
Wang, Meng, Gibbons, Jeremy, Matsuda, Kazutaka and Hu, Zhenjiang (2013)
Refactoring pattern matching. Science of Computer Programming, 78 (11).
pp. 2216-2242. ISSN 0167-6423.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/47478/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.scico.2012.07.014

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/47478/
https://doi.org/10.1016/j.scico.2012.07.014
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Refactoring Pattern Matching

Meng Wanga, Jeremy Gibbonsb, Kazutaka Matsudac, Zhenjiang Hud

a Computer Science and Engineering, Chalmers University of Technology
412 96 Göteborg, Sweden

b Department of Computer Science, Oxford University
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

c Graduate School of Information Sciences, Tohoku University
Aramaki aza Aoba 6-3-09, Aoba-ku, Sendai-city, Miyagi-pref. 980-8579, Japan

d GRACE Center, National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract

Defining functions by pattern matching over the arguments is advantageous
for understanding and reasoning, but it tends to expose the implementa-
tion of a datatype. Significant effort has been invested in tackling this loss
of modularity; however, decoupling patterns from concrete representations
while maintaining soundness of reasoning has been a challenge. Inspired by
the development of invertible programming, we propose an approach to pro-
gram refactoring based on a right-invertible language rinv—every function
has a right (or pre-) inverse. We show how this new design is able to per-
mit a smooth incremental transition from programs with algebraic datatypes
and pattern matching, to ones with proper encapsulation, while maintaining
simple and sound reasoning.

Keywords: functional programming, refactoring, pattern matching,
invertible programming, abstract datatypes, fusion

1. Introduction

1.1. Program Development

Suppose that you are developing a program involving some data structure.
You don’t yet know which operations you will need on the data structure, nor
what efficiency constraints you will impose on those operations. Instead, you
want to prototype the program, and conduct some initial experiments on the
prototype; on the basis of the results from those experiments, you will decide

Preprint submitted to Elsevier February 19, 2012

whether a naive representation of the data structure suffices, or whether you
need to choose a more sophisticated implementation. In the latter case, you
do not want to have to conduct major surgery on your prototype in order to
refactor it to use a different representation.

The traditional solution to this problem is to use data abstraction: iden-
tify (or evolve) an interface, program to that interface, and allow the imple-
mentation of the interface to vary without perturbing the program. However,
that requires you to prepare in advance for the possible change of represen-
tation: it doesn’t provide a smooth revision path if you didn’t have the fore-
sight to introduce the interface in the first place, but used a bare algebraic
datatype as the representation.

Moreover, choosing a naive representation in terms of an algebraic datatype
has considerable attractions. Programs that manipulate the data can be de-
fined using pattern matching over the constructors of the datatype, rather
than having to use ‘observer’ operations on a data abstraction. This leads to
a concise and elegant programming style, which—being based on equations—
is especially convenient for reasoning about program behaviour [1].

1.2. Pattern Matching

As a simple example, consider encoding binary numbers as lists of bits,
most significant first:

data Bin = Zero | One
type Num = [Bin]

The above declarations introduce a new datatype (Bin) for binary bits, and
define Num as a type synonym for lists of bits. Throughout this paper, we will
use the syntax and standard prelude functions of Haskell [2] for illustration,
although any language providing algebraic datatypes would work just as well;
however, in contrast to Haskell, we assume a semantics based on sets and
total functions rather than on complete partial orders.

Consider this function for normalizing binary numbers by eliding leading
zeroes, defined by pattern matching.

normalize :: Num → Num
normalize [] = [] -- Clause (1)
normalize (One : num) = One : num -- Clause (2)
normalize (Zero : num) = normalize num -- Clause (3)

2

The definition forms a collection of equations, which give a straightforward
explanation of the operational behaviour of the function:

normalize [Zero,One,Zero]
≡ {Clause (3) }

normalize [One,Zero]
≡ {Clause (2) }

[One,Zero]

They are also convenient for reasoning; for example, here is one case of an
inductive proof that normalize is idempotent:

normalize (normalize (Zero : num))
≡ {Clause (3) }

normalize (normalize num)
≡ { inductive hypothesis }

normalize num
≡ {Clause (3) }

normalize (Zero : num)

An equivalent definition without using pattern matching is harder to read:

normalize :: Num → Num
normalize num = if null num ∨ one (head num) then

num
else
normalize (tail num)

It is also much less convenient for calculating with.
Pattern matching has accordingly been supported as a standard feature in

most modern functional languages, since its introduction in Hope [3]. More
recently, it has started gaining recognition from the object-oriented commu-
nity too [4, 5, 6]. Unfortunately, the appeal of pattern matching wanes when
we need to change the implementation of a data structure: function defini-
tions are tightly coupled to a particular representation, and a change of repre-
sentation has a far-reaching effect. As a result, it has been observed that the
use of pattern matching “leads to a discontinuity in programming: program-
mers initially use pattern matching heavily, and are then forced to abandon
the technique in order to regain abstraction over representations” [7].

3

In this stand-off between clarity and abstraction, functional languages
usually lean towards the former while object-oriented languages prefer the
latter. Can we hope to achieve the best of both worlds? With current technol-
ogy, encapsulating datatypes in a functional language hinders pattern match-
ing. Ad hoc approaches such as allowing user-defined computations to be
embedded in the pattern matching and data construction processes threaten
soundness of reasoning. For example, we rely on reasoning to perform known-
case elimination that reduces expression case (Cons x xs) of (Cons a as)→
a to x based on the knowledge that the computation constructing (Cons x xs)
is reversed by matching the pattern Cons a as . If user-defined computations
are embedded in the pattern matching process such as in Wadler’s view pro-
posal [8], we no longer have the guarantee that the above mentioned round-
trip property still holds, which invalidates reasoning of this kind. To recover
soundness, a more disciplined framework is needed.

In an object-oriented setting, there is a concept of typical object [9], which
is a simple and general data structure (often expressed in a way similar to
an algebraic datatype) used as a model of the underlying more complicated
and user-defined structure. For example, various kinds of linear structure
can be modelled as a list datatype. The user-defined structures are used for
execution while the typical object caters for specification. The function that
maps an underlying structure to its typical object is called an abstraction
function. An implementation using the underlying structure can be proven
correct, with respect to its specification in terms of the typical object [10], by
reasoning about the abstraction function. However, reasoning in this manner
does not help with incrementally refactoring a program already written with
bare algebraic datatypes.

1.3. Our Contribution

In this work, then, we strive to address the tension between the con-
venience of pattern matching and the flexibility of encapsulated data ab-
stractions by proposing a mechanism to allow programs written with pattern
matching to be refactored smoothly and incrementally into ones with en-
capsulation, without losing the benefits of simple equational reasoning. In
particular, we propose a framework for incrementally refactoring and iden-
tify necessary and sufficient conditions for correctness of such refactoring. As
part of the framework, we sketch a domain-specific language rinv that helps
to guarantee these conditions by construction. We have implemented the

4

proposed system to demonstrate its feasibility. A prototype of our proposal
can be found online [11] and is described in detail in the appendix.

The rest of the paper is structured as follows. Section 2 gives a brief
introduction to data abstraction. Section 3 presents our proposed design for
incremental refactoring of program with pattern matching, and Section 4 pro-
vides a formal definition of the right-invertible language rinv on which our
design is based. We then evaluate the performance and explore alternative
points in the design space of our system (Section 5), and apply our results
to other problems in addition to refactoring (Section 6), before discussing
related work (Section 7) and concluding (Section 8).

2. Data Abstraction

Choosing the right data structure is key to achieving an efficient program;
data abstraction allows us to defer the choice of representation until after the
uses of the data are fully understood. The idea is to firstly program with
‘abstract’ data, which is then replaced by a more efficient ‘concrete’ repre-
sentation. Operations on abstract data are reimplemented on the concrete
representation, with the original abstract operations serving as specifications.
Milner [12] observed that the transition from abstract to concrete represen-
tation can be proven correct by showing the following square commutes,

A
f - B

A

αA

6

f
- B

αB

6

This proof obligation is also known as the promotion condition [13]

αB ◦ f ≡ f ◦ αA

Throughout this paper, we use ≡ for equality between expressions, whereas
we use = for definitions. As a notational convention, we write X for the
concrete counterpart of an abstract representation X . In the above, the αX

5

family of functions are abstraction functions [10] that map the concrete rep-
resentations to the abstract ones; we will simply write α if its type is clear
from the context. In the above diagram, A and B are abstract representa-
tions, whereas A and B are concrete representations. The abstract program
is f :A→ B , and its concrete version is f :A→ B . In the sequel, we use the
terms ‘abstract program’ and ‘specification’ interchangeably.

2.1. An Example

Consider queue structures, represented abstractly as lists.

type Queue a = [a]

emptyQ = []
first = head
isEmpty = null
enQ a q = q ++ [a]
deQ = tail

(Note that ++ is a Haskell infix operator that concatenates two lists.) For a
more efficient definition of enQ , a plausible concrete representation reads:

type Queue a = ([a], [a])

α ::Queue a → Queue a

α (fq , bq) = fq ++ reverse bq

The second list of the pair, representing the latter part of a queue, is reversed,
so that enqueuing is simply list prefixing. The library operations can be
implemented as follows:

emptyQ = ([], [])

first ([], bq) = last bq

first ((a : fq), bq) = a

isEmpty ([], []) = True

isEmpty q = False

enQ a (fq , bq) = (fq , a : bq)

deQ ([], bq)) = deQ (reverse bq , [])

deQ (a : fq , bq) = (fq , bq)

6

Through standard equational reasoning, we can establish the correctness of
the implementation by proving the promotion condition for each operation.
For example,

α (deQ (a : fq , bq))

≡ {definition of deQ }
α (fq , bq)

≡ {definition of deQ }
deQ (a : α (fq , bq))

≡ {definition of α }
deQ (a : (fq ++ reverse bq))

≡ {definition of ++ }
deQ ((a : fq) ++ reverse bq)

≡ {definition of α }
deQ (α (a : fq , bq))

Other than the handful of ‘library’ operations above, we have other ab-
stract programs benefitting from the simple list representation. For example,
the map function on queues:

mapQ :: (a → b)→ Queue a → Queue b
mapQ f [] = []
mapQ f (a : q) = f a :mapQ f q

or a prioritisation function, which is essentially a stable sort based on element
weight:

prioritise ::Ord a ⇒ Queue a → Queue a
prioritise [] = []
prioritise (a : q) = insert a (prioritise q)
where insert b [] = [b]

insert b (a : q) = if b 6 a then b : (a : q)
else a : (insert b q)

To maintain executability, all uses of the abstract representation have to
be changed at once, even though some of the old definitions may not gain from
the refactoring. One has to (re)implement all the functions either by pattern
matching on the new representation (discouraging further refactoring) or
by the use of library operations (at the cost of losing convenient equational

7

reasoning). For example, a definition of map using only the library operations
is likely to be more clumsy:

mapQprim :: (a → b)→ Queue a → Queue b
mapQprim f q = accum f q emptyQ
where accum f q aq = if isEmpty q then

aq
else
accum f (deQ q) (enQ (f (first q)) aq)

Being restricted to an explicit interface reduced our options here: it is not
easy to add to the front of a queue, for which we need an accumulating
parameter.

In the next section, we propose a framework free from the above pitfalls:
refactoring can be done selectively; and at any point in the process, exe-
cutability and reasoning are fully supported. We look into the details of the
design by means of examples.

3. Selective Refactoring

Our purpose is to allow incremental refactoring of a program, replacing a
specification in stages by a more sophisticated implementation. We have seen
in the previous section that once an implementation is given, the promotion
condition is sufficient to guarantee its correctness. However, the promotion
condition does not suggest a way of integrating the new definition into its
original context, which may still operate on the old representation. We need
a computation law of the form

f ≡ α ◦ f ◦ α◦

in order to replace specification f with its implementation α ◦ f ◦ α◦.
Here, the function α◦ does the ‘opposite’ of α, mapping an abstract value

down to a concrete value. The abstract program f is replaced by the composi-
tion α◦f ◦α◦, which converts an abstract value to the concrete representation,
executes the concrete program, then converts the concrete result back to the
abstract representation. For example, the abstract program fragment deQ x
is replaced with (α ◦ deQ ◦ α◦) x , where the two functions α◦ and α convert
a value of type Queue into one of type Queue and back again.

8

It is obvious that if α and α◦ are each other’s inverses (a situation some-
times called strong simulation [12]), the computation law is equivalent to the
promotion condition. However, requiring them to be inverses restricts the
abstraction function to be bijective, which is rather a strong condition. In
fact, one-sided invertibility is sufficient in this case. Specifically, the α◦ func-
tion should be a right inverse of α – that is, α ◦ α◦ ≡ id ; it is not necessary
for α◦ also to be a left inverse of α.

3.1. The Computation Law

Before going into the details of our results, we firstly generalise the nota-
tion used. The abstract operation f will not always have a type as simple as
Queue a → Queue a, like deQ does. Suppose we have datatypes A and A,
and conversion functions α :: A → A and α◦ :: A → A. In the general case,
an abstract operation will take not just a single value in the abstract rep-
resentation (of type A), but some combination of abstract values and other
arguments. We capture this combination in terms of an operation F on
datatypes A. Similarly, the operation will return a different combination G
of abstract values and other results. The operations F and G are functors;
they lift the conversion functions in the obvious way to F α◦ :: F A→ F A
and G α :: G A → G A, acting pointwise on combinations of values, and
respecting identity and composition. Then an abstract operation f will have
type F A→ G A, and the corresponding concrete operation f :: F A→ G A
should satisfy the computation law f ≡ G α ◦ f ◦ F α◦, as shown in the
following commuting diagram.

F A
f - G A

F A

F α◦

?

f
- G A

G α

6

For example, for the operation first ::Queue a → a, the input context F
is the identity functor, because the source type Queue a of first consists of
a single occurrence of the datatype in question, and the output context G is
a constant functor, because the target type a of first has no occurrences of
the datatype. The operation must satisfy the following computation law:

9

first ≡ first ◦ α◦

The computation equations for the rest of the operations are listed below.

isEmpty ≡ isEmpty ◦ α◦

emptyQ ≡ α ◦ emptyQ

enQ a ≡ α ◦ enQ a ◦ α◦

deQ ≡ α ◦ deQ ◦ α◦

The computation law provides a way of replacing a specification with its
implementation. But since it involves both α and α◦, it seems more difficult
to prove than the promotion condition. However, the following result allows
us to derive the computation law from the promotion condition, using the
right-invertibility property of α and α◦.

Lemma 1 (Computation). Given operation specifications f ::F A→ G A,
and their implementations f :: F A → G A, for all conversion functions
α::A→ A satisfying the promotion condition G α◦f ≡ f ◦F α, and their right
inverses α◦ ::A→ A, we can deduce the computation law f ≡ G α◦ f ◦F α◦.

Proof.

G α ◦ f ◦ F α◦

≡ {promotion }
f ◦ F α ◦ F α◦

≡ {F respects composition }
f ◦ F (α ◦ α◦)

≡ {α ◦ α◦ ≡ id }
f ◦ F id

≡ {F respects identity }
f

�

Applying the computation law requires additional infrastructure (the
right inverse α◦ of the abstraction function and its properties) in addition
to that needed for a data abstraction framework based on the promotion
condition. To minimise this extra obligation, we will explore a correctness-
by-construction technique: in the next section, we will present a combinator-
based language rinv implemented as a library, in which every definable func-
tion gets a right inverse for free. That is to say, the programmer carrying

10

out a refactoring writes only α, in rinv, and the corresponding α◦ is auto-
matically generated. For the sake of completeness, in the case of the queue
example presented above, a possible definition in rinv reads:

α = app ◦ (id × reverse)

The details of the language are completely orthogonal to the discussion in
this section, and can be safely ignored for the time being.

3.2. Refactoring by Translation

In our proposal, a programmer wishing to migrate to the concrete rep-
resentation has the choice of keeping the original abstract definitions, or of
refactoring them into the style using only the library operations, or of having
a mixture of the two. For example, consider a queue that is read circularly
for a certain amount of time, say repeatedly playing a piece of music.

play :: Time → Queue (IO ())→ IO ()
play 0 (a:) = a
play (n + 1) (a : q) = do a

play n (q ++ [a])

We use Haskell’s do notation above to sequence IO actions: the action a will
be followed by the actions of play n (q ++ [a]). To refactor this function, we
firstly have to rewrite it with library operations.

playprim :: Time → Queue (IO ())→ IO ()
playprim 0 q = first q
playprim (n + 1) q = do hd

playprim n (enQ hd tl)
where hd = first q

tl = deQ q

There is no magic here. The programmer carrying out the refactoring has to
write playprim and be responsible for its correctness: playprim ≡ play .

The library operations are implemented using the concrete representation,
allowing constant time performance of enQ .

playprim :: Time → Queue (IO ())→ IO ()

playprim 0 q = first q

11

playprim (n + 1) q = do hd

playprim n (enQ hd tl)

where hd = first q

tl = deQ q

Re-implementing every function to its “prim” version is certainly labo-
rious, and is not necessarily beneficial. We perform selective refactoring,
requiring playprim to do the job of play in the original abstract context. For

example, we may want to use playprim together with mapQ (defined in Sec-

tion 2.1) in expressions like:

playprim n ◦mapQ f

The gap between different representations used by playprim and mapQ can
be bridged by a mechanical translation, following a rather straightforward
scheme: each use of a library operation is replaced with its implementation
precomposed with α and postcomposed with α◦ (subject to the appropriate
functors).

The library operations that are defined on the concrete implementation
require their inputs to be converted from the abstract representation before
consumption, and the outputs converted back to the abstract representation.
Effectively, all the refactored functions have the abstract representation as
input and output types; the concrete representation remains only for in-
termediate structures. As an example, playprim can be translated into the
following.

play ′ :: Time → Queue (IO ())→ IO ()
play ′ 0 q = (α ◦ first ◦ α◦) q

play ′ (n + 1) q = do hd
play ′ n ((α ◦ enQ hd ◦ α◦) tl)

where hd = (α ◦ first ◦ α◦) q

tl = (α ◦ deQ ◦ α◦) q

Given the computation law, it is easy to conclude that play ′ is equivalent
to playprim, in the sense that exactly the same output is produced for each
input.

The original abstract program such as the definition of play is turned into
a specification and can be used for equational reasoning. For example, one
can continue to show

12

play n xs ≡ play n (xs ++ xs)

on the abstract level, without worrying about the refactoring of play into
play ′.

3.3. Optimization

The above translation of playprim is semantically correct, but inefficient.
There are conversions everywhere in the program, which are unnecessary
because there is no reference to the abstract representation by the function
at all. One way to remove the redundant conversions is fusion. Consider the
expression

(α ◦ enQ hd ◦ α◦) ((α ◦ deQ ◦ α◦) q)

Our target is to fuse the intermediate conversions to produce

(α ◦ enQ hd ◦ deQ ◦ α◦) q

This would clearly follow from α◦ ◦ α ≡ id , but this is not a property
that we guarantee—for good reason, since requiring it in addition to the
existing right inverse property α ◦ α◦ ≡ id entails isomorphic abstract and
concrete representations, which is too restrictive to be practically useful.
Instead, using the promotion condition, we can prove a weaker property that
is sufficient for fusion.

Theorem 1 (Fusion Soundness). Given operation specifications f ::F A→
G A and g :: G A → H A, and their implementations f :: F A → G A and
g :: G A → H A, for all conversion functions α :: A → A satisfying the pro-
motion condition H α ◦ g ≡ g ◦ G α, and their right inverses α◦ ::A→ A,
we have the following fusion law:

H α ◦ g ◦ G α◦ ◦ G α ◦ f ◦ F α◦ ≡ H α ◦ g ◦ f ◦ F α◦

Proof.

H α ◦ g ◦ G α◦ ◦ G α ◦ f ◦ F α◦

≡ {promotion }
g ◦ G α ◦ G α◦ ◦ G α ◦ f ◦ F α◦

≡ {G is a functor; α ◦ α◦ ≡ id }

13

g ◦ G α ◦ f ◦ F α◦

≡ {promotion }
H α ◦ g ◦ f ◦ F α◦

�

Basically, this theorem states that although the input to g may differ from the
output of f , due to the α◦◦α conversions, nevertheless the post-conversion of
g ’s output brings possibly different results into the same value in the abstract
representation.

It is clear theoretically that repeatedly applying the above fusion law
will eliminate all intermediate conversions until the point where the abstract
representation is used. The absence of abstract representation is reflected in
typing: for example the function playprim is well-typed without translation,
as we never have to unify the types Queue and Queue. In this case, playprim
is no different from library functions such as deQ translation-wise, where
we lift the conversion out of the recursion. As a result, our implementation
directly produces

play ′ n = α ◦ playprim n ◦ α◦

which is free from intermediate conversions.
It is also clear that not all conversions can be eliminated. In expressions

like

α ◦ playprim n ◦ α◦ ◦mapQ f

some performance overhead is inevitable. Such overheads may or may not
be acceptable, depending on the situation. The programmer has the option
of refactoring mapQ as well to remove the conversion. We won’t discuss
this engineering trade-off further: although we advocate selective refactoring,
we are not necessarily against complete refactoring; we simply provide the
options for programmers to choose from.

3.4. More Examples

We now look at a few additional examples making use of the refactoring
framework developed in this section.

14

3.4.1. Join Lists

Suppose we have the following definition of the reverse function:

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = append (reverse xs) [x]

It is well known that the above definition suffers from poor run-time perfor-
mance due to the linear-time left-biased-list concatenation (append). One
way to resolve such inefficiency is to transform individual concatenation-
intensive definitions to reduce the calls to append , a technique that is sys-
tematised by Wadler [14]. Here we take a different approach by refactoring
append itself based on a different representation of list, instead of trying to
eliminate its usage.

As an alternative to the biased linear list structure, the join representa-
tion of lists has been proposed for program elegance [15, 16], efficiency [17],
and more recently, parallelism [18]. It can be defined as:

data List a = Empty | Unit a | Join (List a) (List a)

With this representation, a constant-time append function can be defined as

append l1 l2 = Join l1 l2

At the same time, we don’t want to give up on the familiar notions of [] and
(:). Instead, they can serve as a specification of the join representation.

type List a = [a]

append [] y = ys
append (x : xs) ys = x : append xs ys

Now suppose a programmer would like to refactor certain list functions
to make use of the constant-time append function; she will need to define an
abstraction function α :: List a → List a (a corresponding α◦ will be auto-
matically constructed by rinv, as we will see shortly in the next section),
and verify its correctness by proving the promotion condition. The transla-
tion outlined in Section 3.2 will complete the refactoring, by converting calls
of append into calls of append . At the same time, many other list functions,
including some that are yet to be defined, may still use pattern matching

15

on, and be manipulated using, the original List representation. For example,
retrieving the head of a list can be defined as:

head (x : xs) = x

and calculated in the following manner, oblivious to the refactoring:

head (append (x : xs) ys) ≡ head (x : append xs ys) ≡ x

As we have seen, selective refactoring provides the option of keeping the
widely used left-biased list, while taking advantage of alternative represen-
tations when needed. This flexibility frees programmers from the dilemma
of committing to a single representation that is unlikely to be appropriate
universally. In the sequel, we will see more examples where different repre-
sentations showing distinct merits in different applications.

3.4.2. Binary Numbers

In the introduction, we showed a representation of binary numbers as
lists of digits with the most significant bit first (MSB). This representation
is intuitive, and offers good support for most operations; however, for incre-
menting a number, having the least significant bit (LSB) first is better. In
Haskell, it is an idiom to introduce a type synonym to document the different
usages of the same type.

type LSB = [Bin]

incr :: LSB → LSB
incr [] = [One]
incr (Zero : num) = One : num
incr (One : num) = Zero : (incr num)

Effectively, in order to use the above definition with any other operations,
we need to reverse the MSB representation. However, this implicitness of
data representation is risky, as any incorrect usage won’t be picked up by
a compiler. At the same time, handling the two representations as different
types can be cumbersome.

With our proposal, we program with only one representation (Num) and
selectively refactor certain operations (such as incr), which effectively elim-
inates any possibility of misuse. We firstly create a new type for the LSB

16

representation (in Haskell the newtype declaration is a more efficient alter-
native to data when there is exactly one constructor with exactly one field
inside it):

newtype Num = L Num

and implement the increment function with the new representation

incr :: Num → Num

incr (L []) = L [One]

incr (L (Zero : num)) = L (One : num)

incr (L (One : num)) = L (Zero : (incr num))

As a result, only one representation is exposed to the programmer, and all the
conversions between representations are handled implicitly by the refactoring
translation.

3.4.3. Sized Trees

A size-annotated binary tree is suitable for fast indexing, as we can tra-
verse it quickly by not entering any left subtree that has a smaller size than
the index.

data STree a = Empty
| SLeaf a
| SFork (Int , (STree a, STree a))

(Note that the use of nested pairs in SFork ’s parameter purely is a pragmatic
decision, to avoid having to deal with triples in programming the conversion
functions.)

index :: Int → STree a → a

index 0 (SLeaf a) = a

index n (SFork (s , (lt , rt))) | n > ls = index (n − ls) rt

| otherwise = index n lt

where ls = getSize lt
rs = getSize rt

getSize Empty = 0
getSize (SLeaf) = 1
getSize (SFork (s ,)) = s

17

This feature of fast indexing makes sized trees an attractive alternative to
lists, when access to elements in the middle is required, with the following
specification.

index 0 [x] = x
index n (: xs) = index (n − 1) xs

Again, once an abstraction function is defined and verified, we can enjoy
smooth transitions between the two representations, and reap the benefit of
having both.

4. The Right-Invertible Language RINV

Our approach to refactoring discussed above relies on the existence of
a right inverse, α◦, of the user-defined conversion function α. One can of
course implement both functions α◦ and α separately and prove their consis-
tency. For example, a definition of α◦ for the two representations of queues
in Section 2.1 reads:

α◦ :: [a]→ ([a], [a])
α◦ ls = (fq , bq)
where n = length ls ‘div ‘ 2

fq = take n ls
bq = reverse (drop n ls)

An explicit proof verifying that α◦ is a right inverse of α will be several times
longer than the definition above, and make non-trivial uses of properties of
the functions involved. Such proofs have to be hand-crafted, and generally
cannot be reused.

Instead, we take a linguistic approach to the problem of generating a
definition and a consistency proof for α◦, by writing α in a right-invertible
language that automatically determines such a right inverse for each function
constructed. As a result, the task of defining two functions and proving
their consistency is reduced to writing just one of them. This approach to
invertible languages is not new. As a matter of fact, there have been a
number of proposals for similar purposes [19, 20, 21, 22, 23]. On the other
hand, reversible languages are usually domain-specific; it is hard to directly
reuse them for different applications other than the ones for which they were
designed. Inspired by the literature, in this section we sketch a language,

18

namely rinv, for our purpose of refactoring pattern matching; with this
language, the α in the above example can be programmed as

α = app ◦ (id × reverse)

and its right inverse is automatically generated.
The language rinv is defined as a combinator library; its syntax is as

below. (Non-terminals are indicated in small capitals.)

Language rinv ::= cstr | prim | comb
Constructors cstr ::= nil | cons | snoc | wrap | ...
Primitives prim ::= app | id | assocr | assocl | swap |

fstg | snd g | ...
Combinators comb ::= rinv ◦ rinv | foldX rinv | rinv ▽ rinv |

rinv× rinv

The language is similar in flavour to the point-free ‘algebra of programming’
style [24], but with the additional feature that a right inverse can be auto-
matically generated for each function that is defined. As a result, a definition
f :: s � t in rinv actually represents a pair of functions (hence the notation
�): the forward function [[f]] ::s → t , and its right inverse [[f]]◦:: t → s , which
together satisfy [[f]] ◦ [[f]]◦ ≡ id . For convenience, when clear from context,
we do not distinguish between f and its forward reading [[f]].

The generated right inverses are intended to be total, so the forward
functions have to be surjective; this property holds of the primitive functions,
and is preserved by the combinators.

There is an extensible set of primitives (cf. Section 4.1) defining the basic
non-terminal building blocks of the language. In principle, any surjective
function could be made a primitive in rinv. All primitives are uncurried;
this suits an invertible framework, where a clear distinction between ‘input’
and ‘output’ is required. For the sake of demonstration, we present a small
but representative collection of primitive functions above: swap, assocl , and
assocr rearrange the components of an input pair; id is the identity operation;
app is the uncurried append function on lists; and fstg and snd g are projection
functions on pairs – discarding one element of a pair that can be regenerated
by applying function g to the other one. As we will show, with just these
few primitives we can define many interesting functions.

The set of constructor functions (cf. Section 4.2) is also extensible, via
new datatypes. We use lowercase names for the uncurried versions of con-
structors. In contrast to the primitives, constructor functions are inherently

19

non-surjective, and so require some special treatment that will be discussed
shortly. We take advantage of this relaxation of the surjectivity rule to ad-
mit other non-surjective functions which are crucial for expressiveness. For
example, in addition to the left-biased list constructor cons , coming with the
usual datatype declaration, we also include its right-biased counterpart snoc,
which adds an element at the end; it can be defined in Haskell as

snoc = λ(x , xs)→ xs ++ [x]

Another additional constructor for lists is wrap, which creates a singleton
list.

wrap x = [x]

Although this might seem ad hoc, it is by no means arbitrary. One should
only use functions that truly model a different representation of the datatype.
For example, snoc and nil form the familiar backwards representation of lists,
while wrap, nil and the primitive function app correspond to the join list
representation [16]. As we will show in the sequel, this ability to admit non-
surjective functions as constructors functions that do not directly arise from
a datatype declaration gives us much freedom in altering structures without
having to invent new types.

Since constructor functions are exceptions to the surjectivity rule, we ad-
ditionally require that lone constructors must be combined with other func-
tions by the ‘junc’ combinator ▽, which dispatches to one of two functions
according to the result of matching on a sum. When one of the operands of
▽ is surjective, or the two operands cover both constructors of a two-variant
datatype, the result is surjective; such pairs of operands are called jointly
surjective [25]. For example, nil ▽ cons and nil ▽ id are both surjec-
tive, but cons ▽ snoc is not. Since ▽ can be nested, this result extends to
datatypes with more than two constructors. There are built-in annotations
in rinv that group constructors into constructor sets, and are used in static
checking of surjectivity. For example, for the language presented above, we
will have the following set of constructor groups:

{{nil , cons }, {nil , snoc}, {nil ,wrap, app}}

The annotations are provided by the language designer, and extended when
adding new constructors, but they do not appear in rinv programs. Con-
structor functions can be composed with other functions as well, using the

20

standard function composition combinator ◦, but only to the left: once a
non-surjective function appears in a chain of compositions other than in the
leftmost position, it is difficult to analyse the exact range of the composition.
Both the above requirements can be enforced by a rather straightforward
syntactic check. The checking algorithm can be found in Appendix C.

Other than the two already mentioned combinators, × is the cartesian
product of two functions (cf. Section 4.3.1), and foldX f is the operator
for regular structural recursion, which decomposes a structure of type X
and replaces the constructors with its body f (cf. Section 4.3.2); very often
we omit the subscript X , when it can be understood from the context. In
combination with swap, assocl and assocr , × is able to define all functions
that rearrange the components of a tuple, while ▽ is useful in constructing
the body of a fold . We don’t include △, the dual of ▽, in rinv, because of
surjectivity, as will be explained shortly.

With the language rinv, we can state the following property.

Theorem 2 (Right invertibility). Given a function f in rinv consisting
of forward and right-inverse functions [[f]] and [[f]]◦, we have [[f]] ◦ [[f]]◦ ≡ id.

The correctness of this theorem will become evident by the end of this section,
as we discuss in detail the various constructs of rinv and their properties.

4.1. The Primitive Functions

The function id is the identity; functions assocr , assocl and swap manip-
ulate pairs.

assocr :: ((a, b), c) � (a, (b, c))
[[assocr]] = λ((a, b), c)→ (a, (b, c))
[[assocr]]◦= [[assocl]]

assocl :: (a, (b, c)) � ((a, b), c)
[[assocl]] = λ(a, (b, c))→ ((a, b), c)
[[assocl]]◦ = [[assocr]]

swap :: (a, b) � (b, a)
[[swap]] = λ(a, b)→ (b, a)
[[swap]]◦ = [[swap]]

Function app is the uncurried append function, which is not injective.
The admission of non-injective functions allows us to break away from the

21

isomorphism restriction. In this case, the right inverse for app is not unique;
and the rinv programmer will need to choose the appropriate behaviour
for the inverse among multiple variants of the function provided by a lan-
guage implementation. This user-controlled flexibility is standard in invert-
ible languages that admit non-injective functions [21, 23]. For the purposes
of demonstration, we pick the following definition for the right-inverse of app.

[[app]]◦= λxs → splitAt ((length xs + 1) ‘div ‘ 2) xs

Pure projection functions such as fst and snd are difficult to handle in
a total function setting; in a setting based on complete partial orders, one
could replace the discarded element with an undefined value (for example,
by defining [[fst]]◦ = λx → (x ,⊥)), but when types are sets, no analogue
of ⊥ is available. Besides, although such a definition would satisfy right
invertibility, it would not be practically very useful. Therefore, we restrict
the use of projection functions to cases in which the discarded values are
recoverable, giving rise to the following:

fstg :: (a, b) � a

[[fstg]]
◦= λx → (x , g x)

and

snd g :: (a, b) � b
[[snd g]]

◦= λy → (g y , y)

Thus, fstg and snd g remove duplications from a pair and reintroduce them in
the other direction. Note that the function g itself is not necessarily in rinv;
it just needs to be definable in the host language (in our case, Haskell).

4.2. The Constructors

The semantics of the constructor functions are simple: they follow directly
from the corresponding constructors introduced by datatype declarations,
except that they are uncurried. For example,

[[nil]] = λ()→ []
[[cons]] = λ(x , xs)→ x : xs

Inverses of the primitive constructor functions are obtained simply by swap-
ping the right- and left-hand sides of the definitions.

22

[[nil]]◦ = λ[] → ()
[[cons]]◦= λ(x : xs)→ (x , xs)

They are effectively partial ‘guard’ functions, succeeding when the input
value matches the pattern.

Although snoc and wrap are not the primitive constructors for left-biased
lists, they can be encoded:

[[snoc]] = λ(xs , x)→ xs ++ [x]
[[wrap]] = λx → [x]

The right inverses of snoc and wrap are

[[snoc]]◦ [x] = ([], x)
[[snoc]]◦ (x : xs) = let (ys , y) = [[snoc]]◦ xs in (x : ys , y)

[[wrap]]◦ [x] = x

The inverses of constructor functions are generally not case-exhaustive. For
example, [[cons]]◦ only accepts non-empty lists, while [[nil]]◦ only accepts the
empty list. As a result, in contrast to primitive functions, constructor func-
tions cannot be composed arbitrarily.

4.3. The Combinators

The combinators in rinv are mostly standard.

4.3.1. Composition, Sum and Product

Combinator ◦ sequentially composes two functions:

[[f ◦ g]] = [[f]] ◦ [[g]]
[[f ◦ g]]◦= [[g]]◦◦ [[f]]◦

Its inverse is the reverse composition of the inverses of the two arguments.
Combinators × and ▽ compose functions in parallel. The former applies

a pair of functions component-wise to its input:

(×) :: (a � b)→ (c � d)→ ((a, c) � (b, d))
[[f × g]] = λ(w , x)→ ([[f]] w , [[g]] x)
[[f × g]]◦= λ(y , z)→ ([[f]]◦ y , [[g]]◦ z)

23

Note that we have chosen not to define × in terms of the more primitive
combinator △ that executes both of its input functions on a single datum:

(△) :: (a � b)→ (a � c)→ (a � (b, c))
[[f △ g]] = λx → ([[f]] x , [[g]] x)

In the inverse direction, [[f]]◦ x and [[g]]◦ y would have to agree, which is diffi-
cult to enforce statically. Indeed, functions constructed with △ are generally
not surjective, and so do not have total right inverses; for this reason, we
exclude △ from rinv.

The combinator ▽ constructs a function that consumes an element of a
sum type (‘Either ’ in Haskell).

(▽) :: (a � c)→ (b � c)→ (Either a b � c)
[[f ▽ g]] = λx → case x of {Left a → [[f]] a ; Right b → [[g]] b}

In the inverse direction, if both f and g are surjective, it doesn’t matter which
branch is chosen. However, the use of constructor functions deserves some
attention, since they are not surjective in isolation. In contrast to the case of
△, here the totality in the inverse direction can be recovered by choosing a
non-failing branch. As a result, in the event that [[f]]◦ fails on certain inputs,
[[g]]◦ should be applied. To model this failure handling, we lift functions in
rinv into the Maybe monad (allowing an extra possibility for the return
value), and handle a failure in the first function by invoking the second.

[[f ▽ g]]◦= λx → ([[f]]◦ x) ‘choice‘ ([[g]]◦ x)

choice ::Maybe a → Maybe a → Maybe a
choice (Just x) = x
choice (Just y) = y

This shallow backtracking is sufficient because the guards of conditionals are
only pattern matching outcomes, which are completely decided at each level.
With the introduction of the Maybe monad, the types of the functions in
rinv have to be lifted. As a result, the invertible function type s � t is
actually the pairing of s → Maybe t and t → Maybe s . For brevity, in
the main text of this paper, we still use the non-monadic types for rinv
functions to avoid the explicit handling of Maybe, with the understanding
that all functions are lifted to the Maybe monad in the implementation. The
details are spelt out in Appendix B.

24

4.3.2. Recursion

With the ground prepared, we are now ready to discuss a recursive com-
binator. We define

[[foldX f]]◦= unfoldX [[f]]◦

The forward semantics of foldX f is the standard fold for a datatype X ; its
inverse semantics is defined by a corresponding unfoldX . Intuitively, fold
disassembles a structure and replaces the constructors with applications of
the body of the fold. Function unfold , on the other hand, takes a seed,
splitting it with the body of the unfold into building blocks of a structure
and new seeds, which are themselves recursively unfolded. In short, fold
collapses a structure, whereas unfold grows one.

When an algebraic datatype X is given, Haskell definitions of foldX and
unfoldX can be constructed mechanically. Our prototype automatically gen-
erates fold and unfold for each non-mutually recursive regular datatype. For
example, consider the datatype of lists:

foldList :: (Either () (a, b)→ b)→ (List a → b)
foldList f = λxs → case xs of

[] → f (Left ())
(x : xs)→ f (Right (x , foldList f xs))

unfoldList :: (b → Either () (a, b))→ (b → List a)
unfoldList f = λb → case f b of Left () → []

Right (a, b)→ a : unfoldList f b

Another example is leaf-labelled binary trees. Note that the constructor
Fork is uncurried, to fit better into the rinv framework.

data LTree a = Leaf a | Fork (LTree a,LTree a)

foldLTree :: (Either a (b, b)→ b)→ LTree a → b
foldLTree f = λt → case t of
Leaf a → f (Left a)
Fork (t1, t2)→ f (Right (foldLTree f t1, foldLTree f t2))

unfoldLTree :: (b → Either a (b, b))→ b → LTree a
unfoldLTree f = λb → case f b of

Left a → Leaf a
Right (b1, b2)→ Fork (unfoldLTree f b1, unfoldLTree f b2)

25

We use unfold to construct fold ’s right inverse. The following lemma is
well known from the literature [26].

Lemma 2. fold [[f]] ◦ unfold [[f]]◦ ⊑ id.

The use of ⊑ in the above lemma states that the left-hand side might be
less defined than the right-hand side. Since both fold and unfold are case-
exhaustive when their bodies are case-exhaustive, the only issue is the ter-
mination of unfold : when a body does not split a seed into ‘smaller’ seeds,
unfolding that seed creates an infinite structure. It is well known that a
function constructed by unfold terminates if the seed transformation is well-
founded (that is, the ‘leads to’ ordering on seeds induced by the body of the
unfold should not admit an infinite descending chain), at least on polynomial
datatypes. Such well-founded seed transformations are known as recursive
coalgebras [27], and allow the above composition of fold and unfold to be
well-defined in a setting of total functions. Static termination checkers exist
in the literature [28, 29] and are orthogonal to the discussion here.

4.4. Programming in RINV

We are now ready to look into the kinds of function we can define with
rinv.

To start with, let’s look first at a derived combinator map that can be
defined in terms of fold . For example, map on lists, mapList , is defined as
follows.

mapList :: (a � b)→ (List a � List b)
mapList f = foldList (nil ▽ (cons ◦ (f × id)))

Function mapList f applies argument f uniformly to all the elements of a list,
without modifying the list structure. Since nil and cons form a complete set
of constructors for lists, we know they are jointly surjective.

Similarly, map on leaf-labeled trees, mapLTree , is defined as follows.

mapLTree :: (a � b)→ (Tree a � Tree b)
mapLTree f = foldLTree ((leaf ◦ f) ▽ fork)

The function reverse on lists can be defined as a fold:

reverse = foldList (nil ▽ snoc)
[[reverse]]◦= unfoldList [[nil ▽ snoc]]◦

26

Function reverse is one of many functions for which the use of derived con-
structors (such as snoc) is essential. If we restrict ourselves to the primitive
constructors, we can only reverse a list into a different type. In the forward
direction, a list is taken apart and the first element is appended to the rear
of the output list by snoc. This process terminates on reaching an empty
list, when an empty list is returned as the result. Function [[snoc]]◦ extracts
the last element in a list and adds it to the front of the result list by unfold ,
which terminates when [[nil]]◦ can be successfully applied (i.e when the input
is the empty list). Since nil and snoc form a complete set of constructors for
lists, they are jointly surjective.

Function reverse is also used to construct the apprev function that re-
verses a list and appends it.

apprev :: ([a], [a]) � [a]
apprev = app ◦ (id × reverse)

For example, we have:

[[apprev]] ([1, 2], [3, 4, 5, 6, 7]) ≡ [1, 2, 7, 6, 5, 4, 3]

The companion [[apprev]]◦ function is

[[apprev]]◦ :: [a]→ ([a], [a])
[[apprev]]◦= [[app ◦ (id × reverse)]]◦

which can be reduced to

([[id]]◦× [[reverse]]◦) ◦ [[app]]◦

In the inverse direction, a list is split into two, and functions [[id]]◦ and
[[reverse]]◦ are applied to the two parts. For example, we have

[[apprev]] ([[apprev]]◦ ([1, 2, 7, 6, 5, 4, 3])) ≡ [[apprev]] ([1, 2, 7, 6], [3, 4, 5])
≡ [1, 2, 7, 6, 5, 4, 3]

On the other hand,

[[apprev]]◦ ([[apprev]] ([1, 2], [3, 4, 5, 6, 7])) ≡ [[apprev]]◦ ([1, 2, 7, 6, 5, 4, 3])
≡ ([1, 2, 7, 6], [3, 4, 5])

27

It is clear from above that [[apprev]]◦ is not a left inverse of [[apprev]], and it
is not intended to be a term in the language rinv.

The other function we looked at in Section 3.4 yields the list view of a
size-annotated binary tree. This abstraction function is defined as

α = foldSTree (nil ▽ wrap ▽ (app ◦ sndλ(x ,y)→size x+size y))

Function α drops the size annotations from a tree and flattens it into a list. In
the α◦ direction, the function λ(x , y)→ size x + size y is used to recompute
the lost size information.

As a remark, the primitive function app can be defined in Haskell with
foldr :: (a → b → b)→ b → [a]→ b as:

app = uncurry (flip (foldr (:)))

which effectively partially applies foldr and awaits an input as the base case.
This idiom of taking an extra argument to form the base case constructs
the fold body during execution, whereas in rinv, fold bodies are constructed
syntactically so that they can be checked and inverted separately from the
recurisve combinator. As a result, we include app as a primitive function in
rinv.

4.5. Extending rinv

We use rinv for the purpose of constructing conversion functions between
different representations of data. As a result, rinv has to be extended from
time to time, when new abstract representations are introduced. (New con-
crete representations only require corresponding versions of fold and unfold ,
already captured by the parameterized foldX and unfoldX .) At the very least,
a new abstract representation brings in a new set of primitive constructors.
For example, a binary tree abstract representation might extend rinv with
the following:

[[tip]] = λx → Tip x
[[fork]] = λ(lt , rt)→ Fork lt rt

The inverses of primitive constructors are always straightforward; and the
annotation that records the constructor sets will be extended with the new
set {tip, fork }.

28

[[tip]]◦ = λ(Tip x) → x
[[fork]]◦= λ(Fork lt rt)→ (lt , rt)

We can now start using binary trees, for example, as the abstract represen-
tation of sized trees.

α = foldSTree (tip ▽ (fork ◦ sndλ(x ,y)→size x+size y))

Only primitive constructors (together with the existing data projection func-
tion snd g) are used in this case. In general, we may need to extend the set
of primitive functions as well. For example, consider using natural numbers
as an abstract representation:

data Nat = Zero
| Succ Nat

which are then implemented as binary numbers with the least significant bit
first:

type Binary = [Nat]

Since we are representing binary numbers, only Zero and Succ Zero can
appear in the list. We do not use a specialized datatype for binary bits, as
found in the example in Section 1.2, because of the need to add binary bits to
natural numbers in the process of converting between the two representations.

Again, primitive constructors arise from the datatype definition:

[[zero]] = λ()→ Zero
[[succ]] = λn → Succ n

and these can easily be inverted:

[[zero]]◦= λZero → ()
[[succ]]◦= λSucc n → n

To construct the conversion function from Binary to Nat , we need an addi-
tional primitive function

plusTwice :: (Nat ,Nat) � Nat
[[plusTwice]] = λ(c, x)→ c + 2 ∗ x
[[plusTwice]]◦= λy → (mod y 2, div y 2)

29

Function plusTwice is a linear function with slope two, whereas its right in-
verse calculates the x-value and the y-intercept from a y-value. Similar to
app, function plusTwice is surjective but not injective. Among the multiple
choices, the user will have to choose one that suits the intended use. Our
experience is that the appropriate choice is usually fairly obvious. For exam-
ple, the above pattern of combining mod and div is quite common; it even
appears as the function divMod in the Haskell standard prelude.

With the newly introduced primitive function, we can define the conver-
sion from Binary to Nat as

α = foldList (zero ▽ plusTwice)

In a sense, trying to refactor a datatype that is not already supported
by rinv requires an extension to the language. As we have seen in this
section, such extensions of primitive functions and constructors typically only
generate small proof obligations. On the other hand, we also know that the
nature of abstract representations means that they are relatively simple and
few in number. It is a known fact that functional programmers “too often
reach for lists when an ADT would be more appropriate” [30]. As a result,
we might expect a library that is sufficient for most common cases can be
built up reasonably quickly.

5. Discussion

5.1. RINV Expressiveness

The most general constraint on α functions is surjectivity, in order to
ensure the existence of right inverses: valid abstract values are bounded by
the actual range of the user-defined α function; invertibility is not guaranteed
for abstract values outside this range. In the current proposal, rinv faithfully
enforces surjectivity, which explains its restricted expressiveness compared
to the standard point-free programming framework. An already-mentioned
example that shows this difference is the combinator △, which executes both
of its input functions, and is defined as

(△) :: (a → b)→ (a → c)→ a → (b, c)
(f △ g) = λx → (f x , g x)

Since f △g is generally not surjective, it has no right inverse, despite the fact
that we can easily guard against inconsistent input in the reverse direction:

30

[[f △ g]]◦= λ(a, b)→ if x == y then x else error "violation"

where x = [[f]]◦ a ; y = [[g]]◦ b

Definitions like the one above are known as weak right inverses [31].
Another useful function is unzip, which can be defined as a fold.

unzip :: List (a, b) � (List a,List b)
unzip = foldList ((nil △ nil) ▽ ((cons × cons) ◦ trans))
trans :: ((a, b1), (b2 , c)) � ((a, b2), (b1 , c))
trans = assocl ◦ (id × subr) ◦ assocr

This definition will be rejected in rinv, since cons×cons and nil△nil are not
jointly surjective—indeed, unzip only produces pairs of lists of equal length.

If a value outside the range is constructed, the integrity of specification-
level equational reasoning may be corrupted. On the other hand, it is valid
to argue that the same invariant assumed for the original datatype prior to
the refactoring applies to the specification too. For example, consider a pro-
gram that requires balanced binary trees. An abstraction function that only
produces balanced binary trees is safe if the invariant is correctly preserved
in the original program. It remains an open question whether we should
allow programmers to take some reasonable responsibilities, or should insist
on enforcing control through the language.

We do not include unfold as a combinator in rinv as the dual of fold be-
cause there is no combinator in rinv that creates values of a sum type: the
choice operator introduced for the right-inverse of ▽ does not preserve sur-
jectivity. An option is to define the bodies of unfolds as primitive functions;
but this does require the programmers to deal with Either types explicitly,
something we have tried to avoid.

5.2. The Dual Story

In this paper, we have picked the α function to be user-provided; the
design of rinv and the subsequent discussion of refactoring is based on this
decision. However, this choice is not absolute. One can well imagine a pro-
grammer coming up with α◦ functions first, and a left-invertible language
generating the corresponding α functions; this would give the same invert-
ibility property α ◦ α◦ ≡ id . The promotion condition can be adapted to
involve only α◦, as in f ◦ F α◦ ≡ G α◦ ◦ f . Nevertheless, the crucial com-
putation law and fusion law that form the foundation of the translation and
optimization are still derivable; for computation, we have

31

G α ◦ f ◦ F α◦

≡ { f ◦ F α◦ ≡ G α◦ ◦ f }
G α ◦ G α◦ ◦ f

≡ {G respects composition and identity; α ◦ α◦ ≡ id }
f

and for fusion:

H α ◦ g ◦ G α◦ ◦ G α ◦ f ◦ F α◦

≡ { f ◦ F α◦ ≡ G α◦ ◦ f }
H α ◦ g ◦ G α◦ ◦ G α ◦ G α◦ ◦ f

≡ {G respects composition and identity; α ◦ α◦ ≡ id }
H α ◦ g ◦ G α◦ ◦ f

≡ { f ◦ F α◦ ≡ G α◦ ◦ f }
H α ◦ g ◦ f ◦ F α◦

If we were to develop a left-invertible language in a similar style to rinv’s,
we expect that many problems will dualize. A notable difference is that users
of the language will have to use unfold (as ▽ is not injective), with destruction
functions combined together by the backtracking operator choice, resulting
in a rather unusual programming style.

6. Further Applications

6.1. Pattern Matching for ADTs

The refactoring technique proposed in this paper rewrites selected defini-
tions using pattern matching into ones using library operations; the concrete
implementations of the library operations are not used in reasoning, and
thus are not exposed. In this case, a more structured way of organizing the
refactored program is with abstract datatypes (ADTs) [32].

As a matter of fact, the data abstraction framework developed in this
paper can be used as a way of introducing pattern matching to certain ADTs.
For example, we can construct an ADT for queues:

adt Queue a = [a] where
emptyQ ::Queue a
enQ :: a → Queue a → Queue a
deQ ::Queue a → Queue a

32

first ::Queue a → a
isEmpty ::Queue a → Bool

with the following abstract programs as specifications:

emptyQ = []
first = head
isEmpty = null
enQ a q = q ++ [a]
deQ = tail

This approach is known as constructive specification [10]: the semantics of
operations are explicitly defined by expressing them in terms of a model. For
example, the queue ADT is related to the list model. It is worth emphasising
that the list datatype acts only as a model of the ADT: it may suggest
but it does not imply a particular implementation. We also note that this
constructive approach does not cover all ADTs: for example, unordered sets
cannot be fully modelled by an algebraic datatype.

Once an implementation of the ADT is shown correct (by proving the
promotion condition), users of the ADT can pattern match on the model
when defining non-library functions, and reason about these functions at the
level of models. A translation based on the computation law, similar to the
one in Section 3.2, elaborates the semantics of programs using the ADT.

6.2. Stream Fusion

Streams are the dual of lists, and are a kind of codata. Instead of being
built as data structures, streams encapsulate operations that can be unfolded
to produce stream elements. Coutts et al. [33] introduce an ADT of streams
in their work on fusion optimizations:

data Stream a = ∃s .Strm (s → Step a s) s

data Step a s = Done
| Yield a s
| Skip s

To use the stream ADT as an implementation of lists, they have functions
stream and unstream for converting lists to and from streams.

unstream :: Stream a → [a]
unstream (Strm next s) = unfold s

33

where unfold s = case next s of
Done → []
Skip s ′ → unfold s ′

Yield x s ′ → x : unfold s ′

stream :: [a]→ Stream a
stream xs = Strm next xs
where next [] = Done

next (x : xs) = Yield x xs

The stream function is non-recursive, corresponding to the non-recursive def-
inition of Stream. The unstream function repeatedly calls the access oper-
ation of the stream, and produces a list by accumulating the elements this
yields. The step Skip is unproductive, and therefore does not contribute to
expressive power. However, it is crucial for the efficiency of their implemen-
tation, allowing intermediate stream/unstream conversions to be fused. For
example, they want to reduce the expression

unstream ◦maps f ◦ stream ◦ unstream ◦maps g ◦ stream

to

unstream ◦maps f ◦maps g ◦ stream

This would follow from stream ◦ unstream ≡ id ; but this property is not
satisfied by their conversion functions, and so their paper leaves open the
question of soundness. Nevertheless, the result they want still holds; in
fact, it is a consequence of our approach (Theorem 1), with unstream the
abstraction function and stream its right inverse.

It is worth mentioning that despite our fusion theorem developed in Sec-
tion 3.3 can be used to prove the correctness of Coutts et al.’s optimization,
the implementation of the unstream and stream function pair is not able to
benefit from rinv. The main problem is that stream is non-recursive; and
the information needed for constructing Stream data is stored in its func-
tion component (next). At the moment, rinv is not able to handle such
higher-order cases.

7. Related Work

The theoretical foundation of this work goes all the way back to the dawn
of the program correctness era [12, 34, 35, 10]. The promotion condition and

34

computation law are standard tools for establishing the correctness of pro-
gram development. In particular, full invertibility of the abstraction function
has been shown [12] to be a sufficient (although not necessary) precondition
for the computation law. As expected, none of the early works deal specif-
ically with pattern matching and its implications in program development,
since this language feature first appeared only a decade later.

7.1. Pattern Matching with Data Abstraction

Efforts to combine data abstraction and pattern matching started over
twenty years ago with Wadler’s views proposal [8]; and it is still a hot research
topic [36, 37, 38, 39, 40, 41, 42, 43, 7, 44]. To avoid possible confusion over
terminology, we always refer to Wadler’s proposal [8] as “Wadler’s views”.

Wadler’s views provide different ways of viewing data than their actual
implementations. With a pair of conversion functions, data can be converted
to and from a view. Consider the left- and right-biased representations of
lists:

data List a = Nil | Cons a (List a)
view List a = Lin | Snoc (List a) a
to Nil = Lin
to (Cons x Nil) = Snoc Nil x
to (Cons x (Snoc xs y)) = Snoc (Cons x xs) y
from Lin = Nil
from (Snoc Nil x) = Cons x Nil
from (Snoc (Cons x xs) y) = Cons x (Snoc xs y)

The view clause introduces two new constructors, Lin and Snoc, which may
appear in both terms and patterns. The first argument to the view construc-
tion Snoc refers to the datatype List a, so a snoclist actually has a conslist as
its child. The to and from clauses are similar to function definitions. The ‘to’
function to converts a conslist value to a snoclist value, and is used when Lin
or Snoc appear as the outermost constructor in a pattern on the left-hand
side of an equation. Conversely, the ‘from’ function from converts a snoclist
into a conslist, when Lin or Snoc appear in an expression. Note that we
are already making use of views in the definition above; for example, Snoc
appears on the left-hand side of the third to clause; matching against this
will trigger a recursive invocation of to.

Functions can now pattern match on and construct values in either the
datatype or one of its views.

35

last (Snoc xs x) = x

rotLeft (Cons x xs) = Snoc xs x
rotRight (Snoc xs x) = Cons x xs

rev Nil = Lin
rev (Cons x xs) = Snoc (rev xs) x

Upon invocation, an argument is converted into the view by the to function;
after completion of the computation, the result is converted back to the
underlying datatype representation by the from function.

Just as with our proposal, this semantics can be elaborated by a straight-
forward translation into ordinary Haskell. First of all, view declarations are
translated into data declarations:

data Snoc a = Lin | Snoc (List a) a

Note that the child of Snoc refers to the underlying datatype: view data is
typically hybrid (whereas it is homogeneous with our approach). Now the
only task is to insert the conversion functions at appropriate places in the
program.

last xs = case to xs of Snoc xs x → x

rotLeft xs = case xs of Cons x xs → from (Snoc xs x)
rotRight xs = case to xs of Snoc xs x → Cons x xs

rev xs = case xs of
Nil → from Lin
(Cons x xs)→ from (Snoc (rev xs) x)

To take advantage of the hybrid representation of views, Wadler’s applica-
tions mostly involves cute examples with frequent changes of views in one
function definition. When the hybrid structures fit with the recursive pattern
of a function, the shallow conversion pays off by improving efficiency. On the
other hand, in the applications we are looking at, it is more common to have
only one view involved in a recursion, which certainly benefits from having
homogeneous data.

In contrast to our approach, Wadler exposes both a datatype and its views
to programmers. To support reasoning across the different representations,
the conversion clauses are used as axioms. It is expected for a view type
to be isomorphic to a subset of its underlying datatype, and for the pair

36

of conversions between the values of the two subsets to be each other’s full
inverses. This is certainly restrictive; and Wadler didn’t suggest any way to
enforce such an invertibility condition. As pointed out by Wadler himself [8],
and followed up by several others [36, 37], this assumption is risky, and may
lead to nasty surprises that threaten soundness of reasoning.

Inspired by Wadler’s proposal, our work ties up the loose ends of views
by hiding the implementation of selected primitives that are proven correct,
and using only the view (our abstract representation) for pattern match-
ing in user-defined functions. The language rinv for defining conversions
guarantees right invertibility, a weaker condition that lifts the isomorphism
restriction on abstract and concrete representations. However, in contrast
to Wadler’s views, our system only caters for linear refactoring—we cannot
provide multiple views for the same implementation.

‘Safe’ variants of views [36, 37] have been proposed before. To circum-
vent the problem of equational reasoning, one typically restricts the use of
view constructors to patterns, and does not allow them to appear on the
right-hand side of a definition. As a result, expressions like Snoc Lin 1 be-
come syntactically invalid. Instead, values are only constructed by ‘smart
constructors’, as in snoc lin 1. In this setting, equational reasoning has to
be conducted on the source level with explicit applications of to. A major
motivation for such a design is to admit views and sources with conversion
functions that do not satisfy the invertibility property. In another words, let
Constr and constr be a constructor and its corresponding smart constructor;
in general, we have Constr x ̸≡ constr x . This appears to hinder program
comprehension, since the very purpose of the convention that the name of a
smart constructor differs only by case from its ‘dumb’ analogue is to suggest
the equivalence of the two.

More recently, language designers have started looking into more expres-
sive pattern mechanisms. Active patterns [38, 39] and many of their vari-
ants [40, 41, 42, 43, 7] go a step further, by embedding computational content
into pattern constructions. All the above proposals either explicitly recognise
the benefit of using constructors in expressions, or use examples that involve
construction of view values on the right-hand sides of function definitions.
Nevertheless, none of them are able to support pattern constructors in ex-
pressions, due to the inability to reason safely. Knowing that there is an
absence of good solutions for supporting constructors in expressions, some
work focuses mainly on examples that are primarily data consumers, an es-
cape that is expected to be limited and short-lived. Another common pitfall

37

of active patterns is the difficulty in supporting nested and overlapping pat-
terns, because each active pattern is computed and matched independently.

Our proposal supports the full power of pattern matching while preserving
safety. Yet, the additional expressiveness and guarantees come with a higher
price tag: rinv is still rather restrictive, and can be somewhat awkward
at times. Among alternative approaches, one can see higher-order recursion
patterns such as hylomorphisms [45] as ways of imposing recursive views on
possibly non-recursive abstract data. In the special case that the input is
itself an inductively defined datatype, such recursive views can provide al-
ternative decompositions to plain iteration—for example, paramorphisms or
primitive recursion [46] and histomorphisms or course-of-value iteration [47].
Because rinv as presented here is first-order, it cannot capture these higher-
order eliminators; we leave as future work the exploration of a higher-order
version of rinv. McBride and McKinna [48] point out that view mechanisms
providing case analysis are more informative in a dependently typed setting
than a simply typed one, because the individual cases may have more refined
types than the surrounding context; perhaps switching from polymorphic
functional programming to dependent types will eliminate much of the need
for the kind of language extension presented here.

7.2. Invertible Programming

The language rinv owes its origins to the rich literature on invertible
programming [19, 22], a programming paradigm where programs can be ex-
ecuted both forwards and backwards. Mu et al. [19] concentrate their effort
on designing a language that provides only injective functions. The result-
ing language Inv is a combinator library that syntactically rules out any
non-injective functions. The most novel operator of Inv is dup f , which du-
plicates the input and applies f to one copy. In the backward direction, the
two copies of the duplicated input are checked for consistency before being
restored. It is shown that Inv is practically useful for maintaining consis-
tency of structured data related by some transformations [20, 49]. The 2LT
(Two-Level-Transformation) system [50] has a left-invertible combinator li-
brary at its core. Instead of addressing changes to individual values, the
update is expressed as a format (type) evolution, which migrates a whole
database to one in a new format. A typical usage of the system involves re-
trieving relational data into a hierarchical format, updating by enriching the
hierarchical format, and putting back the updated data into a new relational
format reflecting the enrichment. The whole process is specified in terms of

38

formats; the corresponding value-level transformations are induced. Invert-
ible arrows [22] extend the arrow framework [51] (a generalization of monads)
with a combinator that encodes pairs of functions being each other’s inverses;
the paper introducing invertible arrows [22] recognizes that, when full invert-
ibility is not achievable (due to the non-isomorphic nature of the two sides),
left- or right-biased semi-invertibility is nevertheless a useful approximation.

Right inverses have been studied as a component of the much more elab-
orate bidirectional programming framework of lenses [21, 52, 53, 54]; in this
context, right inverses are known as ‘create’ functions. Based on record
types, the combinators of lenses have little similarity to those of rinv. A
distinctive feature of the lenses framework is the use of semantic types [55]
to give precise bounds to the ranges of forward functions (thus the domains
of backwards functions). As a result, surjectivity now concerns the relation-
ships between the domains and ranges of lenses connected by a combinator,
instead of being a property between a function and its target datatype.

We have carefully chosen right invertibility as the central property our
system is based on, to balance expressiveness and robustness. As we have
seen, it has served our purpose well by being sufficient to establish the crucial
computation and fusion laws.

On the other hand, rinv does not keep values on the concrete level stable:
bringing a value on the concrete level up to the abstract level and putting it
back without modification may induce changes. This has not been a problem
with our design, but rules out the possibility of having multiple abstract rep-
resentations for a single implementation. For example, as shown in Wadler’s
view proposal [8], it can be useful to have both cons-lists and snoc-lists as
views at the same time.

Another omission of rinv is general data-projection functions. We can
only discard information that is re-constructible, in other words redundant.
At a glance, it may appear that both the above “flaws” would be fixed if
we were to use a framework similar to that of bidirectional programming
[49, 56, 21, 57, 23, 58], where a forward function fwd :: A → B is coupled
with a “backwards” counterpart bwd :: (B ,A) → A. The idea is that fwd
transforms a source into a view, which is then modified; the modification is
to be saved in the form of an updated source, produced by bwd . Instead of
being an inverse, bwd takes both the original source and a modified view as
inputs, and tries to reinstate the source/view consistency by producing a new
source. In this setting, stability of sources is achievable; and discarded values
can be recovered by extracting them from the copied source. However, in

39

our case the modification operations, which are basically arbitrary abstract
operations, are far more complicated than those in bidirectional program-
ming, which assumes a single type for the view. As a result, an update from
type (List a,List a) to type List a would not be allowed in bidirectional
programming, but is perfectly sensible in programming with abstractions. If
we use bwd on the resulting list, it is never clear what the source input is.

As we can see from the literature summarized above, building invert-
ible languages using a combinatorial approach is by no means a new idea.
Through coming from a common foundation, different proposals customize
their designs to cater for specific applications. For example, lenses [21, 52,
53, 54] deal with data as records, whereas Inv [19], pointfree lenses [23],
and rinv deal with data as algebraic datatypes. In a sense, any invertible
language admitting algebraic datatypes can be used in place of rinv; our
refactoring framework will still work, but not as well. For example, execut-
ing inverses in Inv may fail at run-time, which will cause failures in pattern
matching, while point-free lenses only provide primitive constructors, which
is limited in expressiveness. We have carefully designed rinv to balance
safety and expressiveness for our application. The non-primitive construc-
tor functions and annotated data projection functions are artifacts of such
consideration; and both the new features are nicely integrated into the more
standard combinator framework.

Program inversion, in the sense of generating an inverse of a program, is
not the only way of obtaining an input from the output that it yields. Glück
and Abramov [59] proposed a universal resolving algorithm, which, give an
output and a program, enumerates the original inputs. The core technique
they use, known as positive driving [60], is similar to the notion of needed nar-
rowing [61] studied in the context of functional logic programming. Thus,
their work can be seen as interpretation of a functional program by using
the semantics of functional logic programs, a connection that is made more
explicit in subsequent work [62]. Note that, if a function is surjective, the in-
verse computation by the universal resolving algorithm is always guaranteed
to terminate.

Matsuda et al. [63] discussed right-inverse computation using grammar
parsing. They construct a grammar from a program, so that the productions
of the grammar abstract the evaluation of the program. Then, right-inverse
computation is given by parsing with respect to the grammar. In their ap-
proach, an affine and treeless first-order functional program [64] is always
surjective onto the language of the derived grammar; and its inverse compu-

40

tation has linear complexity with respect to the original program’s output.

8. Conclusion

Algebraic datatypes and pattern matching offer great promise to program-
mers seeking simple and elegant programming, but the promise turns sour
when modular changes are demanded. Our work tackles this long-standing
problem by proposing a framework for refactoring programs written with pat-
tern matching into ones with proper encapsulation: programmers are able
to selectively reimplement original function definitions into primitive opera-
tions, and either rewrite the rest in terms of the primitive ones, or simply
leave them unchanged. This migration is completely incremental: executabil-
ity and proofs through equational reasoning are preserved at all times during
the process.

At the heart of our proposal is the framework of data abstraction. When
an abstraction function is verified by the promotion condition, the compu-
tation law is able to replace abstract function calls with concrete ones. The
soundness of such refactoring is based on the right-inverse property of the
conversion pairs that bridge the abstract and concrete representations, for
which we have designed rinv to guarantee right-invertibility by construction.

At this stage, our focus is on supporting refactoring of programs written
with datatypes and pattern matching, which automatically excludes some
ADTs, such as unordered sets, that cannot be fully modelled by algebraic
datatypes. We leave it as future work to investigate the applicability of our
proposal in a more general setting.

Acknowledgements

We are grateful to the anonymous reviewers of the earlier conference
version of this paper [65] and of this revised and expanded version; we are
especially grateful to Ralf Hinze for his valuable comments on an early draft
of the paper—the binary number example is due to him. This work was
supported by the UK Engineering and Physical Sciences Research Council
through the Generic and Indexed Programming project (EP/E02128X) and
a PhD Plus award on Bidirectional Programming via the Doctoral Training
Grant (EP/P503876/1), and was partly conducted during Wang’s internship
at National Institute of Informatics, Japan. Matsuda is supported by Grant-
in-Aid for Start-up 22800003, and part of the work was done while he was at

41

the University of Tokyo as JSPS Research Fellow supported by Grant-in-Aid
for JSPS Fellows 20 · 9584.

References

[1] P. Wadler, A critique of Abelson and Sussman: Why calculating is better
than scheming, ACM SIGPLAN Notices 22 (3) (1987) 83–94.

[2] S. Peyton Jones (Ed.), Haskell 98 Language and Libraries: The Revised
Report, Cambridge University Press, 2003.

[3] R. Burstall, D. MacQueen, D. Sannella, Hope: An experimental applica-
tive language, in: Lisp and Functional Programming, ACM, 1980, pp.
136–143.

[4] B. Emir, M. Odersky, J. Williams, Matching objects with patterns, in:
European Conference on Object-Oriented Programming, Springer, 2007,
pp. 273–298.

[5] P.-E. Moreau, C. Ringeissen, M. Vittek, A pattern matching compiler
for multiple target languages, in: Conference on Compiler Construction,
Vol. 2622 of Lecture Notes in Computer Science (LNCS), Springer, 2003,
pp. 61–76.

[6] J. Liu, A. C. Myers, JMatch: Iterable abstract pattern matching for
Java, in: Proceedings of the International Symposium on Practical As-
pects of Declarative Languages, Springer, London, UK, 2003, pp. 110–
127.

[7] D. Syme, G. Neverov, J. Margetson, Extensible pattern matching via
a lightweight language extension, in: Proceedings of the International
Conference on Functional Programming (ICFP), ACM, New York, NY,
USA, 2007, pp. 29–40.

[8] P. Wadler, Views: A way for pattern matching to cohabit with data ab-
straction, in: Proceedings of the Principles of Programming Languages
(POPL), ACM, New York, NY, USA, 1987, pp. 307–313.

[9] B. Liskov, J. Guttag, Program Development in Java: Abstraction, Spec-
ification, and Object-Oriented Design, Addison-Wesley, Boston, MA,
USA, 2000.

42

[10] C. A. R. Hoare, Proof of correctness of data representations, Acta In-
formatica 1 (1972) 271–281.

[11] K. Matsuda, M. Wang, Z. Hu, J. Gibbons, prototype implementation of
rinv. [link].
URL http://www.kb.ecei.tohoku.ac.jp/~kztk/viewpp/

[12] R. Milner, An algebraic definition of simulation between programs, in:
Proceedings of the 2nd international joint conference on Artificial intel-
ligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1971, pp. 481–489.
URL http://portal.acm.org/citation.cfm?id=1622876.1622926

[13] R. S. Bird, The promotion and accumulation strategies in transforma-
tional programming, ACM Transactions on Programming Languages
and Systems 6 (4) (1984) 487–504.

[14] P. Wadler, The concatenate vanishes, Tech. rep., University of Glasgow
(1987).

[15] L. G. L. T. Meertens, Algorithmics: Towards programming as a math-
ematical activity, in: CWI Symposium on Mathematics and Computer
Science, no. 1 in CWI-Monographs, North–Holland, 1986, pp. 289–344.

[16] R. S. Bird, An introduction to the theory of lists, in: M. Broy (Ed.),
Logic of Programming and Calculi of Discrete Design, Springer-Verlag,
1987, pp. 3–42, nATO ASI Series F Volume 36. Also available as Tech-
nical Monograph PRG-56, from the Programming Research Group, Ox-
ford University.

[17] M. R. Sleep, S. Holmström, A short note concerning lazy reduction rules
for append, Software: Practice and Experience 12 (11) (1982) 1082–
1084.

[18] G. L. Steele, Jr., Organizing functional code for parallel execution or,
foldl and foldr considered slightly harmful, in: Proceedings of the In-
ternational Conference on Functional Programming (ICFP), ACM, New
York, NY, USA, 2009, pp. 1–2.

43

[19] S.-C. Mu, Z. Hu, M. Takeichi, An injective language for reversible com-
putation, in: Mathematics of Program Construction, Vol. 3125 of Lec-
ture Notes in Computer Science, Springer, 2004, pp. 289–313.

[20] S.-C. Mu, Z. Hu, M. Takeichi, An algebraic approach to bi-directional
updating, in: ASIAN Symposium on Programming Languages and
Systems (APLAS), Vol. 3302 of Lecture Notes in Computer Science,
Springer, 2004, pp. 2–18.

[21] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt,
Combinators for bidirectional tree transformations: A linguistic ap-
proach to the view update problem, ACM Transactions on Programming
Languages and Systems 29 (3), preliminary version in POPL ’05.

[22] A. Alimarine, S. Smetsers, A. van Weelden, M. van Eekelen, R. Plas-
meijer, There and back again: Arrows for invertible programming, in:
Haskell Workshop, ACM, New York, NY, USA, 2005, pp. 86–97.

[23] H. Pacheco, A. Cunha, Generic point-free lenses, in: C. Bolduc, J. De-
sharnais, B. Ktari (Eds.), Mathematics of Program Construction, Vol.
6120 of Lecture Notes in Computer Science, Springer Berlin / Heidel-
berg, 2010, pp. 331–352.

[24] R. Bird, O. de Moor, Algebra of Programming, International Series in
Computer Science, Prentice Hall, 1997.

[25] S.-C. Mu, R. Bird, Theory and applications of inverting functions as
folds, Science of Computer Programming 51 (2004) 87–116.
URL http://portal.acm.org/citation.cfm?id=1007972.1007977

[26] M. Fokkinga, E. Meijer, Program calculation properties of continuous
algebras, Tech. Rep. CS-R9104, CWI, Amsterdam, Netherlands (Jan.
1991).
URL http://dbappl.cs.utwente.nl/Publications/PaperStore/

db-utwente-0000003528.pdf

[27] V. Capretta, T. Uustalu, V. Vene, Recursive coalgebras from comonads,
Information and Computation 204 (2006) 437–468.

44

[28] C. S. Lee, N. D. Jones, A. M. Ben-Amram, The size-change principle for
program termination, in: Proceedings of the Principles of Programming
Languages (POPL), ACM, New York, NY, USA, 2001, pp. 81–92.

[29] D. Sereni, Termination analysis and call graph construction for higher-
order functional programs, in: N. Ramsey (Ed.), Proceedings of the
International Conference on Functional Programming (ICFP), ACM
Press, 2007, pp. 71–84.

[30] C. Okasaki, An overview of Edison, Electronic Notes in Theoretical
Computer Science 41 (1) (2001) 60 – 73, 2000 ACM SIGPLAN Haskell
Workshop (Satellite Event of PLI 2000).
URL http://www.sciencedirect.com/science/article/pii/

S1571066105805468

[31] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, M. Takeichi, Automatic
inversion generates divide-and-conquer parallel programs, in: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, ACM, New York, NY, USA, 2007, pp. 146–
155.

[32] B. Liskov, S. Zilles, Programming with abstract data types, in: ACM
Symposium on Very High Level Languages, 1974, pp. 50–59.

[33] D. Coutts, R. Leshchinskiy, D. Stewart, Stream fusion: from lists to
streams to nothing at all, in: Proceedings of the International Confer-
ence on Functional Programming (ICFP), ICFP ’07, ACM, New York,
NY, USA, 2007, pp. 315–326.

[34] N. Wirth, Program development by stepwise refinement, Communica-
tions of the ACM 14 (1971) 221–227.

[35] O. J. Dahl, E. W. Dijkstra, C. A. R. Hoare (Eds.), Structured program-
ming, Academic Press Ltd., London, UK, UK, 1972.

[36] F. W. Burton, R. D. Cameron, Pattern matching with abstract data
types, Journal of Functional Programming 3 (2) (1993) 171–190.

[37] C. Okasaki, Views for Standard ML, in: ACM Workshop on ML, 1998,
pp. 14–23.

45

[38] M. Erwig, Active patterns, in: 8th Int. Workshop on Implementation of
Functional Languages, Vol. 1268 of Lecture Notes in Computer Science,
Springer, 1996, pp. 21–40.

[39] P. Palao Gostanza, R. Peña, M. Núñez, A new look at pattern matching
in abstract data types, in: Proceedings of the International Conference
on Functional Programming (ICFP), ACM, New York, NY, USA, 1996,
pp. 110–121.

[40] M. Erwig, S. Peyton Jones, Pattern guards and transformational pat-
terns, in: Haskell Workshop, ACM, New York, NY, USA, 2000.

[41] M. Tullsen, First class patterns, in: Practical Aspects of Declarative
Languages, Vol. 1753 of Lecture Notes in Computer Science, Springer,
2000, pp. 1–15.

[42] C. B. Jay, The pattern calculus, ACM Transactions on Programming
Languages and Systems 26 (6).

[43] D. Licata, S. Peyton Jones, View patterns: lightweight views for Haskell,
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns (2007).

[44] P. Nogueira, J. J. Moreno-Navarro, Bialgebra views: A way for polytypic
programming to cohabit with data abstraction, in: Workshop on Generic
Programming, ACM, New York, NY, USA, 2008, pp. 61–73.

[45] E. Meijer, M. Fokkinga, R. Paterson, Functional programming with ba-
nanas, lenses, envelopes and barbed wire, in: Functional Programming
Languages and Computer Architecture, Vol. 523 of Lecture Notes in
Computer Science (LNCS), Springer-Verlag, 1991, pp. 124–144.

[46] L. Meertens, Paramorphisms, Formal Aspects of Computing 4 (1992)
413–424.

[47] T. Uustalu, V. Vene, Primitive (co-)recursion and course-of-value (co-
)iteration, categorically, Informatica 3 (1999) 5–26.

[48] C. McBride, J. McKinna, The view from the left, Journal of Functional
Programming 14 (1) (2004) 69–111.

46

[49] Z. Hu, S.-C. Mu, M. Takeichi, A programmable editor for developing
structured documents based on bidirectional transformations, in: Pro-
ceedings of the Workshop on Partial Evaluation and Program Manipu-
lation (PEPM), ACM, New York, NY, USA, 2004, pp. 178–189.

[50] The 2LT Team, 2LT two level transformation.
URL http://code.google.com/p/2lt/

[51] J. Hughes, Generalising monads to arrows, Science of Computer Pro-
gramming 37 (1-3) (2000) 67–111.

[52] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, A. Schmitt,
Boomerang: Resourceful lenses for string data, in: Principles of Pro-
gramming Languages, ACM, New York, NY, USA, 2008, pp. 407–419.

[53] J. N. Foster, A. Pilkiewicz, B. C. Pierce, Quotient lenses, in: Proceedings
of the International Conference on Functional Programming (ICFP),
ACM, New York, NY, USA, 2008, pp. 383–396.

[54] J. N. Foster, B. C. Pierce, S. Zdancewic, Updatable security views, in:
CSF ’09: Proceedings of the 2009 22nd IEEE Computer Security Foun-
dations Symposium, IEEE Computer Society, Washington, DC, USA,
2009, pp. 60–74.

[55] A. Frisch, G. Castagna, V. Benzaken, Semantic subtyping: Dealing
set-theoretically with function, union, intersection, and negation types,
Journal of the ACM 55 (4).

[56] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, M. Takeichi, Bidirection-
alization transformation based on automatic derivation of view com-
plement functions, in: Proceedings of the International Conference on
Functional Programming (ICFP), ACM, New York, NY, USA, 2007, pp.
47–58.

[57] J. Voigtländer, Bidirectionalization for free! (Pearl), in: Proceedings of
the Principles of Programming Languages (POPL), ACM, New York,
NY, USA, 2009, pp. 165–176.

[58] J. Voigtländer, Z. Hu, K. Matsuda, M. Wang, Combining syntactic
and semantic bidirectionalization, in: Proceedings of the International

47

Conference on Functional Programming (ICFP), ACM, New York, NY,
USA, 2010, pp. 181–192.

[59] S. Abramov, R. Glück, The universal resolving algorithm and its correct-
ness: inverse computation in a functional language, Science of Computer
Programming 43 (2-3) (2002) 193 – 229.

[60] M. H. Sørensen, R. Glück, N. D. Jones, A positive supercompiler, Jour-
nal of Functional Programming 6 (6) (1996) 811–838.

[61] E. Albert, G. Vidal, The narrowing-driven approach to functional logic
program specialization, New Gen. Comput. 20 (2002) 3–26.
URL http://portal.acm.org/citation.cfm?id=586507.586509

[62] S. Abramov, R. Glück, Y. Klimov, An universal resolving algorithm for
inverse computation of lazy languages, in: Proceedings of the 6th inter-
national Andrei Ershov memorial conference on Perspectives of systems
informatics, PSI’06, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 27–
40.
URL http://portal.acm.org/citation.cfm?id=1760700.1760708

[63] K. Matsuda, S.-C. Mu, Z. Hu, M. Takeichi, A grammar-based approach
to invertible programs, in: Proceedings of the European Symposium on
Programming, 2010, pp. 448–467.

[64] P. Wadler, Deforestation: transforming programs to eliminate trees,
in: Proceedings of the Second European Symposium on Program-
ming, North-Holland Publishing Co., Amsterdam, The Netherlands,
The Netherlands, 1988, pp. 231–248.
URL http://portal.acm.org/citation.cfm?id=80098.80104

[65] M. Wang, J. Gibbons, K. Matsuda, Z. Hu, Gradual refinement: Blending
pattern matching with data abstraction, in: C. Bolduc, J. Desharnais,
B. Ktari (Eds.), Mathematics of Program Construction, Vol. 6120 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010,
pp. 397–426.

[66] The GHC Team, Glasgow Haskell Compiler.
URL http://www.haskell.org/ghc/

48

[67] T. Sheard, S. Peyton Jones, Template metaprogramming for Haskell, in:
M. M. T. Chakravarty (Ed.), Haskell Workshop, ACM Press, 2002, pp.
1–16.

49

Appendix A. Prototype Implementation

Our system is implemented as a preprocessor for the Glasgow Haskell
Compiler, taking an input script and producing a Haskell program. The
running example from the paper—of refactoring queues to use a non-list
representation—can be fed to our system as a script structured as shown in
Figure A.1. We deliberately use typewriter font rather than proper typeset-
ting, because at the moment we see the input as a plain text script instead
of a program in a rigorously defined extended language. Some familiarity
with Haskell [2, 66] and Template Haskell [67] is required to understand the
details of this section.

Appendix A.1. Invoking Our System

The preprocessor can be applied from the command line as follows.

ghci -F -pgmF refactor QueueDemo.hs

Here, refactor is the name of the executable file of our prototype imple-
mentation, and QueueDemo.hs the input script, structured as shown in Fig-
ure A.1. This invokes the interactive version of the Glasgow Haskell Compiler
ghci, and loads the translated code.

Appendix A.2. The Input File

As shown in Figure A.1, the input file consists mainly of three blocks,
labelled view, abstract and concrete, specifying the intended refactoring;
it also has some client code making use of the refactoring. In the following,
we explain the various blocks in turn.

Appendix A.2.1. The view Block

The purpose of the view block, shown in Figure A.2, is to declare the
abstract and concrete representations, and define the abstraction function.
In the queue example, the abstract representation Queue a is implemented
in terms of the concrete representation Qi a; the conversion between them
is defined by rinv function abstraction. Note that the actual declarations
of datatypes Queue and Qi are imported from separate modules Queue and
QueueImpl, due to a restriction imposed by Template Haskell.

In the definition of abstraction, we use an ASCII encoding of standard
rinv combinators: we write ‘<**>’ for ×, ‘.’ for ◦, and ‘<||>’ for ▽. We
use Template Haskell to generate appropriate fold functions and constructor

50

{-# OPTIONS -XTemplateHaskell -XMultiParamTypeClasses #-}

import UpdatableViewStub

import Queue

import QueueImpl

view Qi a as Queue a by

abstraction = ...

completeSets = ...

abstract

...

concrete

...

mapQueue = ...

play1 = ...

Figure A.1: An example input file: QueueDemo.hs

view Qi a as Queue a by

abstraction = $(foldT ’’Qi) (l2l . app . (id <**> reverse))

where l2l = $(foldT ’’[]) ($(toC ’None) <||> $(toC ’More))

completeSets _ = [$(namesT ’’Qi), $(namesT ’’Queue)]

Figure A.2: An example input file: the view block

51

functions for given datatypes. For example, foldT ’’Qi generates the fold
for type Qi, and toC ’None generates the constructor function for constructor
None. Note that ‘’’ refers to the constructor name and ‘’’’ refers to the type
name; for example, ’[] means the name of the data constructor [] while
’’[] means the name of the type constructor [].

The view block also contains the definition of completeSets, which spec-
ifies the constructor grouping introduced with the new datatypes.

Our preprocessor translates the view block into a rinv program, as de-
scribed in Appendix B; the surjectivity check described in Appendix C guar-
antees the validity of the generated program, which is done statically through
Template Haskell.

Appendix A.2.2. The abstract and concrete Blocks

The abstract and concrete blocks, shown in Figure A.3, contain the
definitions of library functions on the specification and implementation level
respectively. The specifications are simply copied to the output, while con-
versions are inserted into the implementations.

Instead of explicitly using functors, as in Section 3, we overload the ab-
straction functions so that the Haskell type class mechanism will implicitly
choose the appropriate instances. This is the reason for the type annotations
of the library functions (no type inference or type checking is performed in
the prototype). Another technical detail is that we group the α/α◦ pair into
a single function toView, so that toView f is equivalent to α ◦ f ◦ α◦

Appendix A.2.3. Refactoring Programs

The view, abstract and concrete blocks prepare a refactoring system,
which can be used to implement specifications. In the client code part of
the example input file (shown in Figure A.4), play1 represents the playprim
function from Section 3.2. As explained in Section 3.3, playprim does not use
the abstract representation at all; consequently, it is translated as if it were
a library function. In Section 3.3 we explained how this absence of abstract
representation can be inferred through type checking. As we perform no type
checking in the prototype, such functions have to be annotated by their types
and the libary functions they actually call.

Our system produces the code in Figure A.5 for play1. A new function
play1 impl (playprim from Section 3.2) is the implementation of play1 using
the concrete representation. Calls to play1 are then redirected to play1 impl

52

abstract

emptyQueue :: Queue a

emptyQueue = None

enQ :: a -> Queue a -> Queue a

enQ = More

deQ :: Queue a -> Queue a

deQ (More _ x) = x

first :: Queue a -> a

first (More a _) = a

concrete

emptyQueue :: Qi a

emptyQueue = Qi [] []

enQ :: a -> Qi a -> Qi a

enQ a (Qi x y) = Qi (a:x) y

deQ :: Qi a -> Qi a

deQ (Qi (a:x) y) = Qi x y

deQ (Qi [] y) = deQ (Qi (reverse y) [])

first :: Qi a -> a

first (Qi (a:x) y) = a

first (Qi [] y) = first (Qi (reverse y) [])

Figure A.3: An example input file: the abstract and concrete blocks

53

mapQueue f None = None

mapQueue f (More a x) = More f (mapQueue f x)

{-@ IMPL Int -> Qi (IO ()) -> IO ()

of Int -> Queue (IO ()) -> IO ()

USING enQ first deQ @-}

play1 0 q = first q

play1 (n+1) q = do hd

play1 n (enQ hd tl)

where hd = first q

tl = deQ q

Figure A.4: An example input file: client code

after proper conversions. The mapQueue definition is not refactored—it is
copied straight to the output.

54

play1_impl =

let

play1 0 q = first q

play1 (n+1) q = do hd

play1 n (enQ hd tl)

where hd = first q

tl = deQ q

in play1

where

enQ = enQ_impl

first = first_impl

deQ = deQ_impl

play1 = (toView :: (Int -> Qi (IO ()) -> IO ()) ->

(Int -> Queue (IO ()) -> IO ()))

play1_impl

Figure A.5: An example of refactored output

Appendix B. RINV Translation

This section summarizes the translation of rinv to Haskell that was de-
scribed in Section 4. In the clauses below, the use of Maybe monad for
failure handling is made explicit. As we can see, the only interesting use of
theMaybe type is in the implementation of choice, where the right operand is
chosen when the execution of the left operand fails (i.e., returning Nothing).
The remaining clauses are simply lifted into the Maybe monad.

[[·]] :: (a � b)→ a → Maybe b
[[·]]◦ :: (a � b)→ b → Maybe a

Appendix B.1. Constructors

nil :: () � [a]
[[nil]] = λ()→ return []
[[nil]]◦ = λx → case x of { []→ return () ; → mfail "Unmatched"}
cons :: (a, [a]) � [a]
[[cons]] = λ(x , xs)→ return (x : xs)

55

[[cons]]◦ = λl → case l of {x : xs → return (x , xs) ; → mfail "Unmatched"}
snoc :: (a, [a]) � [a]
[[snoc]] = λ(x , xs)→ return (xs ++ [x])
[[snoc]]◦ = λl → if length l > 1 then (last l , init l) else mfail "Unmatched"

wrap :: a � [a]
[[wrap]] = λx → return [x]
[[wrap]]◦= λl → case l of { [x]→ return x ; → mfail "Unmatched"}
app :: ([a], [a]) � [a]
[[app]] = λ(x , y)→ return (x ++ y)
[[app]]◦= λxs → return (splitAt ((length xs + 1) ‘div ‘ 2) xs)

Appendix B.2. Primitives

id :: a � a
[[id]] = return
[[id]]◦= return

assocr :: ((a, b), c)) � (a, (b, c))
[[assocr]] = λ((a, b), c)→ return (a, (b, c))
[[assocr]]◦= [[assocl]]

assocl :: (a, (b, c)) � ((a, b), c)
[[assocl]] = λ(a, (b, c))→ return ((a, b), c)
[[assocl]]◦ = [[assocr]]

swap :: (a, b) � (b, a)
[[swap]] = λ(a, b)→ return (b, a)
[[swap]]◦= [[swap]]

fst :: (a → b)→ (a, b) � a
[[fst]] = λg → return ◦ fst
[[fst]]◦ = λg → λx → return (x , g x)

snd :: (b → a)→ (a, b) � b
[[snd]] = λg → return ◦ snd
[[snd]]◦= λg → λx → return (g x , x)

56

Appendix B.3. Combinators

(◦) :: (b � c)→ (a � b)→ (a � c)
[[f ◦ g]] = λx → [[f]] x >>= [[g]]
[[f ◦ g]]◦ = λz → [[g]]◦ z >>= [[f]]◦

(×) :: (a � b)→ (c � d)→ ((a, c) � (b, d))
[[f × g]] = λ(w , x)→ liftM2 (,) ([[f]] w) ([[g]] x)
[[f × g]]◦= λ(y , z)→ liftM2 (,) ([[f]]◦ y) ([[g]]◦ z)

(▽) :: (a � c)→ (b � c)→ (Either a b � c)
[[f ▽ g]] = λx → case x of {Left a → [[f]] a ; Right b → [[g]] a }
[[f ▽ g]]◦= λx → [[f]]◦ x ‘choice‘ [[g]]◦ x
where choice (Just x) = Just x

choice (Just x) = Just x
choice = Nothing

foldList :: (Either () (a, b) � b)→ [a] � b
[[foldList f]] = foldMList [[f]]
[[foldList f]]

◦= unfoldMList [[f]]
◦

foldMList :: (Either () (a, b)→ Maybe b)→ [a]→ Maybe b
foldMList f [] = f (Left ())
foldMList f (a : x) = foldMList f x >>= λr → f (Right (a, r))

unfoldMList :: (b → Maybe (Either () (a, b)))→ b → Maybe [a]
unfoldMList f b =
f b >>= λr → case r of
Left () → return []
Right (a, b)→ unfoldMList f b >>= λx → return (a : x)

57

Appendix C. Pseudocode for Surjectivity Check

This section describes the algorithm for the surjectivity check in rinv.
Function checkSurj checks whether a constructor or a set of constructors
(collected from operands of ▽) ‘covers’ a complete constructor set. In the
case of ▽, when the two operands ‘cover’ a complete constructor set, we
do not require them individually to be surjective. However, we still need to
make sure that compositions with the operands are properly constructed (i.e.,
only surjective functions on the right of a composition). This is the reason
for invoking checkComp, which in turn relies on checkSurj for checking the
surjectivity of its component. One property of the two functions is that
checkSurj x implies checkComp x .

checkSurj (constructor) = isComplete constructor completeSets
checkSurj (primitive) = True
checkSurj (f ▽ g) = (isComplete (f ▽ g) completeSets ∨

checkSurj f ∨ checkSurj g) ∧
checkComp f ∧ checkComp g

checkSurj (f ◦ g) = checkSurj f ∧ checkSurj g
checkSurj (f × g) = checkSurj f ∧ checkSurj g
checkSurj (fold f) = checkSurj f

checkComp (constructor) = True
checkComp (primitive) = True
checkComp (f ▽ g) = checkComp f ∧ checkComp g
checkComp (f ◦ g) = checkComp f ∧ checkSurj g
checkComp (f × g) = checkComp f ∧ checkComp g
checkComp (fold f) = checkComp f

In the above, isComplete f cs checks whether the constructors provided by f
cover one of the constructor sets in cs . We implement sets as lists, but still
use the set notations for presentation. When constructors are paired into
tuples, the behaviour of isComplete is slightly more complicated, as we need
to compute the cartesian products of the constructor sets.

isComplete f cs =
any (λs → s ⊆ (flatten f)) completeTupleSets
where

58

dim = length $ (flatten f) !! 0
completeTupleSets

= foldNat (λr → {{a : b | a ← c, b ← d } | c ← cs , d ← r })
{{ []}}
dim

foldNat s n 0 = n
foldNat s n k = s (foldNat s n (k − 1))

In the above, completeTupleSets is the pairwise cartesian products of the
elements in cs up to a given dimension. For example, given a set of sets of
constructors

{{nil , cons }, {nil , snoc}, {nil ,wrap, app}}

a completeTupleSets with dimension 2 is

{{ [nil , nil], [nil , cons], [cons , nil], [cons , cons]},
{ [nil , nil], [nil , snoc], [cons , nil], [cons , snoc]},
{ [nil , nil], [nil ,wrap], [nil , app], [cons , nil], [cons ,wrap], [cons app]},
...}

The dimension represents the number of elements in a possibly nested tuple,
for which we flatten nested tuples into lists.

flatten (constructor) = { [constructor]}
flatten (f ▽ g) = flatten f ∪ flatten g
flatten (f × g) = {nf ++ ng | nf ← flatten f , ng ← flatten g }
flatten (f ◦ g) = flatten f
flatten = { []} -- primitive functions are ignored

The nesting of × increases the length of individual elements (dimension) in
a complete set, whereas the nesting of ▽ increases the size of the complete
sets. For example, we have the following executions

flatten (nil × cons) = { [nil , cons]}

flatten (nil ▽ cons) = { [nil], [cons]}

and

59

flatten ((nil × cons) ▽ (cons × nil)) = { [nil , cons], [cons , nil]}

Among the above, { [nil], [cons]} is a complete set, so nil ▽ cons passes the
isComplete test but the other ones fail. On the other hand, (nil×nil)▽(nil×
cons) ▽ (cons × nil) ▽ (cons × cons) passes the isComplete test, because it
flattens into { [nil , nil], [nil , cons], [cons , nil], [cons , cons]}, which covers a
complete set of dimension 2.

60

