classes (and vice versa) and thus code sharing
between these two kinds of classes was not possible in this setting so far. We present an ownership type system and the
corresponding soundness proofs that guarantee encapsulation of objects in an object-oriented language with traits.

Key words: Boxes, Featherweight Java, Ownership Types, Traits

1. Introduction

Component-based software systems are built by linking components together or by building new components
from existing ones. A key issue in component-based development is to have clear encapsulation boundaries for
components. Knowing the component’s boundaries enables modular analysis and the reuse of components in different
program contexts without being bothered by unexpected interference between the component and its context. Most
mainstream programming languages are object-oriented, based on the concept of classes, and do not have a language-
level component concept other than single objects. Unfortunately, the granularity level of classes and objects is not
appropriate for reuse. Since classes play the primary role of generators of instances, they must provide a complete set
of features describing an object. Therefore, classes are often too coarse-grained to provide a minimal set of sensible
reusable features [30]. Furthermore, in practice, objects usually rely on other objects to hold additional state and
realize additional behavior, forming implicit components at runtime. Therefore, classes are often too fine-grained to
provide a software fragment that can be specified, analyzed and deployed independently [65]. Moreover, the two-level
style provided by standard object-oriented languages (i.e., classes and objects) is known to be a limitation in some
programming scenarios [38].

The box model [56, 55, 57] is a component model that defines components both on a syntactic level (by a set of
classes) and as a runtime entity (as a set of objects). Components are instantiated and similar to objects: they have
an identity and a local state. A component instance is called a box. In general, a box may contain several objects
and can have nested boxes. To guarantee encapsulation of certain objects of a box an ownership type system [24, 16,

IThe authors of this paper are listed in alphabetical order. This work has been partially supported by the EU project FP7-231620 HATS, by the
German-Italian University Centre (Vigoni program), and by MIUR (PRIN 2008 DISCO).
∗Corresponding Author.

Preprint submitted to Elsevier March 4, 2015



45, 26] is used. It defines two ownership domains [3, 61, 55] for each box, namely a local and a boundary domain.
Each object of a box and each inner box is located in one of these domains. Objects (and inner boxes) in the local
domain are considered to be private to the component and are only accessible by objects of the same box and of inner
boxes, whereas objects (boxes) in the boundary domain can be accessed by objects of other boxes. This is called the
encapsulation property of the type system. Despite the restriction to only two domains, the box model is almost as
expressive as the ownership domains approach, i.e. it can express design patterns like iterators but not like factories.
Note that boxes are a runtime concept, thus, they do not aim at modeling static mechanisms such as packages or
namespaces.

The notion of trait was introduced by Ungar et al. [66] in the dynamically-typed prototype-based language SELF
to refer to a parent object to which an object may delegate some of its behavior. Subsequently, Schärli et al. [62, 30]
formulated and implemented traits in the dynamically-typed class-based language SQUEAK/SMALLTALK [11]. Traits
have been designed to play the role of units for fine-grained reuse in order to counter the problems of class-based
inheritance with respect to code reuse. A trait is a set of methods, completely independent from any class hierarchy.
The common behavior (i.e., the common methods) of a set of classes can be factored into a trait. Various formulations
of traits in a JAVA-like setting can be found in the literature (see, e.g., [63, 52, 12, 60, 13, 43, 42]). The recent
programming language FORTRESS [6] (where there is no class-based inheritance) incorporates a form of the trait
construct, while the “trait” construct incorporated in SCALA [54] is indeed a form of mixin (mixins are subclasses
parametrized over their superclasses, see, e.g., [18, 41, 33, 7]).

The object-oriented calculi supporting the box model that have been proposed [56, 55] do not model class-based
inheritance. These calculi consider:

• Interfaces, as object types, defining only method signatures.

• Box interfaces, as box types, defining only method signatures.

• Classes, as generators of objects, implementing interfaces by defining (fields and) methods.

• Box classes, as generators of boxes, implementing box interfaces by defining (fields and) methods.

• Ownership annotations, to guarantee at compile type the encapsulation of runtime components.

Since the box ownership type system separates box and non-box type hierarchies, having a box class that is a subtype
of a non-box class (or viceversa) would be rejected by the box ownership type system. Therefore, in order to add
to these calculi a form of class-based inheritance that (as in mainstream programming languages like JAVA and C])
identifies inheritance with subtyping, it is necessary to consider two separate class hierarchies, one for box classes
and one for classes, that cannot share code through class-based inheritance.

In this paper, we exploit traits to support code reuse among box classes and classes. We present a JAVA-like
minimal core calculus for boxes and traits. The calculus supports interface-based polymorphism, uses traits as units
of fine-grained reuse that makes it possible to share code among box classes and classes, and it is equipped with an
ownership type system that supports encapsulation of runtime components. Namely, we consider: Interfaces, Box
interfaces and Ownership annotations as above, and

• Traits, as units of behavior reuse, defining only methods.

• Classes, as generators of objects, implementing interfaces (by defining fields and) by using traits.

• Box classes, as generators of boxes, implementing box interfaces (by defining fields and) by using traits.

In our proposal, traits are not types (that is, a trait declaration does not introduce a type). Hence, a class is not subtype
of its composing traits, and the same trait can be used to compose both box classes and classes, without breaking the
type system.

A desirable feature of a programming language with traits is the ability to analyze each trait definition in isolation
from the classes and the traits that use it (see, e.g., [63]), thus avoiding to reanalyze a trait whenever it is used by a
different class. As pointed out in [9, 13], the fact that traits are not types makes it possible to include trait composi-
tion operations (like method exclusion and renaming) that do not preserve structural subtyping, thus increasing their
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potential for reuse. A constraint-based type system supporting these features in the context of a nominal JAVA-like
type system has been proposed [13]. In the context of a programming language with boxes and ownership types,
type-checking a trait in isolation from the classes that use it poses additional problems since, while type-checking
the body of the method m, in order to be able to perform the ownership type-checks it is needed to know whether the
class C of the this object is a box class. In this paper we address this problem by showing that the constraint-based
typing approach illustrated in [13] can be smoothly extended to deal with ownership types. The idea is to analyze the
methods provided by a trait definition by using ownership type-constraints to collect the ownership type-checks that
require to know the class C that contains the methods. These constraints will then be checked when type-checking the
classes that use the trait.

To the best of our knowledge, this is the first attempt to define an ownership type system for a language with traits
and the first attempt to combine boxes and traits. In order to focus on the interactions between traits and boxes and on
the interactions between traits and ownership types, we do not consider class-based inheritance in our calculus (along
the lines and design choices of [12, 10] and of the FORTRESS language).

Controlling the access to specific objects in specific contexts (boxes) is crucial to coordinate the access to sensitive
data and to keep consistency in an application. Our approach scales to a concurrent and distributed setting, since the
synchronization of the access to data is orthogonal to our ownership type system. This type system may complement
concurrency mechanisms providing guarantees that the access to specific resources is allowed only to the desired
components.

A preliminary version of the results presented in this paper has been presented in [8]. This paper presents a slightly
simplified version of the calculus, contains a new example, provides the complete formalization of the constraint-based
ownership type system and of the operational semantics, and proves the soundness of the constraint-based ownership
type system.

Organization of the Paper. In Section 2, we introduce and motivate our proposal by an example. In Section 3 we
present the syntax of the calculus. The ownership type system is presented in Sections 4, 5 and 6. The operational
semantics and the type and ownership soundness are presented in Sections 7 and 8, respectively. Related work is
discussed in Section 9. We conclude by summarizing the paper and outlining possible directions for future work. The
appendices contain the proofs of the main results.

2. Background and Motivation

In Section 2.1 we briefly recall the programming model of boxes with ownership annotations in a standard JAVA-
like setting with single inheritance. Then, in Section 2.2, we illustrate the combination of the box model with a
trait-based object-oriented language and, in Section 2.3, we discuss the resulting benefits. As a running example we
use the implementation of a bank that manages an arbitrary number of bank accounts. The example aims at illustrating
our proposal, rather than at providing a realistic case study.

2.1. Programming with Boxes and Ownership Annotations
The box model extends the object-oriented programming world of interfaces, classes, objects, references, object-

local state and methods with components, which we call boxes. Similar to an object, a box is a runtime entity, which is
created dynamically, has an identity and a state. In general, it groups several objects together and its state is composed
of the contained object states. At runtime each object belongs to exactly one box, thus defining a clear runtime
boundary. A more detailed description including the discussion of design decisions and showing the use of the model
for modular specification can be found in [56].

On the source level, boxes are described by box interfaces and box classes. Each box class implements a box
interface. When a box class is instantiated, a new box is created together with the object of the box class. The resulting
object has the type of the corresponding box interface because (in order to enforce interface-based polymorphism) in
our language the programmer can only use interfaces as types, not classes. Boxes form a tree at runtime, with a
special global box at the root. A box is nested in the box that created it. The main expression of the program is always
evaluated in the global box.

The purpose of the box model is to define a precise boundary of object-oriented runtime components. In addition,
the box model conceptually structures the heap into hierarchical components. One important aspect of components
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box interface IBank {
global String getAddress();
boundary IAccess getAccess(int accountid);

}

interface IAccess {
global String getAddress();
int getBalance(int pin);
void transferTo(boundary IAccess acc, int amount, int pin);

}

interface IAccount {
global String getAddress();
void withdraw(int amount);
void deposit(int amount);
int getBalance();
boolean checkPin(int pin);
boundary IAccess getAccess();

}

Figure 1: Interfaces of the bank example

is encapsulation. To ensure that certain objects are never exposed by a box, the object-oriented calculi supporting the
box model that have been proposed [56, 55] are equipped with an ownership type system. The basic idea is to group
the objects of a box into distinct domains – a local and a boundary domain. Local objects are encapsulated in the
box and cannot be referenced from the outside, boundary objects are accessible from the outside. The owner object
of a box, i.e., the instance of the box class, is always accessible by the outside. It does not belong to the boundary
domain of the box, instead it belongs to some domain of its surrounding box. In general the accessibility among
objects follows three rules, called the accessibility invariant: (i) objects in the same box can access each other, (ii)
when an object can access the owner object of a box, it can access the boundary objects of this box, (iii) objects can
access any object of a surrounding box (transitively).

This leads to a generalization of the owners-as-dominators property known from other ownership type systems
[24], which we call boundaries-as-dominators. This property essentially means that all access paths from the environ-
ment of a box to a local object must go through the boundary of the box, where the boundary consists of the box owner,
the objects of the boundary domain, and transitively the boundary of all boxes whose owners are in the boundary. The
more restricted owners-as-dominators property can be achieved by a box without any boundary objects.

The ownership type system, which guarantees the accessibility invariant, relies on source level type annotations. A
type I is annotated with a domain annotation d by writing d I. A domain annotation can be local, boundary, owner,
or global. In addition, types can have domain parameters to express genericity in domain annotations. A domain
annotation is always relative to a certain box. By default, this is the current box, i.e., the box of the this-object. For
example, the type local I means that all instances of that type belong to the local domain of the current box. A box
can also be explicitly specified by using a local variable referencing a box owner, i.e., an object of a box class. For
example, the domain annotation x.boundary refers to the boundary domain of the box of the object referred by x.1

The owner domain annotation refers to the domain which the current this-object belongs to, the global domain
annotation represents the local domain of the global box. Types are only assignable if they have compatible domain
annotations. Domain annotations are compatible if at runtime they always refer to the same domain. The domain
annotations restrict the usage of types to guarantee the encapsulation of objects. In particular, it is guaranteed that all
access paths from an object outside of a box to an object of a local domain of a box must go through either the owner
of the box or a boundary object. This is ensured by the type system by the restricting of assignments as described
above and the prevention of certain domain annotations like x.local, for example.

2.1.1. The Bank Example using Boxes and Ownership Annotations
The interfaces of the implementation are shown in Figure 1. The basic idea of the implementation is that a bank

represents internally accounts as IAccount objects and that external access to these object is only done via IAccess
objects. Figure 2 shows a runtime view of the bank box with two accounts and a single client that accesses these two
accounts via access objects, incorporating the concepts of boxes and domains.

As the bank implementation requires to encapsulate objects, it is realized as a box, thus the IBank interface is
declared as a box interface. The bank has an address which can be obtained by the getAddress method, which
returns a String object. As the String object is immutable it can be safely shared and thus it is put in the global

domain. In order to be able to access an account of the bank a client has to obtain a IAccess object by using the

1To simplify the semantics of our language, all local variables are final and can thus be used as box owners. In a language like Java, non-final
variables cannot be used as owners. This is similar to other ownership domain approaches [3, 55, 61].

4



CBank

a1:CAccess

a2:CAccess

CAccount

Client

CAccount

x

global domain

object

box

boundary domain

local domain

Legend

Figure 2: Runtime view to the bank example. The box ownership type-system ensures that the client can access the boundary objects of the bank,
i.e., the CAccess objects, but cannot access local objects of the bank, i.e., the CAccount objects (indicated by a crossed-out line). Thus the bank
implementation has the guarantee that internal account objects are encapsulated and cannot be directly manipulated by clients.

class GoodClient implements IClient {
void useBank(final IBank bank) {

bank.boundary IAccess a1 = bank.getAccess(1001);
bank.boundary IAccess a2 = bank.getAccess(1002);
a1.transfer(a2, 100, 1234); // type correct
}

}

class MaliciousClient implements IClient {
void useBank(final IBank bank) {

final IBank bbank = new BadBank();
bank.boundary IAccess goodA = bank.getAccess(1001);
bbank.boundary IAccess badA = bbank.getAccess(1002);
badA.transfer(goodA, −100, 1234); // type error
}

}

Figure 3: Two bank clients that try to transfer money between two accounts. The GoodClient uses two access objects of the same bank and can
thus successfully transfer money. The MaliciousClient tries to use access objects of different banks and will be rejected by our box ownership
type system.

getAccess method of the bank. As the IAccess objects should be accessible by clients of the bank, they are put into
the boundary domain of the bank box. Internally a bank uses IAccount objects to manage bank accounts. These
objects, however, must not be accessible by clients directly as they offer operations that can arbitrarily manipulate
the state of an account. For simplicity, our example only allows for bank-internal transfer of money, i.e., money can
only be transferred between accounts of the same bank. To transfer money a client uses the IAccount interface and
passes as argument the access object of the account to which the money should be transferred too. The boundary

annotation ensures that the access object belongs to the same bank as the receiver object. Figure 3 shows two client
implementations that demonstrate this.

The implementation of the bank in terms of box classes and classes with standard class-based inheritance is shown
in Figure 4. Internal account implementations are realized by the CAccount class. The CBank class has a local Map

that maps account identifiers to local CAccount objects. The local ownership annotation ensures that these objects
can only be referenced by objects that belong to the same bank box. The CAccount class offers a method getAccess

that returns a new boundary IAccess object to access the account. As CAccount is not a box class itself, the
boundary annotation refers to the boundary domain of the owning box, in this example, a bank box. The CAccess

class implements the methods to access the internal account objects. It has a local IAccount field that refers to the
corresponding account object. The local annotation ensures that the account object belongs to the local domain of
the bank box.

Besides the standard CAccount implementation, the bank also provides accounts with additional authentication
and billing functionality (CFeeAccount and CAuthAccount). Both classes inherit from the CAccount class to share
code with the basic account implementation. However, an implementation of an account class that has both func-
tionalities (CFeeAuthAccount) can not be realized easily in a language with single inheritance without duplicating
code.

2.2. Programming with Boxes, Ownership Annotations, and Traits

In this section we illustrate how traits can be exploited to support code reuse among box classes and classes, and
also to improve code reuse among box classes and among classes. We consider a language where a trait consists of
methods, of required methods, which parametrize the behavior, and of required fields that can be directly accessed in
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class CAccount implements IAccount {
int balance;
int pin;
global String address;
CAccount(int aPin, global String anAddress)
{ ... /∗ init fields ∗/ }

global String getAddress() { return address;}
boolean checkPin(int aPin) { return pin == aPin; }
void withdraw(int amount) { balance −= amount; }
void deposit(int amount) { balance += amount; }
int getBalance() { return balance; }
boundary IAccess getAccess() { return new boundary CAccess(this); }

}

class CAccess implements IAccess {
local IAccount acc;
CAccess(local IAccount aAcc)
{ acc = aAcc; }

global String getAddress() { return acc.getAddress();}
int getBalance(int pin) {

if (!acc.checkPin(pin)) fail;
return acc.getBalance();

}

void transferTo(boundary IAccess toAcc, int amount, int pin) {
if (!acc.checkPin(pin)) fail;
acc.withdraw(amount);
toAcc.deposit(amount);

}

}

box class CBank implements IBank {
local Map<Integer, local IAccount> accounts;
global String bankAddress;
CBank(global String address)
{ ... /∗ init fields ∗/ }

global String getAddress() {return bankAddress;}
boundary IAccess getAccess(int accountid)
{ return accounts.get(accountid).getAccess(); }

}

class CFeeAccount extends CAccount {
int fee;
CFeeAccount(int aPin, global String anAddress, int aFee)
{ ... /∗ init fields ∗/ }

void withdraw(int amount) { balance −= amount + fee; }
}

class CAuthAccount extends CAccount {
CAuthAccount(int aPin, global String anAddress)
{ ... /∗init fields∗/ }

boolean checkPin(int aPin) {
... // authentication method
}

}

class CFeeAuthAccount extends CFeeAccount {
CFeeAuthAccount(int aPin, global String anAddress, int aFee)
{ ... /∗ init fields ∗/ }

boolean checkPin(int aPin) {
... // same code as in CAuthAccount
}

}

Figure 4: Implementation of the bank example that uses class-based inheritance and the box ownership type system to ensure state encapsulation

the body of the methods, along the lines of [9, 13]. Traits are building blocks to compose classes and other traits. A
suite of trait composition operations allows the programmer to build classes and composite traits.

In the languages considered in this paper, a trait is not a type. That is, a trait declaration does not introduce a type.
Hence a class is not subtype of its composing traits, and the same trait can be used to compose both box classes and
classes. A distinguished characteristic of traits is that the composite unit (class or trait) has complete control over
conflicts that may arise during composition and must solve them explicitly. Traits do not specify any state. Therefore
a class composed by using traits has to provide the required fields.

The trait composition operations considered in our language are as follows: A basic trait defines a set of methods
and declares the required fields and the required methods. The symmetric sum operation, +, merges two traits to form
a new trait. It requires that the summed traits are disjoint. That is, they do not define identically named methods, they
have compatible requirements (two requirements on the same method/field name are compatible if they are identical,
while requirements on different method/field names are always compatible), and the methods defined by each trait
are compatible with the methods required by the other trait. The operation exclude forms a new trait by removing a
method from an existing trait. The operation aliasAs forms a new trait by adding a copy of an existing method with
a new name. The original method is still available and, when a recursive method is aliased, its recursive invocation
refers to the original method. The operation renameTo forms a new trait by renaming all the occurrences of a required
field name or of a required/provided method name in an existing trait. In order to focus on the interactions between
traits and boxes and on the interactions between traits and ownership types, we do not consider class-based inheritance
in our calculus.

2.2.1. The Bank Example using Boxes, Ownership Annotations, and Traits
In Figure 5 we show the implementation of the bank example using traits. Traits are declared with the keyword

trait and a name followed by a trait expression. Trait expressions are defined by the trait composition operations
described above.

In our example all interfaces require the implementation of a getAddress method. We implement this method in
the basic trait TAddress. This trait gets reused in the trait TAccount and TBank and thus the method is available in
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trait TAddress {
global String address;
global String getAddress() {return address;}
}

trait TAccount is TAddress + {
int balance; int pin;
boolean checkPin(int aPin) { return pin == aPin; }
void withdraw(int amount) { balance −= amount; }
void deposit(int amount) { balance += amount; }
int getBalance() { return balance; }
boundary IAccess getAccess() { return new boundary CAccess(this); }

}

class CAccount implements IAccount by TAccount {
int balance;
int pin;
global String address;
CAccount(int aPin, global String anAddress)
{ ... /∗ init fields ∗/ }

}

trait TAccess {
local IAccount acc;
global String getAddress() {return acc.getAddress();}
int getBalance(int pin) {

if (!acc.checkPin(pin)) fail;
return acc.getBalance();

}

void transferTo(boundary IAccess toAcc, int amount, int pin) {
if (!acc.checkPin(pin)) fail;
acc.withdraw(amount);
toAcc.deposit(amount);

}

}

class CAccess implements IAccess by TAccess {
local IAccount acc;
CAccess(local IAccount anAcc)
{ this.acc = anAcc; }

}

trait TBank is TAddress + {
local Map<Integer, local IAccount> accounts;
boundary IAccess getAccess(int accountid)
{ return accounts.get(accountid).getAccess(); }

}

box class CBank implements IBank
by TBank[address renameTo bankAddress] {
local Map<Integer, local IAccount> accounts;
global String bankAddress;
CBank(global String address)
{ ... /∗ init fields ∗/ }

}

trait TFee {
int fee;
void withdraw(int amount) { balance −= amount + fee; }
}

class CFeeAccount implements IAccount
by TAccount[exclude withdraw] + TFee {
int balance;
int pin;
int fee;
global String address;
CFeeAccount(int aPin, global String anAddress, int aFee)
{ ... /∗ init fields ∗/ }

}

trait TAuth {
boolean checkPin(int aPin) {

... // authentication method
}

}

class CAuthAccount implements IAccount
by TAccount[exclude checkPin] + TAuth {
int balance;
int pin;
global String address;
CAuthAccount(int aPin, global String anAddress)
{ ... /∗ init fields ∗/ }

}

class CFeeAuthAccount implements IAccount
by TAccount[exclude checkPin][exclude withdraw] + TAuth + TFee {
int balance;
int pin;
int fee;
global String address;
CFeeAuthAccount(int aPin, global String anAddress, int aFee)
{ ... /∗ init fields ∗/ }

}

Figure 5: Implementation of the bank example using Boxes and Traits
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all account classes and in the class CBank. Note that the account classes directly provide the required field, whereas
the class CBank provides the field bankAddress. In order to match required and provided field, the required field
of the trait is renamed during the composition of the traits into CBank. Using the trait TAddress directly or indi-
rectly in multiple classes, which are unrelated in terms of types, theses classes share the same implementation. In
single-inheritance based languages one would achieve this by using a common supertype, but for the price of adding
an unwanted subtype relation. Also note, that the trait TAccess, which implements the methods of the interface
IAccess, provides a different implementation of a getAddress method and therefore the trait TAddress is not used
to implement the class CAccess. We can see that using traits is independent of the type hierarchy formed by the
interfaces.

The trait TAccount provides implementations for all methods of the IAccount interface, whereas the trait TFee
only provides a new withdraw method. The class CAccount, representing standard accounts, is built by directly
using the trait TAccount and declaring all fields required by the trait. Since classes (and not traits) are the generators
of objects, constructors are implemented inside classes. All other methods are implemented by traits, which are given
in the trait expression of the class declarations. The class CFeeAccount is defined by using the trait TAccount and the
trait TFee. We exclude the implementation of withdraw from the TAccount trait and use the withdraw operation
of TFee instead. This is similar to overriding in inheritance based languages, but with traits we do not introduce
additional subtype relations. The class CAuthAccount is implemented similarly to CFeeAccount.

In an object-oriented language with single inheritance it would be difficult to create a fourth class that combines a
CFeeAccount with a CAuthAccount. Typically one would have to inherit one class and manually add the code of the
other class to the subclass. When using traits as unit of code reuse, we can combine the traits TFee, TAuth with the
trait TAccount into the class CFeeAuthAccount without the need to copy neither code for handling fees nor code for
handling authentication. Instead we only have to remove the methods provided by TFee and TAuth from TAccount,
in order to define a valid trait expression.

2.3. Advantages of Combining Boxes with Traits

Up to now, the box model has been presented in class-based languages without inheritance [56, 55]. The box model
could be extended to languages with single inheritance, as done for other ownership type systems and illustrated in the
example in Section 2.1.1. However, the box ownership type system separates box and non-box type hierarchies, which
means that a box class cannot be a subtype of a non-box class and vice versa. As mainstream programming languages
like JAVA and C] identify inheritance and subtyping, these two hierarchies cannot share code through class-based
inheritance. For instance, in Figure 4, the body of the method getAddress is duplicated in the box class CBank and
in the class CAccount.

A possible way to deal with this problem might be to introduce a new type parameter that defines for each type
(class or interface) use whether the type is a box type or not. This solution has the drawback that it would make the
language and the type system more complex, both for the user and for the implementer.

As illustrated in Section 2.2, using traits elegantly solves this problem as traits can be shared among classes even if
one is a box class and the other is not. For instance, in Figure 5, the method getAddress is defined in trait TAddress
and then used by the class CAccount and by the box class CBank. Moreover, traits also improve code reuse among
box classes and among classes. For instance, in Figure 5, the method checkPin defined in trait TAuth is used by both
classes CAuthAccount and CFeeAuthAccount.

3. A Minimal Core Calculus for Boxes and Traits: Syntax and Flattening

In this section we present the syntax of IMPERATIVE FEATHERWEIGHT BOX TRAIT JAVA (IFBTJ), a minimal
core language (in the spirit of FJ [36]) for boxes and traits. We also present a flattening translation that provides a
canonical semantics of traits by compiling them away.

3.1. Syntax

The syntax of IFBTJ is presented in Fig. 6. We use similar notations as FJ [36]. For instance: e denotes the
possibly empty sequence e1, . . . ,en and the pair N f; stands for N1 f1; . . .Nn fn;. The empty sequence is denoted by •,
the length of a sequence e is denoted by |e|, and the concatenation of two sequences N′ and N

′′ is denoted by N
′
N
′′.
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P ::= ID TD CD e programs

ID ::= [box] interface I〈α〉 extends N { S } interfaces
N ::= I〈d〉 source types
S ::= N m (N x) method headers
d ::= α | b.c | global domain annotations
b ::= box | x | null | ? domain owners
c ::= local | boundary domain kinds

TD ::= trait T〈α〉 is TE traits
TE ::= {F; S; M} | T〈d〉 | TE+TE | TE[exclude m] | TE[m aliasAs m] | trait expressions

TE[m renameTo m] | TE[f renameTo f]
F ::= N f fields
M ::= S { return e; } methods
e ::= x | null | this.f | this.f= e | e.m(e) | newC〈d〉 | (N)e | expressions

CD ::= [box] class C〈α〉 implements I〈d〉 by TE { F; } classes

Figure 6: IFBTJ: Syntax (I ∈ interface names, T ∈ trait names, C ∈ class names, m ∈method names, f ∈ field names, α,β ∈ domain parameters)

A program consists of interfaces, box interfaces, traits, classes, box classes and an expression, which represents
the main method of the program. For simplicity, we assume that each class (and each box class) has a companion
interface (resp. box interface) that it implements. Interfaces and box interfaces list the public methods of a class. The
language has no explicit constructors: when a new object is created, all fields are set to null. Note that constructors
can be simulated by ordinary method calls. Each class or box class declares fields and defines methods through a trait
expression.

Interface names and box interface names are the only source level types. The set of expressions is quite standard.
Just observe that, since interface names and box interface names are the only source level types, fields can be selected
only on this.

For conciseness of the formalization, we have streamlined the notation of ownership annotations used in Sect. 2.
Instead of writing the owning domain in front of the type, we now write it as the first parameter of the type. This also
means that there is no owner keyword, because the obligatory first domain parameter always represents the owning
domain. A domain annotation can either be a domain parameter α , the global domain, or is of the form b.c, where
the first part defines the owner of the domain, and the second part defines the domain kind, that is, whether it is the
boundary or local domain. The keyword box denotes the owner of the current box. The name of a local variable x

is used for objects of box classes and denotes the box owned by x. For example, x.local denotes the local domain
of the box owned by x. In general, this can also be an owner of a domain, but we assume that in the surface syntax
this does not appear as an owner. It may, however, appear as owner during the typing. Owners null and ? do not
belong to the surface syntax (indicated by an underline), but can appear during reduction. ? as owner represents an
invalid domain annotation, and null is the owner of the global domain. In fact, all occurrences of global are treated
as null.local.

Convention 3.1 (Conventions on Sequences of Named Elements). We use the phrase sequence of named elements to
refer to a sequence of declarations (e.g., field declarations, method headers, method definitions...). Unless explicitly
stated (or clear from the context), we do not consider a sequence of names as a sequence of named elements. We say
that a sequence of named elements is well formed if it does not contain duplicated names. In the following, sequences
of named elements are in general assumed to be well formed. Sometimes we emphasize this fact by writing S wf to
assert that S is well-formed. The sequence of the element names of S is denoted by names(S), the subsequence of the
elements of S with names n is denoted by choose(S,n), and exclude(S,n) denotes the sequence obtained from S by
removing the elements with names n. Following [36], we use a set-based notation for operators over sequences of
named elements. For instance, M = N m(N x){return e} ∈ M means that the method definition M occurs in M. In the
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J[box] class C〈α〉 implements
I〈d〉 by TE { F; }K def

= [box] class C〈α〉 implements I〈d〉 by {F; •; JTEK} { F; }
J{F; S; M}K def

= M

JT〈d〉K def
= JTE[d/α]K if trait T〈α〉 is TE

JTE1 +TE2K
def
= JTE1K · JTE2K

JTE [exclude m]K def
= M

′ ·M′′ if JTEK = M
′ ·M ·M′′ and M= · · ·m(· · ·){· · ·}

JTE [m aliasAs m′]K def
= M · (N m′(N x){return e;})

if JTEK = M and N m(N x){return e;} ∈ M
JTE[f renameTo f′]K def

= JTEK[f′/f]
JTE[m renameTo m′]K def

= mR(JTEK,m,m′)
mR(N n(N x){return e;},m,m′) def

= N n[m
′
/m](N x){return e[this.m′/this.m];}

mR(M1 · ... ·Mn,m,m
′)

def
= (mR(M1,m,m

′)) · ... · (mR(Mn,m,m
′))

Figure 7: Flattening IFBTJ to FIFBTJ

union and in the intersection of sequences, denoted by S∪S′ and S∩S′, respectively, it is assumed that if n∈ names(S)
and n∈ names(S′) then choose(S,n) = choose(S′,n). In the disjoint union of sequences, denoted by S ·S′, it is assumed
that names(S)∩names(S′) =∅.

3.2. Flattening
The flattening principle has been introduced in the original formulation of traits in SQUEAK/SMALLTALK [30] in

order to provide a canonical semantics to traits. Flattening states that the semantics of a method introduced in a class
through a trait should be identical to the semantics of the same method defined directly within a class. This makes
it possible to reason about the properties of a language with traits by relying on the semantics of the subset of the
language without traits. Note that flattening aims only to provide a canonical semantics to traits, it is not an especially
effective implementation technique (see, e.g., [52, 39]).

In order to formalize flattening for IFBTJ we consider a subset of the language that we call FIFBTJ (FLAT
IFBTJ), where there are no trait declarations and the syntax of trait expressions is simplified as follows:

TE ::= {F; •; M}

A FIFBTJ class class C〈α〉 implements I〈d〉 by { F′; •; M } { F;} can be understood (modulo the domain anno-
tations) as the standard JAVA class class C〈α〉 implements I〈d〉 { F; M }. Similarly for box classes. Therefore, the
canonical (static and dynamic) semantics for IFBTJ can be specified by providing: (i) a semantics for FIFBTJ, and
(ii) a flattening translation that maps a IFBTJ program into a FIFBTJ program.

The flattening translation is specified through the function J·K, given in Figure 7, that maps each IFBTJ class or box
class declaration to a FIFBTJ class or box class declaration, respectively, and maps a trait expression to a sequence
of method declarations. We write JPK to denote the program obtained from P by dropping all the trait declarations
and by translating all the class and box class declarations. The clauses in Figure 7 should be self-explanatory. Note
that the flattening clause for field renaming is simpler than the flattening clause for method renaming (which uses the
auxiliary function mR); this is due to the fact that fields can be accessed only on this.

4. Ownership Typing for FIFBTJ

Before introducing the constraint-based ownership type system for IFBTJ, we introduce an ownership type system
for FIFBTJ. The ownership type system for FIFBTJ is similar to the ownership type system described in [55].
This type-system serves as a “specification” for the constraint-based ownership type system that we will present in
Section 5, in the sense that any FIFBTJ program must be typable by the constraint-based ownership type system if
and only if it is typable by the ownership type system. This property will be formally stated in Section 6.
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U ::= I | C type names
L ::= G | ⊥ types
G ::= N | C〈d〉 nominal types

Figure 8: IFBTJ: Type names, types and nominal types

Γ `o � environment Γ is valid
Γ `o d1→ d2 domain d1 can access domain d2
Γ `o d domain d is valid
Γ `o G′ type G′ is valid
Γ `o e : G′ expression e has type G′

G `o S method header S is well-typed
G `o M method M is well-typed
G<: G′ type G is a subtype of type G′

`o ID interface ID is well-typed
`o CD class CD is well-typed
`o P : N program P is well-typed and its main expression has type N

Figure 9: Judgments used by the type system

In presenting the ownership type system we will use the distinguished symbol⊥ to denote the type for the constant
null, use the metavariable U to range over interface names and class names, and use the metavariables L and G to
range over types and non-⊥ types, respectively; see Figure 8.

Type environments, ranged over by Γ, are maps from variables to types. A type environment records the type
information of free variables.

Γ ::= this : G | Γ,x : N environment

When building type environments with sequences of variables, e.g. x : N, we implicitly assume that the names x are
distinct and do not contain this. We also use the functional notation Γ(x) to get the type of x in Γ.

In the following subsections the different judgments are presented. They are shown in Fig. 9. Some judgments
are of the form Γ `o ... . This means, that the right hand side is evaluated under the type environment Γ. The type of
this plays a crucial role as it defines the valid domain parameters and whether the current context is a box class or
a normal class. Therefore, a type assumption for this is required even when typing expression that do not contain
occurrences of this.

4.1. Method and Field Lookup

Figure 10 presents functions to look up field and method information from classes and interfaces. All lookup
functions take the current context type as a parameter and substitute domain arguments for domain parameters. The
function field looks up the type of a field in a class. The function mbody looks up the body of a method in a class,
which is a pair (x,e) of the parameter names x and the body expression e of the corresponding method. Finally,
function mSig looks up method signatures. Signatures, ranged over by σ , are method headers deprived of parameter
names. For instance, the signature associated to the header N m(N1 x1, . . . ,Nn xn) is N m(N1, . . . ,Nn). The function mSig
uses the function toSig, which converts method headers and methods into method signatures.

Function params returns the domain parameters of a class or an interface.

4.2. Owning Box

To be able to adapt the box keyword that is used as a domain owner to the using context, we define a function
that translates the keyword to a matching representation. First we define a function obox that, given a type and an
expression, returns the box owner (see Figure 11). The type and the expression represent the receiver of a method
call or field access. Additionally it takes as the first parameter the owning domain of the context type, i.e. the domain
which owns the type of the class or interface surrounding the call or field access. The expression is needed for
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. . . class C〈α〉 . . . N f ; . . .
field(C〈d〉, f ) = N [d/α]

. . . class C〈α〉 . . . N m(N x){return e} . . .
mbody(C〈d〉,m) = (x,e[d/α]) toSig(N m(N x)) = N m(N)

toSig(S {return e}) = toSig(S)
. . . class C〈α〉 implements N { F;M } σ = toSig(M1)∪ . . .∪ toSig(Mn)

mSig(C〈d〉) = σ [d/α]

. . . interface I〈α〉 extends N { S } σ = mSig(N1[d/α])∪ . . .∪mSig(Nn[d/α])

mSig(I〈d〉) = (toSig(S) [d/α])∪σ

box interface I〈α〉 . . .
isBoxType(I)

box class C〈α〉 . . .
isBoxType(C)

isBoxType(U)
isBoxType(U〈d〉)

. . . interface I〈α〉 . . .
params(I) = α

. . . class C〈α〉 . . .
params(C) = α

Figure 10: Auxiliary functions to look up information from class and interface declarations.

e= x∨e= null

validOwner(e)

(OWNER-DOMAIN)

odom(U〈d〉) = d1

isBoxType(L)∨L=⊥ validOwner(e)
boxOwner(L,e) = e

¬isBoxType(C) d1 = b.c

boxOwner(C〈d〉,e) = b

(BOX-DOMAIN)
b= boxOwner(G,e)

obox( ,G,e) = b

(BOX-INVALIDOWNER)
isBoxType(G) ¬validOwner(e)

obox( ,G,e) = ?

(BOX-SAME)
¬isBoxType(G) odom(G) = α

obox(α,G, ) = box

(VIEWPOINT-ADAPTATION)
G′ = G[obox(d1,Ge,e)/box]

U〈d〉;Ge;e `o G.G′

Figure 11: Functions to translate the box keyword to the corresponding user context.

cases where the receiver class is a box class as in that case the expression is used to represent the box in the calling
context. Expressions, however, can only represent domain owners if they are either variables or null, specified by the
validOwner function. In case the expression is not a valid domain owner, the invalid owner ? is returned. If the type
argument is not of a box type, the first domain parameter of the type is used to find out the box owner. If the domain
parameter is α we know that the owning box must be the same as the box we are currently in. If the type is not in the
same box and no concrete domain is given as the owning domain, we cannot statically find out in which box the type
argument is and therefore cannot return its owner. The actual translation of types to the user context is done by rule
(VIEWPOINT-ADAPTATION). It takes the context type (U〈d〉), the expression that receives a method call or field access
(e), its type (Ge), and the type that should be adapted (G), e.g. the type of a method parameter. Consider the following
example. Let J<box.boundary> be the return type of a method m in a box interface I and let x be a variable typed
as I<box.local>. The type of the method call x.m() is now obtained by applying the viewpoint-adaptation to the
return type, resulting in type J<x.boundary>, because box is substituted with x. In case I is not a box interface, box
is replaced by box again, because the owner domain of x is box.local, resulting in type J<box.boundary>.

4.3. Subtyping

The subtyping relation is given in Figure 12; it is the transitive, reflexive closure of the extends-relations between
interfaces and the implementing classes. Note that box interfaces and box classes are subtypes of box interfaces only.
This leads to two distinct type hierarchies, and allows us to distinguish in the type system between box and non-box
types. This distinction is needed to define the accessibility relation (see below). To define the subtype relation we use
the function isBoxType(G), which returns true if G is a class or interface annotated with box.
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(S-NULL)

⊥<: G

(S-REFL)

G<: G

(S-TRANS)
G1 <: G2 G2 <: G3

G1 <: G3

(S-EXTENDS)
. . . interface I〈α〉 extends N . . . N ∈ N

I〈d〉<: [d/α]N

(S-IMPLEMENTS)
. . . class C〈α〉 implements N . . .

C〈d〉<: [d/α]N

Figure 12: Subtyping rules

(V-ENV-VAR)
Γ `o � x < dom(Γ) Γ `o N

Γ,x : N `o �

(V-ENV-THIS)
obox( ,G, ) = box∨ isBoxType(G)

this : G `o �

Figure 13: Well-formed environments

4.4. Well-Formed Environments

The rules shown in Figure 13 define well-formed environments. They state that variable names must be distinct
and all variables are well-typed. In addition, it ensures that the context type and the context box owner are consistent.
This mainly means that if the context type is not a box type then the box owner of that type must be the box owner
given in the context. All type environments constructed by rules of our type system have the implicit assumption that
they are well-formed according to this notion.

4.5. Accessibility Relation

The first key element of the type system is the accessibility relation on domains presented in Figure 14. Judgments
of the form Γ `o d1 → d2 tell us that domain d1 can access domain d2 in the given context meaning that all objects
in d1 can access all objects in domain d2. The relation formalizes the accessibility among domains depending on
the ownership hierarchy of boxes. A domain has access to itself (A-REFL). The domains with the same owner, i.e.
belonging to the same box, can access each other (A-OWNER). A domain can always access the global domain (A-
GLOBAL) (a domain with owner null). The rules (A-PARAM) to (A-PARAM4) relate the domains of the current context
type to the domains of the current box. Rule (A-PARAM) states that the domains of the current box can access the
domains of the context type and Rule (A-PARAM2) says that the owning domain, i.e., d1, has access to all parameter
domains. These two rules essentially specify that it is impossible to pass domains through other domains without
following the box hierarchy. The owning domain of the context type, i.e., the domain of the this object, has access
to the local domain of the current box if it is not a box type (A-PARAM3). Independent of the type of the context,
the owning domain can always access the boundary domain of the current box (A-PARAM4). This rule applies if the
current box is an inner box of the box containing the context type and local domains of inner boxes are protected
against the access from surrounding boxes. A domain can always access the boundary domain of a box, which it can
access (A-BOUNDARY) and the boundary domain has always access to the owning domain of the box (A-BOUNDARY2).

4.6. Valid Domains and Valid Types

The second key element of the ownership type system is the definition of valid domains and types shown in
Figure 15. The notion of validity is strongly related to the accessibility relation. The most important rule is (V-TYPE),
which guarantees that breaking encapsulation by passing domains as parameters, which are not accessible by the first
domain parameter, i.e. the domain of this, is impossible. This rule corresponds to ownership nesting rules known
from other ownership type systems [58].
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(A-REFL)

Γ `o d→ d

(A-OWNER)

Γ `o box.c1→ box.c2

(A-GLOBAL)

Γ `o d→ null.c

(A-PARAM)
U〈d〉= Γ(this)

Γ `o box.c→ d

(A-PARAM-2)
U〈d〉= Γ(this)

Γ `o d1→ d

(A-PARAM-3)
¬isBoxType(U) U〈d〉= Γ(this)

Γ `o d1→ box.local

(A-PARAM-4)
U〈d〉= Γ(this)

Γ `o d1→ box.boundary

(A-BOUNDARY)
U〈d〉= Γ(x) Γ `o d→ d1

Γ `o d→ x.boundary

(A-BOUNDARY-2)
U〈d〉= Γ(x)

Γ `o x.boundary→ d1

Figure 14: Accessibility relation

(V-DOMAIN-BOX)

Γ `o box.c

(V-DOMAIN-NULL)

Γ `o null.c

(V-DOMAIN-PARAM)
U〈d〉= Γ(this)

Γ `o di

(V-DOMAIN-VAR)
U〈d〉= Γ(x) isBoxType(U)

Γ `o x.boundary

(V-TYPE)
Γ `o d Γ `o d1→ d Γ `o box.c→ d1 |params(U)|= |d|

Γ `o U〈d〉

Figure 15: Valid domains and types

4.7. Typing rules for Programs, Interfaces and Classes
The typing rules for the ownership type system are mostly standard. Figure 16 shows the typing rules for programs,

interfaces and classes.
The (T-PROG) rule requires some explanation. The initial expression e is typed under the context type

Global〈null.local〉 (recall that, as explained at the beginning of Section 4, the context type information is provided
through the type assumed for this). We just assume that Global is some predefined interface without any methods.
In addition, all other elements of the program must be well-typed, and some sanity conditions must hold. Interfaces
are well-typed if the declared method headers are well-typed. A class or box class is well-typed if all fields have valid
types in the class C, and all methods are well-typed in the context of the class C. This rule instantiates the context used
in the rules for expressions and to test validity of types and accessibility of domains. Methods are typed as usual.
The types appearing in the method signature must be valid in the current context, and the type of the body expression
must be a subtype of the declared return type.

4.8. Typing rules for Expressions
The typing rules for expressions are shown in Fig. 17. The non-standard rules are (T-FIELD) and (T-INVK). Both

rules exploit rule (VIEWPOINT-ADAPTATION) (see Figure 11) to adapt the declared type to the application context.
To type this.f, we have to find the type for this, to look up the type of the field f (done by field) and then to

translate the looked up type into the current context. The translated type has to be type correct as well. The rule for
calls look similar, but translates the declared parameter types.

5. Constraint-based Ownership Typing for IFBTJ

In this section we present the constraint-based ownership type system for IFBTJ. The constraint-based type system
analyzes each trait definition in isolation from the classes or traits that use it (cf. Section 1). The idea is to type-check
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(T-PROG)
`o ID `o CD this < e this : Global〈null.local〉 `o e : N

`o ID CD e : N

(T-INTERFACE)
this : I〈α〉 `o N I〈α〉 `o S ∀I′〈d〉 ∈ N : (isBoxType(I)⇔ isBoxType(I′))∧α1 = d1 mSig(I〈α〉) wf

`o . . . interface I〈α〉 extends N { S }

(T-METHOD-HEADER)
this : N′ `o N this : N′ `o N

N′ `o N m(N x)

(T-CLASS)
C〈α〉 `o M mSig(I〈d〉)⊆ mSig(C〈α〉)

this : C〈α〉 `o I〈d〉 α1 = d1 this : C〈α〉 `o N isBoxType(C)⇔ isBoxType(I)
`o . . . class C〈α〉 implements I〈d〉 by {N f; •; M} { N f; }

(T-METHOD)
S= N m (N x) this : G `o N∪N this : G,x : N `o e : L L<: N

G `o S{return e}

Figure 16: Program, interface, class and method typing

(the methods provided by) a trait definition by using ownership type-constraints to collect the ownership type-checks
that require to know the class C of the this object (that is, the class C composed by using the trait). These constraints
will then be checked when type-checking the classes that are composed by using the trait.

As we will formally state in Section 6: (i) on FIFBTJ programs the constraint-based ownership type system is
equivalent to the ownership type system given in Section 4 (that is, if an FIFBTJ program type-checks with respect to
one of the two systems, then it will type-check also with respect to the other); and (ii) the constraint-based ownership
type system conforms to the flattening principle (that is, if an IFBTJ programs type-checks than also its flattened
version will type-check).

5.1. Overview

The constraint-based type system collects, for each method definition in the trait, the constraints on the use of
this within the method body. In particular, each method

M = N0 m (N x) { return e; } ∈ M

defined within a basic trait expression {F; S; M} is type-checked by assuming for this the structural type 〈 F p σ 〉,
where F and σ = toSig(S) · toSig(M) are the required fields and the signatures of the required/provided methods of the
basic trait expression, respectively. The typing judgment for method definitions has the form:

〈 F p σ 〉 `co M : µ

to be read “assuming the structural type 〈 F p σ 〉 for this, the method M has constraint-based type µ”, where

µ = N0 m(N) p 〈 F′ p σ
′ 〉 p (x,Φ)

is such that

1. N0 m (N) is the signature of the method;
15



(T-NULL)

Γ `o null :⊥

(T-VAR)
x : G ∈ Γ

Γ `o x : G

(T-FIELD)
Γ `o this : G Nf = field(G,f) G;G;this `o Nf .N′f Γ `o N′f

Γ `o this.f : N′f

(T-FIELD-UP)
Γ `o this.f : G Γ `o e : L L<: G

Γ `o this.f= e : G

(T-INVK)
Γ `o e : Ge Γ `o e : L mSig(Ge) = . . . Gm m(Gm) . . .

Γ(this);Ge;e `o Gm .G′m Γ(this);Ge;e `o Gm .G′m Γ `o G′m Γ `o G′m L<: G′m
Γ `o e.m(e) : G′m

(T-NEW-CLASS)
. . . class C〈α〉 implements N . . . Γ `o C〈d〉

Γ `o new C〈d〉 : N[d/α]

(T-CAST)
Γ `o N Γ `o e : L N<: L ∨ L<: N

Γ `o (N)e : N

Figure 17: Expression type rules

2. the pair 〈 F′ p σ
′ 〉 specifies that the body of the method (the expression e) selects the fields F′ (⊆ F) and the

methods with signatures σ
′ (⊆ σ ) on this;

3. x are the names of the formal parameter of the method; and
4. Φ is a the set of constraints representing the checks that must be performed when type-checking the classes that

use a trait providing the method.

In particular, the constraints in Φ represent the view-point adaptations, the valid ownership annotation checks, the
subtype checks and the method signature lookups that are performed by the ownership type system for FIFBTJ (cf.
Section 4) when type-checking the method definition M within a class definition

. . . class C〈α1α2 · · ·αn〉 implements I〈α1d2 · · ·dn〉 by {F; •; M} { N f; }

The constraints, collected by the ownership type system when analyzing (the method definitions occurring in) a trait
definition, will be checked when analyzing the definition of the classes that use that trait.

Ownership types are responsible for most of the constraints. In particular, when ownership types are not considered
(like, e.g., in [13]), the pair (x,Φ) (described by the items 3 and 4 above) can be replaced by the sequence I of the
interfaces that, according to the use of this in the body of the method, must be implemented by the class of the this
object.

The following example illustrates a situation where it is not possible to perform the ownership type checks when
analyzing a trait definition.

interface H〈α〉 extends • { J〈box.boundary〉 m();}

interface J〈α〉 extends • {· · ·}

interface I〈α,γ〉 extends • { J〈γ〉 foo(H〈box.local〉 x);}

trait T〈α,β 〉 is {
J〈β 〉 f;
J〈β 〉 foo(H〈box.local〉 x) {return this.f= x.m();} // not possible to perform ownership type check here
}

class C1〈α〉 implements I〈α,box.boundary〉 by T〈α,box.boundary〉 { J〈box.boundary〉 f; }

class C2〈α〉 implements I〈α,α〉 by T〈α,α〉 { J〈α〉 f; }
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The interface H has a single method m that has return type J<box.boundary>, where J is another interface. The
interface I has a method foo that has a parameter J<box.local> x. The trait T〈α,β 〉 requires a field J〈β 〉 f and
implements method foo by assigning the result of the method call x.m() to f and returns that value.

Since the return type of x.m() is J〈box.boundary〉 (after viewpoint adaptation), the type correctness of the
assignment depends on the instantiation of the domain parameter β of trait T.

The classes C1 and C2 use the trait Twith two different domain parameter instantiations. Class C1 uses box.boundary
for β and class C2 uses α .

The flattened versions of classes C1 and C2 are as follows.

class C1〈α〉 implements I〈α,box.boundary〉 {
J〈box.boundary〉 f;
J〈box.boundary〉 foo(H〈box.local〉 x) {return this.f= x.m();} // ownership type check succeeds
}

class C2〈α〉 implements I〈α,α〉 {
J〈α〉 f;
J〈α〉 foo(H〈box.local〉 x) {return this.f= x.m();} // ownership type check fails
}

The traits have been removed and the domain parameters of the traits have been replaced by their instantiations.
According to the ownership type system for FIFBTJ (cf. Section 4), class C1 is correctly typed, while class C2 is type
incorrect. The type of x.m() is in both classes J〈box.boundary〉, which is assigned to a field of type J〈box.boundary〉
in class C1, but to a field with type J〈α〉 in C2.

5.2. Constraints and Constraint Checking Rules
The constraints, illustrated in Figure 18 (middle), involve types and type variables, including the distinguished

type variable χ . Type variables, ranged over by X, will be instantiated to nominal types when checking the constraints.
The variable χ will be instantiated to the type of this. The metavariable O denotes either a nominal type or a type
variable while the metavariable R denotes either a type or a type variable, as illustrated in Figure 18 (top).

The checking judgement for constraints is Γ `co Φ, to be read “the constraints in the set Φ are satisfied with
respect to the type environment Γ”. The associated typing rules are given in Figure 18 (bottom); the operator ]
denotes the disjoint rules of set of constraints. The rules (which rely on judgments introduced in Section 4) are almost
self explanatory, according to the informal meaning given in the middle of Figure 18. In particular, rule:

• (CC-ISVALID) relies on rule (V-TYPE) of Figure 15;

• (CC-VPA) relies on rule (VIEWPOINT-ADAPTATION) of Figure 11 and on rule (V-TYPE) of Figure 15;

• (CC-SUB) relies on the subtyping rules, given in Figure 12;

• (CC-CAST) relies on rule (V-TYPE) and the subtyping rules (according to the typing rule (T-CAST) in Fig-
ure 17); and

• (CC-MTYP) relies on the signature lookup function mSig(·, ·), given in Figure 10.

We say that a constraint is ground to mean that it contains no type variables. The checking of a constraint of the form
isValid(·), sub(·, ·) or cast(·, ·) can be performed only when the constraint is ground. The checking of a constraint of
the form vpa(·, ·, ·, ·) or mTyp(·, ·, ·) can be performed only when the last argument contains only type variables and
there are no occurrences of type variables in the other arguments; the checking causes the instantiation of all the type
variables occurring in the third argument.

5.3. Auxiliary Functions annVars and progVars
The constraint-based typing use the auxiliary functions annVars and progVars which are defined as follows:

annVars(TE) returns the sequence of the annotation variables α that occur within the trait expression TE, and

progVars(d) returns the sequence of the variables x (possibly including this) that occur within the sequence of
domain annotations d.
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Open nominal types and open types

O ::= G | X | χ open nominal types
R ::= O | ⊥ open types

Constraints

ψ ::= isValid(O) type O has valid domain annotations
| vpa(O, e, O′, X) type X is the view-point adaptation of type O′ and has valid domain annotations
| sub(R, O) R is a subtype of O
| cast(N, R) type R can be casted to type N
| mTyp(O, m, XX) source type O has method m with signature X m(X)

Rules for checking constraints satisfaction w.r.t. a type environment

(CC-ISVALID)
Γ `o G Γ `co Φ

Γ `co Φ]{isValid(G)}

(CC-VPA)
Γ(this);Ge;e `o G.G′ Γ `o G′ Γ `co Φ[G

′
/X]

Γ `co Φ]{vpa(Ge, e, G, X)}

(CC-SUB)
L<: N Γ `co Φ

Γ `co Φ]{sub(L, N)}

(CC-CAST)
Γ `o N N<: L ∨ L<: N Γ `co Φ

Γ `co Φ]{cast(N, L)}

(CC-MTYP)
mSig(N,m) = G m(G) Γ `co Φ[GG/X]

Γ `co Φ]{mTyp(N, m, X)}

(CC-EMPTY)

Γ `co /0

Figure 18: Open types syntax (top), constraints syntax (middle) and constraint satisfaction checking rules (bottom)

5.4. Constraint-based Typing Rules for Programs, Traits, Classes, Basic Trait Expressions and Methods
Figure 19 shows the constraint-based typing rules for programs, traits, classes, basic trait expressions and methods.

In order to understand how these rules work it is useful to compare them with the typing rules of system `o in
Figure 16.

Rule (CT-PROGRAM) exploits the typing rules of system `o to type the interface definitions and the main expres-
sion of the program. The typing rule for trait definitions, (CT-TRAIT), assigns to a trait definition trait T〈α〉 is TE
the sequence µ of the constraint-based types of the methods provided by the trait TE (the structure of the constraint-
based type µ of a method has been illustrated at the beginning of Section 5). Note that, since the trait reuse graph
is acyclic, no uses of T may be encountered when typing TE. The typing rule for class definitions, (CT-CLASS),
exploits the constraint-based types inferred for the methods provided by the trait expression TE and the checking rules
for constraints (illustrated in Section 5.2) to perform the same checks that would be performed by rule (T-CLASS) of
Figure 16 when type-checking a class that contains the methods provided by TE. The typing rule for basic trait expres-
sions, (CT-TEBASIC), infers a constraint-based type for each provided method by assuming for this the structural
type 〈 F p σ 〉, where F and σ = toSig(S) · toSig(M) are the required fields and the signatures of the required/pro-
vided methods of the basic trait expression, respectively. This rule also checks that each of the declared as required
fields/methods is used in at least one of the provided methods. The typing rule for methods, (CT-METHOD), infers a
constraint-based type for the body of the method and then builds the constraint-based type for the method by adding to
the constraints inferred for the body of the methods the constraints expressing that the type of the body of the method
must be a subtype of the declared return type and that the return and parameter types have valid domain annotations.

5.5. Constraint-based Typing Rules for Non-Basic Trait Expressions
Figure 20 shows the constraint-based typing rules for non-basic trait expressions. The rule for trait expression

T〈αd〉, (CT-TENAME), looks up the typing of the trait definition trait T〈β 〉 ... and specializes the sequence of
constraint-based types of the provided methods by instantiating the annotation formal parameters β to the actual
parameters αd. The rule for symmetric sum, (CT-TESUM), assigns to the composed trait the concatenation of the
sequences of constraint-based method types inferred for the summed traits; thus, it checks that there are no conflicts
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(CT-PROGRAM)
`o ID `co TD : · · · `co CD this < e this : Global〈null.local〉 `o e : N

`co ID TD CD e : N

(CT-TRAIT)
α = α1, ... α1 `co TE : µ annVars(TE)⊆ α

`co trait T〈α〉 is TE : µ

(CT-CLASS)
α = α1,α2, ...αn d= α1,d2, ...dn α1 `co TE : µ1...µp p≥ 0 annVars(TE)⊆ α

∀i ∈ 1..p, µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi) ζi = Ni (N

(i)
) this : C〈α〉, x(i) : N(i) `co Φi[C〈α〉/χ]

∪i∈1..pσ
(i) ⊆ ζ1...ζp (∪i∈1..pF

(i)
) = N f

mSig(I〈d〉)⊆ ζ1...ζp this : C〈α〉 `o I〈d〉 this : C〈α〉 `o N isBoxType(C)⇔ isBoxType(I)
`co . . .class C〈α〉 implements I〈d〉 by TE { N f; }

(CT-TEBASIC)
mSig(S) = σ mSig(M1...Mp) = ζ1...ζp

p≥ 0 ∀i ∈ 1..p, 〈 F p σ ·ζ1...ζp 〉 `co Mi : µi µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi)

F= ∪i∈1..pF
(i)

σ = exclude((∪i∈1..pσ
(i)),names(ζ1...ζp))

α `co {F; S; M1...Mp } : µ1...µp

(CT-METHOD)
S= N0 m (N x) this : 〈 F p σ 〉, x : N `co e : R p 〈 F′ p σ

′ 〉 p Φ0
N= N1...Nn (n≥ 0) Φ = Φ0∪{sub(R, N0)}∪ (∪i=0..n{isValid(Ni)})

〈 F p σ 〉 `co S{return e;} : N0 m(N) p 〈 F′ p σ
′ 〉 p (x,Φ)

Figure 19: Program, trait, class, basic trait expression and method constraint-based typing rules

among the methods provided by the summed traits (since µ1...µ p+q is a sequence of named elements, it does not
contain duplicated names). It also checks that there are no conflicts among the fields required by the summed traits
(∪i∈1..p+qF

(i) holds) and among the provided methods (ζ1...ζp+q) and the required methods (∪i∈1..p+qσ
(i)). The

rule for method exclusion, (CT-TEEXCLUDE), removes the constraint-based type of the excluded method. The rule
for method aliasing, (CT-TEALIAS), checks that the method to be aliased exists, that the name of the alias does
not create conflicts, and adds the constraint-based type of the alias method. The typing rule for method renaming,
(CT-TERENAMEM), checks that the method to be renamed exists, that the new name does not create conflicts, and
replaces all the occurrences of the name of the method to be renamed with the new name. The typing rule for required
field renaming, (CT-TERENAMEF), is similar.

5.6. Constraint-based Typing Rules for Expressions

Figure 21 shows the constraint-based typing rules for expressions. In order to understand how these rules work it
is useful to compare them with the typing rules for expressions of system `o in Figure 17.

The rule for null, (CT-NULL), is straightforward; no constraints have to be collected. The rule for variables,
(CT-VAR), uses the distinguished type variable χ when x= this, and looks up in the environment ∆ when x , this;
no constraints have to be collected. The rule for field selection, (CT-FIELD), looks up the structural type of this
in ∆, extracts the type N of f and collects the constraint that this must have a field f of type N. Note that, since
the expression e to be checked occurs in the body of a method M, the structural type ∆(this) contains the required
fields declaration of a basic trait expression {F; S; M} such that M ∈ M. The constraints collected by means of rule
(CT-FIELD) are a subset on the assumptions F provided by Γ(this): they describe the fields that are selected on this
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(CT-TENAME)
`co trait T〈β 〉 ... : µ progVars(d) = •

α `co T〈αd〉 : µ[αd/β ]

(CT-TESUM)
α `co TE1 : µ1...µp α `co TE2 : µp+1...µp+q

∀i ∈ 1..p+q, µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi) ∪i∈1..p+qF

(i) ok ζ1...ζp+q∪ (∪i∈1..p+qσ
(i)) ok

α `co TE1 +TE2 : µ1...µp+q

(CT-TEEXCLUDE)
α `co TE : µ m ∈ names(µ)

α `co TE [exclude m] : exclude(µ,m)

(CT-TEALIAS)
α `co TE : µ1......µn

1≤ p≤ n names(µp) = m m′ < names(µ1...µn) ∀i ∈ 1..n, µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi)

µ = ζp[m
′
/m] p 〈 F(p) p σ

(p) 〉 p (x(p),Φp) ζp[m
′
/m]∪ (∪i∈1..nσ

(i)) ok
α `co TE [m aliasAs m′] : µ1...µn ·µ

(CT-TERENAMEM)
(m ∈ names(µ1......µn) implies m′ < names(µ1......µn))

α `co TE : µ1......µn ∀i ∈ 1..n, µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi) σ = ζ1...ζn∪ (∪i∈1..nσ

(i))

m ∈ names(σ) σ [m
′
/m] ok ∀i ∈ 1..n, µ

′
i = ζi[m

′
/m] p 〈 F(i) p σ

(i)[m
′
/m] 〉 p (x(i),Φi)

α `co TE [rename m to m′] : µ
′
1...µ

′
n

(CT-TERENAMEF)

α `co TE : µ1......µn ∀i ∈ 1..n, µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi)

F= F
(1)∪· · ·∪F(n) f ∈ names(F) F[f

′
/f] ok ∀i ∈ 1..n, µ

′
i = ζi p 〈 F(i)[f′/f] p σ

(i) 〉 p (x(i),Φi)

α `co TE [rename f to f′] : µ
′
1...µ

′
n

Figure 20: Non-basic trait expression constraint-based typing rules

by the checked expression. A constraint expressing that the view-point adaptation of the type of the field must have
valid annotations is collected. The rule for field assignment, (CT-FIELDUP), builds the constraint-based type for the
assignment this.f= e by adding to the constraints inferred for this.f and e the constraint expressing that the type
of e must be a subtype of the type of this.f. In the rule for method invocation on this, (CT-THISINVK), the actual
parameters (e1, ...,en) are checked and the inferred constraints are collected in the conclusion of the rule. Then, the
signature ζ of m is extracted from the sequence of signatures σ in the type assumed for this. The constraint that
this must have a method m with signature ζ is collected in the conclusion of the rule, together with the constraints
expressing that subtyping between actual and formal parameter types must hold, and the constraints expressing that
the view-point adaptation of the parameters and return types of the method must have valid annotations. The rule for
method invocation on a receiver different from this, (CT-NONTHISINVK), is similar. The only difference is that a
constraints expressing that the signature of m must be extracted from the type O0 of the receiver is collected. Rules
(CT-NEW) and (CT-CAST) are straightforward.

The rules (CT-FIELD), (CT-THISINVK) and (CT-NONTHISINVK) are the only rules that create type variables.
The type variable X created by rule (CT-FIELD) occur in the fourth argument of the constraint vpa(χ, this, N, X), the
type variables Xi created by rule (CT-THISINVK) occur in the fourth argument of the constraints vpa(χ, this, Ni, Xi),
and the type variables Xi and Yi created by rule (CT-NONTHISINVK) occur in the third argument of the constraint
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(CT-NULL)

∆ `co null :⊥ p 〈 • p • 〉 p {}

(CT-VAR)

O=

{
χ if x= this

∆(x) if x , this
∆ `co x : O p 〈 • p • 〉 p {}

(CT-FIELD)
∆ `co this : χ p 〈 • p • 〉 p { } ∆(this) = 〈 F p · · · 〉 choose(F,f) = Nf X fresh

∆ `co this.f : X p 〈 Nf p • 〉 p {vpa(χ, this, N, X)}

(CT-FIELDUP)
∆ `co this.f : X p 〈 F p • 〉 p Φ ∆ `co e : R p 〈 F p σ 〉 p Φ

∆ `co this.f= e : X p 〈 F∪F p σ 〉 p Φ∪{sub(R, X)}

(CT-THISINVK)

∆ `co this : χ p 〈 • p • 〉 p { } ∀ei ∈ e, ∆ `co ei : Ri p 〈 F(i) p σ
(i) 〉 p Φi

X0...X](e) fresh ∆(this) = 〈 · · · p ζ 〉 choose(ζ ,m) = N0 m(Nx) = ζ

Φ = (∪i=1..](e)Φi)∪{vpa(χ, this, N0, X0)}∪ (∪i=1..](e){vpa(χ, this, Ni, Xi), sub(Ri, Xi)})

∆ `co this.m(e) : X0 p 〈 ∪i∈1..nF
(i) p (∪i∈1..nσ

(i))∪ζ 〉 p Φ

(CT-NONTHISINVK)

∆ `co e0 : O0 p 〈 F(0) p σ
(0) 〉 p Φ0

O0 , χ ∀ei ∈ e, ∆ `co ei : Ri p 〈 F(i) p σ
(i) 〉 p Φi X0...X](e)Y0...Y](e) fresh

Φ = (∪i=0..](e0e)Φi)∪{mTyp(O0, m, X0...X](e)), vpa(O0, e0, X0, Y0)}∪ (∪i=1..](e){vpa(O0, ei, Xi, Yi), sub(Ri, Yi)})

∆ `co e0.m(e) : Y0 p 〈 ∪i∈1..nF
(i) p (∪i∈1..nσ

(i)) 〉 p Φ

(CT-NEW)
· · · class C〈α〉 implements N · ··

∆ `co new C〈d〉 : N[d/α] p 〈 • p • 〉 p {isValid(C〈d〉)}

(CT-CAST)
∆ `co e : R p 〈 F p σ 〉 p Φ

∆ `co (N)e : N p 〈 F p σ 〉 p Φ∪{isValid(N), cast(N, R)}

Figure 21: Expression constraint-based typing rules

mTyp(O0, m, X0...X](e)) and in the fourth argument of the constraints vpa(O0, ei, Xi, Yi), respectively. The checking
rules for constraints (given in Section 5.2) can be applied by considering the constraints in the order in which they
are created. In particular, when the constraints vpa(·, ·, ·, ·) and mTyp(·, ·, ·) are checked their last arguments contain
type variables only, and checking the constraints in a different order may not cause the instantiation of any of those
type variables before the corresponding constraint is checked.

6. Relating Ownership Typing and Constraint-based Ownership Typing

The following theorems state that the constraint-based ownership type system for IFBTJ (`co) satisfies the specifi-
cation provided by the ownership type system for FIFBTJ (`o) and the conformance of the constraint-based ownership
type system to the flattening principle, respectively.

Theorem 6.1 (Equivalence of `co-typability and `o-typability on FIFBTJ programs). For every FIFBTJ program
P= ID CD e it holds that `co P : N if and only if `o P : N.

PROOF. See Appendix A.

Theorem 6.2 (Flattening preserves `co-typing). For every IFBTJ program P= ID TD CD e, if `co P : N then `co JPK : N.

PROOF. See Appendix B.
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ι object identifiers
v ::= ι | null values
b ::= . . . | ι extended domain owners
e ::= . . . | v extended expressions
o ::= 〈C〈d〉,f 7→ v〉 objects
H ::= ι 7→ o heap

Figure 22: Semantic entities used by the operational semantics.

7. Operational Semantics

In this section we present the operational semantics of the flat language.

7.1. Semantic Entities
In Figure 22 the semantic entities that are used by the operational semantics are shown. Objects are expressed

as a pair of the object type, C〈d〉, and a mapping from fields to their values, f 7→ v. The crucial point here is that
the domain parameters of the object type d are runtime domains, i.e., domains that have a value as owner. Besides
null, a value can in particular be an object identifier ι . The owner of a runtime domain is always either null or is
an instance of a box class. Its identifier can thus be used as a unique representation of the box at runtime. The first
domain parameter (d1) always represents the domain that owns the object. If the object is not of a box class, the box
that the object belongs to is represented by the object that owns that domain. As runtime domains should be valid
domains we extend the definition of validOwner with an additional case that allows object identifiers to be owners of
domains:

validOwner(ι)

7.2. Evaluation Contexts
An evaluation context e� is an expression with a “hole” � somewhere inside [31]. We write e�[e′] to fill the hole

of e with the expression e′. The syntax of evaluation contexts is as follows:

e� ::=� | this.f= e� | e�.m(e) | v.m(v,e�,e) | (N)e�

7.3. Reduction Rules
We use a big-step operational semantics with rules of the form

H;e ⇓v′ H′;v

meaning that expression e under heap H is reduced to v and new heap H′, where v′ is the current context object, or
null, if the execution takes place in the global context. The rules that define the reduction relation are shown in
Figure 23.

To update the value of a field f in object o to value v, we write o[f 7→ v] which returns the updated object, and
o(f) which returns the value of field f. The object type is given by type(o).

Method invocation is handled by the rule (R-CALL). The rule replaces the formal parameters of the method body
by the actual parameters, adapts this to the receiving object and substitutes the keyword box by the owning box of
the receiving object. This is the runtime correspondent to the viewpoint adaptation of the type system.

All other rules are standard.

7.4. Program Execution
A program P= ID CD e in FIFBTJ is executed by evaluating e under an empty heap and context object null:

∅;e ⇓null H;v

In our semantics we have null as the owner of the global domain and so we start the execution with a configuration
that only maps null to the global domain, and everything else is empty.
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(R-FIELD-READ)
v= H(ι)(f)

H; ι .f ⇓ι H;v

(R-FIELD-UPDATE)
o= H(ι)[f 7→ v] H′ = H[ι 7→ o]

H; ι .f= v ⇓ι H
′;v

(R-CALL)
G= type(H(ι)) mbody(G,m) = (x,e)

ι
′′ = boxOwner(G, ι) e′ = e[ι ′′/box, ι/this,v/x] H;e′ ⇓ι H

′;v
H; ι .m(v) ⇓v′ H′;v

(R-NEW-OBJECT)
ι < dom(H) H′ = H[ι 7→ 〈C〈d〉,f 7→ null〉]

H;new C〈d〉 ⇓v′ H′; ι

(R-CAST-NULL)

H;(N)null ⇓v′ H;null

(R-CAST)
type(H(ι))<: N
H;(N)ι ⇓v′ H; ι

(R-CONTEXT)
H;e ⇓v′ H′;v H′;e�[v] ⇓v′ H′′;v′′

H;e�[e] ⇓v′ H′′;v′′

Figure 23: Rules to evaluate Expressions

8. Soundness of the Ownership Type System

This section shows the soundness of the ownership type system. Soundness is proved by a standard subject
reduction theorem, which states that if an expression is correctly typed in the ownership type system, then a value that
is reduced from this expression is a subtype of the type of the expression. In addition, this theorem then proves the
encapsulation property of the ownership type system, namely that all values that can appear in the context of an object
are accessible by that object.

8.1. Heap Typing

The type system presented in Section 4 is only defined on source expressions, i.e., expressions that do not contain
object identifiers. In order to type object identifiers, we introduce a heap typing Θ, which assigns types to object
identifiers.

Θ ::= ι 7→ G

To have a concise notation to type values in general we also define Θ(null)
def
= ⊥.

We also define a notion of extending heap typings as follows.

Definition 8.1 (Heap Typing Extension).

Θ⊆Θ
′ def
= ∀ι ∈ dom(Θ) : Θ(ι) = Θ

′(ι)

8.2. Extended Type Rules

For the type soundness proof we have to extend the type rules for typing expressions with a heap typing and
a context value v, which represents the current context object, in which the expression is typed: Θ;v;Γ `ox e : G.
The Θ parameter is required to be able to type object identifiers, the v parameter is required to be able to verify the
correctness of runtime domains. The definition of this judgment is equal to the definition given in Figure 17, where
the additional parameters Θ and v are just ignored by the rules, but passed to type judgments of preconditions. The
rules in Figure 17 remain the same, except that rules (T-METHOD) and (T-PROG) type the expression e, i.e. the body
expression, respectively the main expression, under the empty heap typing ∅ and null as context object. Note that
the heap typing thus has no influence on the typing of source programs.
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(AR-BOX)

Θ `or ι .c→r ι .c′

(AR-NULL)

Θ `or b.c→r null.c

(AR-BOUNDARY)
Θ `or ι .c→r odom(Θ(ι ′))

Θ `or ι .c→r ι
′.boundary

(AR-PARAM)
2C〈d〉= Θ(ι ′) boxOwner(Θ(ι ′), ι ′) = ι

Θ `or ι .c→r di

Figure 24: Definition of the accessibility relation on runtime domains

A single rule is added to type object identifiers:

(T-OID)
Θ;v;Γ `or Θ(ι)

Θ;v;Γ `ox ι : Θ(ι)

In addition, we also have to extend the set of valid domains, because domains can now be owned by object
identifiers. The only restriction is that owners of domains can only be instances of box classes.

(V-DOMAIN-OID)
v= null∨ isBoxType(Θ(v))

Θ `or v.c

Finally, we have to change the typing of valid types, to allow types with object identifiers as owners. Note, the
context object is null when checking source programs, thus the typing is not changed.

(V-TYPE-NULL)

Θ;v;Γ `or ⊥
(V-TYPE-OID)
Θ `or d Θ `or d1→r d v′ = boxOwner(Θ(v),v) Θ `or v′.c→r d1 |params(U)|= |d|

Θ;v;Γ `or U〈d〉

The accessibility relation now has to be defined on domains with ι as owners. The relation is denoted by d→r d
′

and shown in Figure 24. The rules are much simpler than the accessibility rules defined in Figure 14. They essentially
capture the encapsulation invariant that is provided by the type system namely an object ι can access a domain iff

1. The domain is owned by the owner of ι

2. It is the global domain, i.e., a domain owned by null.
3. The domain is a boundary domain owned by an object that is accessible.

8.3. Type-Correct Heaps

Given a heap typing Θ we define a correctly typed heap under heap typing Θ.

(T-HEAP)
∀ι ∈ dom(H) :

G= Θ(ι) Θ; ι ;∅ `or G
H(ι) = 〈G, f 7→ v〉 G= field(G,f) G;G; ι `o G.G′′ Θ; ι ;this : G `ox v : G′ G

′
<: G′′

Θ `or H
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8.4. Properties of the Ownership Type System

We prove type-soundness of the ownership type system by the standard subject reduction proof, which states that
when a well-typed expression can be reduced to a value, the type of the value is a subtype of the original expression.
For the proof invariant it is also needed to show that the heap stays well-typed under a possibly extended heap typing.

Theorem 8.2 (Subject Reduction). Assume `ox P, Θ `ox H, Θ;v′;this : Gt `ox e : Ge, v′ = null∨Θ(v′) = Gt, and
this < e. If H;e ⇓v′ H′;v, then there exists a Θ′ with Θ⊆Θ′, Θ′;v′;this : Gt `ox v : Gv, Gv <: Ge, and Θ′ `ox H′.

PROOF. See Appendix C.

From the subject reduction theorem it is straightforward to derive the encapsulation invariant that states that local
objects of a box are encapsulated, i.e., cannot be accessed by the environment of the box. Technically speaking it
means that at all object identifiers that are reducible in the context of a certain object, are accessible by that object.
I.e., the owner domain is accessible.

Theorem 8.3 (Encapsulation Invariant). Assume `o P, Θ `ox H, Θ;v;this : Gt `ox e : Ge, v = null∨Θ(v) = Gt,
this < e. If H;e ⇓v H′; ι , then Θ `or boxOwner(H,v).c→r odom(H′(ι)).

9. Related Work

The literature on traits and boxes has been partially quoted throughout the paper. Here we briefly discuss the
relation with other type systems for traits and with other ownership type systems.

Various type systems for traits have been proposed in the literature [59, 32, 63, 12, 60, 13, 43, 42]. These ap-
proaches guarantee that the composed program is type correct; i.e., all required fields and methods are present with
the appropriate types. The IFBTJ constraint-based ownership type system builds on the constraint-based type system
of the FRJ calculus [13]. Both the IFBTJ and the FRJ type systems support the type-checking of traits in isolation
from the classes or traits that use them, so that it is possible to type-check a method defined in a trait only once (instead
of having to type-check it in every class using that trait). A distinguishing feature of both IFBTJ and FRJ with respect
to the other formulations of traits within a JAVA-like nominal type system enjoying this property [63, 60, 42, 6] is that
the method exclusion and method/field renaming operations are fully supported (as in the formulation of traits in a
structurally typed setting given by Reppy and Turon [59]). We are not aware of any previous proposal of an ownership
type system for a trait-based language.

The basic idea of the box component model, namely to hierarchically structure the heap into dynamically created
regions, originated from the notion of ownership types. Ownership types are a static way to guarantee encapsulation
of objects. The notion of ownership types stems from Clarke [24, 23, 21] as an approach to formalize the core of
Flexible Alias Protection [53]. Ever since, many researchers investigated ownership type systems [49, 5, 16, 58, 27,
to name a few]. Ownership type systems have been used to prevent data-races [17], deadlocks [15, 14], and to allow
the modular specification and verification of object-oriented programs [48, 29].

Most ownership type systems guarantee the so-called owners-as-dominators property, which states that all ac-
cesses from external objects to owned objects must go through the owner object. This property does not allow for
multiple objects at the boundary of a component. Several variations and extensions of the pure ownership type ap-
proach have been proposed. Clarke et al. [22] weakened the owners-as-dominators property by allowing dynamic
aliases, i.e., aliases stored on the stack, to access owned objects. Other approaches [21, 15] allow JAVA’s inner mem-
ber classes [34] to access the representation objects of their parent objects. Both solutions do not provide the full
power to generalize the owners-as-dominators property. Ownership Domains (OD) [3] has been the first approach
which fully support multi-access ownership contexts. Objects are not owned directly by other objects, but are owned
by domains, which are in turn owned by objects. Every object can have an arbitrary number of domains, which can
either be private or public. Objects in the private domain are encapsulated, and objects in the public domain can be
accessed by the outside. Programmers define which domains can access which other domains by link declarations.
OD have been combined with an effects system [64]. A more general version of OD has been formalized in System
F [37]. An extension of the ownership approach is MOJO [19], which allows multiple owners per object, thus not
restricting the ownership structure to a tree anymore.
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The simplification of having only two domains for each object, namely a local and a boundary one, was introduced
by Simple Loose Ownership Domains [61]. This approach also allows for abstracting from the concrete owner of a
domain by introducing the notion of loose domains, a feature which could be incorporated into our type system as
well. The first approach to apply simple ownership domains to boxes has been presented in [55]. This approach was
formalized in a standard object-oriented language without class-inheritance and supported the inference of ownership
annotations in the context of modules.

Lu and Potter [45] presented a type system which separates object ownership and accessibility. Instead of only
giving the owner of a type, types are also annotated by their possible accessibility. This introduces a very flexible
system, which allows programming patterns not possible with our ownership type system. However, this flexibility
comes with the price of a higher annotation overhead, as both the owner and the accessibility must be given.

A previous system [46] considers the encapsulation of effects instead of objects. This makes it possible to access
internal representation objects from the outside, but disallows their direct modification. This mechanism is similar
to the read-only mechanism of the Universes approach [49, 27], where it is allowed to have read-only references to
representation objects. However, this approach forbids programming patterns where boundary objects should be able
to directly change the state of representation objects without using the owner object.

The basic idea of components as dynamic entities is also used in ArchJava [4]. Like boxes ArchJava’s components
are dynamic (hierarchical) entities with a well defined interface. In difference to the box model the interface is
comprised of ports describing (required and provided) methods. ArchJava has been combined with alias protection
[2] to be able to protect the data passing along the connections between ports. But as ArchJava focuses on expressing
the system architecture explicitly in the code, the language produces much more overhead than the box model.

In ownership type system the annotations may hide the ownership structure to the programmer. Recently, tribal
ownership [20] proposes to use the nested class structure of a program as the ownership structure. This makes the
ownership structure explicitly visible and leads to an annotation free ownership system. But because encapsulation of
objects is bound to the visibility of the object’s class, it is less flexible than other ownership type systems.

Confined Types [67, 68] is a lightweight mechanism that allows the encapsulation of objects within the boundary
of a JAVA package. Confined types can be relatively easily inferred from unannotated programs [35].

In order to lower the annotation burden for the programmer several inference algorithms for un-annotated (e.g.
[5, 28, 47]) or partially annotated code ( [55, 1, 44] and others) have been developed.

Beside type systems there are other possibilities to statically ensure object encapsulation, for example by using
general specification and verification frameworks like Spec# and JML [40, 29].

10. Conclusions and Future Work

Encapsulation and reuse are two orthogonal but not unrelated concepts of programming languages. In general
encapsulation tends to hinder reuse and vice versa. The box model is a light-weight component model for the object-
oriented paradigm, which structures the flat object-heap into hierarchical runtime components called boxes. Static
encapsulation of objects can be achieved by ownership type systems. Up to now, the box model has been presented
in class-based languages without inheritance. Traits are a mechanism for code reuse that offers more flexibility than
standard class-based inheritance. In this paper we presented the combination of traits with an ownership type system
for boxes in a JAVA-like setting and formalized it by means of a minimal core calculus. This combination also solves a
specific problem of the box ownership type system. Namely, although the box model could be extended to languages
with single inheritance (as done for other ownership type systems), box classes could not inherit from standard classes
(and vice versa), and thus code sharing between these two types of classes would not be possible.

To the best of our knowledge, ownership type systems have been only presented in the setting of class-based
languages (possibly) with inheritance. So, the proposal described in this paper represents the first attempt to define an
ownership type system for a language with traits. Each trait definition is type-checked in isolation from the classes and
traits that use it. When analyzing a trait definition, type constraints that include the necessary ownership checks are
generated. When classes are assembled by composing traits, the type system ensures that the ownership conditions are
not violated. We believe that this approach, which builds on the technique for type-checking traits within a nominal
JAVA-like type system proposed in [13], could be used to integrate traits within other ownership type systems.

In future work we would like to develop a prototypical implementation of a programming language based on the
IFBTJ calculus. We are also planning to extend the IFBTJ type system to deal with generics. Another possible
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direction for future work would be to add ownership transfer to our type system. By using the notion of external
uniqueness and applying the techniques described e.g. in [50, 25], we could gain flexibility about the contents of a
box and be able to support the factory pattern and other ownership unfriendly patterns [51].
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A. Proof of Theorem 6.1

In order to simplify the presentation of the proof we introduce a variant of system `co, denoted by `′co, that is
customized for FIFBTJ programs. The rules of system `′co are obtained from the rules of system`co by:

• modifying rule (CT-PROGRAM) in Figure 19 by dropping the premise `co TD : · · · and by removing TD from
the conclusion;
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(CT-CLASS′)
M= M1...Mp p≥ 0 annVars({F; •; M})⊆ α mSig(M) = ζ = ζ1...ζp

∀i ∈ 1..p, 〈 F p ζ 〉 `co Mi : µi µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi)

ζi = Ni (N
(i)
) this : C〈α〉, x(i) : N(i) `co Φi[C〈α〉/χ]

∪i∈1..pσ
(i) ⊆ ζ (∪i∈1..pF

(i)
) = N f mSig(I〈d〉)⊆ ζ1...ζp

this : C〈α〉 `o I〈d〉 α1 = d1 this : C〈α〉 `o N isBoxType(C)⇔ isBoxType(I)
`co . . .class C〈α〉 implements I〈d〉 by {F; •; M} { N f; }

Figure 25: Flat class constraint-based typing rule

• dropping rules (CT-TRAIT) and (CT-TEBASIC) in Figure 19 and and all the rules in Figure 20;

• replacing rule (CT-CLASS) in Figure 19 by rule (CT-CLASS′) in Figure 25.

The following Lemma states that `co and `′co are equivalent on FIFBTJ programs.

Lemma A.1 (Equivalence of `co-typability and `′co-typability on FIFBTJ programs). For every FIFBTJ program
P= ID CD e it holds that: `co P : N if and only if `′co P : N.

PROOF. Straightforward.

In order to be able to relate the open type and the type inferred for an expression by `′co and `o, respectively,
we extend the constraints and the constraint satisfaction checking rules given in Figure 18 by adding the constraint
eq(L, R) and the rule:

(CC-EQUALS)
Γ `co Φ

Γ `co Φ]{eq(L, L)}

Lemma A.2. For every class definition . . .class C〈α〉 implements I〈d〉 by {F; •; M} { N f; } it holds that: this :
C〈α〉, x : N `o e : L if and only if

1. this : 〈 F p mSig(M) 〉, x : N `′co e : R p 〈 F′ p σ
′ 〉 p Φ, and

2. this : C〈α〉, x : N `′co (Φ∪{eq(L, R)})[C〈α〉/χ].

PROOF. By structural induction on typing derivations, using the constraint satisfaction checking rules. We sketch the
cases for the “only if” direction. The cases for the “if” direction are similar.

Case (T-NULL). By rules (CT-NULL), (CC-EMPTY) and (CC-EQUALS).

Case (T-VAR). By rules (CT-VAR), (CC-EMPTY) and (CC-EQUALS).

Case (T-FIELD). By rules (CT-FIELD), (CC-VPA) and (CC-EQUALS).

Case (T-FIELD-UP). By rules (CT-FIELDUP), (CC-SUB) and (CC-EQUALS).

Case (T-INVK). By rules (CT-THISINVK), (CC-VPA), (CC-SUB) and (CC-EQUALS), if e= this.m(· · ·). By rules
(CT-NONTHISINVK), (CC-MTYP), (CC-VPA), (CC-SUB) and (CC-EQUALS), otherwise.

Case (T-NEW-CLASS). By rules (CT-NEW), (CC-ISVALID) and (CC-EQUALS).

Case (T-CAST). By rules (CT-CAST), (CC-ISVALID), (CC-CAST) and (CC-EQUALS).

Lemma A.3. For every class definition . . .class C〈α〉 implements I〈d〉 by {F; •; M} { N f; } and method definition
M ∈ M it holds that: C〈α〉 `o M if and only if
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1. 〈 F p mSig(M) 〉 `′co M : mSig(M) p 〈 F′ p σ
′ 〉 p (x,Φ), and

2. this : C〈α〉, x : N `′co Φ[C〈α〉/χ].

PROOF. By Lemma A.2.

Lemma A.4. For every class definition CD = . . .class C〈α〉 implements I〈d〉 by {F; •; M} { N f; } it holds that:
`o CD if and only if `′co CD

PROOF. By Lemma A.3.

PROOF OF THEOREM 6.1 (EQUIVALENCE OF `co-TYPABILITY AND `o-TYPABILITY ON FIFBTJ PROGRAMS).
Straightforward by Lemmas A.1, A.4 and A.2.

B. Proof of Theorem 6.2

The sequence of the field names and the sequence of the method names selected on this in the expressions e are
denoted by fN(e) and mN(e), respectively. The sequence of the field names and the sequence of the method names
selected on this in the method declaration M= Nm(Nx){return e} are given by fN(M) = fN(e) and mN(M) = mN(e).
The definitions of fN and mN naturally extend to sequences of expressions and sequences of method definitions.

Recall that the flattening JTEK of a trait expression TE yields a sequence of methods (see Section 3.2). A sequence
of methods M is well-typed if and only if all methods in M are well-typed. In the following, we will write “〈 F p σ 〉 `co
M1...Mn : µ1...µn” as short for “〈 F p σ 〉 `co M1 : µ1, . . ., 〈 F p σ 〉 `co Mn : µn”.

Lemma B.1. If 〈 F p σ 〉 `co N m (N x){return e;} : N0 m(N) p 〈 F′ p σ
′ 〉 p (x,Φ), then 〈 F′′ p σ

′′ 〉 `co
N m (N x){return e;} : N0 m(N) p 〈 F′ p σ

′ 〉 p (x,Φ) for all F′′ ⊇ F
′ and σ

′′ ⊇ σ
′.

PROOF. By structural induction on typing derivations.

Lemma B.2. If α1 `co TE : µ , annVars(TE)⊆ α1, ...= α and progVars(d) = •, then `co TE[d/α] : µ[d/α].

PROOF. By structural induction on typing derivations.

Lemma B.3. Let β `co TE : µ1...µn, where µi = ζi p 〈 F(i) p σ
(i) 〉. Then 〈 F p ζ 〉 `co JTEK : µ1...µn, where

F= F
(1)∪ ...∪F(n) and ζ = ζ1...ζn∪σ

(1)∪ ...∪σ
(n).

PROOF. By case induction on the flattening translation for trait expressions defined in Figure 7.

Case J{F; S; M}K. This is the base case of the induction. Straightforward by rule (CT-TEBASIC) in Figure 19.

Case JT〈d〉K. Straightforward by induction, using Lemma B.2.

Case JTE1 +TE2K. By induction we have that 〈 F′ p ζ
′ 〉 `co JTE1K : µ

′ and 〈 F′′ p ζ
′′ 〉 `co JTE2K : µ

′′. The result
follows by Lemma B.1.

Case JTE [exclude m]K. By induction we have that 〈 F′ p ζ
′ 〉 `co JTEK : µ . Then we have two possible cases for

the type of this in the typing of the sequence of methods JTE[exclude m]K: (i) m < mN(JTE[exclude m]K).
Then for each method n , m in names(JTE [exclude m]K) we have that this : 〈 F p exclude(σ ,m) 〉 `co
I n (I x){return e;} : µ , where I n (I x){return e;}= choose(JTE [exclude m]K,n) and µ = choose(µ,n),
by Lemma B.1. So this : 〈 F p exclude(σ ,m) 〉 `co JTE [exclude m]K : exclude(µ,m). (ii) m∈mN(JTE [exclude m]K).
Then we have that this : 〈 F p σ 〉 `co JTE [exclude m]K : exclude(µ,m).

Case JTE [m aliasAs m′]K. This case is similar to the case JTE1 +TE2K.
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Case JTE [rename m to m′]K. By induction we have that this : 〈 F p σ 〉 `co JTEK : µ . Then we have two possible
cases for the type of this in the typing of the sequence of methods mR(JTEK,m,m′): (i) 〈 F p exclude(σ ,m)∪
(choose(σ ,m)[m

′
/m]) 〉, if m′ < mN(JTEK) is fresh; (ii) 〈 F p exclude(σ ,m) 〉, otherwise. Note that case (ii) can

happen only if m and the occurrence of m′ already in TE have the same signature, and it is not the case that both m

and m′ are provided methods (they can be both required or one of them required), otherwise TE [rename m to m′]
would have not been well-typed, which contradicts the hypothesis. In both cases the result can be proved
straightforwardly by induction on typing derivations.

Case JTE [rename f to f′]K. By induction we have that 〈 F p σ 〉 `co JTEK : µ . Then we have two possible cases for
the structural type of this to be used in the typing of the sequence of methods JTEK[f′/f]: (i) 〈 exclude(F,f)∪
(choose(F,f)[f′/f]) p σ 〉, if f′ < fN(JTEK) is fresh; (ii) 〈 exclude(F,f) p σ 〉, otherwise. Note that case (ii)
can happen only if f and the occurrence of f′ already in TE have the same type, otherwise TE [rename f to f′]
would have not been well-typed, which contradicts the hypothesis. In both cases the result can be proved
straightforwardly by induction on typing derivations.

Lemma B.4. If this : 〈 F p σ 〉, x : N `co e : R p 〈 F′ p σ
′ 〉 p Φ holds with respect to P, then it holds with respect to

JPK.

PROOF. Let P = ID TD CD e. Then JPK = ID JCDK e. The result is straightforward, since the constraint-based typing
rules in Figure 21 do not use the trait table TD and the only rule that uses the class table CD, rule (CT-NEW), does not
distinguish between CD and JCDK.

Lemma B.5. If 〈 F p σ 〉 `co M : µ holds with respect to P, then it holds with respect to JPK.

PROOF. Straightforward since, by Lemma B.4, rule (CT-CLASS) in Figure 19 does not use the trait table TD and does
not distinguish between CD and JCDK.

Lemma B.6. If `co CD holds with respect to P, then `co JCDK holds with respect to JPK.

PROOF. Let CD= . . .class C〈α〉 implements I〈d〉 by TE { F; }, then

JCDK = . . .class C〈α〉 implements I〈d〉 by{F; •; JTEK} { F; }

According to rule (CT-CLASS) in Figure 19, `co CD implies α1 `co TE : µ1...µp, where

∀i ∈ 1..p, µi = ζi p 〈 F(i) p σ
(i) 〉 p (x(i),Φi) ζi = Ni (N

(i)
) this : C〈α〉, x(i) : N(i) `co Φi[C〈α〉/χ]

and ∪i∈1..pσ
(i) ⊆ ζ1...ζp.

By Lemma B.5 we have that α1 `co TE : µ1...µp holds also with respect to JPK.
By Lemma B.3, we have 〈 F p ζ 〉 `co JTEK : µ1...µp, where F= F

(1)∪ ...∪F(p) and ζ = ζ1...ζp. Therefore both
α1 `co {F; •; JTEK} : µ1...µp and `co JCDK hold with respect to JPK.

PROOF OF THEOREM 6.2 (FLATTENING PRESERVES `co-TYPING). Straightforward by Lemmas B.6 and B.4, ac-
cording to rule (CT-PROGRAM) in Figure 19.

C. Proof of Theorem 8.2

First we prove several auxiliary lemmas.
The Substitution Lemma is the core lemma of the soundness proof. It states that how substituting values for

variables and static domain owners affect the typing of expressions.

Lemma C.1 (Substitution Type). Let s= [v′/box,v/this,v/x,d/α]. If `ox P, Θ(v)= C〈d〉, v′= boxOwner(Θ(v),v),
Θ `ox H, ∅;null;this : C〈α〉;x : Gx `ox L, and ∀vk ∈ v with vk , null : Θ(vk)<: Gxk s, then Θ;v;this : C〈d〉 `ox Ls.
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PROOF. Let L= U〈dU 〉. By (V-TYPE) we get

this : C〈α〉;x : Gx `o dU
this : C〈α〉;x : Gx `o dU

1 → dU this : C〈α〉;x : Gx `o box.c→ dU
1 |params(U)|= |dU |

∅;null;this : C〈α〉;x : Gx `ox U〈dU 〉
Rule (V-TYPE-OID) gives us the following goals to show:

Θ `or dU s (G1) Θ `or dU
1 s→r dU s (G2) Θ `or boxOwner(Θ(v),v).c→r d

U
1 s (G3)

|params(U)|= |dU | (G4)

(G1), (G4) follow directly.
For (G2) we do a induction on the accessibility relation.
By Θ `ox H we know that Θ;v;this : C〈d〉 `ox C〈d〉, thus Θ `or d1→r d, Θ `or v′.c→r d1. Let Gx = U〈dx〉.

Case (A-REFL), (A-OWNER), (A-GLOBAL) . Immediate.

Case (A-PARAM). Thus dU
1 = box.c, dU

2 ∈ α . dU
1 s = v′.c = boxOwner(Θ(v),v).c. dU

2 s = d2 ∈ d. Thus the pre-
conditions of (A-PARAM) hold. If isBoxType(C) then the preconditions of (A-PARAM) hold with ι ′ = v and if
¬isBoxType(C), the preconditions hold with ι ′ = v′ Thus (G2) holds in both cases.

Case (A-PARAM2). Thus dU
1 = α1, dU

2 ∈ α . Then dU
1 s = d1, dU

2 s ∈ d. (G2) follows from Θ `or d1→r d.

Case (A-PARAM-3). Thus dU
1 = α1 and ¬isBoxType(C). Then dU

1 s = d1. To show: Θ `or d1 →r v
′.local. As

¬isBoxType(C), d1 = v′.c. Therefore (G2) holds by (AR-BOX).

Case (A-PARAM-4). Thus dU
1 = α1. Then dU

1 s = d1. To show: Θ `or d1 →r v
′.boundary. If ¬isBoxType(C), then

d1 = v′.c. Then (G2) holds by (AR-BOX). If isBoxType(C) then v′ = v, therefore the precondition of (A-PARAM)
holds. Thus (G2) holds.

Case (A-BOUNDARY). If x , this we have to show Θ `or d s→r vx.boundary. Applying the induction hypotheses
we get Θ `or d s→r d

x
1 s. We know by Lemma C.3 odom(Θ(vx)) = odom(Gx s) = d1

x s. Thus (G2) holds. If
x= this, we know that isBoxType(this) and therefore also isBoxType(Θ(v)). We have to show Θ `or d s→r

v.boundary. Applying the induction hypotheses we get Θ `or d s→r d1 s. As d1 is a runtime domain, we can
conclude d1 s = d1 = odom(Θ(v)), thus (G2) holds by (AR-BOUNDARY).

Case (A-BOUNDARY-2). If x , this we have to show Θ `or vx.boundary →r d
x
1 s. By Θ `ox H we know that

Θ;vx;this : Θ(vx) `ox Θ(vx). Therefore we know that isBoxType(Gx). With Lemma C.3 we can conclude
Θ `or boxOwner(Θ(vx),vx).c→r d

x
1 s. Gx. boxOwner(Θ(vx),vx) = vx, thus (G2) holds. For x = this, we

have to show Θ `or v.boundary→r d1 s. This can be concluded by (AR-PARAM), because isBoxType(Θ(v))
and thus boxOwner(Θ(v),v) = v.

(G3) can be shown by an induction on the accesibility relation, using the same arguments as above.

Lemma C.2 (Substitution). Let s = [v′/box,v/this,v/x,d/α]. If `ox P, Θ(v) = C〈d〉, v′ = boxOwner(Θ(v),v),
Θ `ox H, ∅;null;this : C〈α〉;x : Gx `ox e : L, and ∀vk ∈ v with vk , null : Θ(vk)<: Gxk s, then Θ;v;this : C〈d〉 `ox
e s : L s.

PROOF. The proof is done by induction on the typing relation.

Case (T-NULL). Immediate.

Case (T-VAR).] Let e= x. For vx = null, the lemma follows directly, thus assume vx , null. We know ∅;null;this :
C〈α〉,x : Ux〈dx〉,x : Gx `ox x : Ux〈dx〉, By (V-ENV-VAR) we get ∅;null;this : C〈α〉,x : Ux〈dx〉,x : Gx `o Ux〈dx〉
Lemma C.1 then gives us Θ;v;this : C〈d〉 `ox Ux〈dx〉 s, which is the precondition for (V-OID). Thus we can
conclude Θ;v;this : C〈d〉 `ox vx : Ux〈dx〉 s
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Case (T-FIELD). Let e= e.f. As field access is only allowed on this we have e= this. Hence e= this.f. By the
assumption ∅;null;this : C〈α〉;x : Gx `ox e.f : L and (T-FIELD) we get

∅;null;this : C〈α〉,x : Gx `ox this : C〈α〉
Nf = field(C〈α〉,f) C〈α〉;C〈α〉;this `o Nf .L ∅;null;this : C〈α〉,x : Gx `o L

∅;null;this : C〈α〉,x : Gx `ox this.f : L

By the definition of field we get Nf = N, where N is the declared type of field f.

Let N′f = field(C〈d〉,f). By the definition of field we get that N′f = Nf[d/α], because of the following argumen-
tation.

Let L′ be the type obtained by the following viewpoint adaptation, C〈d〉;C〈d〉;v `o N′f .L′. Applying the defini-
tion of viewpoint adaptation results in L′ = N′f[obox(d1,C〈d〉,v)/box]. As d1 can never be α , we obtain from
the definition of obox, L′ = Nf[boxOwner(C〈d〉,v)/box,d/α]. By (T-CLASS) we have that there is no x with
x ∈ Nf, except for x = this. Hence we can conclude ∅;null;this : C〈α〉 `o L. By Lemma C.1 we obtain,
Θ;v;this : C〈d〉 `ox L′′, where L′′ = L′[v/this]. By exploiting the knowledge of possible owners in Nf, we can
conclude, that L′′ = L s.

Case (T-FIELD-UP). By applying the induction hypotheses twice and Lemma C.5.

Case (T-INVK). Let e= e.m(e). We need to show:

Θ;v;this : C〈d〉 `ox e s : G′e (1) Θ;v;this : C〈d〉 `ox e s : L′ (2)
mSig(G′e) = . . . G′m m(G

′
m) . . . C〈d〉;G′e;e s `ox G′m .L s (3) C〈d〉;G′e;e s `ox G′m .G′′m (4)

Θ;v;this : C〈d〉 `ox L s (5) Θ;v;this : C〈d〉 `ox G′′m (6) L
′
<: G′′m (7)

Θ;v;this : C〈d〉 `ox e s.m(e s) : L s

By the assumption we have

∅;null;this : C〈α〉,x : Gx `ox e : Ge ∅;null;this : C〈α〉,x : Gx `ox e : L
mSig(Ge) = . . . Gm m(Gm) . . . C〈α〉;Ge;e `ox Gm .L C〈α〉;Ge;e `ox Gm .G′m

∅;null;this : C〈α〉,x : Gx `ox L ∅;null;this : C〈α〉,x : Gx `ox G′m L<: G′m
∅;null;this : C〈α〉,x : Gx `ox e.m(e) : L

By applying the induction hypotheses we directly get (1) and (2), with G′e = Ge s, L′ = L s. Goal (5) follows by
Lemma C.1.

To show (3) we make a case distinction on isBoxType(Ge). Let Nmm(Nmx) be the declaration of method m in
class U〈αe〉 and Ge = U〈de〉. By (T-CLASS) and because we do not allow this as an owner in the surface syntax,
we know that Nm and Nm only contain αu and box as owners.

Case isBoxType(Ge). By C〈α〉;Ge;e`ox Gm.Lwe get validOwner(e) and L= Nm[e/box][de/αe]. As validOwner(e)
holds, we have e= x, e= this or e= null. The last case cannot occur, as we know by (T-INVK) that e
has a nominal type.

e= x. Applying s and simplifying the result with the knowledge about the possible owners in Nm we get
L s= Nm[vx/box][de s/αe]. Let L′ be the type resulting from the viewpoint adaptation C〈d〉;G′e;e s `ox
G′m .L

′. Thus L′ = Nm[v
′/box][de s/αe]. Therefore (3) holds.

e= this. Similar to above by exploiting v′ = boxOwner(Θ(v),v).

Case ¬isBoxType(Ge). By C〈α〉;Ge;e `ox Gm . L, we get d1
e = α1 and L = Nm[de/αe]. By the definition of

boxOwner, we can conclude boxOwner(Ge s,e s) = boxOwner(C〈d〉,v) = v. Now it is easy to see that (3)
holds.

For (4) and (6) are shown analogously to (3) and (5). (7) follows by Lemma C.5.
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Case (T-NEW-CLASS). Let e= new C′〈d′〉. We have to show

. . . class C′〈α ′〉 implements N . . . Θ;v;this : C〈d〉 `ox C′〈d′ s〉 N[d
′ s/α ′] = L s

Θ;v;this : C〈d〉 `ox new C′〈d′ s〉 : L s

We know

. . . class C′〈α ′〉 implements N . . . ∅;null;this : C〈α〉,x : Gx `o C′〈d′〉 N[d
′
/α ′] = L

∅;null;this : C〈α〉,x : Gx `ox new C′〈d′〉 : L

By Lemma C.1 we know that Θ;v;this : C〈d〉 `ox C′〈d′ s〉 holds.

By `o P we know, that the domains of N only contain box and α as owners. Therefore, we can conclude
N[d
′ s/α ′] = Ns[d′/α ′] = L s.

Case (T-CAST). Follows directly by applying the induction hypotheses and Lemma C.5.

Lemma C.3. If G<: G′ then odom(G) = odom(G′).

PROOF. This follows mainly by the precondition of rules (T-INTERFACE) and (T-CLASS), which states that d1 = α1.
This ensures that subtyping has no influence on the owner domain.

The next lemma states that if a type is valid in certain context, a subtype of that type is also valid in that context.

Lemma C.4 (Subtyping). Given Θ;v;Γ `ox: L, Θ;v′;Γ′ `ox L′, and L<: L′. Then holds that Θ;v′;Γ′ `ox: L

PROOF. We assume that L , ⊥, otherwise the proof is immediate. Thus L = U〈d〉, for some U,d. As L <: L′, L′ =
U′〈d′〉, for some U′,d

′. By the assumption Θ;v;Γ `ox L we obtain that type L is a valid type under the given context,
i.e., Θ `or d (1), Θ `or d1 →r d (2), vo = boxOwner(Θ(v),v), with Θ `or vo.c→r d1. By the second assumption
Θ;v′;Γ′ `ox L′, we obtain v′o = boxOwner(Θ(v′),v′), with Θ `or v′o.c→r d

′
1. By L <: L′ and Lemma C.3 we have

that d1 = d′1 and hence Θ `or v′o.c→r d1. Together with (1) and (2) we can conclude that Θ;v′;Γ′ `ox: L.

Lemma C.5. If G<: G′ and s = [v′/box,v′′/this,v′′′/x,v′′′′.c/α], then G s <: G′ s.

PROOF. Straightforward by induction on the subtyping relation.

Lemma C.6. If Θ `or H then ∀ι ∈ dom(H) : Θ(ι) = C〈d〉,di = v.c, i.e. the objects on the heap are all typed with a
runtime type.

PROOF. Directly by (T-OID).

Lemma C.7. Let e= e�[e
′]. If Θ;v;Γ `ox e : L then Θ;v;Γ `ox e′ : L′, for some L′.

PROOF. This lemma can be straightforwardly shown by a case analysis on each type rule, which shows that every
subexpression of a typable expression is always typed under the same context.

Lemma C.8. Let e= e�[e
′]. If Θ;v;Γ `ox e : Le, Θ;v;Γ `ox e′ : Le′ , Θ;v;Γ `ox v′ : Lv′ , and Lv′ <: Le′ , then Θ;v;Γ `ox

e�[v
′] : L, for some L, and L<: Le.

PROOF. This lemma can be straightforwardly shown by a case analysis on the possible evaluation contexts and an
analysis of the corresponding type rule, which shows that replacing a subexpression by a value that can be typed to a
subtype can only result in a subtype of the overall expression.

PROOF OF THEOREM 8.2 (SUBJECT REDUCTION). The proof is by induction on the rules of reduction semantics.
Note, that for v′ = null, the only typable expressions are newC〈d〉, null and (N)e, so in all other cases we can assume
v′ , null.
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Case (R-FIELD-READ). Thus e= ι .f. From (R-FIELD-READ) we directly get that H= H′, Θ(ι) = Gt and ι = v′. Choose
Θ′ = Θ. So we have still to show: Θ;v′;this : Gt `ox v : Gv, Gv <: Ge If v = null, null has type ⊥ in any
context and ⊥ is subtype of any other type. In the following we have v= ιv. Rule (R-FIELD-READ) tells us that
ιv = H(ι)(f). We now have to show Θ;v′;this : Gt `ox ιv : Gv, Gv <: Ge. By the assumption Θ `ox H we know
that for ι the following holds (T-HEAP):

Θ; ι `or Gt H(ι) = 〈Gt, f 7→ v f 〉
G f = field(Gt,f) Gt;Gt; ι `o G f .G

′′
f Θ; ι ;this : Gt `ox v f : G′f G′f <: G′′f

Θ `or H

We can conclude ιv = v f . Therefore we get: Θ; ι ;this : Gt `ox ιv : G′f and G′f <: G′′f . We have to show G′f = Gv

and G′′f <: Ge. As Θ is a function, (T-OID) always returns the same type if an object identifier is typed twice with
the same context, thus G′f = Gv. From (T-FIELD) and the assumption Θ; ι ;this : Gt `ox ι .f : Ge, we get

Θ; ι ;this : Gt `ox ι : Gt Nf = field(Gt,f) Gt;Gt; ι `o Nf .Ge Θ; ι ;Γ `ox Ge

Θ; ι ;Γ `ox ι .f : Ge

Thus we have Ge = G′′f .

Case (R-CALL). Thus e= ι .m(v). By Θ `ox H, (T-HEAP) and the definition of the function type we know that Θ(ι) =
type(H(ι)). If the expression evaluates to null, i.e. v = null, the theorem can be seen directly. Therefore we
assume in the following v , null. By (R-CALL) we get

Gι = Θ(ι) mbody(Gι ,m) = (x,eb)
ι
′′ = boxOwner(Gι , ι) e′b = eb[ι

′′/box, ι/this,v/x] H;e′b ⇓ι H
′;v

H; ι .m(v) ⇓v′ H′;v

With the assumption Θ;v′;this : Gt `ox ι .m(v) : Ge and (T-INVK) we get

Θ;v′;this : Gt `ox ι : Gι

Θ;v′;this : Gt `ox v : L mSig(Gι) = . . . Gm m(Gm) . . . Gt;Gι ; ι `ox Gm .Ge
Gt;Gι ; ι `ox Gm .G′m Θ;v′;this : Gt `ox Ge Θ;v′;this : Gt `ox G′m L<: G′m

Θ;v′;this : Gt `o ι .m(v) : Ge

Let Gι = C〈d〉. Note that Lemma C.6 guarantees that Gι is not an interface type and all domains are of the form
vd .c From `ox P we know that (T-METHOD) holds for method m in class C〈α〉. Thus,

(T-METHOD)
S= N m (N x) ∅;null;this : C〈α〉 `ox N∪N ∅;null;this : C〈α〉,x : N `ox em : L L<: N

C〈α〉 `ox S{return em}

In order to apply the induction hypotheses on H;e′b ⇓ι H
′;v, we have to show the assumptions of the substitution

theorem. Let s = [ι ′′/box, ι/this,v/x,d/α]. `ox P, Θ `ox H, Θ(ι) = Gι , and this < e′b are given by the
assumptions and (R-CALL). It remains to show Θ; ι ;this : Gι `ox e′b : Ge We will do so by Lemma C.2. By (R-
CALL), we know Θ(ι) = Gι = C〈d〉, ι ′′ = boxOwner(Θ(ι), ι), and ∅;null;this : C〈α〉;x : N `ox em : L is given
by (T-METHOD). By the definition of the function mSig, (T-METHOD), and (T-INVK), we get Gm = N[d/α] and
Gm = N[d/α]. By Gt;Gι ; ι `ox Gm .G′m of (T-INVK), we can conclude G′m = N[ι ′′/box,d/α], because Gt is a runtime
type and validOwner(ι) holds. We know Θ;v′;this : Gt `ox v : L, thus for every vk ∈ v with vk , null we have
Θ(vk)<: Nk[ι

′′/box,d/α]. Applying s (Lemma C.5) yields to Θ(vk)<: Nl s as Θ(vk) is a runtime types and the
substitution does not change anything. We can now apply Lemma C.2, and we get Θ; ι ;this : Gι `ox e′b : L s,
which is the last assumption needed for the induction hypotheses (with Ge = L s). By the induction hypotheses
we can conclude: there exists a Θ′IH with Θ⊆ ΘIH, ΘIH `ox H′, ΘIH; ι ;this : Gι `ox v : G′v, and G′v <: Ge = L s.
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Choose Θ′ = ΘIH. Thus Gv′ = Gv. From (T-INVK) we get Gt;Gι ; ι `ox N[d/α] . Ge, thus Ge = N[ι ′′/box,d/α]
By (T-METHOD) and Lemma C.5 we know L s <: N s = N[ι ′′/box, ι/this,v/x,d/α] = Ge[ι/this,v/x] = Ge,
because Ge is a runtime type. In summary, we have Gv <: Ge From Gv <: Ge, Θ′; ι ;this : Gι `ox Gv (induction
hypotheses), and Θ;v′;this : Gt `ox Ge (assumption of the theorem), we get by Lemma C.4 Θ;v′;this : Gt `ox
Gv. We can then conclude Θ;v′;this : Gt `ox v : Gv. We now have Θ⊆Θ′, Θ′ `ox H′, Θ;v′;this : Gt `ox v : Gv
and Gv <: Ge, i.e all results of the theorem.

Case (R-FIELD-UPDATE). By the definition of that rule we have, e = ι .f=v, o = H(ι)[f 7→ v], and H′ = H[ι 7→ o].
By applying (T-FIELD-UPDATE) and (T-FIELD) to the assumption Θ;v′;this : Gt `ox ι .f : Ge, we get Θ;v′;this :
Gt `ox v : Lv (1), Lv <: Ge (2), Θ;v′;this : Gt `ox ι : Gι , Gf = field(Gι ,f), Gt;Gι ; ι `o Gf.Ge (3), and Θ;v′;this :
Gt `ox Ge. By (1) and (2) we directly obtain two of the three goals to be shown. It remains to show that there
exists a Θ′ with Θ ⊆ Θ′ and Θ′ `or H′. Choose Θ′ = Θ. To show that Θ `or H′ we have to show that the new
value v of field f of object ι is a valid value, i.e., Θ; ι ;this : Gι `ox v : Lv, Lv <: G′e, and Gι ;Gι ; ι `o Gf .G′e. But
this follows from the fact that, by (R-FIELD-UPDATE), v′ = ι , and the assumption that Θ(v′) = Gt, which means
that Gt = Gι . Hence by (3), Ge = G′e and we can conclude that Θ `or H′.

Case (R-NEW-OBJECT). Thus H;C〈d〉 ⇓v′ H′; ιC. Choose Θ′ = [ιC→ C〈d〉]Θ, then the conclusion follows directly.

Case (R-CAST-NULL). Clear.

Case (R-CAST). Straightforward.

Case (R-CONTEXT). By the definition of that rule we have, e = e�[e
′] (1), H;e′ ⇓v′ H′′;v′′ (2), and H′′;e�[v′′] ⇓v′

H′;v (3). By the assumption Θ;v′;this : Gt `ox e : Ge and Lemma C.7, we obtain that there exists a Le′ with
Θ;v′;this : Gt `ox e′ : Le′ (4). We can now apply the induction hypothesis and we get that there exists a Θ′′ ⊆Θ

with Θ′′;v′;this : Gt `ox v′′ : Lv′′ , Lv′′ <: Le′ , and Θ′′ `ox H′′. By using Lemma C.8 we obtain that exists a type
L with Θ′′;v′;this : Gt `ox e�[v′′] : L, and L<: Ge (5). We can now apply the induction hypothesis on (3) and
we get that there exists a Θ′ ⊆ Θ′′ with Θ′;v′;this : Gt `ox v : Gv, Gv <: L (6), and Θ′ `ox H′. From (5) and (6)
and the transitivity rule of subtyping, Gv <: Ge, closing the case.
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