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Abstract— Mutation Testing has been shown to be a powerful technique in detecting software 

faults. Despite this advantage, in practice there is a need to deal with the equivalent mutants’ 

problem. Automatically detecting equivalent mutants is an undecidable problem. Therefore, 

identifying equivalent mutants is cumbersome since it requires manual analysis, resulting in 

unbearable testing cost. To overcome this difficulty, researchers suggested the use of mutant 

classification, an approach that aims at isolating equivalent mutants automatically. From this 

perspective, the present paper establishes and empirically assesses possible mutant classification 

strategies. A conducted study reveals that mutant classification isolates equivalent mutants 

effectively when low quality test suites are used. However, it turns out that as the test suites 

evolve, the benefit of this practice is reduced. Thus, mutant classification is only fruitful in 

improving test suites of low quality and only up to a certain limit. To this end, empirical results 

show that the proposed strategies provide a cost-effective solution when they consider a small 

number of live mutants, i.e., 10-12. At this point they kill 92% of all the killable mutants.  
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1. Introduction 
 

Mutation testing aims at detecting software defects by injecting artificial errors, called mutants, in the 

examined software [5], [17]. By introducing a defect, two versions of the same program are produced: 

the original and the mutant. The technique relies on the underlying assumption that injecting and 

detecting mutants is already a strong adequacy criterion that forces tests to be effective for finding real 

faults. Mutants are introduced by making alterations to the source code of the program under test based 

on a set of simple syntactic rules called mutant operators.  

Mutants are used to assess the ability of test cases to reveal them. Researchers have provided evidence 

that mutants, despite being artificially seeded, behave as realistic faults [3]. Thus, mutants can be 

effectively used as a testing criterion. Such a criterion can be established by requiring selected test 

cases to distinguish the behavior of the mutated and the original program versions. In practice, this 

requirement is fulfilled by comparing the programs’ outputs when executed with the selected test cases. 

A mutant is said to be killed when it produces outputs that are different from the original program 
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while running the same test case. Otherwise, it is called live. In terms of fault revealing power, the 

higher the number of killed mutants, the higher is the test case power. However, while some mutants 

are killable, some mutants cannot be killed. In that case, such mutants are qualified as equivalent ones. 

As a result, an equivalent mutant forms a program version functionally equivalent to the original 

program, i.e., there exist no test case able to distinguish this mutant from the original program. 

An equivalent mutant plays the role of a parasite in the testing process. Indeed, while it is expected to 

be killable, it remains always live. Even worse, a tedious effort could be uselessly dedicated to 

improving tests with no hope of killing it (in a way similar to covering infeasible statements or 

branches w.r.t. code coverage criteria [16]). As a consequence, mutation testing requires the removal of 

these mutants. However, discarding equivalent mutants tackles an even harder problem, since judging 

programs’ functional equivalence is known to be undecidable [4]. As a result tedious manual analysis 

is required. It has been empirically found that it takes approximately 15 minutes [22] to identify an 

equivalent mutant in a real world application. Since a vast number of equivalent mutants exist, the 

application cost of mutation is escalated. As a consequence, the criterion used to stop the testing 

process requires the identification of most if not all of the existing equivalent mutants. 

To decrease the undesirable effects of equivalent mutants, heuristic methods appear to be promising. 

Schuler and Zeller [21, 22] suggested a method to automatically classify mutants into the likely killable 

and the likely equivalent. The underlying idea of this approach is to measure the effects, called the 

impact, introduced by mutants on the runtime program execution. It has been found that mutants with 

an impact are more likely to be killable than those with no impact. Although mutant classification has 

been suggested [22], it is not evident how it could be applied in practice. Furthermore, it is not evident 

what the practical benefits of its utilization are. The present paper defines strategies that take advantage 

of the mutant classification. We call these strategies as mutant classification strategies. These turn 

mutants’ impact as a guide towards improving a test suite.  

The primary aim of the present work is to define and evaluate the relative effectiveness and efficiency 

of mutant classification strategies. In other words, we address the question of how the mutation testing 

process should be performed in order to take advantage of mutant classification. To this end, we seek 

to identify the practical benefits of these strategies compared to the “traditional” mutation testing 

approach, i.e., the usual way of applying mutation testing (without mutant classification); see Section 

3.3 for a definition of the “traditional” and the mutant classification approaches.  

The above intentions were investigated based on a set of industrial programs written in C and using the 

Proteum [6] mutation testing system. It has been found, that the examined strategies are cost-effective 

in improving the quality of a test suite.  This improvement can lead to mutation scores of 92%-95% by 

examining up to twenty mutants per program. However, reaching higher mutation scores is not fruitful 

with the examined strategies. Therefore, in these cases the traditional approach should be undertaken. 

Despite this weakness, employing these strategies can lead to substantial benefits with respect to the 

equivalent mutants’ identification in non-critical cases. Thus, mutant classification can provide a cost-

effective solution to the equivalent mutants’ problem only up to a certain limit. To this end, empirical 

results show that when examining only a small number of mutants, i.e., (10-12) of mutants, the 



 

proposed strategies are beneficial and they kill more than 92% of all the killable mutants. Additionally, 

the obtained results show that the methods’ effectiveness loss is a straight consequence of the accuracy 

of the proposed classification schemes; therefore, pointing out possible directions for future research. 

The present paper extends the previous work on mutant classification strategies [24] in several 

dimensions. First, by considering a wider range of programs. Second, by studying and analyzing 

(manually) the equivalent mutants for all C-language mutant operators. Third, by studying the behavior 

of the strategies when random test cases are used as initial ones. Finally, a cost-effective analysis of the 

proposed strategies and a comparison with the traditional mutation approach is also performed.  

The remainder of this paper is organized as follows: Sections 2 and 3 present the concepts underlying 

the present work and the mutant classification strategies. Section 4 presents and details the 

experimental setup. The empirical results are presented and analyzed in Section 5. Section 6 discusses 

the findings of the present study and considers some threats to the validity of the conducted study. 

Finally Sections 7 and 8 respectively present the related work and the conclusions of the paper.  

 

2. Problems Caused by Equivalent Mutants 
 

Using mutation as a testing criterion [17] requires a way of measuring the adequacy of testing. 

Generally, test adequacy can be measured based on the exact mutation score, which is defined as 

follows:  

Exact MS = #killed mutants / (#Mutants-#Equivalent) 

However, calculating the exact mutation score is hard due to the existence of the so-called equivalent 

mutants [16]. These mutants cannot be killed and hence, they must be somehow identified in order to 

compute the mutation score. To this end, practitioners have two choices: a) to manually analyze the 

live mutants, which in practice is very hard, if not practically infeasible and b) to approximate the exact 

mutation score. The later approach is based on the actual mutation score, which is defined as follows:  

Actual MS = #killed mutants / #mutants 

Using Actual MS has two main drawbacks. First, it requires from the tester to decide which value of 

the score is satisfactory for completing the process. Without a manual analysis, this choice is more or 

less arbitrary, resulting in a degraded confidence in the testing process. Second, it does not give any 

guidance to the tester as to which mutants should be targeted first, to increase the score. To address 

these difficulties, the present paper examines the use of mutants’ impact [22], [21] as a possible way to 

automatically identifying the killable mutants. It also specifies the order of mutants that should be 

targeted. In other words, mutants’ impact allows deciding whether live mutants can be killed or not. 

Therefore, the tester can concentrate only on these (likely killable) mutants according to the provided 

order. Additional details regarding the concept of mutants’ impact are given in the following section. 

 

 

 



 

3. Mutant classification and strategies 
 
This section details the mutant classification strategies. It fist introduces the concept of mutants’ impact 

in section 3.1, that underlies the examined approaches. Then section 3.2 describes how mutants’ impact 

is measured and implemented in the conducted experiments. The section 3.3 specifies the examined 

strategies and section 3.4 demonstrates their application through an example. Finally, section 3.5 

describes the problems addressed by the present paper.   

 
3.1 The Mutants’ Impact 
Schuler and Zeller [22] advocated “if a mutant impacts internal program behavior, it is more likely to 

change external program behavior and thus, it impacts the semantics of the program”. In other words, 

they proposed to identify the differences in the internal program behavior between the original and the 

mutant programs. These differences are attributed to the introduced mutants and referred to as the 

mutants’ impact.  

Generally, mutants with an impact are more likely to be killable than mutants without an impact [22]. 

Hence, mutants can be classified as likely killable, i.e., mutants with an impact, and likely equivalent, 

i.e., mutants without an impact. But, how can the mutants’ impact be determined? In other words, what 

to compare between the two test executions, i.e., the original and mutant executions, to effectively 

consider the mutant as likely killable? This question has already been investigated in the literature [22], 

[21] by considering various impact measures. These works have found that among the various 

examined measures, the coverage impact [22] is the most appropriate measure for mutant 

classification. Therefore, the present paper considers only mutant classification based on coverage 

impact. Figure 1 gives an example of the coverage impact computation. In this example we consider a 

mutant on statement 3, i.e., the statement “b = S2(a);”, of the original program is mutated to “b = 

S2(a++);”. Mutants’ impact is a dynamic measure and thus, it is computed based on some test cases. 

We consider three test cases in our example (named as Test1, Test2 and Test3). To compute the impact 

of mutants we execute the mutants with the available test cases and record their traces (record the 

execution frequency of each program statement per considered test case). In Figure 1 the trace 

information of the three example test cases is recorded in the subcolumns “Test1”, “Test2” and “Test3” 

of the “Original Program” and “Mutant” columns for the original and mutant programs respectively. 

By comparing the execution traces of the original and the mutant programs we compute the impact. In 

other words the impact is the number of statements for which the original and the mutant program have 

different execution frequencies. We used two impact measures, the Whole Impact, which is the number 

of differences in the whole program, and the Non-Local Impact, which is the number of differences in 

the whole program except for the method that contains the examined mutant. In Figure 1 the columns 

“Whole Impact” and “Non-Local Impact” record the impact information for the three example test 

cases. More details on how we calculate the coverage impact is given in the following section.  
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Test2 (1) 
Test3 (5) 

 Test1 (-1) 
Test2 (1) 
Test3 (5) 

 

 

Test1 (-1) 
Test2 (1) 
Test3 (5) 
Test1 (-1) 
Test2 (1) 
Test3 (5) 

1. S1( int a ){    S1( int a ){            
2.    int b; 1 1 1    int b; 1 1 1         
3.    b = S2(a);  1 1 1    b = S2(a++);  1 1 1         
4.    if ( b < 0 ) 1 1 1    if ( b < 0 )  1 1   *      
5.        b = -b; 1          b = -b;      *      
6.    printf(“%d”, b); 1 1 1    printf(“%d”, b); 1 1 1         
7. }    }            
                 

8. int S2 (int x){ 1 1 1 int S2 (int x){ 1 1 1         
9.    switch (x){ 1 1 1    switch (x){ 1 1 1         

10.       case1: 1 1 1       case1: 1 1 1         
11.          return x*2;  1           return x*2;       *   *  
12.      case2: 1  1      case2: 1 1 1    *   *  
13.          return x;             return x;  1     *   *  
14.      case0: 1  1      case0: 1  1         
15.         return x+1            return x+1 1     *   *   
16.    }       }            
17.    return -1; 1  1    return -1;   1   *   *   
18. }    }            

Output  1 2 1  1 2 1  Impact 4 3 0 2 3 0 

Figure 1. Mutants’ Impact, decide whether live mutants can be killed or not. The example 

mutant (line 3) is not killed by any test case and has an impact, i.e., the two program versions 

(original and mutant) have differences in their execution traces, when executed by the Test1 and 

Test2. The mutant has no impact, i.e., have the same program execution traces on the two 

program versions (original and mutant), when executed by Test3.  

 

3.2 Mutant classification schemes 
This paper considers mutant classification strategies based on coverage impact. Generally, impact on 

coverage is measured as the difference on the statement coverage between the original and mutant 

programs. Therefore, the coverage impact is a number that represents the maximum difference in 

covered statements between the original and the mutant program versions when executed with a set of 

tests.  

In this paper, coverage impact is calculated as suggested in [22], by counting how many times every 

program statement is executed per test case. Thus, for each test, the execution frequency of each 

statement per program statement is computed. To this end, two variations of this metrics are used: 

Approach A (Whole Impact, WI): The coverage impact on all the program statements. 

Approach B (Non-Local Impact, NLI): The coverage impact on all the program statements 

except the ones belonging to the method of the examined mutant. 



 

Generally, the NLI approach focuses on non-local impact while the WI approach focuses on both local 

and non-local impact. The NLI approach is based on the lines suggested in [22] and it is expected to 

give more accurate results than the WI. Using these metrics, the live mutants are classified in different 

categories: the likely equivalent, i.e., those with no impact, and the likely killable, i.e., those with an 

impact.  

 

3.3 Mutant classification strategies  

Applying mutation testing in practice requires the fulfillment of several steps. These steps form what 

we call the mutation testing process. Following the regular mutation testing steps results in the process 

presented in the Figure 2. The process starts from an initial test set called initial test cases, executes it 

with the mutants and computes the mutation score. Then a mutant from the live mutants is randomly 

selected and analyzed. If this mutant is killable a test case is generated and executed with all live 

mutants. If this mutant is equivalent it is discarded. This process iteratively continues until reaching a 

specific score threshold. We call this process as the “traditional” mutation approach.  

Extending the traditional process we define a generic mutation testing process taking advantage of the 

mutant classifiers, referred to as a mutant classification strategy or simply as a strategy. This process is 

presented in Figure 3 and involves the regular mutation testing process’ steps by introducing the 

mutant classification (step e). This step approximates the mutation score evaluation by considering 

only the likely killable set. Additionally, it ranks in a decreasing order all the mutants according to their 

impact values. This order is then used for analyzing the mutants with the highest impact [22] (step f.). 

In order to be practical, such a classification scheme must provide accurate estimations of the actually 

killable mutants during the whole testing process.   

Towards defining possible mutation testing strategies that take advantage of mutant classifiers and thus 

aim only at likely killable mutants, two main issues arise. First, since mutant classification requires the 

existence of some test cases before the classification process, what should these tests be? Second, when 

should the classification process be performed? The first issue is presented in Figure 3 in step b) when 

no process iterations have been performed. The second issue is presented in the same figure in step e). 

Setting these two parameters are important for the effectiveness of the examined strategies.    

Considering the initially used test set, the present study adopts two testing approaches. The first is 

statement coverage and the second is random testing. The reason for choosing statement coverage test 

sets is twofold. First, statement coverage forms the minimum testing requirement that should be 

employed by a tester. Second, achieving statement coverage ensures that all mutants will be executed 

by the tests, thus, enabling their classification [22]. Note that if a mutant is not executed by any test, it 

has no impact. Thus, it will be classified as equivalent, hindering the effectiveness of the studied 

approaches. The reason for choosing a randomly selected test sets is twofold. First, it conforms to the 

usual practice, which is to produce tests in an ad-hoc way, i.e., without the use of a testing criterion. 

Second, random tests fail to execute all mutants and thus, the strategies will classify these mutants 

incorrectly. However, by aiming at the mutants with an impact result in evolving the test suite, i.e., by 

adding new test cases. These tests might traverse different program parts and result in executing some 



 

mutants not executed before. This fact causes some of these mutants to have an impact and eventually 

to be correctly classified as killable by the strategies. So the question that it is investigated here is 

whether the initially used test suite has a great effect on the strategies.  

Generally, mutant classification relies on the ability of the employed tests to trigger the mutants’ 

impact. Therefore, to reduce the sensitivity of the strategy to the employed test, mutant classification 

should be performed after the execution of each utilized test. Thus, at each iteration of the process 

(Figure 3), all live mutants are executed with all the employed test cases. This process relies on mutant 

classification schemes (WI and NLI) that are presented in section 3.2. Therefore, two possible 

strategies are considered and denoted as: approach A (WI) and approach B (NLI).  

Mutant classification strategies provide the advantage of prioritizing the live mutants according to their 

impact. Thus, the mutants can be considered based on their likelihood of being killable and not at 

random as in the traditional approach. In other words, the tester can select and analyze more killable 

mutants when he uses the impact as guidance than when he selects them at random. Therefore, the 

tester loses less time in analyzing equivalent mutants. This is an important issue since analyzing 

equivalent mutants is a very costly, manual activity [21], [22]. 
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Figure 2. The “traditional” mutation testing process 



 

e. Mutation Score Evaluation
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Figure 3. A generic mutant classification strategy 

 

3.4 Example of the traditional and mutant classification approaches  

To demonstrate how the “traditional” and mutant classification approaches work consider the following 

scenario. We have a program that has been tested by three test cases named as Test1, Test2 and Test3. 

These form our initial test cases. The purpose of using mutation is to improve the quality of the initial 

test set. Therefore, we will need to design additional test cases in order to kill all the mutants of the 

program under test. Consider that the program has ten mutants named as “M1, M2, M3, M4, M5, M6, 

M7, M8, M9, M10” and that Mutants “M5, M8, M9” are equivalent. Now consider that Test1 kills the 

mutants M1, M2, the Test2 kills the M2, M4 and that Test3 kills the M1, M3. Thus, by executing the 

initial test cases mutants M1, M2, M3 and M4 are killed and M5, M6, M7, M8, M9, M10 are live.  

When applying the “traditional” approach the tester randomly selects one mutant from the live ones 

and analyzes it with the aim of designing a test case that kills it. For the purpose of our example, say 

that the tester selects mutant M8. This mutant is equivalent so the tester marks the mutant as 



 

equivalent, i.e., removes it from the live mutants, and proceeds by selecting another one. It is noted that 

the effort put by the tester in analyzing the equivalence of the mutant was wasted since no test case was 

designed. In our example the probability of selecting an equivalent mutant is 50% since three out of the 

six live mutants, i.e., M5, M6, M7, M8, M9, M10, are equivalent. The process proceeds by randomly 

selecting another mutant, say M6. This is a killable mutant and thus the tester designs a test case, say 

Test4. Test 4 kills only mutant M6 and thus the live mutant set is composed of (M5, M7, M9, M10). 

The process continues with the tester selecting one mutant at random, say M9. This is equivalent so the 

tester selects mutant M7 and design Test5 that kills it. Then the tester selects another mutant at random, 

say M5, which is equivalent. Finally the tester selects the last mutant; say M10 and designs Test 6 

which kills it. These steps are depicted in Figure 4  

Applying mutant classification the tester has to determine the mutants with an impact. Lets say that the 

Test1 triggers an impact on M3 and M5 mutants, Test2 on M6 and Test3 on M7. Thus, after executing 

the initial tests only the M5, M6 and M7 mutants from the live mutants have an impact. Then, the tester 

selects the mutant with the highest impact, say M6 and analyzes it. So he designs Test 4, which kills 

the M6 mutant. It is noted that the probability of selecting a killable mutant is 66% since two out of the 

three mutants with an impact are killable. Then the tester analyzes the mutant with the highest impact 

from the remaining ones. Lets say that this mutant is M7 and that Test6 is design. Test6 kills the M7 

and M10 mutants and does not trigger an impact on any of the live mutants. At this point since there is 

no live mutant with an impact the process stops. Figure 5 depicts the steps of the mutant classification 

approach as already described.  

The advantages of mutant classification process are due to the fact that mutants with an impact are 

more likely to be killable than those without. So selecting a mutant from those with an impact results 

with a higher probability in a killable mutant than a live one.  

 
 
 Killed Mutants Live Mutants 

1 Initial Test Cases 

Test1 M1, M2 M3, M4, M5, M6, M7, M8, M9, 
M10 

Test2 M1, M2, M4 M3, M5, M6, M7, M8, M9, M10 
Test3 M1, M2, M3, M4 M5, M6, M7, M8, M9, M10 

2 
Select a live mutant at 
random (M8) 

Equivalent 
Mutant 

M1, M2, M3, M4 M5, M6, M7, M9, M10 

3 
Select a live mutant at 
random (M6) 

Test4 M1, M2, M3, M4, 
M6 

M5, M7, M9, M10 

4 
Select a live mutant at 
random (M9) 

Equivalent 
Mutant 

M1, M2, M3, M4, 
M6 

M5, M7, M10 

5 
Select a live mutant at 
random (M7) 

Test 5 M1, M2, M3, M4, 
M6, M7 

M5, M10 

6 
Select a live mutant at 
random (M5) 

Equivalent 
Mutant 

M1, M2, M3, M4, 
M6, M7 

M10 

7 
Select a live mutant at 
random  (M10) 

Test 6 M1, M2, M3, M4, 
M6, M7, M10 

- 

 
Figure 4. Example of applying the “traditional” Mutation testing approach 

 
 



 

 
 Killed Mutants Live Mutants Mutants with 

an Impact 

1 Initial Test Cases 

Test1 M1, M2 M3, M4, M5, 
M6, M7, M8, 
M9, M10 

M3, M5 

Test2 M1, M2, M4 M3, M5, M6, 
M7, M8, M9, 
M10 

M3, M5, M6 

Test3 M1, M2, M3, M4 M5, M6, M7, 
M8, M9, M10 

M5, M6, M7 

2 
Select the mutant with the 
highest impact (M6) 

Test4 M1, M2, M3, M4, 
M6 

M5, M7, M8, 
M9, M10 

M5, M7 

3 
Select the mutant with the 
highest impact (M7) 

Test 6 M1, M2, M3, M4, 
M6, M7, M10 

M5, M8, M9 M5 

4 
Select the mutant with the 
highest impact (M5) 

Equivalent 
Mutant 

M1, M2, M3, M4, 
M6, M7, M10 

M8, M9 - 

Figure 5. Example of applying Mutation testing using mutant classification 
 
 
3.5 Problem Definition  

Generally, mutants’ impact is a probabilistic approach that depends on the quality of the underlying test 

cases. Due to being probabilistic, it results in selecting some equivalent mutants and ignoring some 

killable mutants. In previous works [21], [22] and [14] this approach was evaluated by measuring the 

number of equivalent mutants that are selected and the number of mutants that are not selected and are 

killable. However, doing so has several drawbacks. First, since the approach is dependent on the initial 

test suite, these measures will be affected when different test cases are used. Second, the evolution of a 

test suite, by adding test cases, has the following two consequences: a) additional mutants are killed; b) 

additional mutants have an impact. Since the interest is on the live mutants, a) results in a set composed 

of less killable mutants than before. Thus, it is harder to categorize these mutants. b) results in 

identifying additional mutants as likely killable. Hence, the abovementioned measures change every 

time a test is added. Third, generating a test to kill one mutant results in collaterally killing some 

others. Therefore it is impossible to estimate how many mutants without an impact can be killed 

collaterally. Additionally, it is unclear whether killing a mutant with an impact results in collaterally 

killing approximately the same number of mutants than a randomly selected one. In other words, 

selecting a mutant at random might result in killing more mutants collaterally and thus, having a higher 

effectiveness.   

From the above discussion it should be clear that the mutants’ impact might fail to kill some mutants. 

But, how many they are? Additionally, mutants’ impact provide an ordering to the aimed mutants by 

giving priority to those that are more likely to be killable. Mutants’ impact also results on the one side 

to select less equivalent mutants but also, on the other side to kill fewer mutants. So, how cost-effective 

is this approach? To answer the first question we evaluate the achieved mutation score by the proposed 

strategies. This provides evidence about the strengths of such an approach. To answer the second 

question we compare the approach with the traditionally followed one in a cost-effective fashion. The 

number of the mutants requiring manual analysis with respect to each one of the approaches represents 



 

the cost and the mutation score achieved represents the effectiveness. Thus, conclusions regarding the 

practical benefits of the approach can be drawn.  

 

4. Empirical Study 
 

The present study empirically investigates the use of mutant classifiers within the testing process. This 

is based on the strategies detailed in section 3.3. This section describes the undertaken experiment. It 

first defines the goals of the experiment in section 4.1. It then introduces the chosen benchmarks 

(section 4.2) and the employed tools. In section 4.4 the procedure followed during the study is detailed. 

Finally, section 4.5 gives information regarding the manual analysis performed during the experiment.  

 

4.1 Definition of the Experiment 
Generally, the present study seeks to investigate the relative effectiveness and efficiency of the mutant 

classification strategies. Additionally, issues regarding the classification ability of the underlying 

classification schemes are also considered. These issues are summarized based on the following 

research questions: 

• RQ1: How effective are the examined strategies? Comment: The effectiveness refers the 

mutation score achieved by the strategies compared to the traditional mutation approach. 

• RQ2: How efficient are the examined strategies? Comment: The efficiency refers the number of 

the equivalent mutants encountered by the strategies and whole the number of mutants that must 

be manually analyzed by the strategies compared to the traditional mutation approach. 

• RQ3: Which strategy is the most cost-effective? Comment: the relation between the number of 

mutants to be analyzed to the number of mutants killed by the strategies and the traditional 

mutation approaches is compared. 

• RQ4: How the classification ability of the mutant classifiers is affected by the increase in the 

actual mutation score? Comment: how well the ability of the mutant classifiers performs when 

test suite evolves.  

Answering the abovementioned questions help practitioners in choosing an appropriate strategy to 

apply. We seek to identify the circumstances that make the examined strategies profitable. The aim is 

to investigate whether these strategies can form a cost-effective alternative solution to mutation. To this 

end, a comparison with the traditional mutation testing approach is undertaken. The focus of the 

experiment is the manual effort put by researchers when performing mutation. Thus, the cost 

comparison basis is the number of mutants requiring analysis by the examined strategies and the 

traditional approach. It is noted that this cost measure is composed of the killable mutants requiring 

analysis plus the equivalent ones.  

Based on the following experiment and its respective analysis the main results regarding the above 

research questions are summarized in following points: 



 

• (RQ1) The results suggest that on average a mutation score of 97.09% and 95.35% is 

respectively achieved by the WI and NLI strategies when statement based test cases are 

employed as the initial ones. In the case of random selected test cases, the WI and NLI 

strategies achieve a mutation score of 96.10% and 93.28% respectively. 

• (RQ2) The results also suggest that a small number of equivalent mutants require analysis if 

the classification strategies are employed. Specifically, 14.56% and 6.09% of the whole 

number of equivalent mutants require analysis, if the WI and NLI strategies based on 

statement tests are used, respectively. In the case of random tests, the WI and NLI strategies 

require 13.88% and 5.87% respectively. The number of mutants requiring analysis is found to 

be 15.55% and 8.89% of the whole number of mutants that require analysis, if the WI and NLI 

strategies based on statement tests are respectively used. In the case of random tests, the WI 

and NLI strategies require 15.43% and 9.03% respectively. 

• (RQ3) The cost-effective analysis suggests that WI is generally better than NLI. It is also 

more cost-effective than the traditional approach when analyzing a small number of mutants. 

However, why we observe this behavior? This is a matter investigated and explained by the 

RQ4. The results suggest that by analyzing up to 10-12 mutants WI is more-cost effective than 

the traditional approach. Beyond this point it loses ground and gradually becomes less cost-

effective than the traditional approach. In particular, at that point, WI approximately achieves 

a mutation score of 95% while the traditional approach achieves 94%. This is for the case of 

statement tests. In the other case, random tests, WI scores at 93% while the traditional 

approach scores at 92%.  

• (RQ4) The results suggest that classifying equivalent mutants based on coverage depends on 

the percentage of mutants that are killed by the utilized tests. Surprisingly, when a test suite 

evolves (based on mutation) the classification ability decreases. Hence, the guidance provided 

by the classification process also decreases. This fact explains why the mutant classification 

approaches fail to be cost-effective beyond a certain limit.  

 
4.2 Subject Programs 
The conducted study uses in total ten subjects, the seven programs of the Siemens suite [10] and two 

larger ones named Space and Flex. Table 1 records the details about them. It records the program 

names, column Subject Program, the programs’ lines of code, column Lines of Code, and their 

associated test suite pool size. These programs were chosen because they were in C and are available 

from the SIR repository [7] along with their accompanied test suite pools. Additionally, they have been 

extensively used in empirical studies, involving mutation, such as [10], [19], [18], [8], [3], [11].  They 

can thus, be considered as benchmarks. 

Each of these programs is associated to a comprehensive test pool. This provides the advantage that we 

can simulate well the test generation process by sampling the test pool. Regarding the test pool of the 

Siemens suite, it is noted that several researchers using a combination of techniques produced it. These 

techniques include random, category-partition, all statements, all edges and all definition-use pairs. 



 

More details about the construction of these pools can be found in Harder et al. [8]. Regarding the test 

pool of the two larger programs (Space and Flex) it is noted that other researchers produced it using 

informal specifications and category partition techniques. Since the associated test suites were 

produced independently of the present study and consist of a large number of high quality tests (since 

they were developed according to many testing criteria) they are well suited for the conducted 

experiment.  

 

Table 1. Subject programs 

Subject Program Lines of Code Test Pool Size 

Schedule 296 2650 

Schedule2 263 2710 

Tcas 137 1608 

Totinfo 281 1052 

Replace 513 5542 

Printtokens 343 4130 

Printtokens2 355 4115 

Space 9,564 13,585 

Flex 14,120 567 

 

4.3 Mutation analysis and Utilized tools  
The present study used a mutation analysis tool named Proteum [6]. This tool employs a 

comprehensive set of mutant operators for the C programing language as defined by the Agrawal et al. 

[2]. A widely used GNU structural coverage analysis tool named gcov was also employed. Proteum 

and gcov tools were selected since they have been successfully used in many software testing 

experiments like [15], [25]. To implement the examined approaches, Proteum was used to produce the 

mutants and gcov for gathering the required statement coverage information. A prototype was 

developed in order to compile mutants, execute them, analyze the execution traces, determine mutants’ 

impact and implement the examined strategies.   

Mutation analysis requires vast computational resources to produce and execute the sought mutants. 

Therefore, to complete the experiment with reasonable resources all the mutants were produced and 

analyzed only for the seven programs of the Siemens suite. For the larger programs (Space and Flex) 

two main restrictions were adopted. First, only the mutant operators belonging to the general class of 

“operators” [2] were considered. This class is composed of 44 mutant operators, which introduce 

discrepancies on the various source code operators uses. Similar restrictions have also been undertaken 

in [3] and [18]. Second, a 10% sampling of the mutants was made. This was forced by the fact that 

these programs involve a huge number of mutants, e.g., 22,500 mutants, are introduced for the space 

program. The selection of these mutants was performed based on their production order, i.e., every 

10th produced mutant was considered. The same approach was also applied on similar studies such as  

[3] and [18]. It is noted that in the present paper, we focus on examining the effectiveness of the 



 

studied strategies with respect to a set of mutants. Thus, the use of the above restrictions affects only 

the initial set mutants and not their impact assessment.  

 
4.4 Experimental procedure 
To address the stated RQs, we report the results derived from the application of the proposed mutant 

classification strategies. Two experiments were conducted, one using the programs of the Siemens 

suite and one using the two larger programs, i.e., Space and Flex.  

First experiment: the present experiment uses two approaches to select the initial test sets. These are 

the statement-based and the random. To this end, ten test sets were independently selected for the two 

approaches, i.e., five for the statement-based and five for the random. To construct sets of test cases 

adequate with respect to statement testing per subject program, gcov was employed. These sets were 

constructed based on a random test case selection from the accompanied test suite pools. All the 

selected tests that do not increase the sets’ coverage with respect to their selection order were removed 

from the sets. This was done in order to discard redundant test cases that might coincidentally kill 

mutants and influence the impact measures. The five random test sets were created by randomly 

selecting a number of tests equal to the average of the five statement-based selected tests.  

The experimental process: The experiment follows the mutation strategies described in Section 3 and 

presented in Figures 2 and 3.  

Regarding the mutant classification strategies, after executing all mutants with the initial tests, live 

mutants are classified either as “likely killable” or “likely equivalent” ones according to the two 

classification approaches. Then, the first mutant in the resulting ranked list of likely killable mutants 

(mutant with the highest impact) is selected. If the mutant is equivalent, it is removed from the “likely 

killable” list and the process continues with the next mutant. In the opposite case, a test case able to kill 

the selected mutant is chosen at random from the test suite pool. Then, the process continues by 

executing this test case with all live mutants and removing those that are killed by the newly selected 

test. The mutant classification process is repeated until none of the live mutants have an impact (the 

likely killable mutants’ set becomes empty).  

Regarding the traditional mutation approach after executing all mutants with the initial tests, a mutant 

from the live ones is randomly selected. If this mutant is equivalent, it is discarded and the process 

continues with the next mutant. In the opposite case, a test case able to kill the selected mutant is 

chosen at random from the test suite pool. Then, the process continues by executing this test case with 

all live mutants and removing those that are killed by the newly selected test. The mutation testing 

process is repeated until all live mutants have been killed or discarded.  

To avoid any bias due to (1) the initially selected test cases and (2) the random selection test cases that 

kill the selected mutants, five independent repetitions of the experiment were performed.  

To assess the classification ability of the employed mutant classifiers two measures were used:  

• Recall: the ratio of the correctly classified mutants as killable to all the 

existing killable mutants. 



 

• Precision: the ratio of the correctly classified mutants as killable to those 

classified as killable. 

These measures evaluate the ability of the classifier to categorize mutants as killable [21], [22]. To 

compute these values, manual analysis is required in order to determine all the killable mutants. 

Therefore, equivalent mutants were identified based on manual analysis. A mutant is identified as 

being equivalent based on the programs’ output. In this study we used Proteum, which by default 

considers as program output everything that it is printed on the standard and error output of the tested 

program. Proteum also consider timeout (for infinity looping mutants) and abnormal termination of 

mutants. Based on this analysis, killable mutants that are not killed by the associated test suite were 

also identified. For these mutants test cases were manually constructed in order to kill them. These tests 

were added to the associated test suite pools in order to ensure that the examined strategies can select 

tests to kill these mutants.  

Second experiment: Performing complete analysis on the larger programs is practically infeasible 

since it requires manual analysis of hundreds of thousands of mutants. Although conclusions about the 

application of the examined strategies can be drawn based on the first experiment, we seek to check 

whether they hold on larger programs. If a similar trend of the results is observed, the confidence on 

the validity of the findings of the present study is increased. To this end, we investigate the cost-

effectiveness trend of the examined strategies compared to the traditional when non-adequate test pools 

are used. Thus, the mutants that were left live after being executed with the whole test suite pool were 

treated as being equivalents. This practice fulfills the purpose of the experiment, which is to examine 

whether a similar trend with the effectiveness results of the first experiment can be recorded. 

Effectiveness refers to the number of mutants killed by the utilized strategies. Thus, our interest is on 

whether testing based on these strategies results in killing approximately the same number of mutants 

than testing by using all mutants. Since the same mutants and test pools are used in both cases (testing 

based on the examined strategies and by using the all mutants), the killable mutants who have been left 

live after their exercise with the whole test suite pool are common in both cases. Finally, it is noted that 

the same practice has been undertaken in many similar empirical studies such as [3], [15] and [18]. For 

this experiment the initially used test cases were constructed by randomly selecting five test cases from 

the test pools. This experiment was also repeated independently five times. 

To address RQ1, for each subject program we computed the mutation scores achieved by each strategy, 

when no mutants with an impact remain. At the same point, to answer the RQ2, the ratio of the mutants 

that were analyzed is also recorded. Regarding the RQ3, for each strategy we compute the average 

mutation score achieved after analyzing every mutant. The number of mutants requiring analysis 

represents the cost of the approach while the mutation score expresses the effectiveness measure of the 

process. Since the number of the equivalent mutants per program and strategy vary, to enable a fair 

comparison, all the examined approaches were stopped at the same point, i.e., the point that one 

strategy had no more mutants to analyze. Finally, for RQ4, the respective recall and precision values 

were calculated every time the classification process was performed, (see Figure 3). 

 



 

4.4 Mutation Analysis on the Siemens suite  
The present study aims at studying the ability of the proposed strategies at reducing the side effects 

caused by the equivalent mutants. Therefore, for the conducted experiment there is a need to detect all 

the equivalent mutants. This was manually performed for all the employed mutants of the Siemens 

suite. Table 2 records the total number of the introduced mutants (col. Number of Mutants), the number 

of the identified equivalent mutants (col. Number of Equivalent Mutants), the ratio of the equivalent 

mutants to the total number of mutants (col. Equivalent Mutants % of all Mutants) and the number of 

the manually generated test cases (col. Manually Generated Test Cases) per subject program. 

To identify the equivalent mutants, all the test cases of the provided suite were executed in order to 

determine the killed mutants. These mutants are certainly killable and so there is no need to analyze 

them. The remaining (live) mutants were manually analyzed using the Proteum tool. The tool presents 

the original and the mutated programs so the tester can decide and mark a mutant as being equivalent 

or design a test case to kill it. In the later case, a new test was added to the test set and the live mutants 

were executed with it.  Proteum also allows the tester to create the source code for the mutant so the 

tester can execute the mutant with some input data. This practice helped some cases in deciding 

whether some mutants are equivalent and to choose appropriate test cases to kill them. As an extreme 

measure, sometimes debugging the mutant may also help to understand its behavior and to decide if it 

should be marked as equivalent or not. There is no real control about this process and this is a potential 

threat to the validity of the study (see section 6.1. for a discussion about the potential threats to the 

validity of the present study). It is possible that non-equivalent mutants have been marked as 

equivalent; however, these mutants should be few. This is due, to the fact that a high quality test suite 

was used and the mutants where manually analyzed and additional test cases were designed. 

Additionally, the data of the present experiment (description of the mutants, the list of the identified 

equivalent ones and the list of the designed test cases) were made publically available in the following 

link in order to enable the replication of the present study:  

https://sites.google.com/site/mikepapadakis/home/tools-and-data-sets/scp2014-data 

Overall, the performed analysis included 33,462 mutants in total out of which 5,589 were found to be 

equivalent. This suggests that on average the16.7% of the introduced mutants are equivalent. However, 

the number of them is program dependent and ranges from approximately 9% to 20%. We also 

measure the number of equivalent mutants per mutant operator. Figure 6 presents the number of 

introduced mutants and the number of the equivalent mutants per mutant operator.  From this graph it 

can be observed that the equivalent mutants are distributed in all mutant operators. None of the 

operators produces significantly more equivalent mutants than the others. Therefore, it is impossible to 

alleviate this problem by just removing some operators. 

 
 
 
 



 

Table 2. Subject programs 

Subject 

Program 

Number of 

Mutants 

Number of  

Equivalent 

Mutants 

Equivalent 

Mutants % of all 

Mutants 

Manually Generated 

Test Cases  

Schedule 2106 338 16.05% 8 

Schedule2 2590 526 20.31% 8 

Tcas 2872 515 17.93% 12 

Totinfo 6405 572 8.93% 17 

Replace 10683 2122 19.86% 14 

Printtokens 4249 725 17.06% 9 

Printtokens2 4557 791 17.36% 4 

Sum 33,462 5,589 16.70% 72 

 
 

 
Figure 6. Number of mutants and equivalent mutants per mutant operator for the Siemens 

program suite. 

 

5. Empirical Evaluation 
 
The results of the conducted experiment are reported and analyzed in this section. The section first 

presents the results of the first experiment. These are analyzed according to the RQ1-RQ4 in the 

sections 5.1-5.4. Then in section 5.5, the results of the second experiment are presented.  

 
5.1 Approach Effectiveness (RQ1) 
This section considers the relative effectiveness of the examined strategies. The results are summarized 

in tables 3 and 4. These tables record the number of tests, the actual mutation scores and their variation 

according the examined methods, i.e., “Statement”, “Random” and “Strategy”, per classification 

scheme (Approach A (WI) and approach B (NLI)) per subject program. Table 3 refers to the 
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experiment conducted by using the statement test cases as an initial test set. Table 4 refers to the results 

when randomly selected tests are used. From these results, it can be realized that a high variation on the 

effectiveness of the examined approaches between the subject programs is recorded. Generally, the use 

of the WI and NLI schemes achieve mutations score from 92% to 99%. Comparing the results of the 

tables 3 and 4, it can be seen that the initial test suites do not play an important role to the effectiveness 

of the approach. This is a surprising result, since the proposed strategies aim only at mutants with an 

impact and the initial test suites differ significantly in the number of mutants that they kill. 

Additionally, since the initial test suite affects less the WI, it can be stated that WI forms a more stable 

scheme than NLI.  

Another interesting result is that in almost all the cases WI scores better than NLI. However, in none of 

the studied subject a mutation score was very close to 100%. Achieving a score close to 100% is highly 

desirable in some cases. Thus, the examined strategies are good for improving a test suite but only up 

to a certain limit. Here, it should be noted that generally, the effectiveness is lower than 100% due to 

mutants with no impact.  

 
 
 
 

Table 3. Effectiveness results based on Statement test cases 

Subject 

Program 
Method 

#Tests Exact MS 
Std. 

Deviation 
#Tests Exact MS 

Std. 

Deviation 

Approach A (WI) Approach B (NLI) 

Tcas 
Statement 7.2 66.71% 2.13% 7.2 66.71% 2.13% 

Strategy 27.8 92.91% 1.33% 27.4 92.86% 1.57% 

Schedule 
Statement 2.6 85.63% 2.42% 2.6 85.63% 2.42% 

Strategy 10.2 93.82% 1.07% 10.4 93.31% 1.09% 

Schedule2 
Statement 7.4 84.53% 2.04% 7.4 84.53% 2.04% 

Strategy 22.8 97.17% 0.57% 20 92.47% 1.16% 

Totinfo 
Statement 6.8 89.07% 2.73% 6.8 89.07% 2.73% 

Strategy 21.8 99.18% 0.42% 16.8 94.60% 1.07% 

Replace 
Statement 16.6 89.86% 1.98% 16.6 89.86% 1.98% 

Strategy 69.4 99.21% 0.16% 59.8 98.51% 0.31% 

Printtokens 
Statement 15.8 96.04% 0.42% 15.8 96.04% 0.42% 

Strategy 22.2 98.09% 0.50% 18.6 96.71% 0.63% 

Printtokens2 
Statement 11.1 97.98% 0.42% 11.2 97.98% 0.42% 

Strategy 21 99.27% 0.62% 14.6 99.00% 0.43% 

Average 
Statement 9.64 87.12% 10.28% 9.66 87.12% 10.28% 

Strategy 27.88 97.09% 2.67% 23.94 95.35% 2.72% 

 
 
 



 

Table 4. Effectiveness results based on Radom test cases 

Subject 

Program 
Method 

#Tests Exact MS 
Std. 

Deviation 
#Tests Exact MS 

Std. 

Deviation 

Approach A (WI) Approach B (NLI) 

Tcas 
Random 7 50.03% 10.36% 7 50.03% 10.36% 

Strategy 29 91.34% 2.90% 25.6 90.96% 1.68% 

Schedule 
Random 3 77.85% 9.86% 3 77.85% 9.86% 

Strategy 9.4 91.86% 0.51% 10.6 92.22% 0.38% 

Schedule2 
Random 7 80.42% 6.47% 7 80.42% 6.47% 

Strategy 23.4 95.30% 0.80% 17.4 88.61% 3.75% 

Totinfo 
Random 7 78.44% 9.95% 7 78.44% 9.95% 

Strategy 21.8 99.22% 0.37% 17.8 94.54% 0.63% 

Replace 
Random 17 80.42% 6.47% 17 80.42% 6.47% 

Strategy 78.6 98.87% 0.93% 65.2 98.04% 0.77% 

Printtokens 
Random 16 72.80% 8.60% 16 72.80% 8.60% 

Strategy 25.4 96.49% 1.04% 20.8 90.78% 4.69% 

Printtokens2 
Random 11 88.71% 2.71% 11 88.71% 2.71% 

Strategy 21.8 99.61% 0.29% 16.2 97.82% 0.75% 

Average 
Random 9.71 75.52% 12.20% 9.71 75.52% 12.20% 

Strategy 29.91 96.10% 3.44% 24.8 93.28% 3.64% 

 
 
6.2. Approach Efficiency (RQ2) 
The efficiency of the examined approaches is greatly influenced by the accuracy of the employed 

classification schemes. This is due to the guidance that the classification scheme provides towards 

killable mutants. Therefore, in general, using a classification scheme with higher accuracy results in 

encountering less equivalent mutants. To this end, the obtained results are presented in Tables 5 and 6 

for the two used initial test suites (statement and random) respectively. These tables record the 

percentage of the mutants that require manual analysis when following the classification schemes WI 

and NLI compared to the traditional mutation approach per program. The respective variation of these 

percentages is also given. Intuitive, NLI is expected to be more efficient than WI since it targets non-

local impact [22]. Indeed, the NLI classification scheme encounters on average 8.89% and 9.03% 

mutants, while, WI encounters on average 15.55% and 15.43% when statement and random initial test 

sets are used respectively.   

To provide further details about the cost of the classification schemes we record in Tables 7 and 8 the 

percentages of the encountered equivalent mutants by the examined classification schemes for the two 

used initial test suites (statement and random) respectively. Thus, NLI encounters on average 6.09% 

and 5.87% equivalent mutants, while, WI encounters on average 14.56% and 13.88% when statement 

and random initial test sets are used respectively. 

 



 

 

Table 5. Efficiency results, measured on the ratio of mutants requiring manual analysis when 
applying the Whole Impact (WI) and Non-Local Impact (NLI) approaches compare to the 

traditional approach, based on Statement test cases 

Subject Program 
% of Manually 

Analyzed Mutants 
Std. 

Deviation 
% of Manually 

Analyzed Mutants 
Std. 

Deviation 
Approach A (WI) Approach B (NLI) 

Tcas 35.70% 0.64% 35.35% 0.42% 

Schedule 5.17% 0.32% 5.22% 0.50% 

Schedule2 10.89% 0.65% 6.93% 0.84% 

Totinfo 20.88% 7.05% 4.01% 2.25% 

Replace 18.04% 0.15% 5.48% 0.34% 

Printtokens 8.12% 0.12% 1.18% 0.11% 

Printtokens2 10.02% 0.28% 4.03% 0.30% 

Average 15.55% 1.32% 8.89% 0.68% 

 

 

 

 

Table 6. Efficiency results, measured on the ratio of mutants requiring manual analysis when 
applying the Whole Impact (WI) and Non-Local Impact (NLI) approaches compare to the 

traditional approach, based on Random test cases 

Subject Program 
% of Manually 

Analyzed Mutants 
Std. 

Deviation 
% of Manually 

Analyzed Mutants 
Std. 

Deviation 
Approach A (WI) Approach B (NLI) 

Tcas 38.16% 1.07% 37.04% 0.68% 

Schedule 5.03% 0.26% 5.38% 0.33% 

Schedule2 10.37% 0.50% 4.89% 2.26% 

Totinfo 17.28% 1.59% 4.82% 2.91% 

Replace 18.11% 1.07% 5.68% 0.33% 

Printtokens 8.79% 0.23% 1.21% 0.62% 

Printtokens2 10.28% 0.16% 4.17% 0.06% 

Average 15.43% 0.70% 9.03% 1.03% 
 
 
 
 
 
 
 
 



 

 

Table 7. Ratio of the encountered equivalent mutants when applying the Whole Impact (WI) and 
Non-Local Impact (NLI) approaches based on Statement test cases 

Subject Program 
% of Equivalent 

Mutants 
Std. 

Deviation 
% of Equivalent 

Mutants 
Std. 

Deviation 
Approach A (WI) Approach B (NLI) 

Tcas 35.38% 0.29% 35.07% 0.32% 

Schedule 3.25% 0.00% 3.25% 0.00% 

Schedule2 8.48% 0.68% 5.10% 0.78% 

Totinfo 19.02% 7.06% 1.92% 2.22% 

Replace 16.13% 0.04% 3.62% 0.11% 

Printtokens 7.45% 0.00% 0.83% 0.00% 

Printtokens2 8.98% 0.00% 3.54% 0.00% 

Average 14.56% 14.24% 6.09% 7.88% 
 

 
Table 8. Ratio of the encountered equivalent mutants when applying the Whole Impact (WI) and 

Non-Local Impact (NLI) approaches based on Random test cases 

Subject Program 
% of Equivalent 

Mutants 
Std. 

Deviation 
% of Equivalent 

Mutants 
Std. 

Deviation 
Approach A (WI) Approach B (NLI) 

Tcas 35.34% 0.55% 34.80% 0.37% 

Schedule 3.25% 0.00% 3.25% 0.00% 

Schedule2 7.45% 0.09% 3.00% 1.20% 

Totinfo 15.21% 1.46% 2.73% 2.53% 

Replace 15.60% 0.98% 3.50% 0.11% 

Printtokens 7.56% 0.12% 0.55% 0.38% 

Printtokens2 8.98% 0.00% 3.54% 0.00% 

Average 13.88% 13.90% 5.87% 7.87% 
 

5.3. Cost Effective application (RQ3) 
The results presented in the previous sections study the cost and effectiveness measures in isolation. 

The results show that the examined approaches achieve to reduce the number of the mutants requiring 

analysis and the encountered equivalent mutants but with the expense of losing some of the approach 

effectiveness. Is this a good tradeoff? This section examines this issue by performing a comparison of 

the cost-effectiveness of the examined methods.  

The examined strategies provide the advantage of prioritizing the live mutants according to their 

impact. Thus, the mutants can be considered based on their likelihood of being killable. In view of this, 

the proposed strategies can be efficiently applied by stopping them before examining the whole list of 

mutants (list of mutants with an impact on coverage). This way a stopping rule, e.g., stop the testing 



 

process when a set of a predefined number of mutants are evaluated, can be adopted. It is noted that the 

same rule can be applied to the traditional approach. However, in this case the order is made at random.  

Using mutants’ impact it is possible to achieve a good trade-off between cost and effectiveness of the 

approaches. We are interested in maximizing the benefits compared to the traditional approach. The 

question that it is raised here is when the best cost-effective point to stop the process is. To examine 

this issue, the cost (number of mutants that require analysis) and effectiveness factors of the examined 

strategies were put together. Hence, the average mutation score achieved by the WI, NLI and 

traditional mutation approaches per mutant requiring manual inspection was computed. To this end, the 

graphs of Figures 7 and 8 record the difference in the scores achieved by the WI and NLI with the 

traditional (denoted as Trad) approaches, y-axis, per mutant requiring analysis, x-axis, for the statement 

and random initial test sets respectively.  

The results of Figures 7 and 8 suggest that both strategies have an advantage when a small number of 

mutants are to be analyzed. In particular for the case of WI, a mutation score difference of 

approximately 0.5%-1.5% and 1.0%-1.7% is experienced when 2-6 mutants are to be analyzed when 

statement and random test cases are used respectively. For the NLI approach the difference is 0.7%-

1.2% and 0.8%-1.2% when analyzing 2-11 mutants for statement and random tests. From this point, the 

difference starts decreasing markedly. Surprisingly, the WI approach is more cost effective when 

compared with the NLI approach. This is in contrast to what expected since it encountered many more 

equivalent mutants than the NLI. Generally, WI approach is fruitful if it is applied up to analyzing 19-

20 for the statement test cases. For the case of the random initial tests WI is fruitful when analyzing up 

to 16 mutants. In contrast, NLI is beneficial up to 15 mutants, when it is applied with statement-based 

test cases (Figure 7). In the case of random tests (Figure 8) it is beneficial up to 11 mutants. By 

comparing the two approaches, it can be argued that NLI has no advantage compared to WI.  

Figures 9 and 10 present the average mutation score achieved by the WI, NLI and traditional mutation 

approaches per mutant requiring manual inspection. From these graphs it becomes evident that a 

mutation score higher to 92% can be achieved by the strategies with advantages over the traditional 

one. This is achieved by manually examining 10-12 mutants per program. However, as stated before 

this advantage has a limit, which was found to be approximately 94% and 92.5% for the WI approach, 

when statement and random test suites are used. For the NLI approach the limits were found to be 92% 

and 87% for the statement and random test suites respectively. 

Conclusively from the reported results it can be argued that mutant classification is beneficial for 

improving the mutation score if a small number of equivalent mutants is about to be analyzed. In the 

cases that a higher mutation score is required, the traditional mutation approach provides a better 

solution.  



 

 

Figure 7. Cost-Effectiveness comparison when statement test cases are initially used. The x-axis 

represents the number of mutants requiring analysis. The y-axis records the difference in 

mutation scores between the strategies and the traditional approach (MSStrategy - MSTrad).  

 

 

 

 
Figure 8. Cost-Effectiveness comparison when statement test cases are initially used. The x-axis 

represents the number of mutants requiring analysis. The y-axis records the difference in 

mutation scores between the strategies and the traditional approach (MSStrategy - MSTrad).  
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Figure 9. WI, NLI VS traditional approach comparison when statement test cases are initially 

used. The x-axis represents the number of mutants requiring analysis to achieve the mutation 

score recorded in y-axis.  

 

 

Figure 10. WI, NLI VS traditional approach comparison when random test cases are initially 

used. The x-axis represents the number of mutants requiring analysis to achieve the mutation 

score recorded in y-axis.  

 

5.4. Classification Ability (RQ4) 
The ability of the proposed approach to classify mutants as likely killable is assessed based on its 

respective precision and recall values. Table 9 records these values per utilized program for both the 

considered initial test sets. These results indicate that the statement test suites classify the live mutants 

on average with 55.66% precision value and 28.26% recall value when using WI. In the case of NLI, 
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precision and recall values of, respectively, 67.63% and 19.23% are achieved. These values suggest 

that the mutant sets selected by WI and NLI are composed of 55.66% and 67.63% killable mutants 

respectively. These mutants (killable) are the 28.26% and 19.23% of all live killable mutants. 

Similarly, regarding the random test suites, they classify on average with 69.35% precision value and 

30.46% recall value when using WI. The NLI achieves a value of 83.70% precision and 19.24% of 

recall. These results suggest that NLI is more precise (achieves a better precision) than the WI. 

However, WI applies on a larger number of mutants (achieves a better recall value). 

To evaluate whether the employed classification schemes provide a systematic guidance towards the 

killable mutants a comparison with a random selection approach is needed [22]. In view of this, Table 

9 also records the killable mutants’ ratios. These values represent the probability of randomly selecting 

a killable mutant. Both WI and NLI approaches categorize killable mutants much better than a random 

selection process. For example the 55.66% of the mutants categorized by WI are killable. Similarly, the 

69.35% of those categorized by NLI while, the whole set has 35.21%. These results seem to be quite 

successful since they indicate that mutant classification provides a systematic way to select killable 

mutants [22]. This can be performed with a higher probability than a random selection process (of 

more than 20%). However, the results presented in the previous sections suggest that the mutant 

classification approaches have advantage when a small number of equivalent mutants are to be 

analyzed.  

 

Table 9. Classification ability (Recall Precision) 

Subject 

Program 

Initial 

Test Set 

Mutation 

Score 

Killable 

Ratio 

Precision Recall Precision Recall 

Approach A (WI) Approach B (NLI) 

Tcas 
Statement 66.71% 60.33% 62.87% 34.03% 63.14% 33.98% 

Random 50.03% 69.11% 73.78% 88.96% 79.09% 39.16% 

Schedule 
Statement 85.63% 42.66% 68.70% 10.70% 66.30% 9.71% 

Random 77.85% 51.60% 77.64% 16.80% 76.96% 15.79% 

Schedule2 
Statement 84.53% 37.65% 60.34% 26.06% 78.54% 24.42% 

Random 80.42% 42.65% 53.98% 12.84% 67.49% 10.77% 

Totinfo 
Statement 89.07% 52.08% 79.01% 26.02% 100.00% 5.60% 

Random 78.44% 65.67% 81.17% 18.27% 100.00% 5.75% 

Replace 
Statement 89.86% 28.85% 57.84% 49.77% 86.61% 43.53% 

Random 80.42% 42.65% 75.44% 39.41% 94.25% 37.57% 

Printtokens 
Statement 96.04% 16.13% 43.28% 30.27% 67.71% 12.76% 

Random 72.80% 55.74% 58.43% 5.84% 91.71% 3.86% 

Printtokens2 
Statement 97.98% 8.74% 17.60% 20.95% 11.09% 4.64% 

Random 77.85% 34.56% 65.02% 31.08% 76.40% 21.80% 

Average 
Statement 87.12% 35.21% 55.66% 28.26% 67.63% 19.23% 

Random 73.97% 51.71% 69.35% 30.46% 83.70% 19.24% 

 



 

To investigate this issue, Figure 11 records the precision and recall values according to the WI 

classification scheme (see Section 3.2 for details) for all subjects when the initial test sets are selected 

at random. From these graphs, it can be deduced that both the recall and precision values decrease 

when the actual mutation score increases. Additionally, it can be clearly seen that both recall and 

precision are decreased with approximately the same trend. Consequently, the classification ability of 

the examined approaches decreases when the test suite evolves, i.e., new tests are added, according to 

these strategies. 

At first sight, this trend might seem to be counter-intuitive due to the fact that better tests should 

provide fewer classification mistakes. To explain this situation we have to consider that: a) mutant 

classification is performed on the live mutant set and not the whole set of mutants, and b) that there is 

an amount of equivalent mutants that have an impact [22]. This situation is depicted on Figure 12. 

Therefore, when the test suite evolves, mutants with an impact are killed. Recall, that the test suite 

evolves by repeatedly aiming at the mutants (among the live ones) with the highest impact. Thus, the 

produced tests kill those mutants (with the highest impact). This results in decreasing the number of the 

killable mutants with an impact while leaving the number of equivalent mutants with an impact 

constant. Perhaps now some killable mutants might have an impact due to the test suite evolution, but 

this is a very small number (as observed by the present experiment). Additionally, this is the case for 

equivalent mutants, i.e., more equivalent mutants have an impact, which results in increasing the error 

rate. As a consequence, both recall and precision values decrease.   

In practice, the decreasing trend explains why the effectiveness of the examined approaches is lower to 

100% (subsection 5.1 presents the effectiveness results). It also explains why the mutant classification 

are not more cost effective beyond a specific point. Since, the classification precision is reduced when 

the test suite evolves; less guidance towards killable mutants is provided. Actually, beyond a certain 

point there is no guidance at all, fact suggesting that there are applicable limits on the number of 

mutants that can be killed by using the coverage impact. These observations, confirm the conclusion 

drawn by the results reported the previous sections.    

To further investigate the validity of the abovementioned observations we recorded the number of 

equivalent mutants with an impact when mutation adequate test cases are used. The respective results 

are recorded on Table10. These results indicate that a significant number of equivalent have an impact. 

This number is approximately the 16% and 7% of all the equivalent mutants for the WI and NLI 

approaches respectively. These mutants represent the 2.68% and 1.22% of all the introduced mutants. 

Recall that equivalent mutants were found to be approximately 17% of all the introduced mutants. 

Therefore, the equivalent mutants’ problem has been reduced from the 17% to something less than 3%. 
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Figure 11. Recall and Precision values VS actual mutation score per utilized program for the 

Whole Impact classification approach (WI) 

 

Live	  Mutants

Equivalent
Killable

Mutants	  with	  
impact

Test	  suite	  evolution

Test	  suite	  evolution  
Figure 12. Classifying mutants (live) using the classification strategies. When tests are added, the 

killable mutants with an impact are killed. Therefore, the percentage of killable mutants with an 

impact decreases.  

 
 

Table 10. Equivalent Mutants with an Impact 

Subject Program 
Number of  

Equivalent Mutants 

Number of Equivalent 

Mutants with an Impact WI 

Number of Equivalent 

Mutants with an Impact NLI 

Schedule 338 19 (5.62%) 12 (3.55%) 

Schedule2 526 55 (10.46%) 35 (6.65%) 

Tcas 515 193 (37.48%) 191 (37.09%) 

Totinfo 572 159 (27.80%) 60 (10.49%) 

Replace 2122 343 (16.16%) 77(3.63%) 

Printtokens 725 57 (7.86%) 6 (0.83%) 

Printtokens2 791 71 (8.98%) 28 (3.54%) 

SUM 5,589 897 (16.05%) 409 (7.32%) 
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5.5 Application to Larger Programs 
The results presented in the previous sections were based on the Siemens suite and on the complete 

manual analysis performed on them. Performing complete analysis on larger programs requires vast 

manual effort. Therefore, for the two large programs (Space and Flex), we turned to evaluate the 

approach based on the mutants killed by the associate test suite. If we observe a similar trend with the 

findings of the Siemens suite, we can gain confidence regarding their validity. In view of this, the cost 

effective relation of the examined approaches is drawn and presented in Figures 13 and 14 for the 

Space and Flex programs respectively. Interestingly on both subjects the WI approach is cost-effective 

in analyzing a small number of mutants. These results agree with those of the Siemens suite giving 

confidence that the tester should stop the testing process after analyzing a few mutants. For the case of 

the Space program the classification approaches seem to be more cost-effective than the traditional 

approach for a higher number of mutants. However, this is not true for the case of the Flex subject. 

Additionally, it is noted that these results also suggest that approach WI is almost always better than 

the NLI.  

 

 

 
Figure 13. Cost-Effectiveness comparison for the Space program. The x-axis represents the 

number of non-killed mutants to kill the number of mutants recorded in y-axis.  
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Figure 14. Cost-Effectiveness comparison for the Flex program. The x-axis represents the 

number of non-killed mutants to kill the number of mutants recorded in y-axis.  

 

6. Discussion 
 

The conducted study suggests that mutant classification strategies have a lower effectiveness when 

compared to the traditional testing approach. However, they have advantages regarding their ability to 

isolate equivalent mutants [22] and [21]. The present paper is the first to the authors’ knowledge that 

investigates the benefits of this approach compared to the traditional one. We found that mutant 

classification is beneficial only for improving a low quality test suite and only up to a certain limit. The 

discussion on section 5.4 gives an intuitional explanation about that and validates it based on the 

experimental results. Based on the cost-benefit evaluation, section 5.3, it can be argued that the 

proposed strategies are fruitful if they are applied until analyzing up to 8-12 mutants per program. 

Generally, at this point a mutation score higher than 92% is achieved by the examined approaches. 

Regarding the WI approach, which gives the best results, the achieved score is approximately 94%.  

Surprisingly the NLI approach performs always worst than the WI. Since NLI has a higher precision 

than the WI, we expected it to be more cost-effective [22]. By comparing the precision and recall 

values of the WI and NLI approaches we can infer that that WI has approximately 10% higher recall 

value and 10% less precision. These results suggest that mutant classifiers having a higher recall value 

might be more efficient to those having higher precision. In view of this, it can be argued that mutant 

classification research should focus on developing mutant classifiers with higher recall value. 

Another outcome of the present study is the fact that the initial test suite has a small effect on the 

effectiveness of the mutant classification strategies. This is an interesting result since mutants that are 

not executed by the initial test cases cannot have an impact. Thus, it is expected that these mutants will 

be ignored by the strategies. However, in practice it turns out that the mutants that are executed and 

have an impact force the generation of new tests. In turn, these tests execute additional mutants and 

cause them to have an impact. Therefore, at the end, the strategy does not need to ensure statement 

coverage at the first place. 
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6.1 Threats to Validity 
Several threats to the validity of the findings of the present study can be identified.  

With respect to the internal validity, i.e., factors that might affect the reported results without the 

authors’ knowledge, some issues can be recognized. Issues might arise from the utilization of the 

selected subjects, their associate test cases and the tools used. However, as already mentioned the 

selected subjects and their associate tests are not only large in size, they are also of high quality since 

they were produced based on a combination of techniques [8]. In addition, manually constructed test 

cases were also added and the experiment was independently repeated five times. Furthermore, many 

empirical studies, such as [17], [19], [20], [22], utilized the same tools and subjects. Thus, we believe 

that these particular threats are not of a great importance.  

The selected operators introduce additional validity threats. Hence, different operators may behave 

differently. However, the present study, with regard to the first experiment, considers all C unit-level 

mutant operators. These operators were carefully designed by considering all C language constructs 

[2]. The second experiment is also based on a relatively large set of operators. It is composed of 44 

operators and involves all the language operators. Other threats could be attributed to the manual 

identification of the equivalent mutants. Hence, it is possible that some mutants have mistakenly been 

identified. However, the Siemens suite is composed of high quality test cases and thus, even if there are 

some mistakes, only a few such cases should exist. Additionally, to reduce this threat we make these 

data publically available. Other threat that is identified is due to the implementation of the impact 

measure. To reduce this threat, a careful manual check was performed.  

The external validity of the experiment, i.e., representativeness of the selected subjects, can be 

questioned due to the use of the selected subjects. Clearly more experiments are in need to support the 

representativeness of these findings. This is a common problem to all empirical studies. Yet, all the 

selected subjects are benchmark programs, widely used in similar experiments [11]. Additionally, the 

results from the second experiment increase the confidence on the reported findings.  

The construct validity, i.e., whether the intended properties are represented by the employed 

measurements, can be questioned due to the use of the mutants to analyze and mutation score as 

measures of the strategies cost and effectiveness. With respect to the cost measure, it is noted that 

designing test cases to kill the live mutants and identifying the equivalent ones form a manual activity 

and thus, they dominate the automated parts of the mutation process. Perhaps the use of heuristics, e.g., 

[9], that identify some equivalent mutants may influence the findings. However, in practice these 

approaches fail to identify most of the equivalent mutants and their application to real-world programs 

is questionable. This is due to the fact that there is no tool or study showing the feasibility of any 

heuristic in identifying equivalent mutants in real-world applications. In any case, it is believed that 

their application will not influence the findings of the present study since these approaches are 

complementary to mutant classification [22], [24]. Regarding the effectiveness measure, i.e., the 

mutation score, it is noted that the examined approaches form alternatives to the traditional approach. 

Therefore it is natural to evaluate them in the terms of the original one. Additionally, the use of this 

measure has been employed in many empirical studies such as [11], [12]. 



 

 

7. Related Work 
  

The dynamic reduction of the side effects caused by equivalent mutants is a new research topic that 

helps automating effectively the mutation testing process. One such approach has been suggested by 

Adamopoulos et al. [1] by using an evolutionary method. In their approach, the evolution method seeks 

for both mutants and test cases with the aim of selecting at the same time a small and killable set of 

mutants. Although this approach achieves to produce killable mutant sets, it relies on the quality and 

ability of selecting and the producing test cases and thus, the adequacy of the testing process is 

uncertain. On the contrary, the present approach tries to isolate equivalent mutants in an attempt to both 

perform mutation testing efficiently and to assess the adequacy of testing.  

Schuler et al. [21] proposed the use of mutants’ runtime behavior as a measure of the mutants’ 

killability likelihood based on dynamic program invariants. In the same study, it was found that 

mutants are likely killable when they break dynamically introduced invariants. The idea behind this 

approach was then used to assess mutations based on coverage impact [22] as discussed in the present 

paper. Empirical comparison between the abovementioned approaches [22] revealed that the impact on 

coverage is more efficient and effective at assessing the killability of mutants. Therefore, the present 

paper empirically investigates the application of the coverage impact classification scheme within the 

mutation testing process. Additionally, its application effectiveness and efficiency were also examined.  

Generally, the automatic identification of equivalent mutants has been proven to be an “undecidable” 

problem [4]. As a result, no approach able to detect all equivalent mutants can be defined. Fortunately, 

heuristics for detecting some cases exist [17]. Offutt and Pan [16] suggested another approach to 

identify equivalent mutants with the combinational use of a constraint-based technique. Empirical 

evaluation of this technique reported that 45% of equivalent mutants could be identified on average. 

Other approaches aiming at identifying equivalent mutants employ program slicing [9] to assist the 

identification process. All the aforementioned techniques aim at detecting equivalent mutants, but they 

don’t focus on their ability to be likely equivalent or killable ones. Thus, these approaches are 

orthogonal to the presently examined ones [22]. This allows employing them first to detect equivalent 

mutants and then assess the remaining ones based on their impact. 

Another approach to tackle the equivalent mutants’ problem is by using higher order mutants [12], 

[14], [13] and [18]. Generally, the main idea underlying these approaches is to produce a set of higher 

order mutants and use them instead of the first order ones. Higher order mutation strategies such as 

[13] and [18] produce considerably less equivalent mutants, thus alleviating the problems that they 

introduce. Contrary to the present approach, the higher order strategies produce mutant sets containing 

a few equivalent mutants without aiming at isolating them. A comparison between these approaches 

and the presently proposed one is a matter open for further investigation. 

A static approach to deal with the equivalent mutants has been proposed in [23]. This approach focuses 

on the cost-effective generation of test cases aiming at killing mutants. The underlying idea is to select 

program paths that kill a targeted mutant and attempt to produce tests that cover these paths. Failing to 



 

do so for more than 50 times results in inefficient solutions and thus, the process should stop. This way, 

mutants are categorized as killable and likely to be equivalent. Contrary, the present approach tries to 

dynamically select mutants that are likely to be equivalent. It also does not aim at producing test cases 

but to provide guidance towards killable mutants. Therefore, the tester and or an automated method for 

producing test cases can benefit from this guidance. Additionally, the presently presented solution is 

independent to the test generation process. Thus, it does not suffer from scalability issues and the other 

limitations of the test generation techniques.  

 

8. Conclusions 
 

The present paper investigates the use of dynamic strategies aiming at reducing the effects of 

equivalent mutants during the mutation testing process. Towards this direction, mutant classification 

strategies were defined and evaluated. The innovative part of the proposed strategies is their ability to 

effectively produce and evaluate test suites by considering only a small set of equivalent mutants. 

Doing so gives the advantage of performing mutation by manually analyzing only a small number of 

mutants. The undertaken experiments suggest the following conclusions.  

• Mutant classification strategies provide substantial benefits in improving an existing test suite 

by reducing the effects of equivalent mutants. However, the strategies are efficient to improve 

only a low quality test suite.  

• Mutant classification is in general less cost-effective than the traditional mutation process. 

Despite the promising results of the previous studies, e.g., [21] and [22], the present experiment 

strongly supports the conclusion that the mutant classification is beneficial only up to a certain 

point. Thus, it is not cost-effective to analyze more than 10-20 mutants per program. 

• Classification ability was found to be dependent on the percentage of mutants that are killed by 

the utilized tests. Surprisingly, when a test suite evolves (based on mutation) the classification 

ability (both recall and precision values) decreases. Hence, the guidance provided by the 

classification process decreases.  

Future work includes conducting additional experiments to statistically revalidate the findings of the 

experiment. Additionally, an evaluation of the proposed strategies with the use of other impact 

measures, e.g., [14], is under investigation. Further, a comparison between the examined approaches 

and other mutation testing strategies [21] are also planned. 

The data of the present study are publically available and can be found the companion website of the 

present paper:  

https://sites.google.com/site/mikepapadakis/home/tools-and-data-sets/scp2014-data  
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