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Abstract

Rewriting is a framework for reasoning about functional programming. The
dependency pair criterion is a well-known mechanism to analyze termination of
term rewriting systems. Functional specifications with an operational semantics
based on evaluation are related, in the rewriting framework, to the innermost
reduction relation. This paper presents a PVS formalization of the dependency
pair criterion for the innermost reduction relation: a term rewriting system is
innermost terminating if and only if it is terminating by the dependency pair
criterion. The paper also discusses the application of this criterion to check
termination of functional specifications.

Keywords: Automating Termination, Termination of Rewriting Systems,
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1. Introduction

Although closely related to the halting problem [1], and thus undecidable,
termination is a relevant property for computational objects. This property is
crucial to state correctness of programs, since it can guarantee that an output
will eventually be produced for any input. Even in concurrent and reactive sys-
tems, important properties as progress and liveness are related to termination.

It is well-known that term rewriting systems (TRSs) are an adequate formal
framework to reason about functional programs. In this context, the depen-
dency pairs (DPs) criterion ([2, 3, 4, 5]), provides a good mechanism to analyze
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termination. Instead of checking decreasingness of rewrite rules, this criterion
aims to check just decreasingness of the fragments of rewrite rules headed by
defined symbols. Indeed, a dependency pair consists of the left-hand side (lhs)
of a rewrite rule and a subterm of the right-hand side (rhs) of the rule headed
by a defined symbol. Thus, a dependency pair expresses the dependency of a
function on calls of any function. Checking decreasingness over chains of such
pairs corresponds, in a functional specification, to the construction of a ranking
function that provides a measure over data exchanging points of the program
and that decreases with respect to some well-founded order [6]. For functional
programs, such measures are given over the arguments of each possible (recur-
sive) function call (data exchange point), and it is expected that they decrease
after each function call. This is indeed the semantics of termination used in sev-
eral proof assistants; in particular, in the Prototype Verification Systems (PVS)
such ranking functions should be provided by the specifier, as part of each recur-
sive definition, and the decreasingness requirements are implemented through
the so-called termination Type Correctness Conditions (termination TCCs, for
short). Termination TCCs are proof obligations built by static analysis over the
recursive definitions, stating that the measure of the actual parameters of each
recursive call strictly decreases regarding the measure of the formal parameters.

Eager evaluation determines the operational semantics of several functional
languages, and in particular of the functional language PVS0 specified in PVS
for the verification of equivalence between different criteria to automate termi-
nation (available as part of the NASA LaRC PVS library at https://github.
com/nasa/pvslib). The eager evaluation strategy of functional programs cor-
responds to innermost normalization. Thus to provide formal support to adap-
tations of the DP criterion over functional programming it is essential to verify
the DP criterion for innermost reductions [5].
Main contribution. This work presents a complete formalization of the DP
criterion for innermost reduction. The formalization extends the PVS library for
TRSs (named also TRS) that encompasses the basic notions of rewriting as well
as some elaborate results (e.g., [7], [8]). This library includes specifications of
terms, positions, substitutions, abstract reduction relations, and term rewriting
systems which are adequate for the development of formalizations that remain
close to article and textbook proofs, as the one presented in this paper. Although
having notions such as noetherianity, TRS did not provide some elements required
to fulfill the objective of formalizing the innermost DP criterion. In this sense,
this work brings as a minor contribution specifications and formalizations related
to the innermost reduction, non-root reduction and reduction over descendant
relations, and as a major one, the formalization of the equivalence between
the innermost DP criterion and the noetherianity of the innermost reduction
relation.

It is interesting to stress here that the full formalization of the DP criterion
for the ordinary rewriting relation is also included in the theory, but since the
interesting application is on termination of functional specifications, the focus of
this paper is restricted to the innermost reduction case. The paper also discusses
how the DP innermost reduction termination criterion over TRSs is related to
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the termination of PVS0 functional specifications.
Outline. Section 2 gives a brief overview of the basic notions of rewriting
and the Dependency Pairs criterion, along with definitions of specific rewrit-
ing strategies required in the formalization ahead. Section 3 presents the ba-
sic elements of the theory TRS used in this work along with some additional
ones, included by the development of this work, that were required for this
formalization. Section 4 describes the proof that innermost noetherianity im-
plies termination in the dependency pair criterion, and Section 5 the converse.
Section 6 discusses related work, Section 7 how may be applied this termi-
nation criterion to termination of functional programs, and Section 8 con-
cludes and discusses future work. The formalization is available as part of
the TRS library at http://trs.cic.unb.br and also at the NASA PVS library
https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

2. Basic Notions

Standard rewriting notation for terms, subterms, positions and substitutions
(e.g., [9]), will be used. Given any relation R, R+ and R∗ denote, respectively,
its transitive and reflexive-transitive closure. The relation R∗ between two terms
will be referred as derivation. For a relation R and element s, if there exists t
such that s R t holds, then s is said to be R-reducible, otherwise, it is said to
be in R-normal form, denoted by nfR(s).

A TRS E is a set of rewrite rules that are ordered pairs of terms in T (Σ, V ),
the set of terms freely generated from a countable set of variables V according
to a signature Σ. Whenever the set E is clear from the context, it will be
omitted in the notation. Each term t ∈ T (Σ, V ) is thus given as a variable or as
a function symbol g applied to a tuple of terms of length given by the arity of g
according to the signature Σ. In order to keep the notation close to the one in the
specification, the symbol f is not used as a function symbol, but as the special
operator that returns the root function symbol of application terms, which is
automatically created when the datatype for terms is specified. Positions of
terms are given as sequences of naturals, as usual: the set of positions of a
term t, denoted as Pos(t) includes the root position that is the empty sequence,
denoted as λ, and if t is an application, say g(t1, . . . , tn), all positions of the
form {iπ | 1 ≤ i ≤ n, π ∈ Pos(ti)}. Given a position π ∈ Pos(s), the subterm of
s at position π is denoted as s|π. The subterm relation is denoted by �: s�s′, if
there exists π ∈ Pos(s) such that s′ = s|π. If such given position π is such that
π 6= λ, s′ is called a proper subterm of s, which is denoted as s � s′. Notation
s[π ← t] is used to denote the term resulting from replacing the subterm at
position π(∈ Pos(s)) of s by t.

Example 2.1 (Terms, Subterms, TRS, Positions, Reductions, Derivations).
Consider the three rules below conforming a TRS for the Ackermann function,
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where s and 0 are the usual constructors for naturals.

a(0, y)→ s(y)
a(s(x), 0)→ a(x, s(0))
a(s(x), s(y))→ a(x, a(s(x), y))

Terms of the form 0, s(0), etc are normal forms. Terms of the form a(0, sk(0))
reduce into sk+1(0), and terms of the form a(s(0), sk(0)) derive into sk+2(0), for
k > 0, where sk abbreviates k applications of s. The term a(0, a(s(0), sk(0))) in-
nermost reduces into a(0, a(0, a(s(0), sk−1(0)))). Previous innermost reduction
happens at position 1 (the subterm at position 0 is 0).

A rewrite rule is denoted by l→ r, and should satisfy the additional restric-
tions that l /∈ V and that each variable occurring in its right-hand side r also
occurs in its left-hand side l. Given a TRS E, a term s is said to be reducible
at position π ∈ Pos(s) if there exist some rule l→ r, substitution σ and term t
such that lσ = s|π and t = s[π ← rσ]; then s is said to reduce to t at position π

and is denoted as s
π→ t. If no specific position is given, but there exists some

position π ∈ Pos(s) and term t such that s
π→ t, s is said to be reducible, and

whenever t is given, s is said to reduce to t, denoted as s→E t.
In some specific implementations, such as the one used in this work to deal

with chains of Dependency Pairs, it is interesting to avoid reductions at root
position of terms. For this, one uses the non-root reduction relation, which is

denoted by
>λ→, is induced by a TRS E and relates terms s and t whenever s

π→ t
for some π ∈ Pos(s) such that π 6= λ.

A term s is said to be innermost reducible at position π ∈ Pos(s) if nf>λ→
(s|π)

and s
π→E t for some term t; this is denoted as s

π→i t. If no specific position is
given, but there exists some position π ∈ Pos(s) and term t such that s

π→i t, s
is said to be innermost reducible, and whenever t is given, s is said to innermost
reduce to t; this is denoted as s→i t. Whenever the innermost reduction takes
place at a position π 6= λ, one has a so-called non-root innermost reduction,

denoted by
>λ→i.

Another important relation in this paper is the descendants of a given term
through a given relation. The reduction relation restricted to (descendants of)
a term t is induced by pairs of terms u, v derived from t, that is t →∗ u and
t→∗ v, and such that u→ v. The notation used is →

t
. For pairs of terms that

are descendants of t and related one with the other by a reduction at specific
position π, the notation

π→
t

is used. Analogous notation applies to innermost

and non-root reductions. Also, regarding specific terms, a term s is (innermost)
terminating if no infinite (innermost) derivation starts with it. If the term is not
terminating, the notation ↑ (or ↑i) is used. Whenever a term is not terminating,
but all its proper subterms are, one says the term is minimal non-terminating
(mnt for short, denoted by �), and for innermost termination one says minimal
innermost non-terminating (mint for short, denoted by �i).

The termination analysis for rewriting systems aims to verify the non exis-
tence of infinite reduction steps (derivations) for every term over which the

4



reduction relation is applied. In order to do this, the DP technique, pro-
posed in [3], analyzes the possible reductions in a term resulting from a pre-
vious reduction, i.e., those that can arise from defined symbols on the rhs’s of
rules. Thus, it analyzes the defined symbols of a TRS E, i.e., the set given by
DE = {g | ∃(l→ r ∈ E) : f(l) = g}.

Definition 2.1 (Dependency Pairs). Let E be a TRS. The set of Dependency
Pairs for E is given as

DP (E) = {〈l, t〉 | l→ r ∈ E ∧ r � t ∧ f(t) ∈ DE}

Example 2.2 (Dependency Pairs). The DPs for the TRS in Example 2.1 are
given below.

〈a(s(x), 0), a(x, s(0))〉 from the second rule

〈a(s(x), s(y)), a(x, a(s(x), y))〉 from the third rule at root position

〈a(s(x), s(y)), a(s(x), y)〉 from the third rule at position 1 of the rhs

Standard definitions of DPs substitute defined symbols by new tuple sym-
bols to avoid (innermost) reductions at root positions, which is required for the
analysis of termination. Using such tuple symbols (or marked defined symbols)
is convenient when using polynomial interpretations since it allows given differ-
ent interpretations to the defined symbols and their associated tuple symbols
(e.g., [5], [10]). For the main purpose of this work (that is the formalization
of the innermost DP criterion), and for relating the DP criterion with other
termination criteria (available in the PVS theory PVS0), the flexibility allowed
by tuple symbols would not be required. In the current formalization, instead of
extending the language with such tuple symbols, DPs are built with unmarked
symbols of the original signature and reductions at root position are avoided
through the restriction to non-root (innermost) derivations. This choice will
be made clearer in Section 3. The advantage of our approach is that in this
manner, dealing with new reduction relations over the extended signature is not
required.

Each dependency pair represents the possibility of a future reduction after
one (innermost) reduction step. However, distinct rewriting redexes can appear
in terms after (possibly) several (innermost) reduction steps, which can also give
rise to another possible reduction, producing a Dependency Chain.

Definition 2.2 (Dependency Chain). A dependency chain for a TRS E, E-
chain, is a finite or infinite sequence of dependency pairs 〈s1, t1〉, 〈s2, t2〉 . . . for

which there exists a substitution σ such that tiσ
>λ→
∗
si+1σ, for every i below the

length of the sequence, after renaming the variables of pairs with disjoint new
variables.

Example 2.3 (Dependency Chain). A dependency chain built using the second
DP in the Example 2.2 is given by:

〈a(s(x), s(y)), a(x, a(s(x), y))〉, 〈a(s(x), s(y)), a(x, a(s(x), y))〉
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since a(s(0), a(s2(0), 0))→∗ a(s(0), s(a(s(0), 0))).

Similarly, the notion of Innermost Dependency Chain is given:

Definition 2.3 (Innermost Dependency Chain). An innermost dependency
chain to a TRS E, E-in-chain, is a finite or infinite sequence of dependency
pairs 〈s1, t1〉〈s2, t2〉 . . . for which there exists a substitution σ such that, for every

i below the length of the sequence, tiσ
>λ→
∗
i si+1σ and nf>λ→

(si), after renaming

the variables of pairs with disjoint new variables.

Termination is then defined as the absence of infinite (innermost) depen-
dency chains (cf., Theorems 3.2 and 4 of [3]).

3. Specification

This paper presents an extension of the PVS term rewriting library TRS.
This library is a development that already contains the basic elements of ab-
stract reduction systems and TRS, such as reducibility, confluence and noethe-
rianity regarding a given relation, notions of subterms and replacement, etc.
Furthermore, this theory embraces several elaborate formalizations regarding
such systems, such as confluence of abstract reduction systems (see [11]), the
Critical Pair Theorem (see [7]) and orthogonal TRSs and their confluence (see
[8]).

Terms in the theory TRS are specified as a datatype with three parame-
ters: nonempty types for variables and function symbols, and the arity function
of these symbols. Terms are either variables or applications built as function
symbols with a sequence of terms of length equal to its arity. The predicate
app? holds for application terms and, as previously mentioned, the operator f

extracts the root function symbol of an application.
The theory rewrite rules.pvs specifies rewrite rules (as pairs of terms,

restricted as usual) and the notion of a set of defined symbols for a set of
rewrite rules E (i.e., DE) given as predicate defined? in Specification 1.

Specification 1: Predicate for defined symbols.

de f i ned ?(E)(d : symbol) : bool =
∃(e ∈ E) : f (lhs(e)) = d

Basic elements and results were imported in this formalization, such as afore-
mentioned terms, rules and predicates to represent pertinence of positions of a
term (positonsOF in theory positions.pvs), functions to provide subterm of
specific position (subtermOF in theory subterm.pvs), the replacement operation
(replaceTerm in theory replacement.pvs) and so on. However, specification
of some general definitions regarding TRS’s required to specify DPs and formal-
ization of several properties were missing and filled in as part of this work. Some
of these new basic notions and results were included either in existing theories,

such as the notion of non-root reduction (
>λ→) specified in theory reduction.pvs,
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or in new complementary basic theories such as innermost reduction.pvs and
restricted reduction.pvs, where the relations →i and →

t
are found.

Furthermore, the new basic definitions are, mostly, specializations of previ-
ously ones, such as the notions presented by predicates reduction fix? and
reduction? (see Specification 2), which respectively specify the predicates for

relations
π→ and → (in theory reduction.pvs). Notice that such relations are

specified as predicates over pairs of terms in a Curryfied way, a discipline fol-
lowed through the whole TRS library that allows one to rely, for instance, on
parameterizable definitions and properties provided for arbitrary abstract reduc-
tions systems, such as closures of relations (in theory relations closure.pvs),
reducibitity and normalization (in theory ars terminology.pvs), noetherianity
(in theory noetherian.pvs), etc.

Specification 2: Predicates for
π→ and → relations.

r e d u c t i o n f i x ?(E)(s, t :term, π ∈ Pos(s)) : bool =
∃(e ∈ E, σ) :
s|π = lhs(e)σ ∧ t = s[π ←rhs(e)σ]

r educt i on ?(E)(s, t :term) : bool =
∃(π ∈ Pos(s)) :

r e d u c t i o n f i x ?(E)(s, t, π)

The newly required relations are found in theory innermost reduction.pvs,

and are specified as non root reduction? (
>λ→), is nr normal form? (nf>λ→

),

innermost reduction fix? (
π→i), innermost reduction? (→i) and finally

non root innermost reduction? (
>λ→i).

Specification 3: Predicates for the
>λ→ , nf>λ→

,
π→i, →i and

>λ→ i relations.

non roo t r educ t i on ?(E)(s, t) : bool =
∃(π ∈ Pos(s)| π 6= λ) :

r e d u c t i o n f i x ?(E)(s, t, π)

i s n r no rma l f o rm ?(E)(s) : bool =
∀(π ∈ Pos(s)| π 6= λ) :

i s norma l fo rm ?(reduct ion ?(E))(s| π)

i n n e r m o s t r e d u c t i o n f i x ?(E)(s, t, (π ∈ Pos(s))) : bool =
i s n r no rma l f o rm ?(E)(s| π)) ∧ r e d u c t i o n f i x ?(E)(s, t, π)

innermost r educt i on ?(E)(s, t) : bool =
∃(π ∈ Pos(s)) :

i n n e r m o s t r e d u c t i o n f i x ?(E)(s, t, π)

non roo t inne rmos t r educ t i on ?(E)(s, t) : bool =
∃(π ∈ Pos(s)| π 6= λ) :

i s n r no rma l f o rm ?(E)(s|π) ∧ r e d u c t i o n f i x ?(E)(s, t, π)

The notion of →
s

is given in Specification 4 as rest? for any binary relation
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R in theory restricted reduction.pvs. A specialization of restricted relations
for term rewriting is given by arg rest?, allowing to fix the argument where
innermost reductions can take place between given descendants of a term s
(i.e., relation

π→
t

), which is specified in theory innermost reduction.pvs. The

function first(π) returns the first element of the sequence of naturals given
by the position π.

Specification 4: Predicates for the →
s

and
π→
t

relations.

r e s t ?(R, s)(u, v) : bool =
(sR∗ u) ∧ (sR∗ v) ∧ (uRv)

a r g r e s t ?(E)(s)(k)(u, v) : bool =

r e s t ?(
>λ→ i, s)(u, v) ∧

∃(π ∈ Pos(s)| π 6= λ) :
f i r s t (π) = k ∧
i n n e r m o s t r e d u c t i o n f i x ?(E)(u, v, π)

Previously mentioned discipline of Curryfication and modularity of TRS that
allows generic application of rewriting predicates and their properties over gen-
eral rewriting relations is followed. For instance, in the specification of arg rest?

(Specification 4), the predicate rest? receives as parameter the relation
>λ→i,

satisfying non root innermost reduction?(E).
In theory dependency pairs.pvs the notion of DP and its termination cri-

terion are specified. As previously mentioned, instead of extending the language
with tuple symbols, DPs are specified with the same language of the given sig-
nature, and thus DPs chained through non-root (innermost) reduction.

Specification 5: Predicate for Dependency Pairs as pairs of terms.

dep pa i r ?(E)(s, t) : bool =
app?(t) ∧ de f ined ?(E)( f (t)) ∧
∃(e ∈ E) : lhs(e) = s ∧ (∃(π ∈ Pos(rhs(e))) : rhs(e)|π = t)

This specification of DPs follows the standard theoretical approach in a
straightforward manner. However, it depends on two existential quantifiers that,
throughout the proofs, would bring several difficulties about which rule and posi-
tion had created the DP being analyzed. This is because, due to the PVS proof
calculus, whenever these existential quantifiers appear in the antecedent of a
proof, their Skolemization leads to some arbitrary rule and position being cho-
sen, making it difficult to construct derivations of terms associated with chained
DPs. It is easy to see that different rhs positions, and even different rules can
produce identical DPs; take for instance the TRS below, where 〈h(x, y), g(x, y)〉
can be built in three different manners.

{h(x, y)→ h(g(x, y), g(g(x, y), y), h(x, y)→ g(x, y), g(x, y)→ y}

To discriminate the manner in which DPs are extracted from the rewrite
rules and to circumvent the difficulties of existential quantifiers, an alternative
notion of DP is provided in Specification 6.
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Specification 6: Predicate for Dependency Pairs as a pair of rule and position at its rhs.

d e p p a i r a l t ?(E)(e, π) : bool =
e ∈ E ∧ π ∈ Pos(rhs(e)) ∧
app?(rhs(e)|π) ∧ de f ined ?(E)( f (rhs(e)|π)

Having the rule and position that generate the DPs allows, for instance, fur-
ther specification of recursive functions to adjust and accumulate the contexts
of any infinite chain of DPs in order to build the associated infinite deriva-
tions (more details are given in Section 4). Here, it is important to stress that
for termination analysis and automation, whenever dep pair alt?(E)(e, π) and
dep pair alt?(E)(e′, π′) are such that lhs(e) = lhs(e′) and rhs(e)|π = rhs(e′)|π′ ,
it is sufficient to consider only one of these DPs. Other implementable refine-
ments are discussed in Section 6 on related work.

In the remainder of the discussion, these two definitions will be distinguished
if necessary, and in particular, for the sake of simplicity, the first and second
elements of a DP will be identified with the lhs of the rule and the subterm at
position π of the rhs of the rule.

Notice that both specifications for DPs are currifyed, allowing the definition
of the types dep pair(E) and dep pair alt(E).

In order to check that an infinite sequence of DPs form an infinite (inner-
most) dependency chain, it is required, as given in Definitions 2.2 and 2.3, that
every pair of consecutive DPs in this sequence be related through (innermost)
non-root reductions, after renaming their variables, regarding some substitu-
tion. This gives rise to an imprecision since the type of substitutions does not
allow infinite domains, as discussed in [12]. This issue is circumvented by spec-
ifying sequences DPs in association with sequences of substitutions. Thus, by
allowing a different substitution for each DP in the sequence, it is possible to
specify the notion of (innermost) chained DPs (See Specification 7).

Specification 7: Predicates for (innermost) chainned Dependency Pairs.

chained dp ?(E)(dp1, dp2 : dep pa i r (E))(σ1, σ2) : bool =
dp′12σ1 →∗>λ dp

′
21σ2

inn cha ined dp ?(E)(dp1, dp2 : dep pa i r (E))(σ1, σ2) : bool =
i s n r no rma l f o rm ?(E)(dp′11σ1) ∧ i s n r no rma l f o rm ?(E)(dp′21σ2) ∧
dp′12σ1 →∗in>λ dp

′
21σ2

In Specification 7, the elements of a DP, say dp, are projected by the operator
′ , as dp′1 and dp′2, used to project elements of tuples in PVS. Using these

specifications of (innermost) chained DPs, whenever predicates in Specification
8 hold for a pair of a sequence of DPs and substitutions, such pair is said to be
an infinite (innermost) dependency chain.
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Specification 8: Predicates for infinite (innermost) Dependency Chains.

i n f i n i t e d e p c h a i n ?(E)(dps : sequence[dep pa i r (E)],
sigmas : sequence[Sub]) : bool =

∀(i : nat) : chained dp ?(E)(dps(i), dps(i+ 1))(sigmas(i), sigmas(i+ 1))

i n n i n f i n i t e d e p c h a i n ?(E)(dps : sequence[dep pa i r (E)],
sigmas : sequence[Sub]) : bool =

∀(i : nat) : inn cha ined dp ?(E)(dps(i), dps(i+ 1))(sigmas(i), sigmas(i+ 1))

Finally, the (innermost) DP termination criterion is specified as the absence
of such infinite chains in Specification 9, where the two first predicates specify
the criterion for the standard notion of DPs (Specification 5), and the third and
fourth ones for the alternative one (Specification 6). Notice that alternative
DPs are translated into standard DPs in the third and fourth predicates.

Specification 9: Predicates for (innermost) termination for the two specifications of DPs.

dp terminat ion ?(E) : bool =
∀(dps : sequence[dep pa i r (E)], sigmas : sequence[Sub]) :
¬ i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

inn dp te rminat i on ?(E) : bool =
∀(dps : sequence[dep pa i r (E)], sigmas : sequence[Sub]) :
¬ i n n i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

d p t e r m i n a t i o n a l t ?(E) : bool =
∀(dps alt : sequence[ d e p p a i r a l t (E)], sigmas : sequence[Sub ] ) :

LET dps = LAMBDA( i : nat ) : ( lhs(dps alt(i)′1),
rhs(dps alt(i)′1)|dps alt(i)′2 ) IN

¬ i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

i n n d p t e r m i n a t i o n a l t ?(E) : bool =
∀(dps alt : sequence[ d e p p a i r a l t (E)], sigmas : sequence[Sub ] ) :

LET dps = LAMBDA( i : nat) : (lhs(dps alt(i)′1),
rhs(dps alt(i)′1)|dps alt(i)′2 ) IN

¬ i n n i n f i n i t e d e p c h a i n ?(E)(dps, sigmas)

As aforementioned, several elements were specified to deal with various
reduction relations, for which several properties were formalized but not dis-
cussed in this paper since the focus here is on formalization of innermost ter-
mination by DPs. Furthermore, the alternative version of DPs is used aim-
ing to simplify proofs, and in order to ensure that the corresponding inner-
most DP criteria are the same, the equivalence inn dp termination?(E) ⇔
inn dp termination alt?(E) was formalized in theory dependency pairs.pvs

as lemma dp termination and alt eq. This proof is quite simple, building by
contraposition infinite sequences of standard chained DPs from alternative ones
and vice versa.
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4. Necessity for the Innermost Dependency Pairs Criterion

Lemma inn noetherian implies inn dp termination formalizes this re-
sult, which is specified in Specification 10 along with the specification of the
noetherian? predicate over a given relation, which specified as holding when-
ever the converse of this relation is well-founded (both well founded? predicate
and function converse follow the standard definition and are specified in the
prelude file of PVS).

Specification 10: The noetherian? predicate and the necessity lemma.

noether ian ?(R) : bool = we l l f ounded ?( converse (R) )

i n n n o e t h e r i a n i m p l i e s i n n d p t e r m i n a t i o n : LEMMA
∀(E) :

noether ian ?( innermost r educt i on ?(E))→ i nn dp te rminat i on ?(E)

The formalization follows by contraposition, by building an infinite sequence
of terms associated with an infinite innermost derivation from an infinite chain
of dependency pairs. In order to build these terms, it is necessary to accumulate
the contexts where the reductions would take place regarding the rhs of the rule
that generates each DP in the chain. The intuition of this formalization follows
directly from the theory, and is summarized in the sketch given in Figure 1.

l1σ1

λ−→in

r1σ1

r1σ1|π1

−→∗in>λ

l2σ2

λ−→in

r2σ2

r2σ2|π2

−→∗in>λ

l3σ3

λ−→in

r3σ3

r3σ3|π3

−→∗in>λ · · ·

⇓

r1σ1

−→+
in

r1σ1[π1 ← r2σ2]

−→+
in

r1σ1[π1 ← r2σ2[π2 ← r3σ3]]

−→+
in · · ·

Figure 1: Proof sketch: building infinite innermost derivations from infinite innermost DP-
chains.

Since there is a root reduction associated with each DP in the sequence, from
its lhs to the rhs of the related rule, and a non-root innermost derivation to reach
the lhs of the next DP from the rhs of the current DP, it is relatively simple
to manipulate the rules and positions using the alternative dependency chain
specification to build recursively a sequence of terms related by →+

i through
the replacement operation.

To perform this construction, the recursive function term pos dps alt is
used, taking sequences of DPs and substitutions and producing indexed pairs
of term and position accumulating contexts in such a way that the terms are

11



related by →+
i whenever the given sequence is chained (Specification 11). As

illustrated in Figure 1, if the sequence is chained, the first pair of term and
position is computed as (r1σ1, π1); the second as (r1[π1 ← r2σ2], π1 ◦π2); and so
on. The function term pos dps alt uses the previously obtained accumulated
context (C) and replaces the rhs of the current DP by the rhs of the next DP in
the sequence. Positions to perform the replacement are given by accumulation
of the positions in the alternative definition of DPs (π).

Specification 11: Function to accumulate contexts to build an infinite sequence of terms.

t e rm pos dps a l t (E)(dps : sequence[ d e p p a i r a l t (E)],
sigmas : sequence[Sub], i :nat ) :
RECURSIVE {(C, π) | π ∈ Pos(C)}=

IF i = 0 THEN
(rhs(dps(0)′1)sigmas(i), dps(0)′2)

ELSE LET (C, π) = te rm pos dps a l t (E)(dps, sigmas, i− 1) IN
(C[π ←rhs(dps(i)′1)sigmas(i)], π ◦ dps(i)′2)

ENDIF
MEASURE i

Then, an infinite sequence of terms can be built from an infinite chain given
by sequences of DPs and substitutions dps and sigmas as:

Specification 12: Function to build the terms in an infinite derivation.

LAMBDA( i : nat ) : t e rm pos dps a l t (E)(dps, sigmas, i)′1

Notice that the function term pos dps alt would provide an infinite se-
quence of terms for any pair of infinite sequences of DPs and substitutions,
disregarding if they form an infinite innermost chain or not. To prove that
the generated infinite sequence indeed describes an infinite derivation for the
relation →i, this function should be applied to a pair dps and sigmas that
constitutes an infinite chain.

This is proved by showing the non-noetherianity of →+
i that relates con-

secutive terms generated by the function term pos dps alt. The proof follows
by induction, whereas for the induction basis it must be proved that the first
term generated is related to the second by →+

i . term pos dps alt builds these
terms just using the first and second DPs and substitutions, say ((l1, r1), π1),
((l2, r2), π2), and σ1 and σ2 as in Figure 1, in the chained input. The first term
is r1σ1 and the second r1σ1[π1 ← r2σ2], which is equal to r1σ1[π1 ← l2σ2[λ ←
r2σ2]]. Since contiguous pairs in the sequence are innermost chained and→∗in>λ
is compatible with contexts (by monotony of closures, since →i is compatible

with contexts and
>λ→i⊆→i), one has that r1σ1 →∗in>λ r1σ1[π1 ← l2σ2]. And,

also by the innermost chained property, l2σ2 is a normal instance of the lhs of
a rule, i.e., a single innermost reduction step can be applied only at root posi-
tion giving r2σ2. Since a single innermost reduction step corresponds directly
to a replacement operation, and in this case at root position, one would have
one innermost reduction step r1σ1[π1 ← l2σ2]

π1→i r1σ1[π1 ← r2σ2]. Thus, one
would have r1σ1 →+

i r1σ1[π1 ← r2σ2]. The inductive step considers analogously
contiguous DPs and substitutions in the chained input, the only extra details

12



are regarding the current term and position computed in the previous recursive
step by term pos dps alt. Notice that in the ith iteration the current term can
be seen as a context C with a hole at the accumulated position, say π, filled
with term ri|πiσi. Indeed, in the induction basis the context is given by r1σ1

with a hole at position π1. The term and accumulated position generated by
term pos dps alt are given as C[π ← ri+1σi+1] and π ◦ πi+1. Notice that this
term can be seen as a context with a hole at the accumulated position filled
with the term ri+1|πi+1 . Finally, observe that C[ri|πiσi]→+

i C[ri+1σi+1].
Notice that this formalization is very similar to its pen-and-paper version,

disregarding the specification. However, the construction of an actual func-
tion to generate each pair of accumulated context and position simplifies the
inductive and constructive proof of the existence of the infinite derivation. Fur-
thermore, proof elements that can seem too trivial must be precisely used, such
as the mentioned closure of context, monotony of closures, subset properties and
properties regarding composition of positions in replacements. For example, the
last property is used in proving correctness of the predicate subtyping condition
{(C, π) | π ∈ Pos(C)} of the pairs built by the function term pos dps alt (these
aspects are discussed in detail in Section 5.4). These properties are formalized
in the PVS theory TRS in a general manner allowing its application for arbitrary
rewriting relations.

5. Sufficiency for the Innermost Dependency Pairs Criterion

The formalization is by contraposition. The core of the proof follows the
idea in [5] to construct infinite chains from infinite innermost derivations. In
an implementional level, to go from infinite derivations to infinite sequences of
DPs that would create an infinite chain is challenging. Indeed, constructing the
DPs requires, initially, choosing mint subterms from those terms leading to infi-
nite innermost derivations; afterwards, choosing non-root innermost normalized
terms; and, finally, choosing instances of rules that apply at root positions of
these terms from which DPs can be constructed. All these choices are based on
existential proof techniques. Figure 2 illustrates the main steps of the kernel of
the construction of chained DPs:

• Existence of mint subterms of innermost non-terminating terms is repre-
sented as the small triangles inside big ones. This part of the development
is explained in Subsection 5.1.

• Existence of non-root innermost normalized terms obtained by derivations

(through relation
>λ→i) from these mint subterms, represented as vertically

striped triangles, is detailed in Subsection 5.2.

• Existence of DPs from rules and substitutions that reduce non-root in-
nermost normalized terms at root position, which also are innermost non-
terminating, into innermost non-terminating terms. The DPs are repre-
sented by pairs of small vertically striped and small plain triangles and the
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latter by reductions (through relation
λ→i) from vertically to diagonally

striped triangles. This result is explained in Subsection 5.3.

s
(↑in)

s0
( �in)

−→∗in>λ

s′0 = l0σ0
( �in, nfin>λ )

λ−→in

r0σ0
(↑in)

r0σ0|π0

( �in)

DP: 〈l0 → r0, π0〉
Substitution: σ0

−→∗in>λ

(r0σ0|π0 )′ = l1σ1
( �in, nfin>λ )

λ−→in

r1σ1
(↑in)

r1σ1|π1

( �in)

DP: 〈l1 → r1, π1〉
Substitution: σ1

−→∗in>λ

NOTE: The reduced terms are those

completely inside squared frames.

Figure 2: Proof sketch: building infinite innermost DP-chains from infinite innermost deriva-
tions. Notice that the two DPs created, along with their respective substitutions, form chained
DPs.

The last step of the construction illustrated in Figure 2 permits, as the
first one, application of a lemma of existence of mint subterms (for innermost
non-terminating terms). In the last step, this result will allow constructing the
required DPs.

Subsection 5.4 then discusses how getting adequate pairs of consecutive
chained DPs and associated normal substitutions, and Subsection 5.5, finally,
details the construction of the required chain of DPs.

5.1. Existence of mint Subterms

The mint property ( �i) over terms is provided in the Specification 13 by
predicate minimal non innermost terminating?. Also in this box one has the
specification of lemma inn non terminating has mint, whose formalization
ensures the existence of mint subterms regarding innermost non-terminating
terms. The proof follows by induction on the structure of the term. The induc-
tion basis is trivial since variable terms are not reducible, so variables cannot
give rise to infinite derivations. For the inductive step, whenever the term t has
an empty list of arguments (that is, t is a constant), the only position it has
is its root, thus, the mint subterm is the term itself; otherwise, either all its
proper subterms are innermost terminating and then the term itself is mint or,
by induction hypothesis, some of its arguments is innermost non-terminating,
say its ith argument, and then it has a mint subterm at some position π, thus,
the mint subterm of t is chosen as t|iπ.
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Specification 13: Predicate for specifying mint terms and lemma over existence of mint
subterms in innermost non-terminating terms.

min imal innermost non terminat ing ?(E) ( t : term ) : bool =
↑i ( t ) ∧ ∀(π ∈ Pos(t)|π 6= λ ) : SNi(t|π))

inn non te rminat ing has mint : LEMMA
∀(E) ( t : term | ↑i ( t ) ) : ∃(π ∈ Pos(t))) : �i (t|π ) )

5.2. Non-root Innermost Normalization of mint Terms

The second step in the formalization proves that every mint term can be
non-root innermost normalized (into an innermost non-terminating term). This
result appears to be, as given in analytic proofs, a simple observation. By def-
inition, every proper subterm of a mint term is innermost terminating, and
consequently no argument of this term may give rise to an infinite innermost
derivation. However, formalizing such result by contradiction requires several
auxiliary functions and lemmas related to structural properties of such deriva-
tions that also consider positions and arguments in which each reduction step
happens. These technicalities of the formalization are necessary to obtain a
key result that assuming the existence of an infinite non-root innermost deriva-
tion from a mint term guarantees that some of its arguments begin an infinite
innermost derivation, which gives the contradiction.

5.2.1. mint Terms are Non-root Innermost Terminating

For the remainder of this subsection, consider elements on Specification 14,
where s, seqt and seqp are fixed term, sequences of terms and positions, respec-
tively, associated with an infinite non-root innermost derivation on non-root
innermost descendants of s, such that the nth term in the sequence seqt reduces
into the (n+ 1)th term at position seqp(n). Also, l will denote a valid argument
of s (and as it will be seen, also a valid argument of any of its descendants).

Specification 14: Fixed term, argument position of the term, and sequences of terms and
positions used in the formalization.

s : term | app ?( s )

l : posnat | l ≤ l ength ( args (s ) )

seqt : sequence [ term ] | ∀(n : nat ) : s
>λ→ i seqt(n)

seqp : sequence [ p o s i t i o n ] | ∀(n :nat) : seqp(n) ∈ Pos(seqt(n)) ∧

seqp(n) 6= λ ∧ seqt(n)
seqp(n)→i seqt(n+ 1)

The predicate inf red arg in inf nr im red in Specification 15 holds when-
ever for a sequence of positions there is an infinite number of positions in the
sequence starting with the same natural. For seqp and l as in Specification 14,
this predicate will be applied to state the existence of an infinite set of indices in
the sequence of terms seqt in which the reduction happens at the lth argument.
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The function args of pos seq is just used to give the argument of each position
in a sequence of positions.

Specification 15: Function to extract the argument position from a given position in a
sequence of positions where reductions take place and predicate for checking if there exist
infinite reductions at a given argument position.

a r g s o f p o s s e q (seq : sequence [ p o s i t i o n ] | ∀(i :nat) : seqp(i) 6= λ)
(n : nat) : posnat = f i r s t (seqp(n))

i n f r e d a r g i n i n f n r i m r e d (seq : sequence [ p o s i t i o n ] |
∀(i :nat) : seqp(i) 6= λ)

(i :posnat ) : bool =
i s i n f i n i t e ( inve r s e image ( a r g s o f p o s s e q (seq ) , i ) )

Then, for any l-th argument of the given term s such that the predicate
inf red arg in inf nr im red(seqt)(l) holds, the function nth index (Specifi-
cation 16) provides the index of the sequence in which the (n + 1)th reduction
at argument l happens.

Specification 16: Function nth index.

nth index(E)(s)(seqt)(seqp)(l)(n : nat) : nat =
choose ({m : nat | a r g s o f p o s s e q (seqp)(m) = l ∧

card ({k : nat | a r g s o f p o s s e q (seqp)(k) = l∧
k < m}) = n})

Notice that well-definedness of these functions is a consequence of the type of
l that is a dependent type satisfying the predicate inf red arg in inf nr im red,
which means that reductions at the lth argument happen infinitely many times.
The main technical difficulty of formalizing well-definedness is related to guar-
anteeing non-emptiness of the argument of the built-in function choose. This
constraint is fulfilled by the auxiliary lemma exists nth in inf nr im red in
Specification 17.

Specification 17: Non-emptiness lemma for the argument positions where infinite reductions
may take place.

e x i s t s n t h i n i n f n r i m r e d : LEMMA
∀(n :nat) : ∃(m :nat) :

a r g s o f p o s s e q (seqp)(m) = l ∧
card({k :nat | a r g s o f p o s s e q (seqp)(k) = l ∧ k < m}) = n

The formalization of this lemma follows by induction on n and, although
simple, requires several auxiliary lemmas over sets. In the induction basis, since
one has infinite reductions at argument l, the set of indices where such reductions
take place is infinite, and thus, nonempty (by application of the PVS prelude
lemma infinite nonempty). Thus, it is possible to use PVS function min (over
nonempty sets) to choose the smallest index of this set. By the definition of this
min function, it is ensured that the set of indices smaller than this minimum in
this set is empty, and thus has cardinality zero (by applying PVS prelude lemma
card empty?). For the inductive step, one must provide the index where one
has a reduction at argument l such that it has exactly n+1 indices smaller than
it where reductions at argument l occur. By induction hypothesis, there exists
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an index m for which reduction take place at argument l, and for which the
cardinality of indices smaller than m with reductions at argument l is n. Thus,
the required index is built as the minimum index bigger than m for which the
reduction happens at argument l. Correctness of such indices follows similarly
to the induction basis. First, since the predicate inf red arg in inf nr im red

holds, it is possible to ensure that the set of indices greater than index m for
which reductions happen at argument lth is infinite, which allows application
of the function min. Then one builds an equivalent set to the one of all indices
smaller than this minimum as the addition of index m to the set of indices
smaller than m (where one has reductions at argument lth). This construction
allows one to use another prelude lemma regarding cardinality of addition of
elements in finite sets (card add) to state that the cardinality of this new set is
n+ 1.

Soundness of nth index follows from auxiliary properties such as its monoto-
ny and completeness, the latter meaning that this function covers exactly (all)
the indices in which reductions happen at the lth argument. The formalization
of these properties follows directly from the conditions fulfilled by the natural
numbers chosen as the indices in nth index and prelude lemmas over cardinal-
ity of subsets (card subset), since each index provided gives rise to a subset of
the next one. These properties allow an easy formalization of a useful auxiliary
result stating that for every index of seqt below nth index(0) and between
nth index(i)+1 and nth index(i+ 1) there are no reductions in the lth argu-
ment (lemma argument protected in non nth index). And then it is possible
to ensure that there are only finitely many non-root innermost reductions re-
garding a term with mint property, which is stated in Specification 18 as the
lemma mint is nr inn terminating.

Specification 18: Lemma for non-root innermost termination of mint terms.

m i n t i s n r i n n t e r m i n a t i n g : LEMMA �i (s)→noether ian ?(→
s
in>λ ))

This proof follows by contraposition, by assuming the non noetherianity of
the →

s
in>λ relation and building then an infinite derivation for some argument

of s, as illustrated in Figure 3. Thus, initially one would have an infinite se-
quence seqt of descendants of term s where each one is related to the next one by
one step of non-root reduction. From this sequence, since there is a finite num-
ber of possible arguments where the reductions can take place and infinitely
many reductions taking place in non-root positions, i.e., argument positions,
one uses the pigeonhole principle to ensure that there exists some argument
position l that satisfies the predicate inf red arg in inf nr im red. This al-
lows the use of function nth index to extract exactly the index of the sequence
where such reduction occurs. Then the required infinite derivation is built in

two steps. First, since one has, by definition, that s
>λ→ seqt(0), this leads to a

finite sequence of reduced terms that will be used. Given that every argument
of a term innermost reduces at root position to the argument of a reduced term
by non-root reductions (lemma non root rtc reduction of argument in the-
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ory innermost reduction.pvs), the subterms of each element of this derivation
at the chosen argument position is used to the first portion of the infinite se-
quence. Finally, the function nth index is used to extract from sequence seqt
those indices where reductions occur in the selected argument, keeping this ar-
gument intact whenever the reduction does not occur in such indices (result
given in lemma argument protected in non nth index). Then, for each term
obtained by a reduction on the l-th argument on this (now infinite) derivation,
its subterm at argument l is used to build the second and final portion of the
infinite sequence.

seqt(0)

−→in>λ

seqt(1) =
seqt(nth index(l)(0))

−→in>λ

seqt(2) =
seqt(nth index(l)(1))

−→in>λ

seqt(3)

−→in>λ
· · · −→in>λ

seqt(m− 1) =
seqt(nth index(l)(2))

−→in>λ

seq(m)

−→in>λ
· · ·

seqt(nth index(l)(0) + 1)|l =
seqt(nth index(l)(1))|l = seqt(2)

−→+
in

seqt(nth index(l)(1) + 1)|l =
seqt(3)

−→+
in

seqt(nth index(l)(2) + 1)|l =
seqt(m)

−→+
in · · ·

An infinite innermost reduction sequence from seqt(0)|l.

s

→∗in>λ

seqt(0) s|l

→∗i

seqt(0)|l

→i

seqt(2)|l

→i

seqt(3)|l

→i

seqt(m)|l

→i · · ·

The infinite innermost reduction sequence from subterm s|l.

Figure 3: Proof intuition: building an infinite innermost derivation of an argument l as
concatenation of a finite and an infinite non-root innermost derivation of terms.

5.2.2. Construction of Non-root Innermost Normal Forms for mint terms

Since a mint term s is noetherian regarding →
s

in>λ , as previously shown,

in an infinite derivation starting from s there exists an index where the first
innermost reduction in the root position occurs. This result is formalized in
lemma inf inn deriv of mint has min root reduction index.

Specification 19: Lemma stating the obligation of a first root reduction on infinite innermost
derivations.

i n f i n n d e r i v o f m i n t h a s m i n r o o t r e d u c t i o n i n d e x : LEMMA
∀(seq : sequence [ term ] ) :

( �i (seq(0)) ∧ ∀(i :nat ) : inne rmost r educt i on ?(E)(seq(i), seq(i+ 1)))→
∃(j : nat) : seq(j)

λ→i seq(j + 1) ∧
∀(k : nat) : seq(k)

λ→i seq(k + 1)→ k >= j

This lemma is formalized by providing as the first index required the min-
imum index of the infinite derivation where the reduction takes place at root
position. The function minimum (min) of PVS, just as function choose, also re-
quires a proof of non-emptiness of the set used as parameter. With the noethe-
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rianity provided by lemma mint is nr inn terminating, this non-emptiness
constrain is obtained through an auxiliary result over noetherian relations re-
stricted to an initial element that are subsets of some non noetherian relation,
which is given by lemma non noetherian and noetherian rest subset in the
restricted reduction.pvs theory. This lemma provides an index of this infi-
nite derivation where the given relation, i.e., →

s
in>λ does not hold.

Notice that, until this point, some infinite reduction sequence is being con-
sidered in the proof. However, the DPs are not extracted from the whole terms
in this derivation. Instead, a mint term is innermost reduced until reaching an
innermost normal form and then the rule applied to the root builds the DP.
Thus, at this point, the extraction of the DP would be possible. But since the
instance of this DPs is crucial for building an infinite chain, it is important to
know that not only the term that initiated the infinite derivation will be at some
point reduced at root position, but which exact term was reached before such
reduction.

In order to be able to extract the DP and substitution required to proceed
with the proof, one obtains finally that every mint term non-root innermost
derives into a term that has its arguments in normal form.

Specification 20: Lemma for obtaining a non-root normal form term from a mint term.

m i n t r e d u c e s t o i n t n r n f t e r m : LEMMA
∀(s| �i (s)) : ∃(t| ↑i (t)) : s→∗in>λ t ∧ nf>λ→

(t)

The proof follows as an application of previous lemma, choosing the term at
the index where the first reduction at root position takes place, since this term
is in innermost normal form. Indeed, this term will be a normal instance of the
lhs of some rule.

5.3. Existence of DPs

The term obtained in previous subsection is an innermost non-terminating
term such that it is also non-root innermost normalized. Such non-root nor-
malized terms should innermost reduce at root position, see

λ→i-reductions in
Figure 2. These reductions from vertically to diagonally striped triangles give
rise to the desired DPs. An important observation is that such terms reduce at
root position with a rule and a normal substitution. The substitution should
be normal since the terms are non-root innermost normal forms.

The following key auxiliary lemma provides the important result that such
normal instances of rhs’s of rules applied as before and that have minimal inner-
most non-terminating subterms give rise to dependency pairs. The innermost
non terminality of the terms will guarantee the existence of such subterms.

Specification 21: Lemma for obtaining the desired DP from a mint term with normal sub-
stitution.

n o r m a l i n s t o f r u l e w i t h m i n t o n r h s g i v e s d p a l t : LEMMA
∀(e ∈ E, σ : (normal sub ?(E)), π ∈ Pos(rhs(e)σ)) :

�i (rhs(e)σ|π)→d e p p a i r a l t ?(E)(e, π)
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The proof only requires showing that rhs(e)|π is defined. For this, initially
it must be ensured that π is indeed a non variable position of rhs(e). But σ is
normal, thus, since the premise �i (rhs(e)σ|π) implies innermost reducibility of
rhs(e)σ|π, if π were a variable position or a position introduced by this substi-
tution, there would be a contradiction to its normality. This result is formalized
separately in lemma reducible position of normal inst is app pos of term

that states that reducible subterms of normal instances of terms appear only
at non variable positions of the original term. Then, by the main result of
the last subsection, i.e., lemma mint reduces to int nrnf term, one has that
rhs(e)σ|π →∗in>λ t for some term t such that �i (t) and nf>λ→

(t). Then, the term

t has a defined symbol on its root. Thus, it only remains to prove that the root
symbol of rhs(e)σ|π and t is the same, which is an auxiliary result formalized
by induction on the length of the non-root (innermost) derivation in corollary
non root ir preserves root symbol for non-root innermost derivations.

5.4. Construction of Chained DPs

So far the existence of the elements needed for the proof was formalized.
Now, one builds in fact the elements as in Figure 2. Initially, a mint term
is non-root innermost normalized through the function mint to int nrnf in
Specification 22. The existential result given by the lemma in Specification 20
on subsection 5.2 allows the use of the PVS choose operator.

Specification 22: Function to provide an innermost non-terminating non-root normal form
term from a mint term.

m i n t t o i n t n r n f (E)(s : term| �i (s)) : term =
choose({t :term|s→∗in>λ t) ∧ nf>λ→

(t) ∧ ↑i (t)})

Since this new non-root innermost normalized term is also innermost non-
terminating, there exists some rule and normal substitution for allowing inner-
most reduction of this term at its root. Furthermore, the term obtained from
this reduction will be also innermost non-terminating, i.e., it will have a mint
subterm at some position of the rhs of the used rule. This property is formalized
in lemma reduced nit nrnf has mint specified as in Specification 23.

Specification 23: Lemma ensuring the existence of mint terms on reductions of innermost
non-terminating non-root normal form.

r e d u c e d n i t n r n f h a s m i n t : LEMMA
∀(s :term| �i (E)(s)) :
∃(σ :Sub, e : r e w r i t e r u l e | e ∈ E, π ∈ Pos(rhs(e))) :
lhs(e)σ = m i n t t o i n t n r n f (E)(s) ∧ �i (rhs(e))σ|π)

This lemma is formalized applying the existential results of Subsection 5.3
for obtaining the normal substitution σ and the rule e and, the results of the
Subsection 5.1 to obtain a position π such that �i (rhs(e))σ|π).

Lemma reduced nit nrnf has mint allows one to use choose to pick the
rule and position leading to the DP and the substitution that will allow chaining
the DP with the next DP originated from the mint term rhs(e)σ|π as specified in
function dp and sub from int nrnf given in Specification 24. Here it is clear
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why this construction is facilitated by the use of the alternative definition of
DPs that includes both the rule and the position.

Specification 24: Function to obtain the desired DP and substitution.

dp and sub f rom int nrn f (E)(s :term| �i (s)) : [ d e p p a i r a l t (E) , Sub ] =
LET sub e p =choose({(σ :Sub, e ∈ E, π ∈ Pos(rhs(e))) |

lhs(e)σ = m i n t t o i n t n r n f (E)(s), �i (rhs(e))σ|π)})
IN ((sub e p′2, sub e p′3), sub e p′1)

Whenever this function has as input a term that is an instance of the rhs of a
DP that is in non-root innermost normal form, the resulting DP and substitution
will be chained with the DP and substitution used to build the input term. This
result is specified in lemma next inst dp is inn chained and mnt given in
Specification25, where the desired alternative DPs are transformed into standard
DPs in order to allow the analysis through the predicate inn chained dp?:

Specification 25: Lemma ensuring that the obtained DPs and substitutions are chained.

n e x t i n s t d p i s i n n c h a i n e d a n d m n t : LEMMA
∀(E)( dp : d e p p a i r a l t (E),

σ :Sub | �i (rhs(dp′1)σ|dp′2)) ∧ nf>λ→
(lhs(dp′1)σ) ) :

LET std dp = (lhs(dp′1),rhs(dp′1)|dp′2) ,
next dp sub = dp and sub f rom int nrn f (E)(rhs(dp′1)σ|dp′2) ,
next std dp = (lhs(next dp sub′1′1),rhs(next dp sub′1′1)|next dp sub′1′2),
σ′ = next dp sub′2 IN

inn cha ined dp ?(E)(std dp, next std dp)(σ, σ′) ∧ �i ((next std dp′2)σ′)

The formalization of this lemma is quite simple in its core. However, since
transformations between the standard and alternative notions of DPs are used,
the proof of some typing conditions are required in order to ensure type correct-
ness. Once circumvented the typing issues, one must only guarantee the inner-
most chained property for the input DP and substitution and the resulting DP
and substitution created and that the instantiated subterm of the rhs of the new
DP is a mint term. Notice that the latter property is a direct result of the type of
the PVS choose operator used in function dp and sub from int nrnf; indeed,
this property was included (and formalized) as part of this lemma just to avoid
needing to repeatedly ensure non-emptiness of the used set, since this result is
used several times throughout the rest of the formalization. To guarantee that
the DPs are chained is also straightforward, since dp and sub from int nrnf is
defined over mint to int nrnf, which gives a term with type as a non-root in-
nermost normal form of the mint input, i.e., exactly the definition given by pred-
icate inn chainned dp?; using notation of the lemma: rhs(dp′1)|dp′2σ →∗in>λ
lhs(next dp sub′1′1)σ′.

This result allows the specification of a function using predicate subtyping, a
very interesting feature available in PVS. Using this feature, elaborate predicate
types can be assigned to the outputs of functions, and type checking will auto-
matically generate the type check conditions (TCCs) to ensure well-definedness
of the function. Although used in other functions through the formalization,
the most interesting application of this feature happens in the next function
that outputs a pair for an input pair of DP and substitution, and where the
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type of the output uses the predicates in chained dp? and �i. The generated
TCCs are not proved automatically; however, to ensure that the type predicates
hold, typing provided in the lemma given in Specification 25 previous lemma
are applied.

Specification 26: Function to obtain adequate next DP and substitution.

next dp and sub(E)( dp : d e p p a i r a l t (E),
σ : Sub | �i (rhs(dp′1)σ|dp′2) ∧ nf>λ→ (lhs(dp′1)σ) ) :

{ (next dp : d e p p a i r a l t (E),
next σ : Sub ) | inn cha ined dp ?(E)(dp, next dp)(σ, next σ) ∧

�i (rhs(next dp′1)next σ|next dp′2)) } =
dp and sub f rom int nrn f (E)(rhs(dp′1)σ)|dp′2)

Applying dp and sub from int nrnf (Specification 24) to a mint term built
from a pair of DP and substitution (in the way done in the body of the function
next dp and sub), one provides as output a pair of DP and substitution with
the specified subtyping predicates, guaranteeing that the input and output are
chained.

5.5. Construction of the Infinite Innermost Dependency Chain

With the possibility of creating new DPs and substitutions from mint terms,
it is possible to build, inductively, an infinite DP chain from any innermost non-
terminating term. However, PVS syntax makes this construction a little bit
tricky, since its functional language only allows directly construction of lambda-
style or recursive functions. A lambda-style function to create such infinite
chain is not possible, since the construction of every pair of DP and substitution
depends on the previous one in the chain. But a direct construction of a recursive
function is also problematic since the use of the choose operator in several steps
of this construction makes it difficult to guarantee its determinism and then its
functionality.

A simple solution for this problem is to use the recursion theorem to provide
the existence of a function from naturals to pairs of a DP and a substitution
such that each pair generates the next pair in the chain according to the function
next dp and sub, implying that contiguous images are chained.

The recursion theorem is given in Specification 27. It states that for all
predicates X over a set T , initial element a in X and function f over elements
of X, there exists a function u from naturals to X such that the images of u are
given by the sequence a, f(a), . . . , fn(a), . . ..

Specification 27: The recursion Theorem.

recur s i on theorem : THEOREM
∀(X : s e t [T ], a ∈ X, f : [(X)− > (X)]) :
∃(u : [nat− > (X)]) : u(0) = a ∧ ∀(n :nat) : u(n+ 1) = f(u(n))

To use this theorem, the predicate is instantiated with pairs of DP and
substitution of the type of the parameters of the function next dp and sub, i.e.,
(dp : dep pair alt(E), σ : Sub | �i (rhs(dp′1)σ|dp′2) ∧ nf>λ→ (lhs(dp′1)σ)).
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The first element of the sequence a is instantiated as the pair of DP and sub-
stitution, obtained from the initial term starting any infinite innermost deriva-
tion, according to the techniques given is subsections 5.1, 5.2 and 5.3. As
expected, the function from pairs to pairs is chosen as next dp and sub. The
recursion theorem guarantees just the existence of a total function from natu-
rals to the sequence inductively built using function next dp and sub starting
from the initial pair. But the choice of this function assures by its predicate
subtyping that each pair of consecutive pairs are in fact chained.

As a consequence of all that, the sufficiency lemma (28) is obtained.

Specification 28: The sufficiency lemma for DP termination.

d p t e r m i n a t i o n i m p l i e s n o e t h e r i a n : LEMMA
∀(E) : i nn dp te rminat i on ?(E)→noether ian ?(→i)

6. Related Work

There are several methods of semi-decision to address the analysis of termi-
nation, among them, the well-known Ranking functions implemented in PVS as
termination TCCs, as mentioned in the introduction. A more recent criterion to
verify termination of functional programs is the so-called size-change principle
(SCP, for short) [13]. This principle does not require decreasingness after each
recursive call, but strict decreasingness (using a measure regarding some well-
founded order) for each possible infinite “cycle” of recursive calls; thus, if such
a measure exists, infinite computations are not possible since they will imply
infinite decreasingness (over a well-founded order). The SCP and DPs criterion
are compared in [14] taking into account termination, innermost termination
and evaluation of functional specifications. One approach of the SCP is given
by the technology of calling contexts graphs (CCG, for short) [15], which imple-
ments the SCP by representing all possible executions of a functional program
as paths in a graph in which nodes are labeled by the different occurrences of
function calls in it. More precisely, each node corresponds to a so-called calling
context that consists of the formal parameters of a function in which a function
call is specified, the actual parameters of the function call, and the conditions
that lead to the execution of the function call. Possible computations are then
characterized as sequences of calling contexts related to paths in that graph, and
termination is analyzed regarding the behavior of measurements on the possible
circuits in the CCG.

Application of the DP termination criterion is recurrent in termination tools.
Expressive developments, which have been implemented in such tools, include
the work of Alarcon and Lucas [16, 17] who succesfully applied DPs for several
strategies and restrictions for (context-sensitive) TRSs, and the work of Ster-
nagel and Thiemann [18] who formalized correctness of the generalization of
the DP criterion to Q-restricted TRSs and implemented DP for checking ter-
mination of functional specifications. The latter work uses the methodology of
translating functional specifications into TRSs that are then checked for termi-
nation by the DP criterion. The current work focuses on the formalization of
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correctness of the particular case of innermost DP as another termination cri-
terion to be added to those available in the PVS theory of the functional PVS0
specifications.

Formalizations of the theorem of soundness and completeness of DPs (DP
theorem, for short) are available in several proof assistants. In [19], Blanqui
and Koprowski described a formalization of the DP theorem for the ordinary or
standard reduction relation that is part of the CoLoR library developed in Coq
for certifying proofs of termination. The formalized result is the DP theorem
for the standard reduction relation, and not for the innermost termination. The
proof in [19], as the current formalization, uses the non-root reduction relation
(internal reduction) and the reduction at root position relation (head reduc-
tion). Instead of building infinite chains from infinite derivations, it assumes
a well-founded relation over the set of chained DPs to conclude noetherianity
of the standard reduction relation. Also, the library Coccinelle [20] includes a
formalization in Coq of DP theorem that defines a relation between instances of
lhs of DPs and proves the equivalence between well-foundedness of this relation
and well-foundedness of the reduction relation of a given TRS. To chain DPs
instances of the lists of arguments of lhs’s and rhs’s of DPs, which are headed
by the same function symbol, are related by the reflexive-transitive closure of
the rewriting relation (avoiding in this way the use of tuple symbols). The for-
malization also considers a refinement of the notion of DPs, which avoids DPs
generated by a rule, where the rhs of the DP appears also as a subterm of the
lhs of the rule.

A formalization of the DP theorem for the standard reduction relation is also
present in the proof assistant Isabelle, as part of the library for rewriting IsaFoR
briefly described in [18]. In this formalization the original signature of the TRS
is extended with new tuple symbols for substituting the defined symbols (see
comments after Definition 2.1 of DPs), which implies the analysis of additional
properties of the new term rewriting system induced over the extended signature
and also properties relating this new rewriting system with the original one. The
proof, as in the current formalization, builds an infinite chain from an infinite
derivation and vice-versa. This work brings interesting features, such as the use
of the same refinement of DPs as the formalization in Coccinelle and that it was
done for a full definition of “Q-restricted” rewriting, providing in this manner
a general result that has as corollaries both the DP theorem for the standard
and the innermost reduction relations, the former given explicitly. Essentially,

for TRSs E and Q, the Q-restricted relation, denoted as
Q→E , is defined as

the relation such that s
Q→E t iff s →E t at some position π such that proper

subterms of s|π are normal regarding Q; so
∅→E and

E→E correspond respectively
to the standard and the innermost reduction relations [21]. This formalization
is used to provide a sound environment to certify concrete termination proofs in
an automatic way by the tool CeTA [22]. Formalization of the DP criterion for
the ordinary rewriting relation is also included in the PVS theory TRS (and was
done as part of this job), but as mentioned in the introduction, the emphasis in
this work is on the innermost case since it is the one related to the operational
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semantics of functional specifications.

7. Relating TRS Termination to Functional Program Termination

The CCGs technology has the advantage of allowing combinations of a finite
family of measures at each node of a possible circuit, simplifying in this man-
ner the formulation of a single and complex measure that works (decreases) for
all possible circuits. These combinations are also implemented in the so-called
Matrix Weighted Graphs (MWG) developed by Avelar in [23]. All these tech-
nologies (TCC, SCP, CCG, MWG) to verify termination are implemented and
formalized to be equivalent in the PVS library PVS0. This theory uses a simple
functional language also called PVS0, used to reason about termination of PVS
programs while simplifying proofs. Expressions of PVS0 programs are described
by the following grammar.

expr ::= cnst | vr | op1(expr) | op2(expr , expr) | rec(expr) | ite(expr , expr , expr)

This grammar is specified as an abstract datatype that allows one to have
unary and binary operators, which are interpreted separately as built-in oper-
ators ([24]). Then it is possible to use elements of this datatype, such as its
constructors, accessors and recognizers in the proof process regarding these ex-
pressions. Furthermore, in order to provide all elements required to specify a
program in the PVS0 language, each program requires lists of the interpreta-
tion of its unary and binary operators (O1 and O2), a fixed constant to be the
false value (⊥) and a expression representing the body of the function for the
program itself. This quadruple is called a PVS0 program (pvso).

Formalizations relate the operational semantics of the PVS0 language and
termination criteria. The semantics of termination for an expression e is given
by two different operators. The first one is a predicate and the second one a
function. In both cases the evaluation of e depends on a given pvso program, i.e.,
it depends on the interpretation of lists of unary and binary operators (O1 and
O2), the false value (⊥), and the expression representing the function (program
itself) where the evaluation must take place ef . Input and output values will be
denoted as vi and vo, respectively. The semantic evaluation predicate is given by
ε (Table 1), and the intuition is that the program pvso evaluates the expression
e with input vi as vo.

The first semantic termination notion for a pvso program is then given as:

Tε(pvso) := ∀ (v ∈ Val) : ∃ (vo ∈ Val) : ε(pvso)(pvsoe, vi, vo).

which holds for a given program pvso whenever, for every input vi, the evaluation
of the program expression pvsoe on the value vi holds for some output value vo.

The second specification for semantic evaluation is given as the recursive
function χ in Table 2. This function, in addition to the PVS0 program pvso,
the input expression e and the input value vi, has a parameter n that is a
natural number giving the maximum allowed number of nested recursive calls.
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Table 1: Semantic evaluation predicate ε

ε(O1, O2,⊥, ef )(e, vi, vo) := CASES e OF
cnst(v) : vo = v;

vr : vo = vi;
op1(j, e1) : j < |O1| ∧ ∃ v′ ∈ Val :

ε(O1, O2,⊥, ef )(e1, vi, v
′) ∧ vo = O1(j)(v′);

op2(j, e1, e2) : j < |O2| ∧ ∃ v′, v′′ ∈ Val :
ε(O1, O2,⊥, ef )(e1, vi, v

′) ∧
ε(O1, O2,⊥, ef )(e2, vi, v

′′) ∧
vo = O2(j)(v′, v′′);

rec(e1) : ∃ v′ ∈ Val : ε(O1, O2,⊥, ef )(e1, vi, v
′) ∧

ε(O1, O2,⊥, ef )(ef , v
′, vo)

ite(e1, e2, e3) : ∃ v′ : ε(O1, O2,⊥, ef )(e1, vi, v
′) ∧

IF v′ 6= ⊥ THEN

ε(O1, O2,⊥, ef )(e2, vi, vo)
ELSE

ε(O1, O2,⊥, ef )(e3, vi, vo).

This function returns an output value whenever it is possible to evaluate it
allowing at most n nested recursive calls and a “none” value (♦) otherwise.

Thus, the second notion of semantic termination is specified as the existence
of a number of nested recursive calls allowing the evaluation of some value
different from “none”:

Tχ(pvso) := ∀ (v ∈ Val) : ∃ (n ∈ N) : χ(pvso)(pvsoe, v, n) 6= ♦.

These semantic termination specifications were formalized to be equivalent
and used to formalize the correction and equivalence of the other mentioned
termination criteria, namely, SCP, CCG, MWG and TCC termination criteria.
These formalizations are present in the PVS0 and CCG libraries.

Although the innermost DP termination criterion is formally related to
noetherianity of the relation of chained DPs to verify termination of TRSs,
it is also adequate to reasoning about termination of functional programs under
eager evaluation. The PVS0 theory also includes formalizations for this criterion
for functional programs, which given the necessary adaptations, are at its core
closely related to the specification given for CCGs.

In the libraries PVS0 and CCG theories the concept of calling context is spec-
ified as a triple capturing the information of a recursive call in a program as in
[15]: the formal and actual parameters and the condition that leads to the re-
cursive call. Since PVS0 programs consist of a unique function, only the formal
and actual parameters are required. As an example consider the specification in
PVS0 of the Ackermann function below. Notice that the parameters are of type
N×N, ⊥ = (0, 0), > = (1, 0) = ¬⊥, and a is the PVS0 program (O1, O2,⊥, ea).
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Table 2: Semantic evaluation function χ

χ(O1, O2,⊥, ef )(e, vi, n) := IF n = 0 THEN ♦ ELSE CASES e OF
cnst(v) : v;

vr : vi;
op1(j, e1) : IF j < |O1| THEN

LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n) IN
IF v′ = ♦ THEN ♦

ELSE O1(j)(v′)
ELSE ♦;

op2(j, e1, e2) : IF j < |O2|THEN
LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n),

v′′ = χ(O1, O2,⊥, ef )(e2, vi, n) IN
IF v′ = ♦ ∨ v′′ = ♦ THEN ♦
ELSE O2(j)(v′, v′′)

ELSE ♦;
rec(e1) : LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n) IN

IF v′ = ♦ THEN ♦
ELSE χ(O1, O2,⊥, ef )(ef , v

′, n− 1);
ite(e1, e2, e3) : LET v′ = χ(O1, O2,⊥, ef )(e1, vi, n) IN

IF v′ = ♦ THEN ♦
ELSIF v′ 6= ⊥ THEN χ(O1, O2,⊥, ef )(e2, vi, n)
ELSE χ(O1, O2,⊥, ef )(e3, vi, n).

The formal parameter is vr ∈ N × N encoding the two inputs of the Acker-
mann function and also the output of the function, which is given by the first
component of the output, also of type N× N.

O1(0)((m,n)) := IF m = 0 THEN > ELSE ⊥,
O1(1)((m,n)) := IF n = 0 THEN > ELSE ⊥,
O1(2)((m,n)) := (n+ 1, 0),

O1(3)((m,n)) := IF m > 0 THEN (m− 1, 1) ELSE ⊥,
O1(4)((m,n)) := IF n > 0 THEN (m,n− 1) ELSE ⊥,
O2(0)((m,n), (i, j)) := IF m > 0 THEN (m− 1, i) ELSE ⊥,
ea := ite(op1(0, vr), op1(2, vr),

ite(op1(1, vr), rec(op1(3, vr)),

rec(op2(0, vr, rec(op1(4, vr)))))).

Simplifying PVS0 notation, the calling contexts to this PVS0 program are:
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〈(m,n),m > 0 ∧ n = 0, (m− 1, 1)〉
〈(m,n),m > 0 ∧ n > 0, (m− 1, rec((m,n− 1)))〉
〈(m,n),m > 0 ∧ n > 0, (m,n− 1)〉

In the specification conditions and actual parameters of the calling contexts
are built from the formal parameter (m,n) (that may be omitted) and the
position of each recursive call by using expressions of the original signature. For
instance, the condition and actual parameters of the first calling context above
are given respectively as ¬op1(0, (m,n)) ∧ op1(1, (m,n)) and op1(3, (m,n)).

Translating the functional program to a corresponding TRS as done in [12]
is possible, but what should be essentially considered is the correspondence
between the calling contexts of a PVS0 functional program and the DPs of
an associated TRS. Establishing such correspondence is enough since it allows
the use of the associated calling contexts as a mechanism to check termination
by DPs (or vice versa). For instance, if one consider the TRS and DPs for
the Ackermann function as given in Examples 2.1 and 2.2, whenever a pair
of naturals (m,n) matches (s(x), 0), exactly the condition of the first calling
context holds: m > 0 ∧ n = 0. In addition, the actual parameter of the first
calling context (m − 1, 1), matches (x, s(0)). Similarly, this happens for the
conditions and actual parameters of the second and third calling contexts.

Since the analysis of termination using CCGs relies on sequences of values
obtained by eager evaluation from the previous calling context that must hold for
the condition in the next context, the notion of innermost dependency chains
is closely related to this usage. The formalization of the equivalence of the
relations of termination by CCGs and by DPs requires manipulation of different
signatures for the associated functional programs and TRSs, and requires proper
association of evaluation of the conditions in the calling contexts and matchings
of lhs of rewriting rules that generate DPs. Furthermore, relating chains of DPs
and paths of calling contexts in a CCG also requires the adequate association
of the two different signatures involved, in such a form that the “evaluation”
of the DPs through non-root innermost normalization must correspond to the
eager evaluation of functional expressions. All this is the subject of associated
research relating the formalization of correctness of the innermost DPs criterion,
given in this paper, and termination criteria formalized in the theories PVS0 and
CCG.

Table 3 summarizes the equivalence results between termination criteria that
are formalized in the PVS theories CCG and PVS0. It is important to stress here
that the notion of DP termination was specified for PVS0 functional programs
based on its relation with CCGs, which allowed its equivalence with the CCG
criterion for this language to be formalized in a simple manner. For using
the results formalized for the TRS theory, the aforementioned correspondence
results between calling contexts and DPs must be formalized.
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Table 3: Termination equivalences for PVS0 programs and where to find them.

Proof Lemma name File Theory
Tε ⇒ TCC terminates implies pvs0 tcc measure termination PVS0

TCC ⇒ Tε pvs0 tcc implies terminates pvs0 termination PVS0

Tχ ⇔ Tε eval expr terminates pvs0 expr PVS0

SCP ⇒ TCC scp implies pvs0 tcc scp iff pvs0 PVS0

TCC ⇒ SCP pvs0 tcc implies tcc scp iff pvs0 PVS0

SCP ⇒ CCG scp implies ccg pvs0 pvs0 to ccg PVS0

TCC ⇒ CCG pvs0 tcc implies ccg pvs0 to ccg PVS0

SCP ⇒ CCG scp implies ccg termination scp to ccg CCG

CCG⇒ SCP ccg termination implies scp ccg CCG

DP ⇒ SCP dp termination implies dp scp dp to tcc PVS0

MWG⇔ CCG mwg termination iff ccg termination ccg to mwg CCG

DP ⇒ TCC dp termination implies dp dec dp to tcc PVS0

TCC ⇒ DP dp dec implies dp termination dp termination PVS0

8. Discussion and Future Work

A formalization in PVS of the soundness and completeness of the Depen-
dency Pairs criterion for innermost termination of TRSs was presented. The
formalization follows the lines of reasoning of proofs given in papers such as [5].

The kernel of the formalization consists of 56 lemmas, 34 of these being
TCCs. These results are available in the specification and formalization files
inn dp termination.pvs and .prf that have size 18KB and 747KB, respec-
tively. The basic notions regarding Dependency Pairs are separately specified
in file dependency pairs.pvs, which add 4kb to the size of the whole specifica-
tion and give rise to 8 TCCs, adding 13kb to the size of the formalization. For
achieving the formalization, the TRS library of PVS, was extended with theories
innermost reduction and restricted reduction, which include 38 lemmas,
of which 17 are TCCs. Both these theories add 10KB of specification and 451
KB of proofs. The proof of necessity (in theory inn dp termination.pvs) re-
quired 11% of the whole size of the formalization file, while sufficiency required
80%. The remaining 9% of the formalization file deals with basic properties of
DPs, and a lemma relating innermost DP termination with noetherianity of the
innermost chain relation. From the total size used in the proof of sufficiency,
the formalization was split approximately into 11%, 59%, 6%, 20% and 4%
for the tasks presented in Section 5: Existence of mint Subterms (Subsection
5.1), Non-root Innermost Normalization of mint Terms (5.2), Existence of DPs
(5.3), Construction of chained DPs (5.4), Construction of the Infinite Innermost
Dependency Chain (5.5), respectively. As expected from the discussion in Sec-
tion 5, the formalizations of normalization of mint terms and constructions of
chained DPs were the most elaborate and the ones that required the most space.

In order to formalize the DP theorem for the ordinary rewriting relation, a
similar reasoning to the one used for innermost reduction was followed, but the
involved properties were not reused to prove each other. Notice for instance that
necessity for the ordinary reduction, i.e., noetherian?(reduction?(E)) implies
dp termination?(E), cannot be applied to infer inn dp termination?(E), if
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one has noetherian?(innermost reduction?(E)). The required properties were
developed explicitly for the ordinary reduction relation, as done so far for the
formalization of necessity theorem. The main difference happened in the formal-
ization of sufficiency, when an infinite chain was built from an infinite deriva-
tion. Specifically, for the innermost case, mint terms are normalized regarding
the non-root innermost relation, giving rise to a term that has an innermost
reduction redex at its root (vertically striped small triangles in Figure 2), while
for the ordinary relation, the unique guarantee is that mnt terms reduce at
non-root positions into a term that can be reduced at its root position. This
small difference requires a few adjustments in order to apply the rules on root
position leading to the DPs that will produce the chain. The existence of DPs
from such (non necessarily non-root normalized) terms follows from an argu-
ment based on the fact that the mnt term starting the non-root derivation is
non-root terminating. Thus, when a given rule is applied at root position of
some of its non-terminating descendants, the substitution allowing the applica-
tion of such rule may not have non-root nonterminating redexes. Other than
that, the chained dp? property also follows directly from the type of the chosen
descendant term of a mnt term where the first root reduction takes place. The
specification and formalization of correction of the DP criterion for ordinary
rewriting is available in the theories dp termination.pvs and .prf and consist
of 55 lemmas, 34 of which being TCCs.

In order to have a full formalization of the relation between the results pre-
sented in this work and the termination criteria formalized for PVS0 programs,
it would be necessary to formalize the relation between the notions that analyze
recursive calls leading to (possibly) infinite evaluations/innermost reductions.
This requires not only dealing with different signatures for FPs and TRS, but
also specifying the notion of “reduction” for rewriting terms with “values”,
which must be “evaluated” into values as is the case of eager evaluation of func-
tional programs for given input values. In order to provide such a notion of
evaluation of TRSs, constructor and defined symbols should be mapped into
values when their innermost reduction for given expressions can lead to val-
ues. This result will allow linking all (formalized equivalent) criteria available
to PVS0 functional programs and innermost DP criterion over TRSs.
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