Document downloaded from:

http://hdl.handle.net/10251/45032

This paper must be cited as:

Garcia Marques, ME.; Giret Boggino, AS.; Botti V. (2013). A Model-Driven CASE tool for
developing and verifying regulated open MAS. Science of Computer Programming.
78(6):695-704. doi:10.1016/j.scico.2011.10.009.

The final publication is available at

http://dx.doi.org/10.1016/j.scic0.2011.10.009

C ight
opyng Elsevier

A Model-Driven CASE tool for Developing and
Verifying Regulated Open MAS

Emilia Garcial, Adriana Giret!, Vicente Botti'

Universitat Politecnica de Valencia

Abstract

This paper describes a CASE tool for developing complex systems in which
heterogeneous and autonomous agents may need to coexist in a complex
social and legal framework. Model-Driven Technologies are used to integrate
the design of systems of this kind with the verification of the models and
with the generation of executable code from these models. The verification
module is based on model-checking techniques to check the coherence of a
modeled legal context at design time is presented and it is exemplified with
a case study.

Keywords:
Multi-Agent Systems, Contracts, Model-Driven Software Development,
Model Checking

1. Introduction

In today’s bargaining scenarios, the e-Business approach is becoming
more and more a “must-have” tool. Over recent years, several works have
focused on solving the problem of integrating multi-agent system, service-
oriented computing paradigms and normative environments in order to model
autonomous and heterogeneous computational entities in dynamic, open en-
vironments [1]. In this context, the term Open means that external and
internal agents of the system can interact with each other. In order to adapt

Email addresses: mgarcia@dsic.upv.es (Emilia Garcia), agiret@dsic.upv.es
(Adriana Giret), vbotti@dsic.upv.es (Vicente Botti)
LCamino de Vera S/N, 46022, Valencia

Preprint submitted to Journal of Science of Computer Programming July 30, 2011

systems of this kind to industrial environments, the agent social relation-
ships, organizational behavior, agent interactions, and service interchanges
must be regulated.

Over the last few years, the integration of electronic contracts in Or-
ganizational MAS is becoming increasingly more important to system ar-
chitectures for agent behavior regulation [2]. This is because contracts are
expressive and flexible. They allow agents to operate with expectations of
the behavior of other agents based on high-level behavioral commitments,
and they provide flexibility in how the autonomous agents fulfill their own
obligations [3]. Furthermore, contracts allow the top-down specification of
organizational structures to be integrated with the autonomy of participating
agents [4]. For example, the rights and responsibilities that an agent acquires
when it is playing a specific role in an organization can be formalized using
norms and contracts.

Developing these systems is a very complex task because it requires defin-
ing of the global behavior of the system, the individual behavior of each
agent, the legal context of each entity, and the social and contractual inter-
actions. Also, many conflicts can arise from the potential combination of
organizational norms and the specific restrictions of each agent derived from
the commitments of their signed contracts. It is necessary to ensure that
each single contract has no conflicts, and also that the composition of all the
contracts is itself conflict-free. Therefore, automatic techniques are needed
to develop and verify these systems.

In our work, we deal with the problem of engineering Regulated Open
Multi-Agent Systems (ROMAS). They are systems in which heterogeneous
and autonomous agents may need to coexist in a complex social and legal
framework that can evolve to address the different and often conflicting ob-
jectives of the many stakeholders involved. Our architecture is based on
Open Organizational Multi-agent Systems [5, 6]. In this way, organizations
comprise both the integration of organizational and individual perspectives
and the dynamic adaptation of models to organizational and environmental
changes. In our proposal, agents interact between them by means of Ser-
vices which represent the functionality that agents offer to other entities.
Organizations impose limits on the actions that the agents can perform by
means of Norms and Contracts. However, agents maintain their autonomy,
so they can choose the actions to do next and select with whom to perform
them. A complete description of this architecture and a formal meta-model
for representing it can be found in [7].

Based on Model-Driven techniques, we have developed a CASE tool that
models ROMAS systems, validates these models using model-checking tech-
niques, and is prepared to automatically generate executable code for agent
platforms such as THOMAS [8] or Electronic Institutions [9]. This paper
presents the main architecture and functionalities of this tool.

The rest of the paper is organized as follows: Section 2 presents some
background and related works in the context of Model-Driven Architectures
and in the context of the Formal Verification of multi-agent systems (MAS)
using model checking. Section 3 exemplifies our proposal by means of a case
study and details the verifier module that checks the coherence of the legal
context at design time. Finally, Section 5 presents some conclusions and
future work.

2. Background and related work

2.1. Model-Driven Architecture and Eclipse technology

In the software engineering field, a model-driven software development
process (MDD) should be clearly defined by specifying all the phases of the
development lifecycle. Furthermore, CASE tools should be provided as sup-
port for the different tasks in the model-based design, such as analysis and
verification of models or the automatic transformation from one specification
language to another in a transparent and simple way.

The Model Driven Architecture initiative (MDA) [10] has proposed a
standard for the metamodels of the specification languages used in the model-
ing process, which is known as the Meta Object Facility (MOF). This includes
a set of requirements for the transformation techniques that will be applied
when transforming a source model into a target model. This is referred to
as the Query/View/Transformation (QVT) approach [11]. Basically, MDA
proposes an approach to software development based on modeling and on
the automated mapping of source models to target models. The models that
represent a system and its environment can be viewed as a source model, and
code can be viewed as a target model.

Following these MDA standards, the Eclipse Platform [12] is an open
source initiative that offers a reusable and extensible framework for creating
IDE-oriented tools. The Eclipse Platform itself is organized as a set of sub-
systems (implemented in one or more plug-ins) that is built on top of a small
runtime engine. Plug-ins define the extension points for adding behaviors to

« Mofscript
EMF —»WH GEF GMF |- *W{ :W
Q_ - « Xpand2
| Sonimodel Cooo B
* Javaclasses MDT | |EMFT @ Mapping definition’
— .gmfmap

Figure 1: Eclipse plug-in structure

the platform, which is a public declaration of the plug-in extensibility. Figure
1 shows the most common plug-ins used to developed an Eclipse CASE tool:

e The Eclipse Modeling Framework (EMF) plug-in offers a modeling
framework and code generation facility for building tools and other
applications based on a structured data model. From a metamodel
specification described in XMI, Rational Rose, or the ECore standard
(a variant of the MOF standard), EMF provides tools and runtime sup-
port to produce a set of Java classes for the model. EMF also provides
the foundation for interoperability with other EMF-based tools and ap-
plications. Moreover, EMF generates a textual modeler editor from
the metamodel

e The Graphical Editing Framework (GEF) and Graphical Modeling
Framework (GMF) plug-ins allow developers to create a rich graphi-
cal editor from an existing ECore metamodel. These plug-ins allow
the definition of the graphical elements that are going to be used in the
generated tool. They also allow the definition of several views of the
model and the palette of elements of each view. Finally, these plug-
ins combine the graphical definition with the metamodel elements and
with the different views of this metamodel, creating a complete mod-
eling tool. These new tools are integrated into the platform through
plug-ins that allow the definition of models based on the specification
of the metamodels.

e The Xpand and Mofscript plug-ins offer a language to define matching
rules between the ECore metamodel and another language. A plug-in

generated using Xpand or Mofscript consist in a set of transformations
mapping rules between the entities and relationships of a metamodel
defined in the ECore language and any other description language.
These scripts are executed on an instance of the metamodel, i.e., on
a user application model. These scripts have access to each entity
and relationship of the model and match this information with the
mapping rules defined at metamodel layer to generate the related code.
Therefore, users can design their models using the graphical editor
and execute this rules to automatically generate code from these
models.

Since Model-Driven approaches have been recognized and become one of
the major research topics in the agent-oriented software engineering commu-
nity, we present how Eclipse MDA technology can be used for designing and
verifying Regulated Open MAS. Some works like [13, 14, 15] show how MDA
can be effectively applied to agent technologies. Furthermore, they show how
the MDA technology can help to reduce the gap between the analysis stage
and the final implementation stage.

2.1.1. Formal verification of MAS using Model Checking

Model checking is an area of formal verification that is concerned with
the systematic exploration of the state spaces generated by a system. Model
checking was originally developed for the verification of hardware systems,
and it has been extended to the verification of reactive systems, distributed
systems, and multi-agent systems.

The application of model-checking techniques to the verification of contract-
based systems is an open research topic. Some works like [16] model con-
tracts as a finite automata that models the behavior of the contract signa-
tories. Other works represent them as Petri nets [17]. These representations
are useful to verify safety and liveness properties. However, adding deontic
clauses to a contract allows conditional obligations, permissions, and prohibi-
tions to be written explicitly. Therefore, they are more suitable for complex
normative systems like ROMAS. In [18] and [19] a deontic view of contracts
is specified using the CL language. The work in [18] uses in model-checking
techniques to verify the correctness of the contract and to ensure that certain
properties hold. The work in [19] presents a finite trace semantics for CL
that is augmented with deontic information as well as a process for automatic
contract analysis for conflict discovery. In the context of Service-Oriented Ar-

chitectures, model checkers have recently been used to verify compliance of
web-service composition. In [20] a technique based on model checking is
presented for the verification of contract-service compositions.

In the context of verification techniques for MAS, there are some impor-
tant achievements using model checking. In [21], the SPIN model checker is
used to verify agent dialogues and to prove properties of specific agent proto-
cols, such as termination, liveness, and correctness. In [22] a framework for
the verification of agent programs is introduced. This framework automati-
cally translates MAS that are programmed in the logic-based agent-oriented
programming language AgentSpeak into either PROMELA or Java. It then
uses the SPIN and JPF model checkers to verify the resulting systems. In
23], a similar approach is presented but it is applied to an imperative pro-
gramming language called MABLE. In [24], the compatibility of interaction
protocols and agents deontic constraints is verified. However non of these
approaches is suitable for ROMAS since they do not consider organizational
concepts.

There are only a few works that deal with the verification of systems
that integrate organizational concepts, contracts, and normative environ-
ments. The most developed approach is presented in the context of the
IST-CONTRACT project [2]. It offers contract formalization and a com-
plete architecture. It uses the MCMAS model checker to verify contracts.
However, as far as we know, it does not define the organizational normative
context or verify the coherence of this context with the contracts.

The approach that we present here is distinct in that it designs and offers
a module that allows: (1) the explicit formalization of social and commercial
contract templates at design time;(2) the automatic translation of contract
and norm descriptions into a verifiable model-checking language; (3) the
verification at design time of whether a contract template contradicts the
designed normative and legal environment.

3. ROMAS CASE tool

Following the MDA [10] standards by means of the Eclipse technology
described in Section 2.1, we have developed a CASE tool for designing RO-
MAS systems. This tool is based on the ECore specification of the ROMAS
formal metamodel described in [7]. This tool has been designed as an exten-

MDD

process
1. EclipseModeling | . S Su s
Model tool

N
=
vl

Xpand plugin:
Model Transformationto re+=s==ss=srsasensfensssd

translation to PROMELA
verification

PROMELA
code

{

Verification
model checking
SPIN

2.2
Verification

(

\ 4
3. Xpand plugin: , Executable agent platform code
Code code generation
generation

{

Figure 2: ROMAS development steps

sion of our previous work, the EMFGormas tool? [5]. ROMAS CASE tool
extends EMFGormas with the notion of contracts and some other semantic
entities derived from its metamodel. Moreover, ROMAS CASE tool adds a
verification mechanism to check the coherence of the designed models.

This section presents the main architecture and how to use the ROMAS
CASE tool to design and verify ROMAS. The main steps of a ROMAS de-
velopment using this CASE tool are summarized in Figure 2: First, users
model their applications by means of a graphical modeling tool based on
the ROMAS formal metamodel (Section 3.1). Second, users can verify their
designed models in two steps (Section 3.2): (1) Translate their ROMAS
models into PROMELA code and LTL formulas which are the language of
the model-checker SPIN; (2) Verify the coherence of the legal context at
design time using a SPIN plug-in which is integrated in the CASE tool. If
any conflict is detected, designers can revise their models and change them
by means of the graphical editor. Finally, another Xpand plug-in can be used
to generate code to an executable agent platform from the models generated
using the graphical editor (Section 3.3).

Zhttp:/ /users.dsic.upv.es/grupos/ia/sma/tools/EMFGormas/

& Spin - platform:iresource/mWater/src/modelimWater. gormas_diagram#_B1YogF paEd6T_NWBXEYtbg - Eclipse

Fle Edit Diagram Navigate Search Project Run Window Help
1% package Explorer £ = O [3) miwater germas_dagram#z &1 - [T] Contract.xpt =
ER-C Al 53 paletts
1= 52 miwater k@&~
BB src e =
= 6 mod! . . Ll
& default.gormas oog Gontains, @ . &= OrganizationalUnit
@ : MarketFacilitator
miWater gormas_diagram Somane | Rl
= templates Waterliser Sontaps Dofdeates & agent
[T Agent.xpt
[T contract.xpt ;i ; Centaing Contains. 7 Resource
L Inbetinzof | Tnheritancecy Contains BasinRequlatingAuthority
[El Extensions.ext 228 B2 Application
= InhentanceOF i
[T organizationallnit.xpt] BuyersCommunity 229 Horm
T Role.xpt
[T Role.xp! Trmdbarty Buyer SellersCommunity Jury & Relationshios =
[T Root xpt (i Contains i\
OB workfon Seller InhericanceOf
1= workflow. mwe @ 7 Contains
51 workfiow. praperties < 3 7 SaciziRelationship
-3 srcgen
= F2 ContractTemplate [console | 21 Problems | = Properties 2 Bl =Y =0
=] miwater_Contracts. pml w— i -
B o & Organizational Unit mWater
(- JRE System Library [116]
e e Property Value
- Plug-in Dependencies Description i=
iy
META-INF ppeacance Execuber Manages Port
b @ notes Hame U= mitater
ot buid.properties QU Cortains ARgENt S 0rganizational Uit BuyersCommunity, Organizational Urit SellersCommunity
OU Contains Norm [norm Org1, Norm Orgz
OU Contains Product
OU Offers Product
Structure = Plain

Figure 3: mWater Organization diagram

3.1. Model:Analyze and design the system

As is detailed in [7], ROMAS metamodel can be instantiated by means
of four different views that analyze the model from different perspectives. In
order to facilitate the modeling tasks, the analysis and design of a ROMAS

system is formalized by means of several diagrams that are instances of the
ROMAS metamodel views:

e Organizational External view: defines the global goals of the organiza-
tions, the functionality that the organizations provide and require from
their environment and their social structure.

e [nternal view: defines the internal functionalities, capabilities, beliefs
and objectives of each entity (organizations, agents, and roles) by
means of different instances of this model.

o ContractTemplate definition view: defines Contract Templates follow-
ing the syntax presented in Figure 7. Contract Templates are prede-
fined restrictions that all final contracts of a specific type must fulfill.
Contracts are inherently defined at runtime, but contract templates are
defined at design time and can be used at runtime as an initial point
for the negotiation of contracts.

e [Interaction/Task view: defines both the interaction protocols and the
sequence of activities in which a task is decomposed.

8

The modeling part of the CASE tool consists of several Eclipse plug-ins
that offer one graphical editor for each view of the model. Figure 3 shows a
snapshot of the tool in which an organization of a case study is modeled.

Therefore, the first step to develop a ROMAS system is to model it using
the graphical CASE tool. This tool will internally generate an ECore model
where all the information of the different diagrams will be saved. This ECore
model will be used in the next steps to verify the model and to generate code.

3.2. Verification of the model

This step of the process consists in verifying the correctness, complete-
ness, and coherence of the designed model. Although the modeling tool
restricts the model to the syntax that is defined in the metamodel, many
conflicts such as the coherence between agents’ goals and the goals of their
organization can arise. At the moment, we deal with the conflicts related to
the incoherences between the designed contract templates and the organiza-
tional norms. Model-checking techniques are used to verify the models. The
verification process is executed in two steps:

1. Model translation to verification. The modeled system is translated
into a language that can be verified using model checking. As is illus-
trated in Section 2.1, the Xpand language of the Model to Text (M2T)
project [25] helps developers to translate models that are defined us-
ing the ECore standard into other languages by means of some map-
ping rules defined at metamodel layer. Since we use the SPIN model
checker [26] to verify the models, the models should be transformed into
the PROMELA language and Linear Temporal Logic (LTL) formulas.
Based on the Eclipse transformation plug-in Xpand, an Eclipse plug-in
called RO2P (ROMAS to PROMELA code transformation) has been
developed in order to automatically translate the ROMAS designs into
the PROMELA verifiable language and LTL formulas.

The objective of RO2P is to verify that there is no conflict between
the organizational norms, agent norms, and contract template designs.
As is presented in [19], conflicts in contracts and norms arise for four
different reasons: (1) the obligation and prohibition to perform the
same action; (2) the permission and prohibition to perform the same
action; (3) obligations of contradictory actions; (4) permissions and
obligations of contradictory actions. At the moment, RO2P generates
code that verifies the first and the second conflict scenarios. The last

two scenarios need semantic analysis of the ontology which is part of
our future work.

Despite that, the SPIN model checker includes a large number of tech-
niques for improving the efficiency of model checking such as state-space
compression and partial-order reduction, translating the entire modeled
system into a unique PROMELA code from which all the properties
of the system could be verified, increase exponentially the complexity
of the verification. The RO2P is designed to translate only the part of
the model that is related to the property to be verified. The parts of
the model that are related to the property ”Coherence between contract
templates and their normative context” are the contract templates and
the norms that concern to the normative context of these contracts.
The transformation rules for these entities are detailed in Section 4.
Therefore, to generate a verifiable file from the ROMAS models gener-
ated with the graphical editor, users only need to select their model and
click on the right-click menu ” Generate PROMFELA file”. Then, RO2P
will transform the ECore file that contains all the models information
into a PROMELA program and a set of verifiable LTL formulas.

2. Execute the model checker. The SPIN formal verification of the model
is directly run from the modeling tool. It is possible thanks to the
Eclipse plug-in? [27], which has been integrated into our CASE tool. It
is used to verify the PROMELA code generated in the step (a). To run
the verification the user only need to select the generated PROMELA
file and click on the SPIN right-click menu. After the verification, if
there is any incoherence, the designer must redesign the application
model by means of the graphical modeling editor, and run again the
verification process.

3.3. Generate the code for the execution platform.

The CASE tool architecture is prepared to integrate other plug-ins based
on Xpand to generate transformation mapping rules expressed at metamodel
layer to translate from the models designed with the modeling tool to a pro-
gramming language of an agent platform. Currently, we are developing a
translator from ROMAS models to executable code for the Thomas platform
[8] which is an agent platform that supports the description of organizations

Shitp://Ims.uni-mb.si/epls/

10

and normative environments. However, any other transformation plug-in
could be developed to translate the model to other normative agent plat-
forms.

4. Case study and RO2P transformation rules

In order to illustrate the usage of the ROMAS CASE tool, a case study
based on a virtual water market has been developed. Besides, a simplifi-
cation of this case study is used as a running example to detail the Xpand
transformation mapping rules between the ROMAS metamodel and the SPIN
verifiable language (PROMELA code and LTL formulas).

4.1. Model:Analyze and design the system

The case study is called mWater [28]. Let’s suppose there is a water
market that is an institutional, decentralized framework where users with
water rights are allowed to voluntarily trade their water rights fulfilling some
pre-established rules. In order to obtain a clear scenario to show how a
ROMAS model is verified with the ROMAS CASE tool, a simplified scenario
of this case study is presented. A complete description of this case study
modeled with ROMAS is presented in [7]. As is described in Section 3.1, a
ROMAS model can be defined using different views of the metamodel. This
simplified scenario is represented by means of three diagrams:

o mWater Organization internal view: Figure 4 shows a simplification of
the mWater organization internal view diagram where only the entities
and relationships that are related to the verification of the normative
context are shown. There is an organization called m Water that con-
tains two types of roles Sellers and Buyers. This organization restricts
the behaviour of these roles by means of two organizational norms:

- Orgl mWater norm: It specifies that there is a minimum and max-

imum price for the water, (i.e., it is forbidden to pay more than 50
euro/kL or less than 1 euro/kL).

- Org2 mWater norm: It specifies that any agent who is playing the
Buyer role cannot offer services to other agents in exchange of water.
This rule forces that agents only can exchange water with money.

e Buying water rights contract: This contract template indicates that
there are two signatory parties who play the role Buyer and Seller,

11

=~
Org1 C/al/se

zc’\@\)s

Org2

(OLGL®)

mWater

(*) (Org1, true, false, ANY,FORBIDDEN,pay_water(t,p,q)&& (p>0'5| | p<0'001), -,-)
(*)(Org 2,true,false,Buyer,FORBIDDEN,plow(t,q),-,-)
(*)Norms:(ld,Activation, Expiration, Target,Deontic,Action,Sanction,Reward)

7
00‘\\?’\05 Seller

Yo, ()

Buyer

Figure 4: mWater Organizational Internal View

Q0O

A

& mWater

° £ /@

%
Y S
Wse, ‘i @
Seller

&%&&% " ol
Nlcty atony
AlternativeDisputeResolution " <€5futio, o9
Slgnatory%@
oco—| T
9%9 < NegotiationPro!

. Buyer
BuyingWaterContract

GiveWWaterNom
PlowServiceNorm

«—

BuyRightProtocol

(*)(GiveWaterNorm,true,false,Seller,OBLIGED,give_water(t,p,q),-,-)
(*)(PlowService Norm,true,false,Buyer,OBLIGED,plow(t,q) && t=Seller,-,-)
A) (*)Norms:(id,Activation,Expiration, Target,Deontic,Action,Sanction, Reward)

B)

000

o ater

i

agna(ory%l

Seller

MaxLNorm\c

Tause.

P — C T
<NegotiationProtocol
MaxSellProtocol

SellerSocialContract

(*)(MaxLitersNorm,true,false,Seller,FORBIDDEN,give_water(t,p,q) &&q>5x)

(*)Norms:(Id,Activation, Expiration, Target, Deontic, Action,Sanction,Reward)

Figure 5: A)Buying Water Contract Template B)Role Seller Social Contract template

respectively, inside the same organization called m Water. This contract
template has two clauses that specify that the Buyer should plow the
field of the Seller in exchange of the water. The formal specification of
each norm is presented in Figure 5.A and it follows the syntax defined

in Figure 7.

e Role Seller Social Contract template: Figure 5.B represents the con-
tract template diagram indicates that any agent who wants to play the
Seller role must sign a contract that explicitly says the maximum num-
ber of liters of water that this agent can sell (Norm MazLiters). The
number of liters is defined at runtime during the negotiation between

the agent and the organization.

4.2. Verification of the model

The initial objective of this step is to check the coherence between the
commitments defined in the contract templates and their normative context.
The verification of other properties and the generation of the agent execution
platform code are part of our current and future work.
1. Model translation to wverification. This section presents the Xpand
transformation mapping rules between the ROMAS metamodel and the SPIN
verifiable language (PROMELA code and LTL formulas). A plug-in based on

12

Xpand consist in a set of mapping rules defined at metamodel layer. ROMAS
metamodel is specified using the ECore language. Thus, the metamodel has a
main entity from which all the other entities and diagrams of the metamodel
are accessible. The main routine of the RO2P plug-in is presented in Figure

6:

1.
2.

Figure 6, lines 4 to 6: Global variables are defined.

Figure 6, line 8: the fillLists routine is invoked in order to navigate
the whole metamodel extracting the entities related to the property
to be verified. The property to be verified is ”Coherence between con-
tract templates and their normative context”, therefore the entities that
must be transformed are the Contract templates, the Executers that are
involved in these contracts (agents, roles and organizations), and the
Norms that concern the normative context of these contracts. The
syntax of Contract templates and Norms is presented in Figure 7. The
deontic attribute of the Norms indicates that they can be obligations,
permissions or prohibitions. Norms of permission can only produce a
conflict if there is a prohibition over the same action. Therefore, to
create the verification model, we assume that the agent actually per-
forms the action. This means that permission norms are modeled as
obligation norms.

In our case study there are two contracts (Buying WaterContract and
SellerSocialContract), two entities (the role Seller and Buyer), two
obligations norms specified in the contract template Buying WaterCon-
tract, and three forbidden norms (two organizational norms and one
defined in the contract template SellerSocialContract).

©CoO~NOUTAWNE

«| MPORT romas »
«DEFI NE root FOR romas_nodel »
«REMp [%% %%k kkskx VARI ABLES ******xxxxxxxxx | «ENDREM»
«LET (List[ContractTenplate]) {} AS contractList »
«LET (List[Executer]) {} AS executerlList »
«LET (List[Norni) {} AS nForbiddenList »
«LET (List[Norni) {} AS nObligedList »
CREMp [%% % xkkkok Prepare the |ists ****xxxx¥*%/ «ENDREM>
«EXPAND fillLists(contractList, executerlList,nForbiddenList,nCbligedList) FOR this»
CREMp [%% % xxk ko Transl ate Forbi dden Norms ********xx/ «ENDREM»
«FI LE "LTL_Nornms" + ".pml" »
«EXPAND wr i t eFor bi ddenNor ns FOR nFor bi ddenLi st »
«ENDFI LE »
«FILE "PronelaFile" + ".pm" »
«EXPAND writeContracts FOR contractList »
«EXPAND writeExecuters FOR executerlList »
«EXPAND writelnit(contractlList, executerList)»
«ENDFI LE »
«ENDLET » «ENDLET » «ENDLET » «ENDLET » «ENDDEF|I NE»

Figure 6: Xpand script: Main routine

13

<ContractTemplate>::=<ID>[<Description>][<Activation>][<Expiration>]
<Normative_context><Signatory_parties><Clauses>
[<NegotiationProtocol>][<ExecutionProtocol>][<ConflictResolutionProtocol>]

<Normative_context>::={organization_id}

<Signatories_parties>::= {<entity>}

<entity>::=<agent>:<role>:<organization>|<role>:<organization>| <organization>

<agent>::= NONE | ALL | agent_id

<role>::= NONE | ALL | role_id

<organization>::= NONE | ALL | organization_id

<Clauses>::= {<Norm>}

<Norm>::=<ID>[<Activation>][<Expiration>]<Target><Deontic><Action>[<Sanction>][<Reward>]
<Deontic>::=OBLIGED | FORBIDDEN | PERMITTED
<Target>::= {<entity>}

Figure 7: Contract Template syntax

65 | «DEFI NE writ eFor bi ddenNorms FOR List[ronas: : Nornj»

66 «FOREACH this AS item

67 /*Norm «i tem | d»:: «item Description» */

68 Itl «itemld» {[]! («itemActivation» & (!«item Deactivation») &% «item Action»)
69 «ENDFOREACH»

70 | «ENDDEFI NE »

Figure 8: Xpand script: writeForbiddenNorms routine

3. Figure 6, lines 11 to 13: the routine writeForbiddenNorms is invoked
in order to translate the norms whose deontic attribute indicates pro-
hibition as LTL formulas. These formulas are saved in a file called
"LTL_Norms.pml”. The code of the routine writeForbiddenNorms is
presented in Figure 8. Figure 8 line 68 indicates that never occurs that
the action that the norms forbids occurs when this norm is active and
it has not been deactivated.

For example, the norm Org2 mWater norm which is formalized as:
(Org 2,true,false,Buyer, FORBIDDEN plow(t,q),-,-) considering the fo-
llowing syntax: (Id, Activation, Expiration, Target, Deontic, Action,
Sanction, Reward), is translated to LTL as: Org2 []!(Buyer_task==plow).
This norm does not have activation or expiration conditions, so the LTL
formula only express that is not possible that a Buyer executes the task
plow.

4. Figure 6, lines 14 to 18: Executers involved in the process translation,
Contracts templates translations and the PROMELA initial process
are saved in the file PromelaF'ile.pml.

e Each Executer is represented by an active process (Fig.9 line
119). The core of this process is a loop that checks its pending
tasks and simulates its execution. Each party stores its pending
tasks in a channel, which is a global variable that is accessible
for all the processes (Fig.9 line 113). If an agent is obliged to

14

110 | «DEFI NE writeExecuters FOR List[romas:: Executer]»

111 #define max_tasks 5

112 | «FOREACH this AS execu»

113 | chan «execu. Name»_Pendi ng = [max_tasks] of {ntype, ntype}
114 ntype «execu. Nane»_t ask;

115 | ntype «execu. Name»_par ant;

116 ntype «execu. Nane»_par an2;

117
118 | /*Signatory party «execu.Name»::«execu. Description»*/
119 | proctype «execu. Nanme»(){

120 end:

121 do

122 11 «execu. Name»_Pendi ng ?? «execu. Name»_normd , «execu. Nane»_Action
123 od;

124 | }/*end «execu. Name»*/

125 | «ENDFOREACH» «ENDDEFI NE »

Figure 9: Xpand script: writeExecuters

23 | proctype Buyer () {

24 | end:

25 do

26 1. Buyer_Pending ?? Buyer_task , Buyer_target;
27 d;

od;
28 | }/*end Buyer*/

Figure 10: mWater Buyer role in PROMELA

execute a service, it is supposed to do that. Thus, the action of the
norm to the channel of the corresponding agent that is simulating
the execution. Figure 10 shows an the PROMELA code of the
executer role Buyer.

e Each Contract Template is specified as a PROMELA process (Fig.11
line 83). Figure 12 presents the PROMELA code for the BuyWa-
terRightContrat template. The status of a contract is represented
with a global variable (Fig.11 line 81 - Fig. 12 line 31). The
Expiration condition of a contract is represented as the escape
sequence of an unless statement which includes all the tasks of the
contract. This means that if the expiration condition is satisfied,
the contract will interrupt its execution (Fig.11 line from 89 to 93
- Fig. 12 line 41). Each obligation and permission clause adds the
action of the norm to the channel of the corresponding Executer
that is simulating the execution (Fig.11 line 96 - Fig. 12 lines 37
and 38).

e The Init process is the first process that is executed in a PROMELA
code. This process launch the executers processes and the contract
processes when they are activated. Figure 13 shows the Xpand
code to generate this process.

2. Execute the model checker.
After generating the PROMELA code. The SPIN model checker is

15

«DEFINE writeContracts FOR List[ronmas:: Contract Tenpl ate] »
ntype ={no_initated, executing, finished, interrunped}
«FOREACH t his AS cont »
ntype «cont.|d»_state=no_initiated;
/*Contract Tenpl ate «cont.|d»::«cont. Description»*/
proctype «cont. ld»(){
«cont . | d»_st at e=execut i ng;
{«LET (List) cont.clause AS nornList»
do«FOREACH nor i st AS nor maL2»
«LET (Norm) normaL2 AS norma »
«| F norma. Deontic.toString()=="0BLI GED" || norna.Deontic.toString()=="PERM TTED" »
::«lF norma. Activation !=nul | »«nor ma. Acti vati on»- >«ENDI F»
«FOREACH nor ma. Target AS tar g»«targ. Name»_Pending ! «nornma.|d» «norma. Acti on» 0; «ENDFOREACH»
«ENDI F»
«ENDLET» «ENDFOREACH»
od; «ENDLET»
«cont . | d»_st at e=fi ni shed;
}unl ess(«cont . Expi ration»);
} /*end contract «cont.|d»*/
«ENDFOREACH» «ENDDEFI NE»

Figure 11: Xpand script: writeContracts

31 | ntype BuyWaterRi ght Contract _state=no_initi ated,
32 | /*Contract Tenpl at e BuyWat er Ri ght Contract:: Description*/
33 | proctype BuyWaterRi ght Contract () {

34 BuyWat er Ri ght Cont r act _st at e=execut i ng;
35 {

36 do

37 titrue->Seller_Pending ! norml give_water O;
38 ::true->Buyer_Pending ! norn2 plow O;

39 od;

40 BuyWat er Ri ght Cont r act _st at e=fi ni shed;

41 }unl ess(fal se);

42 | '} /*end contract BuyWaterR ght Contract*/

Figure 12: mWater BuyWaterRightContrat in PROMELA

executed from the modeling tool to verify that these contracts and
norms are coherent with each other.

The execution of the SPIN model checker with the the generated code
from our case study dectects a conflict. The LTL formula Org2 mWa-
ter norm is violated, i.e, the verification shows that this contract is not
correct since the organizational norm is not fulfilled. This norm spec-
ifies that agents playing the Buyer role cannot provide other services,
whereas the contract specifies that the Buyer must provide the service

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

«DEFINE writelnit (List[ContractTenplate] contractlList, List[Executer] executerList) FOR romas_nodel »
init(

«FOREACH execut erLi st AS execu»

run «execu. Name»();
«ENDFOREACH»
«l F !'contractList.isEnpty»

do

«FOREACH contractLi st AS contr»

(«IF contr.Activation !'=null» «contr.Activation» & «ENDI F»«contr.|d»_state==no_initiated) ->

run «contr. ld»();

«ENDFOREACH»

od;
«ENDI F»

)
«ENDDEFI NE »

Figure 13: Xpand script: Init process

16

Plow to the Seller. Therefore, the designer should revise the design of
the system and execute again the verifier module.

5. Conclusions and Future work

Engineering complex systems that are composed of heterogeneous and
autonomous entities that coexist in a complex social and legal framework is
a hard task, therefore, there is a need for guidelines, modeling environments
and verification facilities. In this paper, we have dealt with the problem of
engineering systems of this kind. A Model-Driven architecture and tool that
are based on a formal metamodel for developing these systems is presented.
In addition, a verifier module to check the coherence between contracts and
their normative contexts has been developed using the SPIN model checker.
A case study is presented to illustrate the use of this verifier module. Model-
checking techniques, and more specifically the SPIN model checker, have
been proved to be good mechanisms to verify the coherence of contracts in
ROMAS.

The model and the verification of these systems are integrated into a
CASE tool based on Eclipse technology. Moreover, an automatic executable-
code generation plug-in is currently being developed. It will generate code
for a normative-agent platform. In the near future, we plan to improve our
verification module by adding a semantic verification using the information
of the contract’s ontology. We are also analyzing other properties in order to
offer a complete design-time verification module. Finally, we are developing
scalability tests to check the real effectiveness and usability of this verifier
module for large systems.

6. Acknowledgments

This work is partially supported by the TIN2008-04446, TIN2009-13839-
C03-01, PROMETEO 2008/051 projects, CONSOLIDER INGENIO 2010
under grant CSD2007-00022 and FPU grant AP2007-01276 awarded to Emilia
Garcia.

References

[1] R. F. Fernandez, 1. G. Magarinyo, J. J. Gomez-Sanz, J. Pavon, Inte-
gration of web services in an agent oriented methodology, Journal In-

17

[10]

ternational Transactions on Systems Science and Applications 3 (2007)
145-161.

N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil, M. Luck,
S. Miles, Towards a formalisation of electronic contracting environments,
Coordination, Organizations, Institutions and Norms in Agent Systems
IV: COIN 2008 International Workshops (2009) 156-171.

J. Vazquez-Salceda, R. Confalonieri, I. Gomez, P. Storms, S. P.
Nick Kuijpers, S. Alvarez, Modelling contractually-bounded interactions
in the car insurance domain, in: Proceedings of the First International
ICST Conference on Digital Business -DIGIBIZ 2009-, 2009.

V. Dignum, J. Meyer, F. Dignum, H. Weigand, Formal Specification
of Interaction in Agent Societies, Formal Approaches to Agent-Based
Systems (FAABS) 2699 37-52.

E. Garcia, E. Argente, A. Giret, A modeling tool for service-oriented
open multiagent systems, in: International Conference on Principles

and Practice of Multi-Agent Systems (PRIMA), Vol. 5925 of LNAI,
Springer-Verlag, 2009, pp. 345-360.

E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, M. Rebollo,
An Abstract Architecture for Virtual Organizations: The THOMAS
approach, Knowledge and Information Systems (2011) 1-35.

E. Garcia, A. Giret, V. Botti, Regulated Open multi-agent Systems
based on contracts, in: The 19-th International Conference on Informa-
tion Systems Development (ISD 2010), Springuer, 2010, pp. 235-246.

N. Criado, E. Argente, V. Botti, THOMAS: An Agent Platform For
Supporting Normative Multi-Agent Systems, Journal of Logic and Com-
putation (2011) In press.

C. Sierra, J. A. Rodriguez-Aguilar, P. Noriega, M. Esteva, J. L. Arcos,
Engineering multi-agent systems as electronic institutions, UPGRADE
The European Journal for the Informatics Professional V (4) (2004)
33-39.

R. Soley, the OMG Staff Strategy Group, Model driven architecture.
ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf.

18

[11]

[14]

[15]

Meta object facility (mof) 2.0 query/view/transformation specifica-
tion. ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf, Object Manage-
ment Group.

Eclipse - an open development platform. http://www.eclipse.org/
(2011).

S. Rougemaille, F. Migeon, C. Maurel, M.-P. Gleizes, Model driven en-
gineering for designing adaptive multi-agents systems, in: Engineering
Societies in the Agents World VIII: 8th International Workshop, ESAW
2007, Revised Selected Papers, Springer-Verlag, 2008, pp. 318-332.

H. Hachicha, A. Loukil, K. Ghedira, Mamt: an environment for model-
ing and implementing mobile agents, in: Sixth International Workshop
From Agent Theory to Agent Implementation (AT2AI-6), 2008, pp. 75—
82.

M. Morandini, D. Nguyen, A. Perini, A. Siena, A. Susi, Tool-supported
development with tropos: The conference management system case
study, Vol. 4951, Springer, Springer, 2008, pp. 182-196, 8th Interna-
tional Workshop, AOSE 2007, Honolulu, HI, USA, May 2007.

E. Solaiman, C. Molina-Jimenez, S. Shrivastav, Model checking correct-
ness properties of electronic contracts, in: Service-Oriented Computing -
ICSOC 2003, Vol. 2910 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2003, pp. 303-318.

F.-S. Hsieh, Automated negotiation based on contract net and petri net,
in: E-Commerce and Web Technologies, Vol. 3590 of Lecture Notes in
Computer Science, 2005, pp. 148-157.

G. Pace, C. Prisacariu, G. Schneider, Model checking contracts a case
study, in: Automated Technology for Verification and Analysis, Vol.
4762 of Lecture Notes in Computer Science, 2007, pp. 82-97.

S. Fenech, G. J. Pace, G. Schneider, Automatic conflict detection on
contracts, in: Proceedings of the 6th International Colloquium on The-
oretical Aspects of Computing, ICTAC 09, 2009, pp. 200-214.

19

[20] A. Lomuscio, H. Qu, M. Solanki, Towards verifying contract regu-
lated service composition, Autonomous Agents and Multi-Agent Sys-
tems (2010) 1-29.

[21] C. D. Walton, Verifiable agent dialogues, Journal of Applied Logic
5 (2) (2007) 197 — 213, logic-Based Agent Verification. doi:DOLI:
10.1016/j.jal.2005.12.0009.

[22] R. H. Bordini, M. Fisher, W. Visser, M. Wooldridge, Verifying multi-
agent programs by model checking, in: Autonomous Agents and Multi-
Agent Systems, Vol. 12, Kluwer Academic Publishers, Hingham, MA,
USA, 2006, pp. 239-256.

23] M. Wooldridge, M. Fisher, M.-P. Huget, S. Parsons, Model check-
ing multi-agent systems with mable, in: Proceedings of the first
international joint conference on Autonomous agents and multia-
gent systems: part 2, AAMAS ’02, ACM, 2002, pp. 952-959.
doi:http://doi.acm.org/10.1145/544862.544965.

[24] N. Osman, D. Robertson, C. Walton, Run-time model checking of in-
teraction and deontic models for multi-agent systems, in: AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, ACM, New York, NY, USA, 2006, pp.
238-240. doi:http://doi.acm.org/10.1145/1160633.1160674.

[25] Eclipse - xpand plug-in. http://www.eclipse.org/modeling/m2t/?project=xpand
(2011).

[26] G. Holzmann, Spin model checker, the: primer and reference manual,
Addison-Wesley Professional, 2003.

[27] T. Kovse, B. Vlaovi¢, A. Vreze, Z. Brezocnik, Eclipse plug-in for spin and
st2msc tools-tool presentation, in: Proceedings of the 16th International
SPIN Workshop on Model Checking Software, 2009, pp. 143-147.

[28] A. Garrido, A. Giret, P. Noriega, mWater: a Sandbox for Agreement
Technologies, in: CCTA 2009, Vol. 202, IOS Press, 2009, pp. 252-261.

20

