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Abstract

A longstanding open question in algorithms and data structures is the time
and space complexity of pure functional arrays. Imperative arrays provide
update and lookup operations that require constant time in the Random Ac-
cess Machine (RAM) theoretical model, but it is conjectured that there does
not exist a RAM algorithm that achieves the same complexity for functional
arrays, unless restrictions are placed on the operations. The main result of
this paper is an algorithm that does achieve optimal unit time and space
complexity for update and lookup on functional arrays. This algorithm does
not run on a RAM, but instead it exploits the massive parallelism inherent in
digital circuits. The algorithm also provides unit time operations that sup-
port storage management, as well as sparse and extensible arrays. The main
idea behind the algorithm is to replace a RAM memory by a tree circuit that
is more powerful than the RAM yet has the same asymptotic complexity in
time (gate delays) and size (number of components). The algorithm uses an
array representation that allows elements to be shared between many arrays
with only a small constant factor penalty in space and time. This system
exemplifies circuit parallelism, which exploits large numbers of transistors
per chip in order to speed up key algorithms. Extensible Sparse Functional
Arrays (ESFA) can be used with both functional and imperative program-
ming languages. The system comprises a set of algorithms and a circuit
specification, and it has been implemented on a GPGPU.

Keywords: functional array, sparse array, extensible array, functional
programming, circuit parallelism
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1. Introduction

A longstanding problem in algorithms and data structures is the com-
plexity of operations on pure functional arrays. This question has both the-
oretical and practical significance, because arrays are fundamental to much
software and the complexity of their operations affects the complexity of
many algorithms.

An imperative array supports two operations: fetching an array element
ali] and modifying an array element a[i] := v. Both operations require O(1)
time, according to common cost models, and they do not require any space
beyond the memory originally allocated for the array. After an element of an
imperative array is modified the previous content of that element is destroyed.

A pure functional program defines new values but does not perform side
effects, such as modifying an existing value. Thus a pure functional array al-
lows new arrays to be constructed but does not allow old ones to be changed.
When a functional array is updated, the result is a new array that differs
from the old array at one index, but the old array is still accessible. This pa-
per generalizes functional arrays to handle sparse and extensible operations
as well, and the data structure is called extensible sparse functional arrays
(ESFA). Such an array maps indices to values, and is related, though not
identical, to finite maps, hash tables and hash maps.

Imperative arrays are trivial to implement, as they rely on basic machine
instructions and addressing modes. In contrast, straightforward implemen-
tations of functional arrays are inefficient in space or time, and the most
efficient implementations are complex and still asymptotically slower than
imperative arrays. Recopying an array being updated gives O(1) access time
but causes each update to take O(n) space and time, where n is the array
size. Algorithms that maintain balanced binary trees require O(logn) time
for the operations.

Since unrestricted access to functional arrays is inefficient, there has been
relatively little exploration of algorithms that rely on them. Nevertheless,
functional arrays remain interesting in their own right, and they do have
practical applications.

Functional arrays are not simply arrays used in a functional language.
Imperative and functional arrays are distinct data structures that support
different operations. Both data structures can be used in both imperative
and functional languages (imperative array operations can be expressed in
a pure functional language using monads or unique types). The choice be-



tween imperative and functional arrays should be based on the needs of the
algorithm using them, not on the programming language used to express the
algorithm.

This paper discusses the relationship between imperative and functional
arrays, and conjectures that that it is impossible to implement functional
arrays with O(1) access time using a Random Access Machine (a theoretical
model of computation). However, the main result of the paper is a system
that does indeed implement functional arrays with the same time and space
complexity as imperative arrays, as long as the complexities are compared
fairly using the same cost models. This result appears to contradict the
conjecture—but the new algorithm runs on a different model of computation
which we call circuit parallelism.

The essential idea is that the Random Access Machine model—as well
as conventional computers—makes inefficient use of the digital logic compo-
nents that make up the memory. The time (or space) complexity of a system
depends on the time (or space) complexity of the underlying machine model
as well as of the algorithm. A memory contains an address decoder that
takes O(log N) time for a memory of size N, but the decoder performs no
other useful computation. It is customary to calculate the time complexity
of an algorithm by counting the number of Random Access Machine steps
that it performs, while assuming that each RAM step takes unit time. The
system presented here transfers some of the computation from the algorithm
to the hardware, where it takes place alongside the address decoder with-
out increasing the time complezity (gate delay) or the size complezity (gate
count) of the machine. By redesigning the hardware as well as the software
(called “hardware/software co-design”) we can sometimes beat lower bounds
on complexity of RAM algorithms.

Parts of the ESFA system were presented in 1993 [1]. This is an expanded
version of a paper that appeared in PPDP 2013 [2], which extended the 1993
work by discussing the operations for sparse and extensible access, analyzing
the algorithm and hardware complexity, and giving correctness proofs of key
parts of the system. This paper defines both a pure functional interface
and a stateful interface, introduces invariants on the representation, defines
the implementation using parallel combinators, proves its correctness using
equational reasoning, and gives extended examples.

Every one of the ESFA operations takes a small fixed number of clock
cycles. No iteration is used in any of the operations; the execution time is
constant, and does not depend on the past history of updates or deletions



that led to the current state of the machine. No restrictions are placed
on the operations that can be performed in order to achieve these tight
time bounds. This constant time performance does not come at the cost
of increased hardware complexity: the clock speed of the hardware (as a
function of the gate delay) has the same time complexity as the clock for
an ordinary addressable memory, and the hardware complexity in terms of
number of logic gates and flip flops is also the same.

The algorithms presented here use circuit parallelism. This approach
originated in associative processors [3] and active data structures [4]; other
examples include priority queues [5], systems with chunks of memory orga-
nized as trees [6], smart memories for multicore processors [7], and associative
searching [8]. Circuit parallelism is also the target platform for compilation
of a declarative committed-choice rule language [9]. The idea is to bring the
parallelism inherent in digital circuits to bear directly on the computations
required by an algorithm, rather than organizing the circuit into conven-
tional processors. In circuit parallelism, the computation is melded into the
memory at the level of individual words, allowing algorithms that perform a
computation in parallel on every word in the memory; it differs from data
parallelism, where an operation performs a computation on every word of a
data structure (rather than every word in the machine). Current hardware
trends will make this approach increasingly productive, as the number of
transistors per chip continues to increase.

The algorithms presented here are fine-grain and massively parallel, and
they require suitable hardware in order to be usable. They do not run ef-
ficiently on a sequential computer that lacks a hardware accelerator. The
fastest platform for ESFA is a direct VLSI implementation of the underlying
parallel circuit, but an FPGA or GPU chip could also be used (see Section [g]).

The ESFA system has been implemented and tested in several ways. First,
this paper contains an executable specification written in Haskell. Second,
it is implemented using a digital circuit that is specified and simulated using
the Hydra hardware description language [10]. The design has not been fab-
ricated as a physical chip, but the Hydra specification is precise down to the
level of flip flops and logic gates (it is “synthesizable”), and the simulation
is accurate in clock cycles and also in gate delays within a cycle. Third, the
system is implemented as a program, written in C and CUDA [11], that runs
on a general purpose GPU [12]. The GPU implementation gives reasonable
performance, and there is extremely low variation in execution time of the op-
erations, making it especially valuable for real-time applications and a good
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platform for research. An FPGA implementation would be faster, but the
GPU program is more portable and can run on many consumer computers.

The software is available on the web [13], including the sequential simu-
lator, the parallel GPU program, a random test data generator, and sample
test data files. The programs have been tested using a combination of small
hand-written test cases, an SECD machine interpreter [14] that uses ESFA
for the environment, and large-scale randomly generated test data. The sim-
ulator has run sequences of 725,000 operations, and the GPU has run tens
of millions of operations, without error.

Section [2] introduces the operations on extensible sparse functional ar-
rays. Section [3] gives an overview of the algorithm, which contains three
layers. Section [ describes the parallel circuit generator that constitutes the
lower level, and Section [Bluses the circuit to implement a family of map, fold,
and scan combinators. Section [0l implements the array operations using the
combinators and proves their correctness. Related work on arrays in func-
tional languages is described in Section [, and the time and space complexity
of ESFA are analyzed. Section [§] discusses the implementation of ESFA on
standard parallel platforms, and Section [0 concludes.

2. Operations on ESF arrays

This section introduces the notation used for ESF arrays and presents
two distinct application programming interfaces (APIs). First a high level
interface is defined, where each operation is a pure function. Then a lower
level interface is defined that makes the machine state visible and supports
side effects such as deleting an array. The lower level could be used in an
imperative language, in a functional language using monads or similar, or it
could be used to implement the higher level API while hiding the side effects.
Haskell notation is used throughout.

An array element maps an index i :: Idr to a value v :: Val. An element
is written ¢ — v and has type Idz — Val. The Idx type is a bounded
integer such as Int; a digital circuit must be able to compare two indices.
The value type Val is arbitrary. In Haskell notation the (—) operator is a
data constructor that builds the element.

An array a :: Array is a set of elements with disjoint indices; that is, if
(i—z) € aand (j— y) € a, then i # j.

A value of type Array is a handle providing access to the array. The
representation is opaque: the only way to access to the contents of an array



empty  Array

update 2 Array — (Ide — Val) — Array
lookup  Array — Idx — Maybe Val
minDef , maxDef :: Array — Maybe (Idz — Val)
nextDef , prevDef :: Array — Idx — Maybe (Idx — Val)

Table 1: Array operations: pure functional API

is by using the API. Two arrays can be compared for equality (so Array is
in the Fq typeclass), but no other useful operation can be performed on the
value of a handle. In particular, a handle does not point to a data structure,
such as a list or tree, that can be traversed by the user program, and the
location of an element is not found by doing arithmetic on a handle. This
differs from C and related languages, where an array handle is the address
of the first element of the array, so useful calculations can be performed on
a handle: the address of a[i] is a + k x i, where k is the size of an element.

Arrays are immutable: once created, they can never be modified. There
is a pre-defined constant empty :: Array that contains no elements. This is
unique and indestructible: the programmer can neither create nor delete it.
The user program can create new arrays by updating an existing one, and
arrays can be accessed using the other API functions.

If a:: Array is not empty, then its lower (upper) bound is the smallest
(largest) index for which it has a defined element. The bounds of empty are
undefined. If an array a contains an element with index ¢ for every 4 such
that lowerBound a < i < upperBound a, the array is dense. An array that
is not dense is sparse: it has one or more indices where there is no value.

2.1. Pure functional interface

The higher level API for ESF arrays consists of a set of pure functions that
create and access arrays (Table[I]). There is no need for the user program to
sequence the array operations using a monad or similar technique; the array
functions satisfy referential transparency and can be used just like any other
function. The functions are strict in the Array and Idz operands.

An update takes an existing array, index, and value, and returns a new
array with the given value at that index. For example,

b = update a (i — )



creates a new array b that is exactly like a, except that b has value z at
index 7. The old array a is unchanged. Thus update a (i — z) corresponds
roughly to the imperative notation a[i] := x, but there is a crucial differ-
ence: update creates a new array without modifying the old one, which is
still accessible.

The result of update is undefined if the memory is full; semantically it
is L. Normally this would terminate the execution of the program. The
implementation can detect this situation and provide an informative error
message, just as with other data constructors like (:) in Haskell or cons in
Scheme.

Array elements may be accessed using lookup, which takes an array and an
index and returns the array element defined at that index, if one exists. With
the definition of b above, lookup b i evaluates to Just x. If the array does
not contain an element at the specified index, then lookup returns Nothing.
Thus lookup a i corresponds to the imperative notation a[i].

Two laws state the relationship between lookup and update. The first law
says that an empty array contains no elements.

Law 2.1 (Empty array). For all i :: Idz,

lookup empty © = Nothing

The second law says that an update to an existing array a with an element
J — v gives a new array that is identical to a except at index j, where it has
the new value v.

Law 2.2 (Nonempty array). For all a::Array, element (j — v)::(Idz — Val)
and index i :: Idz,

lookup (update a (j — v)) i
| i =7 = Justv
| i £ j = lookup a i

The programmer does not declare the size of an array or allocate space
for it, and an array of undefined elements cannot be allocated all at once, as
in Fortran. Instead, elements are added one by one using update, and the
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system allocates space automatically as needed. The programmer cannot
modify an existing array; update creates a completely new array and leaves
the old one unchanged. Every array is built incrementally through a sequence
of updates, starting ultimately from empty. For example, a3 is constructed
using three updates:

al = update empty (1 — 101)
a2 = update al (2 — 102)
a3 = update a2 (3 — 103)

The values of the resulting arrays are:

al = {1+~ 101}
a2 = {1+ 101,2 — 102}
a8 = {1+~ 101,2 — 102,3 — 103}

In the previous example, each update extends the most recently created
array, resulting in a linear sequence of chained updates. However, update
is not restricted to this pattern. Any array can be updated at any time,
allowing for a tree-structured set of relationships among arrays. Consider
the following definitions, with the previous definitions still in scope:

a4 = update a2 (4 — 104)
a5 = update al (5 — 105)

The values of a! and a2 remain unchanged, and the new arrays are

aj = {1+ 101,2 > 102,4 — 104}
a5 = {1+ 101,5 — 105}

If an update gives a new value to an index that has already been defined,
the old value is shadowed: it does not appear in the new array but is still
present in the old one.

ab = update a4 (2 — 999)

The updated array is unchanged, as always, and the new array has a different
value at index 2.

aj = {1+ 101,2 > 102,4 — 104}
a6 = {1+ 101,2 > 999,4 — 104}

8



These examples illustrate the chief characteristic of functional arrays:
update produces a new array, but does not change the old one. They also show
why implementation of the operations in O(1) time and space is difficult: it
is essential to share each element among any number of arrays without using
linked data structures to find them.

An extensible array is one whose minimum and maximum bound can be
changed at any time. The update operation gives extensibility for free, as
there is no restriction on the value of the index that is provided. For example,
we could define a7 = update a2 (1000000 — 7). Naturally this can leave
many indices where no element is defined: the result of lookup a7 100 is
Nothing.

In a sparse array, many elements may have a default value d (often 0).
The representation should use memory only for the non-default elements,
saving space. A sparse lookup can be defined that returns the default at an
index that has not been defined with update.

In addition to saving space, sparse arrays save time by making it possible
to traverse the non-default elements without having to iterate over all the
indices. ESF arrays support sparse traversal using the minDef, mazDef,
nextDef and prevDef operations. Suppose we wish to iterate over all the
non-default elements of an array, from the lowest to highest index. The
starting point of the iteration is determined using minDef to find the lowest
index with a non-default value, and the iteration repeatedly applies nextDef
to the current index to find the next one.

2.2. Stateful interface

The pure functional interface hides the state of the ESFA memory. How-
ever, the memory state needs to be made explicit in order to implement
storage management. Therefore a lower level API is defined that treats each
operation as an effect, and this stateful API can be used to implement the
pure functional API. Alternatively, it can be used in an imperative language,
or in a functional language with monads, giving the user program control
over storage management.

The parallel combinators defined in Section [5] maintain the hidden state
using a monad SystemState. For the array operations, this type is specialized
using a memory Cell state type (defined in Section [6.1]) and an auxiliary state
(needed for other features not discussed in this paper). An array operation
that performs a computation which produces a value of type a has type



updateS 2 Array — (Idz — Val) — Bool

— EsfaState (Result Array)
lookupS it Array — Idz — FEsfaState (Result Val)
minDefS, mazDefS :: Array — EsfaState (Result (Idx — Val))
nextDefS, prevDefS :: Array — Idx — EsfaState (Result (Idz — Val))

deleteS 2 Array — FEsfaState ()
killZombieS :: EsfaState (Maybe Val)

Table 2: Array operations in the stateful API. The deleteS and killZombieS operations
support memory management, and the others correspond to functions in the pure API in
Table [l

EsfaState a. Operations that might fail return a value of type Result a,
which is either an error message code or a successful result a.

type SystemState s e a = StateT (CircuitState s, e) 10 a
type FEsfaState a = SystemState Cell AuxState a
type Result a = Either ErrMsg a

Table 2l shows the types of the operations in the stateful interface. These
operate in the FsfaState monad. The operation updateS a (i — v) nfy
is similar to the pure update a (i — v), but there are several differences.
The result has type Result Array because a stateful update may fail: if the
argument ¢ is an array that has been deleted, or if the memory is full, then
the update cannot be performed and an error code is returned. The operation
also takes an extra argument nfy :: Bool which indicates whether the value v
is a pointer to a heap object; the purpose of this is explained below.

The operation lookupS a i is essentially the same as the pure lookup,
except that there are two possible reasons the result may be undefined: (1)
if the array a does not exist because it has been deleted, and (2) if the
array exists but does not have a value defined at index 7. In these cases an
error code is returned. The distinction is important in implementing sparse
lookup, where a nonexistent array is really an error but an unbound index
should return the default value.

The operations minDefS, mazDefS, nextDefS and prevDefS are similar
to their pure counterparts. but it is now possible that the array argument
a does not exist because it has been deleted, and in this case an error is
returned.
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The deleteS and killZombieS operations have no pure counterpart; they
are used for memory management and perform a side effect on the system
state. Executing deleteS a removes the array a from the memory and re-
claims array elements that have become inaccessible (although shadowed ele-
ments may not be reclaimed). After deleteS a is performed, lookupS a i will
return an error code indicating that the array is undefined, for any ¢. The
amount of space that is recovered depends on the sharing of array elements.

The killZombieS operation supports integration with a heap memory,
which is separate from the ESF machine memory. An array element ¢ — v
becomes inaccessible when every array that contains it has been deleted. If
the value v is unboxed, such as a floating point number, the space for the
element can be reclaimed immediately. Suppose, however, that v is actually
a pointer into the heap memory. In this case, it may be necessary to run a
finalizer on v. The ESF system supports this with notification requests and
killZombieS. When an updateS creates an array with an element that requires
finalization when it is removed, the nfy (“notification request”) argument
should be True. Later, if a deleteS causes the element to become inaccessible,
it is not reclaimed but instead is marked as a “zombie”: inaccessible yet still
present. The storage manager can later use killZombieS to locate a zombie; if
one is found the operation reclaims its space and returns its value v, allowing
the storage manager to run the finalizer.

3. Overview of an implementation with circuit parallelism

A good introduction to the problem of implementing functional arrays
is to consider two naive algorithms for the update and lookup functions on
dense arrays.

e We implement update a (i — v) nfy by copying the array a into a
fresh region of contiguous words of memory at address b, and storing
the value of v at location b+ 4. All future lookups will take O(1) time,
as normally expected for imperative arrays. Unfortunately, the update
requires both time and space of O(n) where n is the size of a. The
equivalent of for i := 0 to n-1; x[i] := x[i]+1; would require
O(n?) time and allocate O(n?) words of memory.

e Since the previous approach is disastrous, we could focus on making
update efficient. Define an algebraic data type data Arr a = Empty |
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Update Arr Idx a. Now the update operation is simply an application
of the constructor Update, and it builds a list of nodes. A lookup
requires traversing the list, from an Update node back toward the root,
until the index is found. This approach makes update take O(1) time
and space, and lookup requires time whose worst case is O(n), where n
is the size of the array.

Clearly the first approach—wholesale copying—is hopeless. The second
approach invites attempts to restructure the tree to reduce the height and
thereby make lookup faster, but that will never produce O(1) time. Many
sophisticated techniques have been developed for making functional data
structures more efficient [15]. Generally, a tree structure stored in the heap
will give access time proportional to the height of the tree.

The result in this paper is an implementation of functional arrays with
the same time and circuit complexity as ordinary imperative arrays on a
conventional RAM memory. Each operation in Table 2] always takes O(1)
time, measured in clock cycles. There is no variation in execution time
depending on the operations or arguments, and there are no restrictions on
the usage of the operations.

The naive algorithms above suggest that sharing and searching are the
fundamental difficulties, and we now consider these issues more deeply.

Functional arrays allow an arbitrary amount of sharing. If both al and
a2 are defined as updates to a, then each element of a is shared among
all three arrays. To achieve O(1) space for an update, an element must be
represented in the machine only once, no matter how many arrays it belongs
to. To achieve constant time access, however, we cannot follow chains of
pointers that link the elements together.

An imperative array is represented as an address that can be used to
calculate the address of any element; we can think of an array as “knowing”
where its elements are. That approach is inefficient for ESF arrays, because
of the sharing.

Therefore consider a major change of perspective. Place each element at
an arbitrary location in the memory, and store with each element the set of
all arrays to which it belongs. This is called the inclusion set (or iset) of
the element. An array is no longer represented by an address, but just by an
arbitrary natural number called a handle. An array does not know what its
elements are; instead, an element knows which arrays it belongs to.
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For this approach to be workable, we need to be able to represent every
inclusion set in a fixed amount of space, and also to determine whether any
given array belongs to an inclusion set. In general, arbitrary sets cannot be
represented in a small fixed amount of space. However, the inclusion sets that
appear in the ESF memory are not arbitrary: they satisfy some structural
properties that are enforced by the fact that the memory state must be the
result of a sequence of updateS operations. These invariants allow us to
represent the inclusion set for an element e by a pair (low, high) such that
an array identified by ¢ is an element of iset e if and only if low < ¢ < high.

The identifying number ¢ for an array is called its code. Array codes
are not arbitrary, as they must lie between the low and high fields of every
element belonging to the array. Furthermore, as updates take place, the code
for an array may need to be changed.

Since the array codes will be changing frequently, how can we represent a
pointer to an array? Each array has a stable handle, which will never change,
and the system contains a mapping from array handles to codes. This consists
of a maplet a = ¢ giving for each array a the current value ¢ of its code.
When an array code needs to be changed, the mapping is also adjusted
so that every array handle still refers to the same set of elements, even if
the code has changed. An array handle is a stable pointer [16] providing a
permanent reference to the array. It is an opaque reference: two handles can
be compared for equality, but the main program cannot perform any other
useful operations on array handles, such as address arithmetic.

Suppose we are updating an array with code c¢. It turns out that the code
of the resulting array has to be ¢+ 1, and that code is likely already to be in
use. That means that the codes that are larger than ¢ must be incremented,
and also the (low, high) fields in many of the cells need to be adjusted. The
implementation of update ensures that the newly created array has the right
elements, and the existing arrays continue to have the same values although
their representations may change.

Every update or delete operation can cause wholesale changes to the rep-
resentation, affecting a number of memory cells (possibly even all of them).
The cost would be prohibitive on a sequential computer, but by adding some
logic gates to the flip flops comprising a cell, this can be done in parallel
in every cell in unit time. Therefore ESF arrays can be implemented using
“hardware/software co-design”, with three layers:

1. The lowest layer (Section @) is a “smart memory” called the ESF Ma-
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chine (ESFM) consisting of a tree-structured digital circuit (or abstract
machine) that implements a basic machine operation called sweep. The
circuit is synchronous, with a fixed speed clock. A sweep requires one
clock cycle. The clock speed is determined primarily by the gate delay
in combinational logic within the circuit. This gate delay is O(k) where
k is the depth of the tree. If the circuit is built with a balanced tree,
then k = log N where there are N memory cells, allowing for N array
elements to be stored. A conventional memory also has a logarith-
mic time gate delay, because it needs to decode the memory address.
(A conventional tree algorithm running on a conventional machine has
time O(log N x logn), where N is the memory size and n is the data
structure size.)

2. The middle layer (Section[H]) uses the circuit’s sweep operation in order
to implement a family of map, fold, and scan combinators. Each of
these takes one clock cycle and performs a fine-grain parallel computa-
tion.

3. The upper layer (Section [6]) defines the operations in Table 2] as a
sequence of maps, folds, and scans. Each of these algorithms is “straight
line code” with no iteration of any kind; thus every Array operation
takes a small fixed number of clock cycles.

The main program runs in a host processor with a conventional heap
memory, and uses the ESFM to accelerate the performance of array opera-
tions. This is analogous to using a floating point unit or a graphics processing
unit to speed up specialized operations.

4. Low level: tree circuit

The lowest level of the system is a digital circuit that represents each
array element in a small unit of memory enhanced with logic components
that allow all the cells to perform calculations in parallel. This is feasible
because those calculations are simple (basic arithmetic) and regular (all the
cells do the same thing).

The hardware is an extremely fine-grain parallel architecture; for best
performance, there should be one processing element for each location in the
array memory. The processing elements are not full scale processors; they
need only the ability to perform comparisons, increments, and decrements
on natural numbers, and a few bit level operations. A processing element
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would contain on the order of 100 bits of memory and a few hundred logic
gates.

The circuit is a smart memory with a tree structure, similar to the organi-
zation of a standard random access memory; see Section [7 for a comparison.
Each leaf in the tree contains a state of type s, and the nodes provide com-
binational logic functions but have no state. The state of the entire machine
is modeled by the type CircuitState.

data ClircuitState s
= Leaf s
| Node (CircuitState s) (CircuitState s)

Each leaf cell is a circuit with one input and one output port, which are
connected to the parent node. A port is a set of signals (wires) organized as
a tuple of fields. A cell is a state machine with type s — d — (s, u) where s
is the type of the state, u is the type of the output which goes up the tree,
and d is the type of the input which comes down from the tree.

Each node is a pure function implemented by combinational logic gates.
It receives three inputs—one coming down from the parent and two coming
up from the subtrees—and produces three corresponding outputs. The type
of the node function is d — v — u — (u, d, d). There is no state or memory
in the tree apart from the state in the leaf cells. The critical path of the
circuit (the maximum gate delay) is proportional to the height of the tree,
and the clock period is proportional to the critical path.

At a clock tick, each flip flop updates its state by storing the value of its
input signal. As the logic gates settle down, information flows from the cells
up the tree to the root, which also receives an input from the main processor,
and information then flows back down the trees to the cells, preparing for
the next clock tick. This general operation is called a sweep.

sweep
2 (s —=d—(s,u)) - ¢f = cell function
—(d—u—u— (u,d,d)) --nf = node function
—d -- a = root input from host processor
— ClircuitState s -- state of tree circuit
— (ClircuitState s, u) -- (new state, root output)

A sweep causes each leaf cell to apply a logic function to its state to pro-
duce an output to send to its parent node; later this function also calculates
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the new state using the current state and the incoming down message. These
two logic functions are combined in the single function cf.

sweep cf nf a (Leaf ¢) = (Leaf ¢, y)
where (¢/,y) =cf ca

Each node uses its nf function to calculate the value a’ to send up, and
the the values p’ and ¢’ to send down to the left and right subtrees. Again,
all these calculations are combined in one function nf. An alternative way
to define a general tree circuit is to separate the cell and node functions into
separate up and down functions, and then to define separate upsweep and
dnsweep functions.

sweep c¢f nf a (Node x y) = (Node 2" y', a’)
where (a/,p',¢') =nf apq

(z',p) = sweep cf nf p’ x

(Y, q) = sweep cf nf q'y

The last argument to sweep is the circuit state, and the result is the new

state and output: sweep:: ... — CircuitState s — (CircuitState s, u). The
monadic sweepm function does not take the state as an argument; instead,
it returns a monadic effect: sweepm:: ... — SystemState s e u.

The sweep function is a circuit generator: it describes directly what the
hardware is doing, and a specific digital circuit can be defined by specifying
the functions ¢f and nf as combinational circuits. The combinators used in
the middle level (Section [l are defined using sweep.

The tree machine is a synchronous circuit. This means that each flip
flop updates its state simultaneously at every clock tick. During the time
between clock ticks, the logic gates settle down to produce stable outputs
that do not change again for the rest of the clock cycle (the period between
ticks). The combinational logic gates (stateless devices, such as the logical
and?2 gate, that calculate pure functions) can be partitioned into equivalence
classes based on the longest gate delay on any of their inputs. After d gate
delays, all the logic gates in the classes below d are stable, the gates in classes
above d do not have stable inputs so their outputs are immaterial, and all
the gates in class d perform a useful calculation in parallel. The clock period
must be slow enough for all the logic gates to settle down to a stable value;
this is the maximal gate delay through the circuit, with an additional safety
factor.
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5. Middle level: parallel combinators

In this section, the general tree circuit sweep is used to implement three
key combinators: tmap, tfold, and tscanl. The circuit has a state of type
CircuitState s, where s is the state type of a leaf cell. The leaves of the
tree form a sequence of cell states, and the combinators (tmap, etc.) can be
related to the standard functions (map, etc.) via conversion functions.

The tmap combinator takes a function argument f :: s — s, where s is
the type of the state of a cell in the circuit, and maps it over the cells. It is
defined as a sweep circuit operating over the tree structure.

tmap :: (s — s) — SystemState s e ()

tmap [ = sweepm cf nf ()
where ¢f s _ = (f s,())

nfapq= (()7 ()7 ())

The arguments to sweep, the leaf cell and node functions, are combina-
tional circuits. The nodes have no role other than to fan out the signals. If
map were the only operation to be performed, there would be no need for a
tree, but in a synchronous circuit the clock speed is determined by the longest
gate delay path. This occurs in the tree when it is instantiated to perform
scanl, so the system would not run faster if tmap were implemented without
the tree sweep. Furthermore, it is common for the function f being mapped
to be specified as a partial application; in the digital circuit this requires
information to be broadcast to the cells, and the tree does so efficiently.

The tfold combinator calculates a singleton value by a pairwise combina-
tion of values from the leaves. Each leaf cell applies f to its state to obtain a
message to its parent node, and the nodes combine messages from the sub-
trees using ¢g. If the g function is associative, then the tfold is equivalent to
a foldll, although tfold is defined unambiguously even if ¢ is not associative.

tfold :: (s — a) — (a = a — a) — SystemState s e a

tfold f g = sweepm cf nf ()
where ¢f s _ = (s,f s)

nfapqg=_(9pq0(0()

A tscanl is similar to an ordinary scanl: given an associative function A, it
produces all the intermediate fold results that would be calculated by a linear-
time foldl h, although the results are calculated by the tree in logarithmic
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time (see |L7] for a correctness proof). The function f obtains a value from a
leaf cell, g updates the leaf with an incoming value, and h (which is normally
associative) combines two values.

tscanl
(s —a) - f: get singleton from cell
— (s = a—s) -- g: update cell using singleton
— (¢ = a — a) -- h: function to be folded
—a -- initial accumulator

— SystemState s e a

The implementation of tscanl is bidirectional: it defines a communication
pattern that begins with the leaf cells, transmits information up the tree, and
then transmits further information back down the tree.

tscanl f g h a = sweepm cf nf a
where ¢f s a= (g s a,f s)
nfapq=(hpqahap)

6. High level: array algorithms

The previous sections show how a digital circuit generator sweep imple-
ments parallel tmap, tfold and tscanl combinators. This section uses those
combinators to implement the stateful versions of the array operations.

6.1. Machine and cell state

Two general kinds of information are stored in the machine’s state: the
mapping from array handles to codes, and the set of array elements. In
principle, these could be stored independently. However, it is convenient to
store one array mapping (handle & code) and one array element (indexr —
value) in the same cell. The reason for this is that updateS creates a new
array (handle & code) and a new element (indexr — value) at the same time.

Each cell contains a set of fields, defined below, which fall into three
groups: arrays, elements, and control flags.

e An array is represented by a (handle = code) map. If arrDef is True,
then handle = code defines an array with the given handle and code;
otherwise there does not exist an array with this handle, and the code
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field is meaningless. When the system is initialized, each cell is given
a unique handle, and the handle field is never changed. However, the
code field changes frequently. If the array is deleted, then arrDef will
be set to False, but if the element is shared by other arrays it will not
be deleted.

e An array element is represented by eltDef, rank, low, high, ind, and
val. If eltDef is True, then ind — wval is an element with the inclusion
set specified by low and high. The rank of the element is the distance
(in number of updates) of the element from empty.

e The control flags are notify, zombie, select, and mark. The first two
help to integrate the ESFA memory management with a separate heap
memory. The last two are temporary flags used within some of the
operations to keep track of sets of cells.

The complete set of fields is defined below, and Figure [Ilshows a compact
notation used in subsequent example diagrams. Each cell may hold one array
element, so this representation requires a constant factor (approximately 5)
more space than imperative arrays.

data Cell = Cell
{arrDef :: Bool, --an array is defined in the cell

handle :: Nat, -- stable array handle

code :: Nat,  -- changeable code of array (if arrDef)
eltDef  :: Bool, -- an element is defined in the cell
rank :: Nat, - distance from empty (if eltDef)
low, high :: Nat,  -- inclusion set (if eltDef)

ind o Idx, - array element index (if eltDef)

val 2 Val,  -- array element value (if eltDef)
notify  :: Bool, --report when inaccessible (if eltDef)
zombie :: Bool, -- element must be finalized

select  :: Bool, -- temporary control

mark :: Bool  -- temporary control

} deriving Show

A cell state is a value of type Cell with values for each field. A machine
state st :: { Cell} is a set of cell states. The notation handle x means the
value of field handle in the cell state z (and similar for all cell fields). The
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ak=c

)

Figure 1: Notation for a cell. The top row of a cell shows the handle ¢ and code ¢, but
if arrDef is False these are left blank. The middle row shows the rank r and inclusion
interval low and high (shown as {-h). The bottom row shows the element, which maps
index ¢ to value v. If eltDef is False the cell does not contain an element, and also cannot
contain an array, so the entire cell would be empty. Such cells are omitted from the
diagrams.

notation z { code = v} denotes a new cell state which is the same as z except
that the code field has value v.

When b < updateS a (i — v) nfy is performed, an available cell is
allocated, and the new array map (b = ¢) and new element (i — v) are
stored into that cell. Thus each array element is closely related to an array
at the time of creation. Later, the array b may be deleted. If and when that
happens, there are two possibilities:

e If the corresponding element i — v also belongs to another array that
has not been deleted, then the element continues to exist. However,
the array mapping b = ¢ is removed by setting arrDef to False in the
cell. The cell now contains just an element, but no array mapping. The
cell itself is still “full” and is not available for an update.

e If the element is not shared by any other array, then both the array
b = c and the element i — v can be deleted. In this case, the cell no
longer contains useful information, both arrDef and eltDef are set to
False, and the cell is available for allocation by a future updatesS.

6.2. Array representation: paths, codes, and inclusion sets

As the machine state evolves through a series of updates, the repre-
sentation of the arrays is scattered among the cells. As a way to visu-
alize the representation, we can think of the cells as nodes in a forest of
trees (Figure 2). Whenever an array is defined by updating empty, such as
a = update empty (i — v) nfy, a new tree whose root is a cell containing the
new element is added to the forest. When an array b is created by updating
a, an available cell is allocated and the new information (i.e. the new array
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and the new element) is stored into that cell, which becomes a child of the
node for a.

Definition 6.1. Let b < update a (i — v) nfy. Suppose the array map for
a is in cell z, and the array map for b (as well as the element i — v) is in
cell y. Then x is the parent of y, and y is a child of x.

This tree illustrates the relationships among the cells, and it helps to
see what is going on in an example. However, the tree is not represented
explicitly in the machine: the cell locations are arbitrary, there are no point-
ers, the algorithm does not perform conventional tree traversal, and this tree
does not introduce a logarithmic factor in the time complexity. The tree is
purely conceptual; the only real tree in the system is the digital circuit which
belongs to a lower level of abstraction.

The empty array is a special case. It always exists, and is not the result
of an updateS. It has a fixed handle, cannot have an element, and it is not
stored in any cell. That is why the figure shows a forest of trees rather than
one tree rooted in empty.

Definition 6.2. The empty array exists in every machine state, and its
handle s —1.

empty :: Array  -- always exists, and contains no elements
empty = —1 -- its stable handle is -1

Every nonempty array is the result of a sequence of updates, each of which
allocates a cell. The sequence of these cells is called the path of the array.

Definition 6.3. The path of an array a is the sequence of cells xg, ..., x,
such that handle xy = a, x, contains the result of an update to empty, and
Ziy1 1S the parent of x; for 0 <i < n.

The elements of an array are all found on its path. Essentially, lookupS a i
searches the path of a for the first matching element: i.e. the first element
with index . The path may include several elements with the same index 1,
and the correct value of the array at that index is first matching element in
the path.

Laws 2.1 and specify the result of a lookup as a recursive traversal
of the sequence of updates. This is effectively a search of the path of the
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f = 1 b= 4 a kP 15
1. 13 1. 4-14 1. 15-17
6 — 56 2+ 52 151
ok 2/ h= 3| |k 5||lgk 7T||lcm 13| |j= 16| |d= 17
2. 22| (2. 33| (2. 56| |2 7-12| |2.13-14]| |2.16-16| |2. 17-17
15 — 65 8 — 58 11 — 61 7— 57 3+— 53 10 — 60 4+ 54
n k= 6||qgqkr 8|1l 5 9 |ikm 12||e= 14
3. 66| (3. 88| 3. 9-11]| |3.12-12| |3. 14-14
14—64| |17 — 67| | 12— 62 9+ 59 5 +— 55
pe= 10 mgEe 11
4. 10-10| 4. 11-11
16 — 66 | | 13 — 63

Figure 2: State of the machine after a sequence of updates that created arrays a,...

a = update empty (1 — 51)
b = update empty (2 — 52)
¢ = update b (3 — 53)
d = update a (4 — 54)
e = update ¢ (5 — 55)
f = update empty (6 — 56)
g = update b (7 — 57)
h = update f (8 — 58)
i = update g (9 — 59)

j = update a (10 — 60)
k = update b (11 — 61)
| = update g (12 — 62)
m = update | (13 — 63)

)

n = update k (14 — 64
o = update f (15 — 65)
p = update [ (16 — 66)

q = update g (17 — 67)
x = lookup k 2

q-

The cells that are selected during lookup k 2 are shaded. The updates could have been
performed in any other order, as long as data dependencies are satisfied; the contents of
the arrays would be the same as in this figure, and the representation would differ but still
satisfy the invariants.
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array, but an ordinary search would require iteration and therefore would
not achieve O(1) time for lookup.

The central idea behind the parallel implementation of ESF arrays is
to introduce a fast way to determine whether an arbitrary element belongs
to an array, using a fixed amount of information. The inclusion set (iset)
of an arbitrary element is the set of arrays that contain the element, and
is represented using two inequalities on the low and high fields in the cell
containing the element.

The inequalities for an inclusion set require an array a to be identified by
a code ¢ with special properties, not by a stable handle which is arbitrary.
Furthermore, the code of an array may need to be changed during some
updates. That is the reason for maintaining the a = ¢ map.

Most operations on ESF arrays take an argument a :: Array, which is
a stable handle that must be converted to the current value of the array
code. The encode function, given in Definition [6.4] performs this conversion
provided that the array a is defined. If array a exists in state st, then
encode a st is the value of its code. This form of encode is convenient for
correctness proofs, as it makes the machine state explicit; an implementation
encodesS is given later. The empty array is a special case: its handle is —1 and
its code is always 0. The array operations never change the code of empty.
The function sgl s returns the element of a singleton set, and indicates an
error if s is not a singleton.

Definition 6.4. The code of an array a in machine state st is defined as

encode :: Array — { Array} — Nat
encode a st
| a = empty =0
| @ # empty = sgl { code x| x € st A\ arrDef = A handle © = a}

Inclusion sets are determined using array codes and the low and high
fields. The inclusion set (iset) of a cell z in state st :: { Cell} is the set
of arrays with a handle that maps to a code within the cell’s low to high
interval.

Definition 6.5. The inclusion set (iset) of a cell © in state st is

iset x st = {p:: Nat | low x < encode p st < high =}
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The crucial property of the system is that the inclusion set (which allows
O(1) time for membership test) is equivalent to the path (which corresponds
to the semantics of updateS and lookupS but does not achieve constant time
or space). This equivalence means that two comparisons suffice to determine
whether an arbitrary array belongs to the path of an element.

Invariant 6.6. Suppose an array a has code c. Then the path of a is the set
of cells with an inclusion interval (low, high) such that low < ¢ < high.

Thus the inclusion set (iset) of a cell that contains an array element is the
set of arrays whose code lies between low and high fields of the cell. This is
defined as a function of both the cell z and the machine state st that contains
x; the full state is required in order to provide the full mapping from array
handles to codes.

The following invariant describes the relationship of array codes within
subtrees. Its means that isets respect the fact that a cell lies on the path of
each of its descendants.

Invariant 6.7. Suppose an array a is defined in cell z which holds an element
with inclusion interval (low, high). Then every descendant of x has a code ¢
such that low < ¢ < high.

Figure 2 provides many examples of the invariants. For Invariant [6.0]
consider array k, whose code is 5. The path of k consists of the elements
whose inclusion interval contains 5: the element 2 — 52 because 4 < 5 < 14,
and the element 11 — 61 because 5 < 5 < 6. No other cell in the machine
has an inclusion interval containing 5.

Invariant [6.71s illustrated by array g, whose element 7 — 57 has inclusion
interval (7,12). Every descendant of that cell has a code between 7 and 12,
and no other cell in the machine has that property.

If a path contains several elements with the same index, the first such
element gives the array value at that index, and any further matching ele-
ments are shadowed. The correct element is the one with the highest rank.
A crucial point is that the tree structure is not represented explicitly in the
machine state: there are no pointers from one node to another. Therefore
the rank field is essential, although it simply gives the depth of a node in the
tree. A conventional recursive tree traversal algorithm could keep track of
the depth, but the circuit-parallel algorithm cannot do this because it does
not traverse the tree (indeed it could not do so, as the pointers shown in the
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figure do not exist in the representation). The tree structure is implicit in
the values of the cells.

6.3. Basic operations

This section defines a few small operations that are used in implementing
the array operations.

In principle, the value of the handle field is arbitrary. A convenient way
to generate the handles is to enumerate the cells from left to right, using a
tscanl to set the handle fields in the sequence of leaf cells to 0,1,.... This
is performed by a parallel scan that stores k = Zf:o 1 in the handle field of
leaf cell k: f causes each cell to output 1, the sequence is summed by (+),
and the result is stored by ¢g. After the handle field has been initialized, it is
never modified again.

initialize :: EsfaState Int
initialize = tscanl f g (+) 0
where f z =1
gz a=x{handle = a}

The encode function (Definition [6.4)) is convenient for correctness proofs,
as it makes the machine state explicit. However, there are several practi-
cal reasons for defining a more concrete version, encodeS. First, the array
operations need to work in the EsfaState monad, with the state hidden. Sec-
ond, calculations should be carried out with the parallel combinators. Third,
the result should be returned in a Maybe type to indicate success or failure.
Fourth, it is convenient for encodeS to return the rank field of the cell as
well as the code. (This is not necessary but it saves a separate fold later and
simplifies the algorithm. The code and rank are not directly related to each
other; the code is part of the array (handle‘ArrayCode* code) mapping, while
the rank belongs to the element stored in the same cell.)

The implementation of encodeS begins by checking for the special case:
if a = empty then the fixed code of empty is returned, along with a dummy
rank of 0. Otherwise, a tfold performs a parallel associative search for the
cell containing the result.

encodeS :: Array — EsfaState (Maybe (Int, Int))
encodeS a =
if a = empty
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then return (Just (0,0))
else tfold (getCode a) choose

The tfold causes each cell to perform (getCode a) in parallel; if a cell
contains an array definition with the handle being searched for, it returns
the corresponding code and rank.

getCode :: Array — Cell — Maybe (Int, Int)
getCode a x =
if arrDef x A handle x = a
then Just (code x, rank )
else Nothing

The last argument to tfold is an associative combining function choose
which transmits the result up to the root. The choose function makes a
Nothing-avoiding choice (a common operation in associative algorithms).

choose :: Maybe a — Maybe a — Maybe a
choose © Nothing = x

choose Nothing y =y

choose v y =z

The allocate function searches associatively for an empty cell that can be
used to store a new array element, using a parallel fold to choose the handle
from the first available cell.

allocate :: EsfaState (Maybe Int)
allocate = tfold availableHandle choose

The cell function availableHandle determines whether a cell is available

availableHandle :: Cell — Maybe Array
availableHandle © =
if = (eltDef x V zombie x)

then Just (handle z)

else Nothing
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Figure 3: Cases for alterations during b = update a (i — v) nfy. The cell labeled a
contains the (handle ‘ ArrayCode* code) map for a, and the path for a is the shaded group
of three cells going up from a; these cells increment high while leaving low the same (case
expand). The result b is stored in a newly allocated cell. All cells in the left shaded area
(case no change) have their inclusion interval unchanged. The cells in the right shaded
area “get out of the way” by incrementing both low and high (case “shift”), and the codes
for the corresponding arrays are incremented.

6.4. The updateS operation

An update creates a new array and stores the new array element into the
machine state. This is a small fixed amount of information, corresponding
to the small amount stored during an imperative array update. A major
difference between an ESF update and an imperative array update is that a
(possibly large) subset of the cells must modify some of their fields.

The update operation is presented in stages: Section describes the
effect that update has on the state, Section proves the correctness of
the algorithm, and Section shows how the algorithm is implemented
using the parallel combinators.

An update can fail due to two possible conditions: (1) if the array being
updated does not exist (i.e. its handle does not appear in the array han-
dle/code map; this occurs with the stateful version of update if the array
was deleted but is impossible with the pure update); (2) if the memory is
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full, so a new cell cannot be allocated. These conditions are handled by
returning an error. To accommodate this, updateS returns a result in the
FEither type: Right r indicates a success with result r, while Left m indicates
a failure with message code m.

Consider execution of b < update a (i — v) nfy. Let st be the current
state of the system: the set of cell states before the update. Assume the array
a exists and ¢ = encode a st; thus the array a has code c¢ in the old state st.
(If @ does not exist, the updateS will return an error, and encode a st = Abot
is not used.)

6.4.1. Effect of updateS

If the memory is full, or the updated array does not exist, then the up-
date fails and the state is not modified. Otherwise, an update causes each
cell z to perform a local computation independently of all the other cells.
The local computation consists of (possibly) changing the element, and (pos-
sibly) changing the array handle ‘ArrayCode’ code map. Figure [ continues
with the state in Figure 2, and shows the effect that an updateS has on the
representation.

Array element.. The action performed by an arbitrary cell z falls into one of
five cases, depending on its field values in the old state st (Figure []).

e Empty: if - (eltDef z | zombie x) then z contains no relevant infor-
mation, and if it is not chosen by allocate to hold the new array and
element, then z remains empty. In this case the cell does not change
its state, and it does not affect the arrays that are represented in the
machine.

e Allocated: if — (eltDef z | zombie z) and the empty cell z is chosen
by allocate, the new array and element are stored into z. Exactly one
cell has this property.

e Shift: if eltDef x and ¢ < low x then both low and high are incre-
mented. The representation of the inclusion set shifts up by a unit,
but the size of the set remains the same. Incrementing low and high
does not change the path because the corresponding array codes are
also incremented; see below.

e Expand: if eltDef = and low z < ¢ and ¢ < high x then low is un-
changed but high is incremented. This expands the size of the inclusion
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set of x to accommodate the new array element being stored by the
update.

e Unchanged: if eltDef x and ¢ > high x then both low and high are
left unchanged.

Each cell performs a computation based on which case it belongs to. The
effect of the computation is defined below,

Array code.. There are two cases for an arbitrary cell x.
e If arrDef x and ¢ < code = then the code field is incremented.
e Otherwise the code is unchanged.

Summary of local computation in a cell.. The computations are performed
by tmap.

e The allocated cell x has arrDef © = False. The new array and the new
element are stored into this cell: the new value of z is = {arrDef =
True, code = ¢ + 1, eltDef = True,low = ¢+ 1, high = ¢ + 1}.

e Every cell z where arrDef x = True contains an element of the array-
code mapping (handle x & code x). The handle remains constant, but
the code field is adjusted:

code ' = if ¢ < code x then code z + 1 else code z

e Every cell © where eltDef x = True contains an array element. The
element itself remains the same, but the representation of the inclusion
set is recalculated by adjusting the low and high fields:

low z'’ =if c<low z then low z +1 else low x
high ' = if ¢ < high = then high x + 1 else high x
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f = 1 b & 4 a = 16
1. 1-3 1. 4-15 1.16-18
6 — 56 2+ 52 1+~ 51

ok 2/ lh= 3| k= 5||gk 7 c=14 je= 17 d= 18
2. 22| 2. 33| |2 56| |2 7-13| 214-15 2.17-17 | 2.18-18
15— 65 8 — 58 11— 61 7— 57 3+— 53 10 — 60 4+ 54

nke 6|l|qgqk= 8|l & 9 i 13 ek 15
3. 66| (3. 88| |3 9-12| 3.13-13 |3.15-15
14+—64| |17T— 67| | 12— 62 9+ 59 5 +— 55

r= 10| pE 11| mk 12
410-10| [4.11-11 | |4.12-12
18— 68| |16 — 66 |13 +— 63

r = update | (18 — 68)

Figure 4: FExample of update. State of the machine, starting from Figure 2 after defining
r = update 1 (18 — 68). The node corresponding to the array being updated contains
element 12 — 62, and the new element 18 — 68 is stored in a freshly allocated cell. Cells
where low and high are unchanged (case no change) are outlined in blue; cells where only
high is incremented (case expand) are outlined in red, and cells where low and high are
both incremented (case shift) are outlined in green.
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6.4.2. Correctness of updateS

An update is correct if the new array it returns has the right elements,
and all other arrays have the same set of elements they did before. This is
not trivial, as the update will change key fields (code, low, high) in many
cells.

There are two ways to prove that all the arrays are represented correctly
after an update: we could consider each array and show that it has exactly
the right elements, or we could consider each element and show that it is
contained in exactly the right arrays. This proof takes the second approach,
focusing on the elements. The proof consists of a calculation showing that
each array element in the new state has the correct inclusion set; that is,
each maplet (i +— v) is an element of the correct set of arrays.

Let the state of the machine before an update be st, and define b +
updateS a (i — v) nfy resulting in a new state st’ and new array b. If
encode a st = ¢, then the updateS algorithm defines encode b st’ = ¢ + 1.
For an arbitrary cell z in state st, the algorithm defines code z’ = if ¢ <
code = then code v + 1 else code x. Therefore, if an arbitrary array p is
defined in state st,

encode p st' =
if ¢ < encode p st then encode p st + 1 else encode p st

The calculation of the effect of an updateS uses the following properties of
encode.

Lemma 6.8. Suppose array a with code c is being updated; x is a cell state
containing an element in machine state st, and updateS transforms it to z’
in st'. Let p be an arbitrary array that exists in st.

1. If encode p st < ¢ then encode p st' = encode p st.

Proof. Assume encode p st’ < ¢, and consider the following exhaustive
cases:

o If ¢c < encode p st then encode p st' = encode p st + 1, so ¢ <

encode p st’ — 1 which violates the assumption. This case cannot
hold.

e If ¢ > encode p st then encode p st’ = encode p st.
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2. If ¢+ 1 < encode p st then encode p st' = encode p st + 1.

Proof. Consider the following exhaustive cases.
e If ¢ < encode p st then encode p st' = encode p st + 1.

e If ¢ > encode p st then encode p st' = encode p st, so ¢ >
encode p st' and ¢+ 1 > encode p st’ + 1 which violates the
assumption. This case cannot hold.

O

Lemma considers encode p st' < ¢ and ¢ + 1 < encode p st’, but it
omits the case where encode p st' = ¢ + 1. The reason is that in that final
case p is actually a, the newly created array, and a does not exist in the old
state st.

The following lemmas establish that the allocated cell contains the right
result, and the other empty cells are unaffected by update.

Lemma 6.9 (Case Empty). If cell x in state st is empty (i.e. available for
allocation) and is not chosen by allocate, then it remains empty: i.e. the new
cell state x' in machine state st' is empty.

Proof. 1f = (eltDef = | zombie z) in st, and z is not allocated, then none of
the fields of x are changed. O

Lemma 6.10 (Case Update-Allocated). If cell x is empty in st (i.e. = (eltDef x |
zombie )) and it is allocated, then its state is altered to ' in st such that
iset ©' st' = {b}, where b is the result of updating a.

Proof. The new element i — v is stored in z’, and eltDef z’ is set to True.
Also, arrDef x' is set to True and code ' = ¢ + 1, so the array handle-code
mapping contains handle x' = ¢+ 1. The value of handle z’ is returned and
bound to b. The algorithm defines low 2’ = ¢ + 1 = encode x’ st’ = high ',
therefore path ' = {b}. O

The previous lemma shows that the allocated cell is correct. It is more
complicated to establish that all the existing arrays remain undisturbed.
Lemmas [6.1T], and establish that an arbitrary cell containing an
array element is handled correctly.
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The lemmas use several notational conventions. Assume that array a
exists in state st, and is being updated to produce a new array b. Consider
an arbitrary cell z in st such that eltDef x is True, and let z’ be the new value
of the cell in st’ after the update. Let ¢ = encode a st; thus array a has code
c. There are three cases: Shift (if c<low z), Expand (if low = < ¢ < high ),
and Unchanged (if high < ¢). These cases are exhaustive.

Lemma 6.11 (Case Update-Shift). If ¢ <low x, then iset z’ st’ = iset x st.

Proof. Since ¢ < low x and low z < high z, it follows that ¢ < high x and
by the definition of updateS, the new field values are low 2’ = low x + 1 and
high x' = high x+1. The effect is that x “shifts out of the way” of the region
where the update is taking place. The inclusion set of the modified cell 2’ is
calculated as follows:

iset x' st’
=  ( Definition [6.5] of iset )
{p:: Nat | low =" < encode p st' < high z'}
= ( Substitute z for z’ )
{p:: Nat | low v+ 1 < encode p st' < high z + 1}

= ( Substitute st for st’; )
(c<lowzsoc+1<lowz+1< encode p st’; Lemma [G.8(2) )

{p: Nat | low z+ 1< encode p st +1 < high z + 1}

= ( Subtract 1 from each side of inequality )
{p:: Nat | low z < encode p st < high x}

= ( Definition [6.3] )
1set x st

U
The most complicated case is Expand, where the new array must be added
to the cell’s inclusion set.

Lemma 6.12 (Case Update-Expand). If low z < ¢ < high x then iset z’ st’ =
iset x st U{b} where b is the result of the update.

Proof. In this case, = (¢ < low z) so low is unchanged, but ¢ < high = so
high is incremented. This expands the size of the inclusion set, allowing the
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new array b to be added to it. Some of the array codes that arise in the
inequalities may be larger than ¢ and will be incremented, while others are
not. Therefore the calculation splits the inclusion set into several subsets.

iset ¢’ st’
= ( Definition [6.5] )
{p:: Nat | low =’ < encode p st < high z'}
= ( Substitute z for 2" )
{p:: Nat | low z < encode p st’ < high z + 1}
= ( split into three sets based on location of ¢ )
{p:: Nat | low = < encode p st' < c}
U{p: Nat | encode p st' =c+ 1}
U{p:Nat|c+1<encodep st’ < highz+1}
= ( (1) Lemma [6.8() )
( (2) Algorithm defines encode b st’' = ¢+ 1)
( (3) Lemma [G.8(2) )
{p:: Nat | low = < encode p st < c}
u{b}
U{p:Nat|c+1<encode pst+1< highz+1}
= ( Subtract 1 from both sides of inequalities in (3) )
( Reorder the sets as U is commutative )
{p:: Nat | low z < encode p st < ¢}
U{p: Nat | ¢ < encode p st < high z}
u{b}
= ( Combine the set comprehensions )
{p:: Nat | low z < encode p st < high x}
u{b}
= ( Definition [6.5])
iset x st U{b}

O

Lemma 6.13 (Case Update-Unchanged). If ¢ > high = then iset z’ st' =
15et x st.

Proof. This is the simplest case, as the code c is above the relevant fields of
x. Since ¢ > high z, it follows that ¢ >low x and by the definition of updatesS,
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the new field values are low z’ = low x and high ' = high z. The inclusion
set of the modified cell z’ is calculated:

iset x' st’
= ( Definition [6.5] )
{p:: Nat | low 2" < encode p st' < high x'}
= ( Substitute z for 2’ )
( low ' = low x and high ' = high z )
{p:: Nat | low z < encode p st’ < high =}
= ( Substitute st for st’ )
( encode p st' < high x < ¢; Lemma [B.8|(T) )
{p:: Nat | low z < encode p st < high x}

= ( Definition [6.5])
1set x st

O

Theorem 6.14 (Correctness of update). Suppose b < updateS a (i —
v) nfy is executed in machine state st, resulting in a new state st’, where
each cell state x in st is altered to =’ in st’, and an empty cell y in st is
allocated for the update, with new cell state y'. Then every cell in st’ has the
correct inclusion set:

o If a € iset x st then iset x’ st' = iset x st U{b} (Lemmal6.13).

o Ifa ¢ iset x st then iset 2’ st' = iset x st (Lemmas[6.11 and[6.13).
o iset y' st' ={b} (Lemmal6I0).

o All other cells remain empty (LemmalG3).

Proof. The lemmas above show that every element has the correct inclusion
set after an update. Together they establish the correctness of the update
algorithm. O
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(1) (2) (3) (4)

a = 1 a B 1 a = 1 a B 1
1. 1-1 1. 1-2 1. 13 1. 14
1—11 1—11 1—11 1—11
| | |
b & 2 b =& 2 b & 2
2. 22 2. 23 2. 24
2+ 22 2+ 22 2+ 22
| |
c = 3 c = 3
3. 33 3. 34
333 333
|
d = 4
4. 44
4+ 44
(1) a = update empty (1—11) = {1~ 11}

(2) b= update a (2 22) {1—11,2— 22}
(3) ¢ = update b (3 — 33) {1 11,2 22,3 33}
(4) d = update ¢ (4 — 44) = {1 11,2+ 22,35 33,4 — 44}

Figure 5: A chain of updates. The first step updates empty, and each subsequent step
updates the most recently created array. The intermediate arrays are retained. Each box
shows one ESFM cell. (1) Since empty has code = 0, the result (a) has code = 1. (2) Now
a with code = 1 is updated, so the result b has code = 2. The inclusion set of the new
element is 2-2 which contains { b }; the inclusion set of the element in cell with handle = a
is altered so that it now contains codes 1 and 2, representing {a, b}. (3, 4) Each update
allocates a new cell for the value of the element, and modifies the inclusion sets of the
other elements.
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6.4.3. Implementation of updateS
The effect of updateS was specified in Section [6.4.11 The implementation
uses the parallel combinators, and proceeds in several steps.

1. Find the code and rank of a, using encodeS (which requires a tfold).

2. Find an available cell to store the new array and element in, using
allocate (which is a tfold).

3. Store the new information (new array, new element) into the allocated
cell, and adjust the handle—code map and the inclusion sets in all other
cells (apart from empty ones). This step is performed by a tmap.

There are two ways updateS can fail: the array a may not exist (for example,
if a program erroneously deletes a and then tries to update it), and the system
memory may be full. In these cases updateS returns an error code.

updatesS :: Array — (Idx — Val) — Bool — EsfaState (Result Array)
updateS a elt nfy =
do e < encodeS a
case e of
Nothing — return (Left errArrayDoesNotExist)
Just (acode, arank) —
do ee < allocate
case ee of
Nothing — return (Left errNoSpace)
Just h —
do tmap (f _update h acode arank elt nfy)
return (Right h)

The f_update function alters each cell state in parallel: ¢ is the code of
array being updated, r is the rank of ¢, (i — v) is the new element, and z
is the old value of a cell in the machine state

f-update :: Nat — Nat — Nat — (Idz — Val) — Bool — Cell — Cell
f-update h c r (i — v) nfy © =
let newcode = ¢ + 1
newrank = r + 1
in if handle x = h
then z -- this is the allocated cell
{arrDef = True, code = newcode,
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eltDef = True, rank = newrank,
low = newcode, high = newcode,
md = 1, val = v,
notify = nfy, zombie = False }
else z -- alter existing cells
{low =if ¢ <low z then low z + 1 else low z,
high = if ¢ < high x then high x + 1 else high z,
code = if ¢ < code r then code z + 1 else code x }

Several examples are helpful in following how the algorithm works. Figure
shows a simple “chained” sequence of updates. Each element is represented
in exactly one cell but it is included in every array which should contain that
element. Figure [0l shows several arrays, where some elements are shared and
others are not.

6.5. The lookupS operation

The operation lookupS a i returns the value of array a at index i, if it
exists. The result is returned as an Fither type, so that Right v indicates a
successful lookup giving the value v, and Left m indicates an unsuccessful
lookup with a message m. If the array a does not exist then an error value
Left errArrayDoesNotFExist is returned. If a exists but does not have an
element with index 7, then Left errNoElement is returned, which can either
be treated as an error or can be used to return the default value for a sparse
array. The lookupS operation does not change the machine state.

lookupS :: Array — Idx — EsfaState (Result Val)
lookupS a i =
do e < encodeS a
case e of
Nothing — return (Left errArrayDoesNotExist)
Just (acode, arank) —
do tmap (f acode i)
ee < tfold g h
case ee of
Nothing — return (Left errNoFElement)
Just (v, 1) — return (Right v)
where f ¢ iz = x {mark = eltDef x A ind x = i
Alow z < e N c< highzx}
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a1
(1) a = update empty (1 — 11) 1. 11
1—11

a2 b1
(2) b = update empty (2 — 22) 1. 22 |1. 11
1—11 2 22

a=3 b= 2 ce 1
(3) ¢ = update empty (3 — 33) 1. 33| |1 22| |1 11
1—11 222 333

a4 b= 2 c=1
(4) d = update b (4 — 44) 1. 44| |1 23| |1 11
1—11 2 22 3—33

de=3
2. 33
4— 44

Figure 6: Shared and unshared elements.
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g x = if mark = then Just (val z, rank z)
else Nothing
h Nothing y =y
h x Nothing = z
h (Just (v1,r1)) (Just (v2,72)) =
if r1 > r2 then Just (v1,r1) else Just (v2,r2)

1. The code for the array with handle = a is found by an associative
search using ¢ < encodeS a.

2. The mark flag is set in each cell where ind = i A lo < ¢ A ¢ < hi.
This is a parallel map taking 1 clock cycle. The marked cells include
the elements of the array as well as shadowed elements; these are called
the candidates.

3. The candidate with the highest rank is fetched, using a parallel fold,
finding the right value and discarding any shadowed elements. The
rank of an element is the number of updates, starting from empty,
that created the element, so the candidate with the highest rank is the
correct result. The rank field cannot overflow, as its value can never
exceed the number of cells in the machine.

6.6. The deleteS operation

The deleteS a operation is similar to update, except that it decrements
codes and shrinks intervals, rather than incrementing codes and expanding
intervals.

6.6.1. Effect of deleteS
Just as with to updateS, there are several cases that determine the action
a cell containing an element will perform.

e Shift: If ¢ <low z then both the low and high fields are decremented.
The representation of the inclusion set shifts down by a unit, but the
size of the set remains the same.

e Shrink: if low x < ¢ < high x then low is unchanged but high is decre-
mented. This shrinks the size of the inclusion set of z to accommodate
the removal of the array being deleted, and if it results in high x <low z
then the element is inaccessible.
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e Unchanged: if high x < ¢ then both the low and high fields are left
unchanged.

To implement this, each cell performs a local computation:

e Every cell z where arrDef x = True either adjusts its code field (if
handle © # a) or sets arrDef ' = False (if handle z = a).

arrDef ©' = arrDef x N\ handle x Z# a
code ' = if ¢ < code x then code z — 1 else code x

e Every cell © where eltDef © = True adjusts its representation of the
inclusion set. If its handle matches a, then its arrDef field is set to
False; this deletes the array (but not necessarily the element). The cell
calculates a temporary Boolean remains which is True if and only if the
element should remain in memory after the deletion, and deleteLater
which is True if the element will be deleted but needs to be retained
until the host processor is notified (this enables a storage manager to
cope with boxed values in the ESF machine).

low z’ =if ¢c<low z then low z — 1 else low x
high ' = if ¢ < high x then high x — 1 else high z
remains = eltDef = A low =’ < high '

deleteLater = eltDef x N\ — remains N notify

Inclusion intervals on the path of the array being deleted have their high
field decremented, while their low field remains unchanged. As a result, it is
possible that an element will have low > high. If this happens, that element
is inaccessible.

6.6.2. Correctness of deleteS

A deletion removes an array from the handle-code mapping, and it also
removes the array from the inclusion set of all its elements.

Consider the deletion of an existing array a in state st. In the re-
sulting state st’ the array a is undefined: arrDef 3’ = False in the cell
y" where handle y' = a. Thus lookupS a i will fail in state st’. For
an arbitrary cell z in state st, the deleteS algorithm defines code z' =
if ¢ < code x then code r — 1 else code x. Therefore, if an arbitrary
array p is defined in state st’,
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encode p st' =
if ¢ < encode p st then encode p st — 1 else encode p st

The calculation of the effect of deletion uses the following properties of
encode.

Lemma 6.15. Suppose array a with code c is being deleted; © is a cell state
containing an element in machine state st, and deleteS transforms it to z’
in st'. Let p be an arbitrary array that exists in st.

1. If encode p st' < c¢ then encode p st' = encode p st.
Proof. Assume encode p st’ < ¢ and consider the following exhaustive
cases.

e If ¢ < encode p st then encode p st' = encode p st — 1 so ¢ <
encode p st' + 1; therefore ¢ < encode p st’ which violates the
assumption.

e If ¢ = encode p st, then p = a and the algorithm sets arrDef z =
False, so encode p st’ is undefined.

e If ¢ > encode p st then encode p st' = encode p st.

2. If ¢ < encode p st’ then encode p st' = encode p st — 1.

Proof. Assume ¢ < encode p st’ and consider the following exhaustive
cases.

e If ¢ < encode p st, then encode p st' = encode p st — 1.

e If ¢ = encode p st, then p = a and the algorithm sets arrDef z =
False, so encode p st’ is undefined.

e If ¢ > encode p st, then encode p st' = encode p st so ¢ >
encode p st which violates the assumption.

O

The following lemmas show that a cell is handled correctly in each of the
three cases. The lemmas for cases Shift and Unchanged are analogous to
those for updateS. The crucial case is Shrink: if ¢ is in the inclusion set for
an element, then after the deletion it is removed and the size of the inclusion
set is reduced. If this causes low x’ > high z’ then the inclusion set is empty
and the cell is inaccessible.
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Lemma 6.16 (Case Delete-Shift). In this case, ¢ < low z.

Proof. Since c<low z the algorithm defines low ' = low x—1 and high ' =
high © — 1.

iset x’ st’
= ( Definition [6.5])
{p:: Nat | low 2" < encode p st' < high z'}
= ( Substitute z for z’ )
{p: Nat | low r — 1 < encode p st' < high z — 1}
= (c<lowzsoc<lowz—1< encode p st’; Lemma [6.15 ([2)) )
{p:: Nat | low z —1 < encode p st —1 < high x — 1}
= ( Add 1 to each side of inequality )
{p:: Nat | low = < encode p st < high =}
= ( Definition [6.5])
1set T st

O

Lemma 6.17 (Case Delete-Shrink). Let z be a cell in state st, and let a
be an array with code c. Suppose deleteS a is executed, resulting in a new
state st' where the cell is transformed to z'. If low x < ¢ < high x then
iset ©' st' = iset x st — {a}.

Proof. Since = (¢ < low z), the algorithm defines low z’ = low z. Since
¢ < high x, it defines high ' = high © — 1. Some of the code values in the
intervals may be greater than ¢ and will be decremented, while others may be
less than or equal to ¢ and will remain unchanged. Therefore the calculation
splits the set into several subsets, similar to the proof for the Expand case
for updateS. The array a is removed from the inclusion set of the modified
cell 2/, which is calculated as follows:

iset x' st’
= ( Definition [6.5] )
{p:: Nat | low 2" < encode p st' < high z'}

= ( Split into sets based on relationship with ¢ )
( (1) set of arrays whose codes are unchanged )
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( (2) set of arrays with decremented codes )
( Code ¢ in z is overwritten in z’ )
{p:: Nat | low 2’ < encode p st' < c}
U{p: Nat | ¢ < encode p st' < high z'}
= ( Substitute z for 2’ )
{p: Nat | low x < encode p st' < c}
U{p: Nat | ¢ < encode p st' < high x — 1}
= ( Substitute st for st’.(1) Lemma 6.15] (I)).(2) Lemma [6.15 (2)) )

{p: Nat | low x < encode p st < c}
U{p: Nat | c < encode p st —1 < highx —1}
= ((2) add 1 to each side of inequality )
{p:: Nat | low x < encode p st < c}
U{p: Nat| c+1< encode p st < high x}
= ( Add and subtract singleton set at ¢ )
{p:: Nat | low z < encode p st < c}
U {p:: Nat | encode p st = c}
—{p:: Nat | encode p st = c}
U {p: Nat|c+1< encode p st < high x}
= ( Reorder (3) and (4) as they are disjoint )
{p:: Nat | low z < encode p st < c}
U{p:: Nat | encode p st = c}
U{p: Nat|c+1< encode p st < high x}
—{p:: Nat | encode p st = c}
= ((4) ¢ = encode a st )
{p:: Nat | low z < encode p st < c}
U{p:: Nat | encode p st = c}
U{p: Nat|c+1< encode p st < high x}
—{a}
= ( Combine set comprehensions )
{p:: Nat | low = < encode p st < high =}
—{a}
= ( Definition [6.5] )
iset © st —{a}
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Lemma 6.18 (Case Delete-Unchanged). In this case, high z < c.

Proof. Since high x < ¢ the algorithm defines low z’ = low = and high z’ =
high x.

iset x’ st’
= ( Definition [6.5] )

{p:: Nat | low 2" < encode p st' < high x'}
= ( Substitute z for 2’ )

{p:: Nat | low z < encode p st' < high z}
= ( Lemma @)

{p:: Nat | low z < encode p st < high x}
= ( Definition [6.5])

iset T st

6.6.3. Implementation of deleteS

The code for the array with handle = a is found by encodeS, and then
a tmap adjusts each cell is updated in parallel. This implementation silently
returns () if the array being deleted did not exist; it is straightforward to
return an error message instead.

deleteS :: Array — EsfaState ()
deleteS a =
do e < encodeS a
case e of
Nothing — return ()
Just (acode, arank) — tmap (fDelete a acode)

fDelete :: Array — Nat — Cell — Cell
fDelete a ¢ x =
let low’ = if ¢ < low z then low z — 1 else low z
high' = if ¢ < high = then high © — 1 else high z
remains = eltDef x N low" < high’
deleteLater = eltDef x N\ — remains N\ notify x
in z {arrDef = arrDef x A handle © # a,
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(1) (2) (3) (4)

a = 4 a = 3 a = 2 a = 1
1. 44 1. 33 1. 2-2 1. 1-1
1—11 1—11 1—11 1—11

b & 1 = =

1. 1-3 1. 12 1. 1-1

21 — 201 21 — 201 21 — 201

c B 2 c = 1 =

2. 23 2. 12 2. 141

22 — 202 22 — 202 22— 202

d & 3 d &5 2 d = 1

3. 33 3. 22 3. 1-1

23 — 203 23 — 203 23 — 203

Figure 7: Deleting an array leaves shared elements intact. (1) Several arrays are
created, some with shared elements: a < wupdateS empty (1 +— 11) False, then
b + wupdateS empty (21 — 201) False, then ¢ + wupdateS b (22 — 202) False, and
d < updateS ¢ (23 — 203) False. The final representation is shown. (2) deleteS b re-
moves array b but the element 21 — 201 is shared with other arrays, so it remains. (3)
deleteS ¢ removes array ¢ but again all elements are shared and remain. (4) deleteS d re-
moves array d. At this point three elements no longer contain any array in their inclusion
set. The corresponding three cells contain no useful information (no array, no element) so
they are immediately reclaimed and are available for use in a future updatesS.

code = if ¢ < code = then code © — 1 else code =,
low = low’, high = high’,

eltDef = eltDef x N remains,

notify = notify x A — deleteLater,

zombie = zombie x V deleteLater}

Figure[llshows how a sequence of deletions can leave all the array elements
undisturbed until a final deletion removes the last bit of sharing; as a result
many cells are reclaimed simultaneously.

Deleting an array is efficient in both time and space. The operation takes
a small constant amount of time. Furthermore, it identifies every cell that has
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become inaccessible, apart from shadowing. After a deletion, two properties
hold:

e Every element that is inaccessible (i.e. there does not exist a future
lookupS that could access it) is reclaimed, provided that the element is
not shadowed.

e Every element that is accessible (i.e. it is possible for a future lookupS
to fetch it) is retained.

7. Complexity

If it can be proved that a functional array is never accessed again after
it has been updated, then the compiler can implement that update by over-
writing the old array element, achieving the efficiency of imperative arrays.
This approach can be supported using compiler analysis, the type system,
or monads [18]. It works well for algorithms that were designed in the first
place for imperative arrays, but it does not help when the flexibility of pure
functional arrays is needed. This approach has been developed extensively,
with efficient array accesses for parallel processors [19]. However, our concern
is with general functional arrays where there is no restriction on the usage
of the operations.

In discussing the complexity of algorithms, it is essential to be clear about
what machine model we are using. The Random Access Machine is a theo-
retical model that corresponds closely to standard von Neumann computer
architectures. The Random Access Machine has a Random Access Memory,
which allows any memory location to be accessed in O(1) time, regardless
of the address. This differs from a Turing Machine, which takes account of
locality and makes it more expensive to access distant locations.

Several issues prevent a straightforward implementation of ESF array
operations on a Random Access Machine in unit time and space. For update
to take O(1) space, array elements must be shared. Since a shared element
belongs to several arrays, there cannot be a simple function from an array
handle and index to the address of the element. However, a linked data
structure such as a tree or list cannot be traversed in O(1) time. Therefore
it appears that a RAM cannot achieve O(1) time and space for update and
lookup, and no such implementation has been found, despite many efforts.
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cost model RAM ESFM

unit time cycle O(1) 0(1)
gate delay O(logn) O(logn x log(logn))
propagation delay  O(y/n) O(v/n)

Table 3: Comparison of cycle time for RAM and ESFM of size n. In the gate delay model,
the RAM needs a tree of multiplexers with delay O(logn) to decode addresses; the ESFM
uses a more complex tree to perform the folds and scans, and the delay is slightly larger.
For large circuits the propagation delay becomes larger than the gate delay.

Conjecture There does not exist an implementation of functional arrays
(update and lookup) such that every operation always takes O(1) time and
space on a Random Access Machine.

The conjecture says that the performance of imperative arrays cannot be
attained by functional arrays, without placing restrictions on how the arrays
are used.

In complexity theory, it is common to consider the costs of operations
using unbounded memory size and unbounded word size. In real computer
systems, there is a fixed word size k and memory size limited by 2¥. We can
still analyze the complexity of an algorithm running in a bounded system:;
the algorithm will fail if it exceeds the bounds. In an unbounded system,
many of the complexity measures have an additional factor of log(log N)
because the index size grows as the memory grows. In this section, we will
consider machines of bounded size, but the essential result (unit time Array
operations with the same circuit size and delay as for RAM) remains valid
for the unbounded case as well.

The system presented in this paper uses its massively parallel digital
circuit to do exactly what the conjecture says is impossible on a RAM archi-
tecture.

The time required by a computer system to perform a computation is
k x p, where k is the number of clock cycles required and p is the clock
period (the reciprocal of the clock speed). It is straightforward to find k. In
calculating p it is essential to state clearly what cost model for the circuit is
being used. It is a fallacy to say that each instruction in a RAM takes O(1)
time but the ESFM has a tree circuit so its clock period is O(logn), and then
to use these figures to compare their speeds.

The ESFM system performs all the operations in Table [2] in a constant
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number of clock cycles (and the constant is small, typically 2 or 3 cycles).
The number of cycles does not depend on the past history of operations
and does not assume any restriction on the usage of arrays. Memory usage
is also optimal: each updateS allocates exactly one cell and there is never
any loss of sharing. Each deleteS identifies every cell that is inaccessible,
apart from shadowing, in constant time. (Reclaiming shadowed cells that
are inaccessible requires additional work.)

Does the ESFM achieve its optimal O(1) cycle count at the expense of an
asymptotically longer clock period, or at the expense of an asymptotically
larger circuit? Table B shows that it does not, and Table [l shows why.

The ESFM contains O(n) flip flops and O(n) logic gates for a system
with n cells. There are many technologies for implementing a random access
memory, and some do not use flip flops or logic gates, but equivalent devices
are used. A RAM contains O(n) “flip flop equivalents” and O(n) “logic gate
equivalents”, so its size is asymptotically the same as the ESFM.

The clock period must be expressed according to a cost model that defines
what aspects of the hardware are being considered, and what aspects are
abstracted away. Some reasonable cost models include:

e Unit time cycle. Assume that each clock cycle is one unit of time. This
model is commonly used in analysis of algorithms: the average case
time for Quicksort is O(n x logn) assuming the unit time cycle model.

e Gate delay. Find the critical path in the circuit and measure its gate
delay, and multiply by a safety factor slightly more than 1. The RAM
needs to decode the memory address, which requires a gate delay of
O(logn) for a memory of size n. The ESFM has a gate delay propor-
tional to the height of the tree, which is also O(logn). A subtle point is
that lookupS requires a comparison of two ranks in each tree node; this
leads to a gate delay of O(logn x logn) with slow ripple comparators
or O(logn x log(logn)) with fast comparators.

e Propagation delay. Storage elements take physical space, and accessing
them requires signals to travel a distance O(y/n) for a memory of size
n. RAM and ESFM both have a propagation delay of O(y/n).

Table [3] compares the time complexity of a clock cycle for ESFM and
RAM. The choice of cost model depends on what aspects of a system seem
most important. For small circuits the gate delay dominates the cycle time,
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logic gate calculations useful calculations
RAM O(n) O(1)
ESFM O(n) O(n)

Table 4: Usage of calculations in RAM and ESFM for a memory access or sweep.

and the gate delay model, which ignores the lengths of wires, is reasonable.
For large circuits, the wire length dominates. The important point is that
comparisons should use the same cost model.

It is not the case that ESFM performs as well as RAM according to every
cost model; in particular, it is likely to require more power. In VLSI circuits,
there is a residual power consumption that remains constant, but further
power is required for each transition that changes the value of a signal. This
means that the parallel calculations in the cells of the ESFM will require
more power than the corresponding bits in a RAM.

How does ESFM achieve the same time complexity as imperative arrays,
while (it is conjectured) a RAM cannot? The answer lies in the address
decoder in a RAM. This is a tree of multiplexers; each level in the tree uses
one bit of the address to select which subtree contains the memory word
being addressed. The tree has a gate delay of O(logn) and it contains O(n)
logic gates, and all it does is to select one word based on an address even
though every flip flop and every logic gate in the tree performs a calculation.
Thus the RAM performs O(n) logic gate calculations in a clock cycle in
order to perform O(1) useful work. The ESFM also performs O(n) logic
gate calculations, but these enable it to perform the O(n) calculations on
codes and inclusion sets that are required to implement the array operations
in a fixed number of cycles (Table [).

8. Implementation and parallel platforms

The complexity analysis in the previous section assumes that sweep is
implemented as a digital circuit. It is also possible to implement the ESFA
system on a standard parallel platform; this will not achieve optimal perfor-
mance but it is still possible to achieve fast array operations. This section
discusses the issues in using a parallel computer, and describes an implemen-
tation that has been carried out using a GPGPU.

An alternative to implementing the circuit in dedicated hardware is to
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emulate it using a field programmable gate array (FPGA). This is a hardware
device consisting of an array of small scale units (general logic functions,
small memories, and the like) along with a programmable interconnection
network that can be used to connect the small units to form a digital circuit.
The advantage of an FPGA is that it is an off-the-shelf component; the
disadvantage is that it is slower and less dense than a custom VLSI chip.

In practice, the hardest part of using an FPGA is often interfacing it
with a host computer. This is not at all standardized, and it requires a com-
bination of communication software, device driver software, and interfacing
hardware that is laid out on the FPGA chip itself. Some FPGAs are tightly
coupled with a processor on the same chip, but others require slower 1/0
connections.

An FPGA platform might benefit by tiling. The idea is that a small
number k of tree machine cells are mapped onto one physical cell. Each
sweep operation would require k cycles to allow each physical cell to emulate
its virtual ones. This increases the size of the memory without requiring the
extra tree nodes and logic functions, with a commensurate slowdown.

General purpose graphical processing units (GPGPU) [12] are a form of
fine-grain multicore processor targeted at a restricted form of data paral-
lelism. Originally these devices were intended for graphics algorithms, but
they have found increasing usage for more general data parallel computation,
including circuit simulation. Current GPGPU chips have many small pro-
cessor cores (on the order of 1000), and offer good performance for regular
applications.

The system described in this paper has been implemented in several ways:

e The laws for arrays provide an executable specification in Haskell.

e The sweep function, parallel combinators, and implementations of updatesS,
lookupS and deleteS given in this paper comprise part of a high level
circuit simulation written in Haskell. The rest of the code, documen-
tation, examples, and test cases, are available on the web [13].

e A synthesizable circuit specification in the Hydra hardware description
language [10] allows simulation at the level of logic gates.

e A portable parallel implementation has been written in C and CUDA
and tested on an NVidia GeForce GTX 590 GPGPU with 512 cores
and 1.22 GHz clock speed [20]. Performance was measured using a
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test sequence of 50,000 operations that were generated randomly, run-
ning on an ESFM system with 8K cells. The operation time including
memcpy (overheads introduced because of the GPU architecture) for
updateS is 18.8 us (microseconds); for lookupS is 16.5 us; for deleteS
is 11.9 ps. Using the nvprof tool, which measures the calculation time
but does not include the memcpy overhead, the time for updateS is 8.3
microseconds; for lookupS is 8.1 microseconds; and for deleteS is 3.5
microseconds.

The sweep circuit can perform other parallel computations, and is par-
ticularly useful for associative searching. Thus the API can be extended to
support general content-addressable parallel processing [3].

Most algorithms have been developed for languages that provide imper-
ative arrays. These algorithms use chained updates to arrays (i.e. once
an array is updated it is never used again), and there is no particular ad-
vantage in replacing them with ESFA. The most promising applications for
ESFA make essential use of sharing with multi-threaded access and/or sparse
traversal and searching.

Functional arrays provide a flexible undo/redo facility. Suppose a pro-
gram records transactions by updating an ESFA, keeping the most recent
array as the current state. The program can revert to any previous state
simply by accessing the corresponding state; there is no need to rebuild any
data structures.

ESFA can represent the environment in a lambda calculus reducer. Each
variable is represented by a unique integer, each environment is an ESFA,
and the initial environment is empty. Obtaining the value of a variable is
performed by a lookup, while extending the environment for a beta reduction
requires an update:

eval (Var x) env = lookup env x
eval (App (Ax — el) e2) env = eval el (update env z e2)

An SECD machine has been developed using this method, and has been used
to test the ESFA system running on a simulated circuit.

Programming language implementations sometimes use complex data struc-
tures to represent the evaluation stack as well as variable environments.
Sometimes this can be inefficient: a dynamically bound variable may re-
quire a list traversal to find its value, while an Array could obtain the value
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in one operation. Constraint solving algorithms use backtracking or corou-
tines to explore several alternative paths, and functional arrays may prove
useful for representing the constraint sets.

9. Conclusion

This paper conjectures that a standard computer based on the Random
Access Machine model cannot implement functional array operations in con-
stant time, unless the program makes restricted use of the operations.

Despite this conjecture, the paper gives the design of a digital circuit im-
plementing a smart memory and a set of algorithms that use that memory to
achieve the goal: functional array lookup and update, as well as several other
operations supporting extensible and sparse arrays, can all be implemented
in unit time. Each operation requires a small constant number of steps, and
there is no restriction on the past history of updates. A lookup or update
always takes exactly the same time, regardless of how much sharing there is
among all the existing arrays.

The algorithms are implemented in Haskell, and the circuit is specified
using Hydra, a hardware description language embedded in Haskell. There
is a parallel GPU implementation that gives good performance, and the al-
gorithm also runs on the simulated circuit.

The implementation of ESFA relies on a fine-grain data parallel platform
to hold the array memory. Each operation involves a small amount of cal-
culation in every location in the entire memory. The system performs extra
work—a small amount of arithmetic in every location—and then mitigates
the extra work with massive parallelism—ideally, a processing element in
every location.

However, there is a more insightful way to think of the system. Consider
a sequential program running on standard hardware, with a RAM memory.
Programmers think of the RAM as just doing a little work on the word
that is accessed (if they think of the RAM at all). However, a RAM is a
digital circuit that actually has to perform an enormous amount of work on
every access (not exactly a computation on every location, but that is a fair
intuition). We think of the RAM as performing a small amount of work
because most of its work is wasted and not worth thinking about. The ESFM
does more work than the RAM, but only by a constant factor, and it uses
this work to enable it to support a useful data structure more efficiently than
a RAM can.

53



ESF arrays are not just a theoretical novelty. Although the fastest host for
the ESFM would be an application specific integrated circuit (ASIC), which
has not been implemented, the current GPU implementation is fast enough
for some applications, and is easily portable, supporting future research in
purely functional data structures.
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