© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http:/creativecommons.org/licenses/by-nc-nd/4.0/

An Optimal Cut-Off Algorithm for Parameterised Refinement Checking*

Antti Siirtola®*, Keijo Heljanko™®

@ University of Oulu, Faculty of Information Technology and Electrical Engineering
b University of Helsinki, Department of Computer Science
¢Helsinki Institute for Information Technology (HIIT)

Abstract

The verification of contemporary distributed software systems is challenging, because they are heavily pa-
rameterised, containing components whose number and connections cannot be a priori fixed. In this work,
we consider the multi-parameterised verification of safety properties by refinement checking in the context
of labelled transition systems (LTSs). The LTSs are parameterised by using first-order constructs, sorts,
variables, and predicates, while preserving compositionality. This allows us to parameterise not only the
number of replicated components but also the communication topology of the system. Our approach to
solving a verification task in the parameterised LTS formalism is to determine a finite cut-off set of param-
eter values such that in order to prove a parameterised system implementation correct with respect to its
specification, it is sufficient to consider only finitely many instances of the parameterised system generated
by the parameter values in the cut-off set.

In the conference version of this work, we converted the problem of determining a finite cut-off set into
the unsatisfiability of a first-order formula and provided a satisfiability modulo theories (SMT)-based semi-
algorithm for dynamically, i.e., iteratively, computing a cut-off set. In this article, we present a new version
of the algorithm and prove that the cut-off sets computed by this new algorithm are optimal. Hence, we call
the new version the optimal cut-off algorithm. The algorithm will always terminate for system topologies
expressible in the 3*V* fragment of first-order logic. It also enables us to consider systems with topologies
beyond this fragment, but for these systems, the algorithm is not guaranteed to terminate. We have
implemented the approach on top of the Z3 SMT solver and successfully applied it to several system models.
As a running example, we consider the leader election phase of the generalised (Byzantine) Raft consensus
algorithm and prove the optimal cut-off set of six (respectively, thirteen) parameter values corresponding
to instances up to three (respectively, four) servers. To the best of our knowledge, this is the first time a
Byzantine variant of the parameterised Raft leader election is automatically verified.

Keywords: compositional verification, parameterized systems, cut-off, satisfiability modulo theories,
automated verification

1. Introduction

We consider the compositional multi-parameterised verification of safety properties. The topic is the-
oretically interesting and practically relevant, because contemporary software systems are not only highly
concurrent and distributed but also heavily parameterised containing components whose number and con-
nections cannot be a priori fixed. Since these systems are everywhere around us, it is essential to verify

*This work is an extended and improved version of [1].
(©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/
licenses/by-nc-nd/4.0/
The final authenticated publication is available online at https://doi.org/10.1016/j.scico.2020.102517
*Corresponding author
Email addresses: antti.siirtola@oulu.fi (Antti Siirtola), keijo.heljanko@helsinki.fi (Keijo Heljanko)

Preprint submitted to Science of Computer Programming July, 2020

that the critical ones operate properly in all circumstances, i.e., for all possible system parameter values.
Moreover, since in large scale systems some subsystems (e.g., external software packages and subsystems
concurrently under construction) can only be available in an interface specification form, we often need to
be able to do their verification in a compositional way. Compositional verification is often preferable for
scalability reasons, too.

Our Approach

Our formalism is based on the calculus of labelled transition systems (LTSs) with the trace refinement
preorder and parallel composition and hiding operators [2, 3]. The LTSs are parameterised by using the
constructs of first-order logic (FOL), sorts (a.k.a. types), typed wvariables, and predicates, such that com-
positional verification is possible in the parameterised setting, too. Sorts are used to parameterise the
number of replicated components whereas predicates enable us to parameterise the system topology, i.e.,
the connections between the components.

Our goal is to solve a verification task in the parameterised LTS (PLTS) formalism by determining
cut-offs for the parameters such that in order to prove a parameterised system implementation correct with
respect to its specification, it is sufficient to consider only finitely many instances up to the cut-offs. In most
other work, e.g. [4, 5, 6, 7, 8,9, 10, 11, 12, 13], the only system parameters are integer variables that control
the number of replicated components and, hence, cut-offs are simply integer values. In our case, sorts are
used for the same purpose, to control the set of replicated components, and the cut-offs are integer values
providing an upper bound to the size of sorts. However, in our formalism, we can also use predicates to
parameterise the system topology. This makes the computation of cut-offs more complicated, but just like
we can sometimes omit large sets of replicated components and only consider system instances with finitely
many components, it is not always necessary to consider all possible connections between the components.
In other words, it may be sufficient to limit our attention to finitely many values of predicates, i.e., the
relations between the components. That is why we talk not only about the cut-offs (of sorts) but also about
a cut-off set consisting of finitely many combinations of the values of sorts, predicates, and variables.

In the conference version of this work [1], we showed how the problem of determining a finite cut-off
set can be converted into the unsatisfiability of a first-order formula and provided a satisfiability modulo
theories (SMT)-based semi-algorithm for computing a cut-off set. The algorithm is called dynamic because
it computes the cut-off set iteratively until the unsatisfiability condition is met. The downside of the
algorithm is that it is not guaranteed to produce an optimal cut-off set and that its performance depends
on the implementation of a heuristic oracle. Here, we overcome the limitations of the original algorithm
and present a new version of the algorithm which does not involve an oracle and, upon termination, always
produces the optimal cut-off set. Hence, we call the new version the optimal cut-off algorithm. The algorithm
is implemented and successfully applied to several parameterised system models, including the repeatable
read property of taDOM2+ XML database protocol [14] with the tree topology and the leader election phase
of the generalised (Byzantine) Raft consensus protocol with the (Byzantine) quorum topology [15, 16].

Our approach is based on the precongruence reduction (PR) technique previously used to prove static
cut-offs for PLTSs with predicates defined in the universal fragment (V*) of FOL [17] and for PLTSs with
special quorum functions [16]. The technique is also adapted to parameterised modal interface automata
without predicates [18]. In general, the PR technique applies to parameterised systems with a finite basis,
meaning that any (big) system instance can be represented as a composition of finitely many (small) system
instances. For example, systems with a star, bipartite, totally connected, and quorum topology are such.
However, systems with a linear, ring, or tree topology cannot be, in general, handled by our verification
technique, because systems with such a topology can simulate a Turing machine [17]. On the other hand, if
it is possible to capture the behaviour of the system from the viewpoint of any two components connected
to each other in a PLTS, then one can study the transitive closures of rings, arrays and trees instead,
since systems with such topologies have a finite basis. This is the modelling technique we have successfully
applied, e.g., in the verification of the taDOM2+ protocol.

Static cut-off results [16, 17] are syntax-based and restricted to topologies specifiable in fragments of
FOL. Consequently, a separate result is needed for each such fragment. The algorithms introduced here and
in the conference version of this work [1] are not restricted to any syntactic fragment and they basically

2

allow us to utilise the full expressive power of FOL and treat the parameters of [16, 17] in a uniform way.
Both algorithms will always terminate for topologies expressible in the 3*V* fragment of first-order logic,
because the fragment is decidable [19] and systems with such topologies have a finite basis from which all
instances can be composed [17]. The algorithms also enable us to consider systems with a finite basis beyond
this fragment, but for these systems, termination depends on the capabilities of the used SMT solver.

Contribution

Compared with the conference version of this work [1], our main contribution is a new version of the
dynamic cut-off algorithm which involves no heuristic oracle and which is now provably optimal in terms of
the PR technique. This is because the cut-off set of a parameterised system is obtained by computing the
minimal finite basis for the parameterised system. That is why the optimal cut-off algorithm introduced in
this paper always produces at least as small or even smaller cut-off sets than the static cut-off methods and
the original dynamic algorithm [1]. For example, the static cut-off for the number of servers in Raft is seven
whereas in the computed optimal cut-off set the value is only three. Earlier, the cut-offs of 5-7 have been
proved for other consensus algorithms [20]. We also provide the full proofs of the results, which were not
included in [1].

The original dynamic algorithm [1] and the optimal cut-off algorithm of this paper also allow for the
use of parameters that are beyond those handled by the static methods. As a new example, we consider
the generalised version of the leader election of the Byzantine Raft [21], where some servers can be faulty
and even malicious and therefore do not obey the protocol. The Byzantine Raft is out of the scope of static
cut-off methods and infeasible for the original dynamic algorithm in [1]. However, it can be handled by
the new optimal cut-off algorithm presented in this work and, consequently, we use the new algorithm to
prove an optimal cut-off of four servers for the leader election phase of the Byzantine Raft. To the best
of our knowledge, this is the first time a Byzantine variant of the parameterised Raft leader election is
automatically verified.

In general, the distinctive features of our approach are compositionality, the support for multiple and
topology related parameters, and the iterative computation of cut-offs. That is because many cut-off results
only apply to systems with a single parameter determining the number of replicated components [5, 6, 7, 8,
9, 13].

Related Work

As regards compositionality, the process algebraic approaches of Valmari & Tienari [22], Lazi¢ [23], and
Creese [24] are the closest works. Valmari & Tienari [22] introduce a generic induction method for param-
eterised verification. Similar approaches are also presented by Kurshan & McMillan [25] and Wolper &
Lovinfosse [26]. However, a crucial part of the technique is to come up with an invariant process which
is a task that unfortunately cannot be automated in general. Lazi¢ considers data-independent systems
which can handle infinite or arbitrarily large data types. His approach allows the use of multiple param-
eters and provides static cut-offs for the size of data types. There is also a more general version of the
results based on infinite automata [27], but in this context, compositionality is not considered. Moreover,
neither approach [23, 27] allows the number of concurrent components nor the system topology to be pa-
rameterised. The limitation is overcome by Creese who combines the data-independence results with the
induction method [24]. Simultaneously, however, full automation is lost.

Multi-parameterised verification was also considered by Emerson & Kahlon [4], Hanna et al. [28], and
Yang & Li [11]. The approaches [4, 11] are based on static cut-offs, whereas [28] uses the iterative com-
putation of cut-offs. The methods apply to systems with guarded broadcasts [4], shared actions [28], or
rendezvous communication [11] and specifications are given in temporal logic [4, 28] or as property au-
tomata [11]. However, unlike in our work, the formalisms do not lend support to compositionality.

Clarke et al. [29] concern networks of homogeneous processes communicating through token passing.
Their result applies to the systems of any topology but it allows for components of only one kind. Moreover,
they only provide an upper bound for the size of network graphs but no algorithm for determining the
networks up to the cut-off.

In addition to [22, 24, 28], iterative cut-off computation was previously considered by Kaiser, Kroening
& Wahl [10], Abdulla, Haziza & Holik [12], and Liu & Wahl [30] as well. These approaches support the
verification of reachability in the context of replicated Boolean programs [10], concurrent pushdown systems
with a fixed number of threads parameterised by the number of context switches [30], and parameterised
systems with various topologies (linear, multiset, ring, and tree) and communication primitives (global tran-
sitions, broadcasts, and rendezvous) [12]. However, neither technique lends support to multiple parameters
nor compositional reasoning.

There are also several parameterised verification techniques based on abstract interpretation [31] and
infinite-state verification algorithms on well-structured transition systems (WSTSs) [32]. While some of
these techniques lend support to multiple parameters, they are typically not compositional. Moreover, it is
unlikely that the PLTSs could be interpreted as WSTSs, because the PLTSs communicate through alphabet-
based synchronisation, where increasing the number of replicated components may block some transitions
and, hence, disable some behaviour. This easily breaks the key property of WSTSs which essentially requires
that big systems have more behaviour than small ones. The additional benefit of our approach over these
techniques is that we can exploit efficient finite-state model checkers for verification, and since abstraction
is not involved, false negative verification results are avoided.

The Raft protocol is extensively verified earlier by using theorem proving [33]. However, this proof is
Raft specific whereas our verification technique applies to a large class of parameterised systems and we
only use the leader election phase of the (Byzantine) Raft as a running example in order to demonstrate the
technique. Moreover, unlike in our work, Byzantine failures are not considered in [33].

Outline

The next three sections are preliminaries; they cover the basics of LTSs, FOL, and PLTSs. In Sect. 5,
we present the PR technique for the verification of parameterised systems, and in Sect. 6, we introduce
our main contribution, the optimal cut-off algorithm together with the proof of its correctness. The paper
concludes with discussion on future research.

2. Labelled Transition Systems

In this section, we briefly recall a Communicating Sequential Processes (CSP)-like LTS-based process
calculus with parallel composition and hiding operators and trace refinement preorder [3]. Basically, the
only difference with the usual LTS notation is that events have an explicit data part which makes adding
parameterisation convenient. The LTSs are used to express system components on both the implementation
and specification side.

We assume a countably infinite set of events. One of the events is invisible, denoted 7, and the other
ones are visible. The visible events have an explicit channel and data part; we assume countably infinite
sets C and A of, respectively, channels and atoms and that each visible event is of the form c(aq,...,ay),
where ¢ € C is a channel and aq,...,a, € A are atoms. Hence, an atom is the smallest piece of information
that can be communicated via a channel.

Definition 1 (LTS). A labelled transition system (LTS) is a four-tuple L := (S, E, R, $), where (1) S is a
finite non-empty set of states, (2) E is a finite set of visible events, also called an alphabet and denoted by
a(L), (3) RC S x (EU{r}) x S is a set of transitions, and (4) $ € S is the initial state.

Definition 2 (Parallel composition on LTSs). Let L; be an LTS (S;, E;, R;, $;) for both ¢ € {1,2}. The
parallel composition (of Ly and Lo) is an LTS (Ly || L) := (S1 x S, E1 U Ea, Ry|, (51, $2)), where R is the
set of all triples ((s1, s2), a, (87, s5)) such that either (1) a # 7 and (s;,, s;) € R; for both ¢ € {1,2}; (2)
(s1,,8)) € R1, a & Fa, s9 € Sy, and s5 = so; or (3) (s2,q,85) € Ra, a ¢ Eq, s1 € S1, and 8] = s1.

Definition 3 (Hiding on LTSs). Let L be an LTS (S, E, R, $) and E’ a set of visible events. The LTS L
after hiding E' is an LTS (L \ E') := (S, E'\ E', R\, $), where R\ is the set of (1) all triples (s,,s’) € R
such that o ¢ E’; and (2) all triples (s, 7,s’) such that (s,«,s’) € R for some o € E.

4

For the purposes of verification, an LTS is interpreted as a set of finite traces. A finite alternating
sequence (Sq, 1, 81, - - -, 0, Sy) Of states and events of L is an execution of L if sq is the initial state and
(8i—1, 0, 8;) is a transition of L for every ¢ € {1,...,n}. A finite sequence of visible events is a trace (of L),
if there is an execution of L such that the sequence is obtained from the execution by erasing all the states
and the invisible events. The set of all the traces of L is denoted by tr(L).

Definition 4 (Trace refinement and equivalence). An LTS L, is a trace refinement of an LTS Lo,
denoted Ly =¢; Lo, if L1 and Ly have the same alphabet and tr(L;) C tr(Lg). The LTSs Ly and Lo are
trace equivalent, denoted Ly =i, Lo, if and only if L1 <t Lo and Ly =4 Ly [2].

Clearly, =i, is a preorder (i.e., a reflexive and transitive relation) and =, an equivalence relation on the set
of LTSs. A system implementation is considered correct with respect to a system specification if the system
implementation LTS is a trace refinement of the system specification LTS, i.e., every trace of the system
implementation LTS is also a trace of the system specification LTS.

The operators and the trace relations have many useful properties [2
the proofs. These properties are stated in Proposition 5, where L;q :=
LTS with the empty alphabet and no transition.

, 3, 17], which are all exploited in
({$},0,0,) denotes a single-state

Proposition 5. Let Ly, Lo, Ls be LTSs and E a set of visible events. Then the following holds:

~

. Ly || La =ty Lo || L1 (commutativity),
- Ly || (L2 || Ls) =w (L1 || L2) || Ls (associativity),

. L1 || L1 = L1 (idempotence),

. Ly\E =L\ (ENna(Ly)) (note that this is equality and, hence, stronger than trace equivalence),

2

3

4. Ln || Lig =4 L1 (identity),

5

6. (L1 || L)\ E 2w (L1 \ E) || (L2 \ E) (partial distributivity),
7

. if L1 =S4 La, then Ly || Ly =S4y Lo || Ls and Ly \ E <t Lo \ E (compositionality).

The first four items state that the parallel composition is commutative, associative, and idempotent with
respect to =, and that L;; is the identity element of the parallel composition. This allows us to extend the
parallel composition operator || to every finite set I = {41,...,4,} and all LTSs L;,,...,L; by defining

(2 =] 2y = { ol heneay 00 wen > 0, and

el el id when n = 0.

The last three items say that hiding events not in the alphabet of the LTS has no effect, distributing hiding
over parallel composition results in an LTS greater in the preorder, and that <, is compositional with respect
to the parallel composition and hiding operators. Hence, <, is a precongruence and =, a congruence on
LTSs.

Trace refinement allows us to consider safety but not liveness properties. That is because using a more
expressive liveness-aware specification language, such as LTSs with failure-based semantics [3] or linear time
temporal logic [34], easily breaks the partial distributivity of hiding over parallel composition (Item 6 of
Proposition 5) and, in general, makes parameterised verification undecidable [17].

3. Many-Sorted First-Order Logic

In this section, we introduce first-order logic (FOL) [35] with sorts (a.k.a. types), typed variables, and
predicates. We use FOL to express system topologies and quantifier-free formulae as guards in system
descriptions.

We assume sets of sorts, variables, and predicates, denoted by T, X, and F, respectively, that are disjoint
and countably infinite. We assume that for each atom a € A, there is a sort T, € T and for each sort T' € T,
the set Ar := {a € A | T, = T} is countably infinite. Hence, Ay and Ag are disjoint whenever T and S
are different sorts. Moreover, we assume that for each variable x € X, there is a sort T, € T, and for each
predicate F, there is an arity np € N and a tuple of sorts T = (T}, ... , Tp™) specifying the domain of the
predicate. We write F,, for the set of all predicates with the arity n € N.

Definition 6 (FOL). The atomic formulae of FOL are of the form T (always true), x =y (equivalence),
and F(x1,...,x,) (predicate application), where x and y are variables, F' is a predicate with an arity n,
and x1,...,x, are variables of the sort T},..., T2, respectively. The formulae of FOL are determined by
the grammar

Fuo=p|-F|(FAF)|(FVF)|Ve.F | Ix.F,

where x denotes a variable and p an atomic formula.

We also write z # y (inequivalence) and F; — Fp (implication) short for —(x = y) and (—F1) V Fa,
respectively. A quantifier-free formula, also called a guard, is a formula without the quantified constructs
of the form Vz.F and Jx.F. A formula is in negation normal form if the negation — is only applied to
atomic formulae, i.e., no other connective or quantifier occurs under a negation. A formula is in the prenex
normal form with quantifier alternation Q1,...,Q, if the formula is of the form Qiz1. -+ .Qpxy,.F, Where
Q1,...,Qn € {V,3} are quantifiers and F is quantifier-free.

Definition 7 (Signature of formula). The signature of a formula F, denoted sig(F), is the set of the
sorts, predicates, and free variables occurring in F and defined inductively as follows:

1. sig(T) =

y) ={z,y, T, Ty},

H

(

2. sig(x =

3. sig(F(z1,...,20) = {F, 21, . @, Tors s To.),

4. sig(=F) = sig(F),

5. sig(Fi A Fa) = sig(F1 V Fa) = sig(F1) Usig(F»), and

6. sig(Va.F) = sig(Iz.F) = (sig(F) \ {#}) U{T:} (z is considered bound).

The sorts, variables, and predicates in sig(F) are called the parameters of F. We write sigy (F) for the
restriction sig(F) N X of the signature to a set X.

A formula is evaluated to a Boolean value by using a valuation function which assigns values to sorts,
variables, and predicates.

Definition 8 (Valuation). A wvaluation is a function ¢ such that
1. the domain of ¢ is a finite set of sorts, variables, and predicates,
2. for each sort T' € dom(¢), ¢(T) is a finite non-empty subset of Ar,
3. for each variable z € dom(¢), T, € dom(¢) and ¢(z) € ¢(T,), and
4. for each predicate F' € dom(¢), Th, ..., Tp" € dom(¢) and ¢(F) is a subset of ¢(Th) x ... x ¢(TpF).

We write domx(¢) for the restriction dom(¢) N X of the domain to a set X and Im(¢p) for the set
Uredoma(g) (1) of all atoms in the image of ¢. The complement ¢(F) of the value of a predicate F' is

the set (¢(Th) x ... x ¢(TEF)) \ ¢(F). A valuation ¢ is compatible with a formula F if sig(F) C dom(¢).
A formula is evaluated to a Boolean value in the usual way by fixing the values of the parameters by
using a compatible valuation ¢ and by evaluating the operators. Handling the propositional connectives is

6

straightforward but in order to treat quantification over a variable x, we need to consider all the extensions
of a valuation to {z}. Let ¢ be a valuation and X a set of variables such that T, € domr(¢) for all z € X.
We write ext(¢, X) for the set of all valuations ¢’ with the domain dom(¢)U X such that ¢'(x) € ¢(T) for
all z € X and ¢'|qom(¢)\x = @ldom(e)\ x> i-€., ¢ and ¢ agree on the values of the parameters outside X.

Definition 9 (Instance of formula). Let F be a formula and ¢ a compatible valuation. The ¢-instance
of F or the instance of F (generated by ¢) is a Boolean value denoted by [F]s and evaluated inductively
as follows:

1. [T]s = true,

o true, i g(x) = o(y),

2 e =ulo ‘{ false, if ¢(z) # é(y),
(
(

| true, if (¢(x1),...,d(xn))

3. [Fxr,...,zn)]¢ = { false, if ¢(x1),...,¢)
| true, if [F], = false,

4 [~Fle = { false, if [[]-']]Z = true,

true, if [F;
5. [(Fi ANFa)le = { false, if %}—1

true, if [F
6. [(F1V F2)]e = { false, if %}—1

¢ = true and [Fa]y = true,
o = false or [Fa]y = false,

o = true or [Fay = true,
o = false and [Fz]4 = false,

= = = =

7 aFl, = true, if [F]y = true for all ¢’ € ext(¢, {z}),
LT false, it [Flg = false for some ¢’ € ext(¢, {z}), and

| true, if [F]u = true for some ¢’ € ext(¢, {z}),
8 [Fx.Flp = { false, if [F]g = false for all ¢’ € ext(¢, {z}).

(Note that in Items 7 and 8, ext(¢, {z}) is finite and therefore, the ¢-instance of F is computable.)

Formulae F; and F» are equivalent if they have the same signature and [F1], = [F2]4 for every compatible
valuation ¢. Recall that for every formula there is an equivalent formula in the prenex normal form and
for every (quantifier-free) formula there is an equivalent (respectively, quantifier-free) formula in negation
normal form. Also note that the value of a predicate F' € Fy with the arity zero is either the empty set or
the singleton set containing the empty tuple (). Therefore, F' can be considered a Boolean variable b in the
following sense: ¢(b) = true if and only if () € ¢(F).

We say that a valuation ¢ satisfies a formula F or that F is satisfiable by ¢, if ¢ is compatible with
F and [F] is true. The satisfiability problem in FOL can be formulated as follows: Given a formula F,
determine whether F is satisfiable by some valuation. Note that since our valuations are always finite, the
satisfiability problem is equivalent to the question: Given a formula F, determine a satisfying valuation of
F or, if no such valuation exists, declare F unsatisfiable. The problem is undecidable in general, but the
fragment consisting of the formulae with the quantifier alternation 3*V* is decidable [19, 36]. Many-sorted
FOL considered here has several other known decidable fragments [36], too, but since many of them do not
contain full 3*V*, they are of limited use from the viewpoint of our algorithm introduced in Sect. 6.

4. Parameterised Labelled Transition Systems

In this section, we parameterise LT'Ss with first-order constructs, sorts, variables, and predicates, while
preserving compositionality. Parameterised LTSs can express systems of various topologies with an un-
bounded number of replicated components and we use them to model both system implementations and
specifications. As a running example, which is interleaved with the theory of PLTSs, we consider the leader

7

election phase of the Raft consensus algorithm [15] with and without Byzantine behaviour. With minor
syntactic differences, the parameterisation of LTSs is done as in [1, 17], but the running example is revised
from the conference version of this work [1] now being more general and covering also the Byzantine version
of Raft. The machine readable version of the running example is included in Appendix A.

Example 10. In the Raft protocol [15], time is divided into terms of arbitrary length and a server can
crash at any moment. When a server is running, it is in one of the three states, a follower, candidate, or
leader. A server always (re)starts as a follower. A follower can vote for at most one server in a term. If
a follower does not regularly receive messages from the leader, it increases its term and promotes itself to
a candidate. A candidate sends a vote request to the other servers and if it receives a quorum of votes, it
becomes a leader. Our goal is to formally prove that in each term, there is at most one leader independent
of the number of terms and the size of the cluster.

For our Raft model, we pick a sort T to represent the set {s1,...,s,} C Apy of the identifiers of servers
and a sort Tr to represent the set {t1,...,tn} C Ap,. of the identifiers of terms. Variables z; of the sort T
are used to refer to individual servers and a variable y of the sort T is used to refer to a specific term.

Since a server can crash at any moment, the topology of a Raft system evolves over time. We model
the changes in the topology by assigning each server zy and each term y a set @4, , of servers from which
the server xo may receive vote events. If the set Q. , is empty the server zy cannot become a leader in
the term y, otherwise the set @, , specifies the servers from which the server zy needs a vote in order to
become a leader in the term y. The protocol assumes that the non-empty sets are quorum sets, i.e., they
obey the quorum property [37]: any two quorum sets are overlapping.

In order to model this quorum topology, we use a predicate Qg with To, = (T's,Tr,Ts). For each server
xo and each term y, we write Qg 4 := {71 | Qs(z0,y, 1)} for the set of servers from which z, may receive
vote events in the term y. Now, in order to guarantee that the non-empty sets obey the quorum property,
we require that for all servers zg, z1 and every term y, Qu,,y is empty, Qq, 4 is empty, or the sets @, and
Q. y are overlapping. Hence, the quorum topology is formally encoded as a formula

Qrm = VmO.Vxl.Vy.((sz.—'QS(%ay,fﬂz)) \ (VZQ-_'QS(xlayaxZ)) vV 3%2.(QS($07y,$2) A QS(Qfl,y,l’Q))) .

The formula is outside the decidable fragment 3*V*, because it involves a quantifier alternation V3 over the
sort Ts, but our algorithm still terminates on this running example.

Note that in a practical implementation, the quorum property is guaranteed by requiring that a server
may become a leader in a term only if it gets more than half the votes. That is because any two sets that
cover more than half the base set are always overlapping. Since this is a special case of the quorum property,
we call our model based on the quorum topology Qrm as the generalised Raft. O

Parameterised LTSs are constructed from LTSs (where variables are substituted for the atoms), quanti-
fier-free formulae used as guards, and (replicated) parallel composition and hiding constructs which can be
thought as operators on parameterised LTSs. Replicated parallel composition allows for parameterising the
number of components while guards are used to restrict the system topology.

Definition 11 (PLTS). Parameterised LTSs (PLTSs) are defined inductively as follows:

1. If L is an LTS, ay,...,a, are the atoms occurring in (L), and z1,...,z, are variables such that
T,, =T, for all i € {1,...,n}, then a structure L[x1/ay,...,2,/ay,] obtained from L by substituting
x; for each occurrence of a; for each i € {1,...,n} is an (elementary) PLTS.

2. If P is a PLTS and G a guard, then ([G] P) is a (guarded) PLTS.
If P, and P, are PLTSs, then (P || P2) is a (parallel) PLTS.

- W

If P is a PLTS and x a variable, then (||, P) is a (replicated parallel) PLTS.
5. If P is a PLTS and C a finite set of channels, (P \ C) is a (hiding) PLTS.

8

Definition 12 (Signature of PLTS). The signature function is extended to the set of PLTSs by setting:
1. sig(L{z1 /a1, ..., zn/an]) = {21, .. s 2n, Toyy -, T, 1
2. sig([G] P) = sig(G) Usig(P),
3. sig(Py || P2) = sig(P1) Usig(Pe),
4. sig(||,, P) = (sig(P) \ {z}) U{T,} (z is considered bound), and
5. sig(P\ C) = sig(P).

The signature determines the parameters of a PLTS and a valuation ¢ is said to be compatible with a PLTS
P if sig(P) C dom(¢). We sometimes write P(x1,...,x,) to emphasise that P has the variables z1, ..., z,
as parameters.

A PLTS is evaluated to an LTS by fixing the values of the parameters by using a compatible valuation
and by evaluating the operators.

Definition 13 (Instance of PLTS). Let P be a PLTS and ¢ a compatible valuation. The ¢-instance of
P or the instance of P (generated by ¢) is an LTS denoted by [P], and evaluated inductively as follows:

1. [[L[xl/al’ BRI} xn/an]]]qf) = L[d)(xl)/ala) d)(xn)/an]?

o [P'le, if [G]y is true,
2. 6171, = { L,q, if [G]e is false (the instance has no behaviour),

3. [P1 | P2l = [Pi]o || P2
4 (Il P'le = ll g eext(s, 1z [Pl and
5. [P'\Cle =[Pl \ {c(ar,...,an) € a([P']s) | c € C}.

The successful application of the PLTS formalism necessitates a compositional modelling approach that
is widely used in practice; a parameterised system implementation and specification are constructed from
finitely many components by using parallel composition such that each component represents the behaviour
of the system implementation or specification from the viewpoint of certain events and finitely many com-
ponents. When modelling a system specification, this means it is sufficient that each illegal behaviour is
forbidden by some system specification component.

Example 14. For the generalised Raft specification, we use an event leader(xg,y) to denote that the server
x(is chosen as a leader in the term y. First, we consider the specification from the viewpoint of two servers,
xo and z1, and a term y. PLTS Spec2(xq,x1,y) on the left of Figure 1 formally says that no two servers
and x7 can become a leader during the same term but repeating a leader notification is fine.

Recall the definition of the predicate Qg from Example 10. As we let the variable y range over all term
identifiers and xg, x1, and x5 over all server identifiers, we obtain the model of the full specification as a
PLTS

Spec := || H H || [QS('I()v Y, ‘TQ) A QS(Ih Y, x2)] Spec?(zo, T, y) >
To X1 X2 Y
which says that for each term, there is at most one leader. The guard guarantees that for each term, we only
consider servers with (non-empty) overlapping quorum sets. This is not a restriction since any two quorum
sets are overlapping. Since Spec2(xg, x1,y) has no bound variable, sig(Spec2(xo,x1,y)) = {z0, z1,y,Ts, T},
but sig(Spec) = {Qs,Ts, Tr} as Spec has only bound variables.

In order to visualize Spec, let us consider a valuation ¢ such that ¢(Tr) = {t1}, ¢(Ts) = {s1,.--,Sn},
and the sets {x | (s;,t1,2) € #(Qs)}, where i € {1,...,n}, obey the quorum property. Obviously, the
valuation ¢ is compatible with Spec and the ¢-instance of Spec is a star-shaped LTS on the right of Figure 1,
which indeed says that there is at most one leader for the term ¢;. O

9

Figure 1: On the left: PLTS Spec2(zo,x1,y) representing the generalised Raft specification from the viewpoint of two servers,
zo and x1, and a term y. On the right: the instance of Spec representing the generalised Raft specification from the viewpoint
of n servers s1,...,sn and a term t7.

We complete the PLTS formalism by extending the trace refinement relation to the set of PLTSs while
preserving compositionality. However, instead of a single relation, there will be infinitely many, since we
use a formula to define the allowed values of parameters. This formula is basically just a system invariant
which the valuations need to satisfy. Nevertheless, since we often use the formula to capture the system
topology, we call it a topology formula, even though it can be used for specifying system invariants in general.
Formally, a topology formula is a first-order formula accordant with Definition 6.

Definition 15 (Parameterised system/Refinement on PLTSs). A parameterised system is a triplet
(P, Q,F), where P is an implementation PLTS, Q a specification PLTS, and F a topology formula. For a
parameterised system (P, Q, F), we write P <7, Q if and only if [P],s =i [Q]s for all valuations ¢ that are
compatible with P and Q and satisfy F.

Obviously, Definition 15 can also be restricted to valuations with the minimal domain sig(P || Q) U sig(F).
Therefore, we write va(F | P, Q) for the set of all valuations ¢ which have the domain sig(P | Q) Usig(F) and
satisfy F. We consider the parameterised system to be correct if P <. Q. Since we use trace refinement,
this allows for the verification of safety properties. Parameterised trace refinement relations also enable
compositional verification since they are precongruences.

Proposition 16. For all formulae F, the relation jt}; is a precongruence on the set of PLTSs.

PRrROOF. The claim follows from Definition 13 and the precongruence of <i,. The proof is similar to the
proof of Proposition 17 in [17]. O

When the goal is to prove a system correct, it is safe to over-approximate the behaviour of the system
implementation (components). This way, one can get false negative verification results, but if the model of
the system implementation is correct with respect to the specification, also the original system is guaranteed
to meet the specification.

Example 17. For the generalised Raft implementation, we use an event vote(zg,y,z1) to denote that the
server xo votes for the server x; in the term y and an event candidate(zo,y) to denote that the server
xo promotes itself to a candidate in the term y. The behaviour of the generalised Raft implementation is
modelled in the same fashion as the specification. First, we capture it in the follower/candidate mode from
the viewpoint of three servers xg, x1, 22 and a term y in a PLTS Flw3(xq, x1,x2,y) on the left of Figure 2.
The PLTS says that in the term y, the server zy can vote for either x; or x5, or become a candidate and
vote for itself. When we let the variables x1, z2, and y range over all values in their domain (with the
restriction that the values of 1 and zo are different), we obtain the model of a single server zy running in
the follower /candidate mode as a PLTS

Flw(zo) := || || [z17z2] || Flw3(zo, 21,22, 9) ,

T1 T2 Yy

10

Figure 2: On the left: PLTS Flw8(xo,x1,22,y) representing the generalised Raft implementation in the follower/candidate
mode from the viewpoint of three servers xg, 1, z2 and a term y. On the right: PLTS Ldr2(zo,z1,y) representing the
generalised Raft implementation in the candidate/leader mode from the viewpoint of two servers zg,z1 and a term y.

which states that a server can vote for at most one server in the term or become a candidate.

Second, we model the generalised Raft implementation in the candidate/leader mode from the viewpoint
of two servers xg,x; and a term y as a PLTS Ldr2(zo, z1,y) on the right of Figure 2. This model says that
once the server xy becomes a candidate and receives a vote from the server xi, it can promote itself to a
leader in the term y. As we let y range over all term ids and x; range over all server ids in the set Qg .y,
the model of a single server xy running in the candidate/leader mode is obtained as a PLTS

Ld?”((E()) = |

Il
Yy T

[QS($()7 Y, xl)} Ldr?(:po, Iy, y) ’

which says that in order for a server to become a leader, it needs to become a candidate and then receive a
vote from all the servers in Qg y-

When we compose the partial models in parallel and let xg range over all server ids, we obtain the model
of the generalised Raft implementation with an arbitrary number of servers and terms as a PLTS

Raft := || (Ldr(wo) || Flw(x))

Zo

Finally, we hide the events irrelevant to the specification yielding to a PLTS Raft’ := Raft\ {vote, candidate}.
Now, the problem on the correctness of the generalised Raft leader election can be formalised as the question
whether

Raft’ <™ Spec

holds. Code for the generalised Raft example is found in Appendix A.

Note that in our model, a quorum set of a server may change from term to term, but the changes in
the topology are fixed a priori. This is not a restriction though as long as every possible combination of
topology changes is covered. That is because we only consider safety properties, so it is sufficient that every
trace of the system implementation is contained in some instance of the system model. U

Example 18. We also consider the Byzantine version [21] of the generalised Raft, where some malicious
servers do not obey the protocol and therefore, may vote more than once in a term. In order to model the
leader election phase of the generalised Byzantine Raft, we introduce a predicate NB with Typ = (T, Ts)
which specifies the set NB, := {x | NB(y,z)} of non-faulty servers for each term y. Hence, we consider
a server z to operate correctly in the term y, if and only if NB(y,z). In order to prove the correctness of
generalised Byzantine Raft, we need to strengthen the quorum property to a condition which we call the
Byzantine quorum property: for all xo, z1 and every term ¥y, Qq, 4 is empty, @z, 4 is empty, or the sets Qz, 4,
Qs ,y, and NB, are overlapping. Hence, the Byzantine quorum topology is formally encoded as a formula

Byz := on.le.Vy.((VmgﬁQS(azo,y,xg)) V (Voo mQs(x1,y,x2))V
J22.(Qs (w0, y, v2) A Qs(1,y,72) A NB(y, x2))) .

Also this formula is outside the decidable fragment 3*V*, because it involves a quantifier alternation V3 over
the sort T, but our algorithm still terminates on this running example, too.

11

Note that in a practical implementation, the Byzantine quorum property is guaranteed by requiring that
in every term y, (i) more than two thirds of the servers are non-faulty and (ii) in order for a server to
become a leader, it needs more than two thirds of the votes. Since the conditions (i) and (ii) imply the
Byzantine quorum property, we call the Byzantine version of Raft with the Byzantine quorum topology,
Byz, the generalised Byzantine Rafft.

The correctness specification for the generalised Byzantine Raft is the same as for the generalised Raft.
The implementation, however, is slightly different since the faulty servers may vote several times during a
term. Hence, for the faulty servers, the PLTS Flw(xg,x1,x2,y) representing the correct behaviour in the
follower/candidate mode is omitted. Therefore, the model of the generalised Byzantine Raft implementation
becomes

BRaft := || (Ldr(zo) || (|| || [x172] || [NB(y, z0)] FlwS (20, z1,72,Y))) -
xo T1 T2 Yy
Finally, just like in the case of non-Byzantine generalised Raft, we hide the events irrelevant to the
specification and formulate the problem on the correctness of the generalised Byzantine Raft leader election
as the question whether
BRaft \ {vote, candidate} <2V Spec

holds. Code for the generalised Byzantine Raft example is found in Appendix A. O

Our formalism enables the specification of various other topologies as well. For example, a classical ring
topology can be modelled by using a sort N to represent the set of the nodes in a ring and a binary predicate
Cyn with T, = (N, N) to represent the connections between them. The ring topology is then defined by
the formula

Rng = (Vzo.ﬂzl.C’N(zo,zl)) A\ (VZ().\V,Zl.vZQ.((CN(ZQ, 2’1) A\ CN(ZQ, 2’2)) — 21 = 2’2))/\
(Vz20.321.Cn (21, 20)) A (V20.Y21.V22.((Cn (21, 20) A Cn(22,20)) = 21 = 22))

where zg, 21, 29 are variables of the sort N, the first line states that each node has precisely one succes-
sor, and the last line says that each node has precisely one predecessor. If Adj2(zp,z1) is an elementary
PLTS capturing the behaviour of adjacent nodes zy and z1, then the system with the ring topology can be
represented as a PLTS

[I[[Cn (20, 21)] Adj2(20, 21) -

20 21
Actually, to be precise, Rng specifies a set of rings, but if this is undesirable and a single ring is preferred,
we can introduce another binary predicate representing the transitive closure of Rng with one node removed
and require that the transitive closure is irreflexive [17]. A system with a chain topology can be modelled in
a similar fashion, we only need a specific head node and a specific tail node which do not have a predecessor
and a successor, respectively.

Even though our formalism enables the specification of just about any topology, our algorithm does not
terminate on all of them. For example, a system with the ring topology Rng does not have a finite basis,
because larger rings cannot be constructed from smaller ones without breaking the existing ring structure.
Moreover, there are PLTSs with a chain or ring topology that can simulate a Turing machine [17, 38],
which implies that the verification of such systems is undecidable in general and it is only natural that our
algorithm cannot handle them.

5. The Precongruence Reduction Technique

In this section, we present the precongruence reduction (PR) technique that enables us to reduce the
question of the correctness of a parameterised system to finitely many refinement checks among LTSs [17].
The technique is based on determining a cut-off set although it does not directly give us an algorithm for
computing one. Instead, it gives us the basic tools for reducing the number of needed refinement checks
by utilising the algebraic properties of the refinement relation and the composition operators, especially

12

precongruence. As the main result of this section, we prove Proposition 31 which says that a finite basis
of a parameterised system is a cut-off set. Results similar to Lemma 25 as well as Lemmata 26 and 29 are
proved in [1] and [17, 18, 16], respectively, but here we also provide the full proofs which were not included
in [1]. The main result, Proposition 31, is new.

Definition 19 (Cut-off set). Let (P, Q,F) be a parameterised system and ® C va(F | P, Q) a finite set
of valuations. The set ® is a cut-off set (for (P, Q,F)), if P <{. Q if and only if [P], =< [Q] for all ¢ € .

Example 20. Recall our Raft example. In the next sections, we will show that in order to prove the
generalised Raft correct, i.e., to solve the refinement Raft’ jffrm Spec, it is sufficient to consider the instances
of the generalised Raft model up to three servers and a single term generated by the following six valuations:

L ¢1(Ts) = {s1}, 01(Tr) = {t1}, 01(Qs) = {(s1, 1, 51) };

2. $2(Ts) = {s1,82}, 62(Tr) = {t1 }, 92(Qs) = 0;

3. ¢3(Ts) = {s1, 52}, ¢3(Tr) = {t1}, 93(Qs) = {(s1, %1, 52) };

4. ¢4(Ts) = {s1, 52}, 0a(Tr) = {t1}, 0a(Qs) = {(s1, 11, 52), (52, 1, 52) }5

5. ¢5(Ts) = {s1,52,53}, ¢5(Tr) = {t1}, ¢5(Qs) = 0; and

6. ¢6(Ts) = {s1,s2, 53}, 06(Tr) = {t1}, d6(Qs) = {(s1, 11, 83), (52,11, 83)}-

In other words, we will show that {¢1, da, P3, P4, P5, b6} is a cut-off set for our generalised Raft model where
the cut-offs are three and one for the size of Ts and T, respectively. We will also prove that the cut-off set
is optimal with respect to the PR technique. O

The PR technique can be used to find cut-off sets for parameterised systems where the specification
does not involve hiding. That is because hiding distributes only partially over parallel composition (Ttem 6
of Proposition 5) and consequently, the restriction is needed to prove Lemma 26. Moreover, allowing the
use of hiding on the specification side makes the parameterised verification undecidable in general [17].
However, restricting the use of hiding is not a big limitation in practice since it is typically only applied
on the implementation side. Hence, from now on, an implementation PLTS refers to any PLTS, whereas a
specification PLTS means a PLTS which does not involve hiding.

Intuitively, the PR technique consists of the following steps. First, we show that if a big instance of the
implementation PLTS P (respectively, a specification PLTS Q) can be composed from a set of structurally
smaller instances and each small instance of P is a trace refinement of the corresponding instance of Q, then
the big instance of P is a trace refinement of the big instance of Q, too (Lemma 26). Second, we prove that
valuations that can be obtained from each other by using the bijective renaming of atoms lead to equivalent
verification tasks (Lemma 29). These two propositions together imply that if the system has a finite basis,
i.e., all the instances are covered by a finite set of small instances, then the finite basis forms a cut-off set
(Proposition 31).

In order to present the technique in detail, we first formalise the notion of the structure of an instance.
Intuitively, the structure of an instance describes the full branches, from the root to a leaf, in the syntax tree
of the instance. The branches are represented as finite strings, where each element in the string corresponds
to an edge in the syntax tree.

Definition 21 (Structure of instance/Branch string). Let P be a PLTS and ¢ a compatible valuation.
The structure (of the ¢-instance of P) is a finite set of finite strings denoted by str(P,¢) and defined
inductively as follows:

1. str(Llz1/aq, ..., xn/an], @) = {e}, where ¢ is the empty string,

str(P’, @), if [G]s is true,
0, otherwise,

2. str([G] P, 9) = {
13

3. str(P1 || P2, ¢) = {falsew | w € str(Pr,)} U {true w | w € str(Py, ¢)},
4. str(ll, P 0) = Ugrcexi(o, {2 19/ (@) w | w € str(P',)}, and
5. str(P'\ C, ¢) = str(P’, ¢).

The elements of str(P, ¢) are called branch strings.

Example 22. Recall our Raft model from Example 10. Let 6 be a valuation in va(@Qrm | Raft’, Spec) such
that 0(Ts) = {s1,...,Sn}, 0(T7) = {t1,...,tm}, and for all [€ {1,...,m}, the sets {z | (s;,t1,2) € 0(Qs)},
where i € {1,...,n}, obey the quorum property. Then the structure of the parallel composition Raft’ || Spec
is the set

str(Raft’ || Spec, 0) U U U {false s; false t;s;})U
e

(Sutz,

0(Qs)

m

(U U U U{false si true sjsxti}) U U U U U {true s;sjsiti}) . O

k1 =1
£k

(: t1,55),(85,t1,56)€0(Qs)

We say that the ¢-instance of P is smaller than (or equal to) the 1-instance of P if str(P, ¢) is a subset of
str(P,). Intuitively, smaller instances are generated by smaller valuations, called subvaluations, as stated
in Lemma 25.

Definition 23 (Subvaluation). Let T be a set of sorts and II, = sets of predicates. A valuation ¢ is a
(7,11, E)-subvaluation of a valuation 1 if and only if

1. the valuations have the same domain,
- o(T) S o(
d(T) = ¢(T) for all sorts T' € domy () \ Y,

¢()
d(F) C(F) for all predicates F' € domp(¢) N1II, and

[\

T) for all sorts T' € domp(¢) N T,

() for all variables x € domx/(¢),

d(F) C ¢(F) for all predicates F' € domg(¢) N E.

.@.@%w

A (7,11, Z)-subvaluation ¢ of ¢ is proper if ¢ # 1, i.e., one of the containments above (2, 5, or 6) is proper.

The fact that ¢ is a (T, II, Z)-subvaluation of 1 is denoted ¢ Cr 1z . Given a quantifier-free formula G,
we write prT(G) and pr~(G) for the set of predicates occurring under, respectively, an even and odd number
of negations in G. We also write ¢ Cy ¢ 9 or say that ¢ is a (T, G)-subvaluation of ¢ to mean that ¢ is
a (T,prt(G), pr— (G))-subvaluation of 1. The notation is extended to PLTSs P by defining pr®(P), where
@ € {+, —}, as the union of all pr®(G) when G ranges over all guards in P.

Example 24. Let 0 be a valuation as in Example 22 and © the set of all valuations 6’ € va(@Qrm | Raft’, Spec)
such that ¢'(Tr) = {t;}, 0'(Ts) = {s:, 55,5k}, and 0'(Qs) C 6(Qs) for some [€ {1,...,m} and 4,j,k €
{1,...,n}. Since (Raft’ || Spec) involves a single predicate, Qg, without negation, pr*(Raft’ || Spec) = {Qs}
and pr~ (Raft’ || Spec) = @. This implies that © is a finite set of (T, Raft’ | Spec)-subvaluations of 6. It is
also easy to see that for all ' € ©, str(Raft’ || Spec, ') is a subset of str(Raft’ || Spec, 0). O

Lemma 25. Let P be a PLTS, G a quantifier-free formula, and v, ¢ valuations compatible with P and G.

1. If ¢ is a (T,0,0)-subvaluation of v» and P is an elementary PLTS, then [Ply = [Pls (note that this
is equality and, hence, stronger than trace equivalence).

14

2. If ¢ is a (T, G)-subvaluation of v and [G]e is true, then [G]y is true.
3. If ¢ is a (T, P)-subvaluation of ¢, then str(P,¢) C str(P,).

PROOF.

1. Since ¢|x = ¥|x and an instance of an elementary PLTS is completely defined by the values of variables,
the claim is evident.

2. First, recall that every quantifier-free formula G' can be converted into an equivalent quantifier-free
formula G which is in negation normal form. Moreover, this can be done in the standard way such
that pr*(G) = pr*(G) and pr~(G) = pr~(G). Hence, without loss of generality, we may assume that
G is in negation normal form. Then, we argue by induction on the structure of G by using the claim
as the induction hypothesis.

In the base case, there are five cases to consider because G cannot be =T which always evaluates
to false. The case when G is T is obvious because T always evaluates to true. The cases when G is
x =y or ~x = y are easy, too. Since ¢ is a (T, G)-subvaluation of ¥, ¢(z) = ¢¥(x) and ¢(y) = ¥(y),
which implies that [G]g4 = [G]y. Let us then assume that G is F(z1,...,z,) and [G]y is true. The
former implies that F' € prt(G) and the latter means that (¢(x1),...,é(x,)) € ¢(F). Since ¢ is
a (T, G)-subvaluation of v, it implies that (Y (x1),...,%(x,)) = (¢(x1),...,P(xn)) € ¢(F) C (F).
Hence, [G]y is true as well. The case when G is =F(z1,. .., x,) is similar.

In the induction step, there are two cases two consider. First, let us assume that G is G; A G2 and
[G]y is true, i.e., [G1]y and [G2]4 are true. Obviously, for both i € {1,2}, ¢ is a (T, G;)-subvaluation
of v, which by the induction hypothesis, implies that [G;]y is true. Hence, [G]y is true as well.
Second, if G is G1 V G2 and [G]y is true, then [G;]y is true for some ¢ € {1,2}. Since ¢ is a (T, G;)-
subvaluation of ¢, by the induction hypothesis, it implies that [G;]y is true and, hence, [G]y is true
as well.

Therefore, by the induction principle, the second claim of the lemma holds.

3. We argue by induction on the structure of P by using the lemma as the induction hypothesis.

In the base case, P is an elementary PLTS, which implies that str(P, ¢) = str(P,v) = {e} and the
claim is obvious.

In the induction step, there are four cases to consider. First, let us assume that P is ([G]P’).
Then ¢ is a (T, G)- and (T, P’)-subvaluation of . If [G], is false, then str(P, ¢) is the empty set and
obviously contained in str(P,). On the other hand, if [G], is true, then by the second claim of the
lemma, [G]y is true as well. Since ¢ is a (T, P’)-subvaluation of v, by Definition 21 and the induction
hypothesis, it implies that str(P, ¢) = str(P’, ¢) C str(P’, 1)) = str(P,v).

Second, if P is Py || P2, then ¢ is a (T, P;)-subvaluation of ¢ for both i € {1,2}. By the induction
hypothesis, it implies that str(P;, ¢) C str(P;,¢) for both ¢ € {1,2}, and by Definition 21, we see that
str(P, ¢) C str(P,).

Third, we assume that P is ||, P’. Since ¢ is a (T, P)-subvaluation of v, for every ¢’ € ext(¢, {z}),
there is ¢’ € ext(y,{z}) such that ¢’ is a (T,P’)-subvaluation of ¢’. Hence, by the induction
hypothesis, str(P’,¢') C str(P’,4’) for every such ¢ and ¢’. By Definition 21, this implies that
str(P, ¢) C str(P,).

Finally, if P is P’ \ C, then ¢ is a (T, P’)-subvaluation of 1. By Definition 21 and the induction
hypothesis, this implies that str(P, ¢) = str(P’, ¢) C str(P’,¢) = str(P, v).

Therefore, by the induction principle, also the third claim of the lemma holds. O

With the aid of the lemma above, we can show that the correctness of a (big) implementation instance can
be derived from the correctness of structurally smaller instances if the big implementation and specification
instances are composed of the structurally smaller, respectively, implementation and specification instances.

Lemma 26. Let P be an implementation PLTS, Q a specification PLTS, v a valuation compatible with
P and Q, and ® a finite set of (T, P || Q)-subvaluations of 1. If str(P || Q,4) = Ugeq str(P || Q,) and
[Ple =t [Qlg for all ¢ € @, then [Py < [Q]w-

15

PROOF. First, we argue that if ¢ is a finite set of (T, P)-subvaluations of ¢ and str(P, 1)) = Ueq str(P, ¢),
then [Py < || ¢>e<1>[[7)]]¢' The proof proceeds by induction on the structure of P by using the claim as the
induction hypothesis.

In the base case, P is an elementary PLTS. Since ¢ is a (T,), #)-subvaluation of 3 for all ¢ € @, by
Item 1 of Lemma 25, we know that [P], = [P]s. Since every LTS is idempotent with respect to parallel
composition (Proposition 5, Item 3) and =i, is transitive, it implies that [Py =i || 5cqe[Ple-

In the induction step, we have four cases to consider. Let us first assume that P is ([G] P’). If [G]y is false,
then by the second item of Lemma 25, [G] is false for all ¢ € . This implies that [Py, = Lig =t [| yeq [Ple-
Let us then assume that [G],, is true and let ®, be the set of all ¢ € ® such that [G]y is true. Then @, is a
finite set of (T, P’)-subvaluations of 1. Moreover, since str(P, ¢) is empty for all ¢ € & \ @4, it means that
str(P’,¢) = str(P,) = Ugea str(P, ¢) = Uyea, str(P’,). By the induction hypothesis and the identity of
L;q (Proposition 5, Item 4), it implies that

, i.h. , P5.4
[Ply =PTw 2 |l [PTs =er [l [Pls-
peP, ped
If P is Py || Pq, then, by the assumption, we know that ® is a finite set of (T, P;)-subvaluations of
Y and str(Pi,¢) = Ugeq str(Pi, ¢) for both ¢ € {1,2}. Then, by the induction hypothesis, we see that
[Pily = llyealPi]e for both i € {1,2}. By the commutativity and associativity of the parallel composition
(Proposition 5, Items 1-2) and the compositionality of the trace refinement (Proposition 5, Item 7), we have

P5.1-2

[Ply = Pily | Poly e LRI 1)L 1P 07 1 (1P 1 1P21) =) [P

Pped peD

By the transitivity of the trace refinement, it implies that [Py =i || 5cq[Pls-

Next, we assume that P is ||, P’. For every a € ¢(T,), let ®, denote the set of all valuations
¢" € Ugea ext(o, {x}) such that ¢'(z) = a. Obviously, Py (,) is a finite set of (T, P’)-subvaluations of
Y’ for every o' € ext(¢), {z}). Moreover, since str(P,v) = [U,eq str(P, ¢), then str(P,¢’) must be equal
to U(b'E‘I’w/(z) str(P,¢’) for all ¢’ € ext(¢,{z}). By the induction hypothesis, it implies that [P']y <¢r
I oDy [P’y for every ¢ € ext(,{x}). Then, by the commutativity, associativity, idempotence, and

identity of the parallel composition (Proposition 5, Items 1-4) and the compositionality of the trace refine-
ment (Proposition 5, Item 7), the following holds:

i.h. & P5.7

[Ply = | [Ply = I C I [P
W' €ext(v,{x}) P €ext(vh,{z}) ¢'EPy ()

P5.1-4 P5.1-3
=ur I [Ple = I C 1 [PTe)= | [Pls-
¢'€Upcq oxt(9,{c}) 0€D ¢'eext(o,{c}) =

By the transitivity of the trace refinement, it implies that [Py < [lyeq[Pls-

Finally, if P is P'\ C, then we write E for the set {c(a1,...,an) | c € C,a1,...,a, € A} of all events that
can be communicated via the channels in C'. By the induction hypothesis, we learn that [P'], < H(z,ep [P1e,
which implies that a([P']) C a([P’]y) for all ¢ € ®. By the properties of hiding (Proposition 5, Items 5-6)
and the compositionality of the trace refinement (Proposition 5, Item 7), this implies that

5.7 5.6-7

P
(I [PIN\NE Zer
)

[Ply = [P']s \ (ENa([P']y) "2° [Pl \E S

I (IP1o\E) 2 || ([P T\ (ENa([P']e) = || [Pls-
PED ped ped

By the transitivity of the trace refinement, it implies that [Py =t [|yeq[Plo-
The proof that ® is a finite set of (T, Q)-subvaluations of ¢ and str(Q,) = U¢€q> str(Q, ¢) implies
l4ca[Qls =tx [Q]y is similar but simpler because there is no need to consider the hiding construct.

16

If @ is a finite set of (T, P || Q)-subvaluations of ¢, str(P || Q,¢) = Uyeq str(P | Q, ¢), and [Pl =& [Qls
for all ¢ € @, then by above and the precongruence of <, [Ply =i [4ealPls St llpealQle S [Qly. O

Example 27. Let 6§ and © be as in Examples 22 and 24. Since every branch string in str(Raft’ || Spec, 0)
depends on the identifiers of at most three servers and one term, it is easy to see that str(Raft’ || Spec,) =
U co str(Raft" || Spec, @), i.e., the structure of the 6-instance of (Raft’ || Spec) consists of the same branch
strings as the structure of #’-instances, where #’ € ©. Since O is finite, by Lemma 26, it means that if
[Raft'or =4 [Spec]o: for all @' € O, then [Raft']s =i [Spec]s, too. Note, however, that not all valuations
in © satisfy Qrm, so this does not yet mean that the correctness of our Raft model can be derived from the
correctness of its instances up to three servers and one term. O

Valuations that can be obtained from each other by the bijective renaming of atoms result in equivalent
verification tasks. A function (injection) g : A — B, where A, B C A, is a sortwise function (respectively,
injection) if g(a) € Ar, for each a € A. Let ¢ be a valuation and g a sortwise function: Im(¢) — A. We
write g(¢) for a valuation ¢ which is obtained from ¢ by mapping the atoms in the image using g.

Definition 28 (Isomorphism on valuations). Valuations ¢; and ¢2 are isomorphic, if there is a sortwise
injection g : Im(¢1) — Im(¢2) such that ¢o = g(¢1).

Lemma 29. Let V be a formula, P and Q PLTSs, and ¢1 and ¢2 isomorphic valuations.
1. If $1 and ¢ are compatible with V, then [V]g, if and only if [V]4,-
2. If ¢1 and ¢o are compatible with P and Q, then [Plg, <u [Qle, if and only if [Ple, =t [Q]¢,-

PROOF. The first is claim is easy to prove by induction on the structure of V.

In order to prove the second claim, we define renaming on LTSs [3, 2]. If L is an LTS, Ay the set of
all atoms occurring in L, and g a sortwise injection: Ay, — A, then g(L) denotes an LTS obtained from L
by substituting g(a) for every occurrence of every atom a € Aj. Obviously, renaming is a compositional
operator on LTSs, i.e., L =<t; Lo implies g(L1) =4 g(L2) for all LTSs Ly, Ly and every sortwise injection g
from Ar, U Ar,, and renaming distributes over the parallel composition and hiding operators, i.e., g(L; ||
Lo) = g(L1) || g(L2) and g(L1 \ E) =ty g(L1) \ g(E) for all LTSs Ly, Lo, every set E of visible events, and
every sortwise injection ¢ from Ay, U A, UE.

Now, by utilising the properties above, we can show that if P is a PLTS, ¢ a compatible valuation,
and g a sortwise injection: Im(¢) — A, then g([P]y) = [Ply(e). This is easy to prove by induction on the
structure of P.

Finally, since ¢; and ¢o are isomorphic valuations, there is a sortwise injection ¢ : Im(¢;) — Im(¢2) such
that ¢ = g(¢1). Now, if [P]y, =Ztr [@]s,, then by the compositionality of renaming, g([Pe,) =t 9([Ll¢.)s
too. By above, it means that [P]y(s,) Ztr [Q]g(¢,) Or, in other words, [P]g, = [Qlg,. Similarly, we can
prove that HP]]¢2 Ser [[Q]]d>2 implies [[PH¢1 Str [[Q]]¢1' Hence, [[PH¢1 Str [[Q]]¢1 if and only if [[P]]¢2 Str HQH¢2'

O

Lemmata 26 and 29 imply that if the system has a finite basis in the sense that all the instances are
covered by a finite set of (injectively renamed) small instances, then we can reduce a refinement checking
on PLTSs to finitely many refinement checks on LTSs. This is stated formally as Proposition 31.

Definition 30 (Basis). Let (P, Q,F) be a parameterised system. A set ® C va(F | P, Q) of valuations is
a basis (of (P, Q,F)) if for all ¢ € va(F | P, Q) and all w € str(P || Q, 1)), there is a valuation ¢ € ® and a
sortwise injection g : Im(¢) — Im(2)) such that w € str(P || Q,g(¢)) and g(¢) is a (T, P || Q)-subvaluation

of 1.

Proposition 31. A finite basis of a parameterised system (P, Q,F) is a cut-off set for (P, Q,F).

17

PROOF. In order to prove that ® is a cut-off set for (P, Q, F), it is sufficient to show that if [P]y < [Q]s
for all ¢ € @, then [P]y <4 [Q]y for all ¢ € va(F | P,Q), because the opposite implication is trivial.
Hence, let us assume that ® is a finite basis, [P]s <4 [Q]y for all ¢ € @, and ¢ € va(F | P, Q). Since P is a
basis, for every w € str(P || Q, %), there is a valuation ¢,, € ® and a sortwise injection g, : Im(¢,,) — Im(v))
such that w € str(P || Q, guw(dw)) and gy (¢Py) is a (T, P || Q)-subvaluation of 1. By Item 3 of Lemma 25,
[P 1l Qlg,(p,) is smaller than [P || Q]y for all w € str(P || Q,v), which implies that str(P || Q,¢) =
Uwestr(PHQ,w) str(P || Q, guw(pw)). Since [Py X [Q]y for any ¢ € @, we know that [P]ys) =tr [Qlg(s)
for all sortwise injections g from Im(¢), too. Hence, [Ply, (4.) Ztr [Qgu (4, for all w € str(P || Q,4). By
Lemma 26, it implies that [P]y =i [Q]y, too. Therefore, ® is a cut-off set. O

By applying Definition 30 and Proposition 31, we can show that the set of six valuations given in
Example 20 is a finite basis, and hence a cut-off set, of our generalised Raft model. However, this is not easy
to see, since we basically need to apply Definition 30 an infinite number of times. That is why, in the next
section, we will develop an algorithm for the purpose of computing a minimal basis, i.e., the most optimal
cut-off set our PR technique can provide.

6. Optimal Cut-Off Algorithm

In this section, we convert the problem of determining a cut-off set into the unsatisfiability in FOL,
introduce a new SMT-based semi-algorithm for computing such a set, and prove that the computed cut-off
sets are optimal with respect to the PR technique. Hence, the new algorithm is called the optimal cut-off
algorithm. Results similar to Lemmata 33, 36, 42, Proposition 37, and Theorem 43 are presented in the
conference version of this work [1], but here the results are adapted to the new optimal cut-off algorithm.
We also provide the full proofs of Lemmata 33, 42 and Theorem 43 which were not included in [1]. The
optimal cut-off algorithm and the results, Lemmata 35, 38, 40 and Proposition 39, related to the proof of
optimality are completely new.

In order to introduce an SMT-based optimal cut-off algorithm, we first extend the notion of a branch
to PLTSs as a formula in the I*-fragment of FOL (Definition 32) and prove a correspondence between the
branch strings and the branch formulae (Lemma 33). By using this correspondence, we convert the condition
for a finite basis from the level of branch strings to the level of branch formulae (Lemma 35). After that,
we convert the subvaluation test g(¢) Cr = % occurring in the definition of a basis into a quantifier-free
formula (Lemma 36). This makes it possible to express the condition for a finite basis as the unsatisfiability
of a first-order formula (Proposition 37).

The minimal basis is obtained as the set of minimal valuations that satisfy the topology formula and
a branch formula (Lemma 40). This means that we need to be able to minimise valuations satisfying the
formula of Proposition 37 which is done in two phases, first with respect to the size of the sorts and then
with respect to the values of predicates. For that purpose, we convert the related proper subvaluation tests
into quantifier-free formulae (Lemma 38). After that, we are able to express the questions concerning the
existence of a strictly smaller satisfying valuation (with respect to the size of the sorts and with respect to
the values of the predicates) as the satisfiability of a first-order formula (Proposition 39). By combining the
results above, we are able to create an SMT-based algorithm that iteratively computes minimal satisfying
valuations until the condition for an insufficient basis becomes unsatisfiable (Algorithm 1). The correctness
of the algorithm is stated in Theorem 43.

In order to formalise the results, we assume that the set of all variables, including the Boolean ones,
X U Fy, is partitioned into sets X%, X/, and X”, each containing infinitely many variables for each sort.
Moreover, we assume that only the variables in X° are used in PLTSs and topology formulae and for each
atom a € A there is a unique variable !/ € X" of the sort T,. We can now extend the notion of a structure
to PLTSs. The structure of a PLTS describes the full branches, from the root to a leaf, in the syntax tree of
the PLTS, where the branches are represented as formulae in the 3*-fragment of FOL. The correspondence
between the branch strings and the branch formulae is stated in Lemma 33.

Definition 32 (Structure of PLTS/Branch formula). The structure (of a PLTS P) is a finite set of
first-order formulae denoted str(P) and defined inductively as follows:

18

5.

str(Liz/ag, ..., xn/an]) = {T},
. str([G]P) ={G A B | B estr(P)},

str(Py || P2) = {0 AB | Bestr(P)}U{V' AB | B € str(Ps)}, where b’ € X' NFy is a Boolean variable
not occurring in str(P) U str(Ps),

str(|[, P") = {Fz.(a’ = x AB) | B € str(P’)}, where 2’ € X’ is a variable of the sort T, not occurring
in str(P’), and

str(P'\ C) = str(P').

The elements of str(P) are called branch formulae.

Lemma 33. Let P be a PLTS and ¢ a compatible valuation.

1.

If B € str(P) and ¢' € ext(,sigx: (B)) is a valuation satisfying B, then ¢'(yq)--- &' (yl,) € str(P,),

where Yy, ..., Y., are the primed variables occurring in B in this order.

If w € str(P, @), then there is B € str(P) and a valuation ¢' € ext(¢, sigx. (B)) satisfying B such that
w=a¢ (yy) - (yl,), where yi, ...,y are the primed variables occurring in B in this order.

PROOF. We argue by induction on the structure of P by using the lemma as the induction hypothesis.

1.

In the base step, P is an elementary PLTS. If B € str(P) and ¢’ € ext(¢,sigx (B)) is a valuation
satisfying B, then B =T and ¢’ = ¢. Since no (primed) variable occurs in B, ¢'(y}) - - - ¢'(y,,) is the
empty string e which obviously is in str(P, ¢).

In the induction step, we have four cases to consider. First, if P is ([G]P’), B € str(P), and
¢’ € ext(¢p,sigx (B)) is a valuation satisfying B, then B = G A B’ for some B’ € str(P’) and
¢ € ext(p,sigy,(B')) is a valuation satisfying B’. By the induction hypothesis, it implies that
& (yh) - (yh,) € str(P,), where yi,...,y,, are the primed variables occurring in B’ in this or-
der. Since ¢’ satisfies G and no primed variable occurs in G, also ¢ satisfies G, str(P, ¢) = str(P’, ¢),
& (yh) - &' (y,) € str(P,¢), and yi,...,y,, are the primed variables occurring in B in this order.

Second, if P is Py || Pa, B € str(P), and ¢’ € ext(¢,sigyx, (B)) is a valuation satisfying B, then
B is =b' A B’ for some B' € str(P1) or b’ A B’ for some B’ € str(P3), where ¥’ € X' Ny is a
Boolean variable not occurring in str(P;) U str(Pe). If B is ' A B’ and B’ € str(Psz), then ¢” :=
¢’ laom(e)\ (o} € ext(¢,sigy/(B’)). By the induction hypothesis, it implies that ¢”(y;)---¢"(y;,) €
str(Pa, ¢), where yi,...,y., are the primed variables occurring in B’ in this order. Now, ¥, y1,..., vy,
are the primed variables occurring in B in this order and since ¢’ satisfies v/, &' ()¢’ (v}) -+ ¢'(v},) =
true ¢’ (yy) - - - ¢ (y),,) which, by Definition 21, is in str(P, ¢). The case when B is =b' A B’ and B’ €
str(Py) is similar.

Third, if P is ||, P’, B € str(P), and ¢’ € ext(¢,sigx,(B)) is a valuation satisfying B, then B =
Jz.(z' = x A B') for some B’ € str(P’) and some variable 2’ € X’ not occurring in str(P’). Let ¢
be a valuation with the domain dom(¢) U {z} such that ¢1(z) = ¢'(2’) and the valuations ¢; and ¢
agree elsewhere in the domain. Then ¢; € ext(¢, {x}) is a valuation compatible with P’. Let ¢} be a
valuation with the domain dom(¢;) Usigyx (B’) such that ¢} (z') = ¢'(2’) for all 2’ € sigx/ (B’) and the
valuations ¢} and ¢; agree elsewhere in the domain. Then ¢| € ext(¢1,sigy,(B’)). By the induction
hypothesis, it implies that ¢} (yi)--- @1 (y,,) € str(P’, ¢1), where i, ...,y,, are the primed variables
occurring in B’ in this order. Now, z/, 4}, ...,y,, are the primed variables occurring in B in this order
and ¢/(') (4)) -+~ &' (4n) = 1) () - 6} (4,) which, by Definition 21, is in str(P, 9).

Finally, the case when P is P’ \ C is trivial, because str(P’\ C) = str(P’) and str(P’' \ C, ¢) =
str(P’,). Therefore, by the induction principle, the first claim of the lemma holds.

. In the base step, P is an elementary PLTS. If w € str(P, ¢), then w = . Now, str(P) contains a single

element T and ¢ is a valuation in ext(¢, sigx, (T)) satisfying T such that w is the string consisting of
the values of the primed variables in T.

19

In the induction step, we have four cases to consider. First, if P is ([G] P’) and w € str(P, ¢), then
¢ must satisfy G and w must be in str(P’, ¢). By the induction hypothesis, there is B’ € str(P’) and
a valuation ¢’ € ext(¢,sigx (B')) satisfying B’ such that w = ¢'(v}) -+ ¢'(v,,), where yi,...,y,, are
the primed variables occurring in B’ in this order. It means that G A B’ € str(P), ¢’ is a valuation in
ext (o, sigx, (G A B')) satisfying G A B, and v, ...,y are the primed variables occurring in G A B’ in
this order such that w = ¢'(y}) - ¢'(y),)-

Second, if P is Py || P2 and w € str(P,¢), then either w = falsew’ and w’ € str(Py,) or w =
truew’ and w’ € str(Pa,¢). Let us assume the latter, w = truew’ and w’ € str(Ps,d). By the
induction hypothesis, there is B’ € str(P;) and a valuation ¢” € ext(¢,sigx (B')) satisfying B’ such
that v’ = ¢"(y})--- " (y.,), where yi,...,y., are the primed variables occurring in B’ in this order.
Now, V' A B’ € str(P) for some Boolean variable b’ € X' NFy not occurring in str(P;) U str(P2) and
¢ =" U{(V, true)} is a valuation in ext(¢, sigx, (b' A B')) satisfying b’ A B’. Moreover, V', y1, ...,y
are the primed variables occurring in ¥’ A B’ in this order such that w = ¢'(b')¢'(v}) -+ - ¢'(y),,). The
case when w = false w’ and w’ € str(Py, ¢) is similar.

Third, if P is ||, P" and w € str(P,¢), then w = ¢ (z)w’ for some valuation ¢; € ext(op, {z})
and w' € str(P’,¢1). By the induction hypothesis, there is B’ € str(P’) and a valuation ¢} €
ext(¢1, sigx (B')) satisfying B’ such that w' = ¢{(y1) - &1 (y.,), where yi,...,y,, are the primed
variables occurring in 8’ in this order. It means that 3z.(x’ = 2 AB’) € str(P) for some variable 2’ € X’
not occurring in str(P’) and ¢’ := ¢ [qom(g;)\ (=} U {(2', ¢1(x))} is a valuation in ext(¢, sigy, (Iz.(2" =
x A B'))) satisfying Jz.(z' = x A B’). Moreover, z,yi,...,y,, are the primed variables occurring in
Jz.(z' = = A B’) in this order such that w = ¢1(x)w’ = ¢' (')’ (1) - - &' (yl,)-

Finally, the case when P is P’ \ C is trivial, because str(P’'\ C) = str(P’) and str(P’'\ C,¢) =
str(P’,). Therefore, by the induction principle, also the second claim of the lemma holds. O

Example 34. Recall the generalised Raft example and the valuation 6 from Example 22. Since the PLTS
(Raft’ || Spec) is composed of three elementary PLTSs, its structure consists of three branch formulae

By = =b) A Jzo.(zh = z0 A =by A y.(y' =y ATzy.(2) = 21 A Qs(zo,y,21) AT))),
By = —=b) AJzo.(z5 =20 Aby ATz1.(2) = 21 AJma. (2 =20 Ay #22 ATy (¥ =y AT)))), and
B3 := by A Jwo.(vg = w0 A o1 (2] = 21 A Fra. (25 = 22 Ay (Y = y A Qs (20, Y, 2) A Qs(a1,y,22) A T)))) -

By Lemma 33, we know that every branch string false s; false t;s; € str(Raft’ || Spec, 0) corresponds to a val-
uation 6’ € ext (0, {b), z(, by, ¥, 1 }) satisfying By such that 6'(b7)6 ()0’ ()8 (v))8 () = false s; false t;s;,
for every false s; true sjsit; € str(Raft’ || Spec) there is a valuation @' € ext(0, {b},z{, bl y', z}, z5}) sat-
isfying By such that 6 (b])0'(x()8 (b))0' ()8 (x5)0'(y') equals false s; true s;sit;, and each branch string
true s;sjsit; € str(Raft" || Spec,§) matches a valuation 0 € ext(6, {b}, zf, 2}, x5, y'}) satisfying Bz such that
0 (07)0" (x6)0 ()0 (25)0"(y') = true s;s;511;. O

By exploiting the correspondence between the branch strings and the branch formulae, we can convert
the definition of a basis from the level of branch strings to the level of branch formulae.

Lemma 35. Let (P, Q,F) be a parameterised system and ® C va(F | P, Q) a set of valuations. For every
branch formula B € str(P || Q), let P := {¢’ € ext(¢,sigx,/ (B)) | ¢ € ©,[B]y} be the set of the extensions
of the valuations in @ to sigyx,(B) satisfying B. The set @ is a basis of (P, Q,F) if and only if for every
B € str(P|| Q) and every valuation ¢ € va(FAB | P, Q) there is a valuation ¢ € $g and a sortwise injection
g : Im(¢) — Im(v)) such that g(¢) is a (T, P || Q)-subvaluation of ¥ satisfying F A B.

PROOF. Let us first assume that ® is a basis of (P, Q,F), B € str(P || Q), and ¢/ € va(F AB | P, Q).
Let v be the restriction of ¢’ to dom(P || Q) U dom(F). By Item 1 of Lemma 33, ¢'(v})---4¢'(y,) €
str(P || Q, %), where y1,...,y,, are the primed variables occurring in B in this order. Since @ is a basis,
there is ¢ € ® and a sortwise injection g from Im(¢) such that ¢'(y])---9¥'(y,,) € str(P || Q,9(¢)) and
g(¢) is a (T, P || Q)-subvaluation of 1. By Item 2 of Lemma 33, there is B’ € str(P || Q) and a valuation
¢ € ext(g(¢),sigxs (B')) satisfying B’ such that ¢'(y])---¥'(y),) = ¢'(21) - ¢'(2),), where 21,..., 2], are

20

the primed variables occurring in B’ in this order. By induction on the structure of a PLTS, one can prove
that this is only possible if y; = z; for all ¢ € {1,...,m} and B = B’. Since ¢’ € ext(g(¢),sigx, (B')) satisfies
B’, this implies that g~ (¢') € ext(¢, sigy, (B)) satisfies B. As ¢ € @, it means that g=!(¢') € 5. Moreover,
since g(¢) is a (T, P|| Q)-subvaluation of ¥, ¢' € ext(g(¢), sigx, (B)), ¥’ € ext(¢, sigx/ (B)), and the valuations
¢’ and ¢’ agree on the values of the primed variables occurring in B, ¢’ is a (T, P || Q)-subvaluation of ¢’
Finally, because g~1(¢’) € ®p, it means that g~1(¢’) and therefore also g(g~'(¢')) satisfy F A B. Hence,
g~ 1(¢') is the valuation in ®5 and g the sortwise injection such that g(g=1(¢')) is a (T, P || Q)-subvaluation
of ¢/ satisfying F A B.

Let us then assume that for every B € str(P || Q) and every valuation ¢ € va(F A B | P, Q) there is a
valuation ¢ € &5 and a sortwise injection g : Im(¢) — Im(z)) such that g(¢) is a (T, P || Q)-subvaluation
of ¢ satisfying F A B. In order to show that ® is a basis, let ¢ € va(F | P,Q) and w € str(P || Q,¢).
By Item 2 of Lemma 33, there is B € str(P || Q) and a valuation ' € ext(v, sigx, (B)) satisfying B such
that w = ' (y}) - - ¢¥'(y),), where yi,...,y,, are the primed variables occurring in B in this order. By the
assumption, there is a valuation ¢’ € &5 and a sortwise injection ¢ : Im(¢’) — Im(¢)’) such that g(¢’) is a
(T, P || Q)-subvaluation of ¢’ satisfying F A B. Hence, there is ¢ € ® such that g(¢’) € ext(g(¢), sigx/ (B)),
which by Item 1 of Lemma 33 implies that (g(¢'))(&}) - (9(¢'))(y.,) € str(P || Q,9(¢)). Since g(¢') is
a (T,P || Q)-subvaluation of ', it means that ¥'(y;) = (g(¢'))(y;) for all ¢ € {1,...,m}. Therefore,
w = (g9(¢")(w1) - (9(¢)(yp,) € str(P || Q,9(¢)) and also g(¢) must be a (T,P || Q)-subvaluation of v,
which proves that ® is indeed a basis. O

Lemma 35 gives a sufficient and necessary condition for a basis, but it does not clearly say which
valuations should be included in it. That is why we will transform the condition of Lemma 35 into a first-
order formula, the satisfaction of which can be, in decidable cases, analysed by using existing tools. For
that purpose, we introduce Lemma 36 which tells how the subvaluation test g(¢) Cr g ¢ occurring in the
condition is converted into a quantifier-free formula.

Lemma 36. Let ¢ and v be valuations with the same domain, II;Z C domp(¢) sets of predicates, g :
Im(¢) — Im(v)) a sortwise function, and 14 the valuation in ext(Y,{zl, | a € Im($)}) such that 4(z)) =
g(a) for all a € Im(¢). Then g is an injection and g(¢) Cr .z ¥, if and only if [NoSval(¢, 11, Z)]y, is false,
where

NoSval(¢,11,) := (\/ T, = xf,') v (\/ mg(w) a a:)\/

{a,b}CIm(¢) r€domx ()
a#b
(\/ \/ ﬁF(xgl,...,xZ”))\/(\/ \/ F(mgl,...7xgn)).
FeIl (ay,...,an)EQ(F) FEE (ay,....an)E0(F)

PROOF. Let us first assume that ¢ is an injection and g(¢) Crmz ¥. Because g is an injection, the
variables z!/, where a € Im(¢), representing the image of g, are mapped to different values. Hence, the
first big disjunction is false. Since g(¢) Crmz ¥, it implies that ¢g(x;§(w)) = g(¢(x)) = Y(z) = Yy(x)
for all x € domx(¢). Hence, the second big disjunction is false. If F € II and (ay,...,a,) € ¢(F), then
(9(a1),. . g(an) € (9(@))(F). Since g(6) Crrz 1, it implies that (g(ar), .., g(an)) € $(F), too. This
is equivalent to (Yg(zy), ..., ¢g(x])) € ¥g(F), which means that also the third big disjunction is false.
Similarly, we can show that the fourth big disjunction and hence [NoSval(¢,1I,Z)]y, are false, too.

Let us then assume that [NoSval(¢, 11, Z)]y, is false. Because the first big disjunction is false, it implies
that the variables z//, where a € Im(¢), representing the image of g are mapped to different values. Hence, g
is an injection. In order to prove that g(¢) Cr =z ¥, we will show that the conditions (1)-(6) of Definition 23
are met. (1) By the assumption, dom(g(¢)) = dom(¢) = dom(y)). (2) Because g is a sortwise function:
Im(¢) — Im(v), it implies that (g(¢))(T") C (T') for all sorts T € domr(¢). (3) Trivial, because domy(¢)\T
is empty. (4) Since the second big disjunction is false, it means that (9(¢))(z) = g(¢(x)) = Yg(xy,)) =
Yy(x) = ¢(x) for all z € domx (), (5) If F € Il and (a1,...,a,) € (9(¢))(F), then (g7 (a1),...,97 (an)) €
¢(F). Because the third big disjunction is false, it implies that (z/)g(x;’_l(al)), . ,1/)g(x;’_1(an))) € Yg(F).

21

Since (wg(‘rgfl(al))’ S 71/}9(1:;/71(&”))) = (g(g_l(al)), s ag<g_1<an))) = (a1,...,a,) and %(F) = ¢(F), it
means that (a1,...,a,) € P(F). (6) Similar to (5). O

By combining Lemmata 33 and 36, we can now convert the sufficient and necessary condition for a finite
basis into the unsatisfiability of a first-order formula.

Proposition 37 (Finite basis proposition). Let (P, Q, F) be a parameterised system and ® a finite set
of valuations in va(F | P, Q).

1. The set ® is a finite basis of (P, Q,F), if and only if the first-order formula

NoBus(P, Q. F,B,) = FABA N\ (vall.-- !l NoSual(onpr(P| @.pr (P Q) (1)

a
PEDR

is unsatisfiable for all branch formulae B € str(P||Q), where g = {¢’ € ext(¢,sigx/ (B)) | ¢ € @, [B]y}
as in Lemma 35 and for every ¢ € g, ay,...,a, are the atoms in Im(¢).

2. If v € va(F AB | P,Q) is a minimal valuation w.r.t. the (T, P || Q)-subvaluation order (modulo
isomorphism) satisfying NoBas(P,Q,F,B,®) for some branch formula B € str(P || Q), then ¢ is a
minimal valuation w.r.t. the (T, P || Q)-subvaluation order (modulo isomorphism) satisfying F AB such
that for every valuation ¢ € ®p and for every sortwise injection g : Im(¢) — Im(v), g(d) is not a
(T, P || Q)-subvaluation of 1.

PROOF.

1. By Lemma 35, ® is not a basis if and only if the following condition holds: There is a branch formula
B € str(P || Q) and a valuation ¢ € va(F A B | P, Q) such that for every valuation ¢ € &5 and for
every sortwise function g : Im(¢) — Im(v)), g is not an injection, g(¢) is not a (T, P || Q)-subvaluation
of 1, or g(¢) does not satisfy F A B. Note that ¢ € ®p implies that ¢ satisfies F A B. Hence, if g is an
injection, then by Lemma 29, also g(¢) satisfies F A B. This means that the last part, g(¢) does not
satisfy F A B, of the condition can be dropped.

By applying Lemma 36, we can convert the condition into the following equivalent form: There is
a branch formula B € str(P || Q) and a valuation ¢ € va(F A B | P, Q) such that for all valuations
¢ € ®p and for all sortwise functions g : Im(¢) — Im(v)), [NoSval(¢,pr™ (P || Q),pr™ (P || Q))ly, is
true.

Since ® is finite and each valuation only has finitely many extensions to sigy, (B), universal quantifi-
cation over the valuations in ®z can be substituted by a finite conjunction. Universal quantification
over sortwise functions is, in general, a second-order construct. However, since the image of each
sortwise function ¢ : Im(¢) — Im(¢)) is finite and represented by the variables in {2/ | a € Im(¢)}, the
universal quantification over sortwise functions can be replaced by the universal quantification over
these variables. Hence, the condition gets the following equivalent form: There is a branch formula B €
str(P || Q) and a valuation ¢ € va(F A B | P, Q) such that [A 4, (Val .-+ Vall .NoSval(¢p,pr* (P ||
Q),pr (P || Q)))]]w is true.

Finally, the existence of ¢ € va(F A B | P, Q) can be simply encoded as the satisfaction of the
formula F A B. This means that ® is not a basis if and only if there is a branch formula B € str(P || Q)
such that Formula 1 is satisfiable. Obviously, the formula is also in FOL since it only involves first-order
constructs.

2. Let us assume that ¢ € va(F A B | P, Q) is a minimal valuation w.r.t. the (T, P || Q)-subvaluation
order (modulo isomorphism) satisfying NoBas(P, Q, F, B, ®) for some branch formula B € str(P || Q).
Obviously, then v satisfies F A B and [NoSval(¢,pr™ (P || Q),pr~ (P || Q))]y is true for every ¢ € ®g
and every ¢’ € ext(¢,{z} | a € Im(¢)}). In other words, [NoSval(¢,pr™ (P || Q),pr~ (P || Q))]y, is
true for every ¢ € ®p and every sortwise function g : Im(¢) — Im(1)). By Lemma 36, it implies that
for every ¢ € ®p and every sortwise function g : Im(¢) — Im(z)), ¢ is not an injection or g(¢) is

22

not a (T,P || Q)-subvaluation of 1. Hence, for every valuation ¢ € ® and for every sortwise injection
g :Im(¢) = Im(¢), g(¢) is not a (T, P || Q)-subvaluation of 1.

We still need to show that ¢ is a minimal valuation satisfying F A B with this property. For that
purpose, let us assume that ¢’ is a (T, P|| Q)-subvaluation of ¢, ¢’ satisfies FAB, and for every valuation
¢ € ® and for every sortwise injection g : Im(¢) — Im(¢)’), g(¢) is not a (T, P || Q)-subvaluation of v’.
Then for every ¢ € &g and every sortwise function g : Im(¢) — Im(¢)’), g is not an injection or g(¢)
is not a (T, P || Q)-subvaluation of 1’. By Lemma 36, it implies that [NoSval(¢,pr™ (P || Q),pr~ (P ||
Q))]y, is true for every ¢ € @5 and every sortwise function g : Im(¢) — Im(¢)'). In other words,
[NoSval(¢p,prt (P || Q),pr~ (P || Q))]y~ is true for every ¢ € ®g and every ¢ € ext(¢/,{z/ | a €
Im(¢)}), which means that [A,cq, (Y20, - Vol .NoSval(¢,prt (P || Q),pr™ (P || Q)))]y is true.
Therefore, 1’ is a valuation satisfying NoBas(P, Q F,B,®) and smaller than or equal to 1. Since
¥ is a minimal valuation satisfying NoBas(P, Q, F,B,®), it implies that ¢¥' = . Hence, 1 is a
minimal valuation w.r.t. the (T, P || Q)-subvaluation order (modulo isomorphism) satisfying F A B
such that for every valuation ¢ € ® and for every sortwise injection g : Im(¢) — Im(%)), g(¢) is not a
(T, P || Q)-subvaluation of . O

The iterative application of Proposition 37 allows us to determine a finite basis of a parameterised
system. However, in order to compute a minimal basis, we need to be able to minimise valuations satisfying
Formula 1. This is done in two phases, first with respect to the size of the sorts and then with respect
to the values of the predicates. Since we want to automate the minimisation phase, too, we convert the
question on the existence of a strictly smaller satisfying valuation into a first-order formula, the satisfaction
of which can be analysed by using an SMT solver. For that purpose, we need to convert the related proper
subvaluation tests into quantifier-free formulae.

Lemma 38. Let ¢ and ¢’ be valuations with the same domain, II;Z C domg(¢) sets of predicates, g :
Im(¢) — Im(¢') a sortwise function, ¢, € ext(¢',{xy | a € Im(d)}) a valuation such that ¢y(zy) = g(a) for
all a € Im(¢), and x4 a variable of the sort T for each T € domr(¢).

1. The function g is not an injection and ¢' is a (0,0, 0)-subvaluation of g(¢), i.e., & and g(¢) agree
on the values of the sorts and variables while the values of the predicates are omitted, if and only if
[Sval(#)] g, is true, where

Sval(g):==(\/ al=a)A(N (ol \/ al=a))A(N\ wha =2).
a,beIm(o) Tedomr(¢) a€lm(¢) z€domx (o)
a#b

2. The function g is an injection and ¢’ is a proper (0,11, Z)-subvaluation of g(p), i.e., ¢’ and g(¢) agree

on the values of the sorts and wvariables, the values of the predicates are contained, and one of the
containments is proper, if and only if [Sval(¢, 11, E)] g is true, where

Sval(¢,1LE) o= (N\ o £ap) A (N (V2. \/ 2l =) A (N) = 2)A

a,beIm(¢) Tedomr (o) a€lm(¢) r€domx (¢)
a#b
(/\ /\ _|F(041""7 an /\ /\ F al,u.’ a"))/\
F€H<a1,...,an)e¢<F) FEE (a1,--an)€4(F)
\/ \/ _|F al,--- \/ \/ alv"'7 Zn)))
Fell (ay,...,an)EP(F) FeE (al,...,an)Ezb()

PROOF.

1. Let us first assume that g is not an injection and ¢’ is a (0,0, 0)-subvaluation of g(¢). Since g
is not an injection, there are two distinct variables z/, and z} representing the image of g, where

23

a,b € Im(¢), that are mapped to the same value. Hence, the first conjunct is true. Since ¢'|r = g(@)|r,
Im(¢y) = Im(¢’) = Im(g(¢)) = {¢,(27) | @ € Im(¢)}, which means that the values of the variables
r,,, where a € Im(¢), cover the atoms in the image of ¢;. Therefore, the second conjunct is true, too.
Because ¢'[x = g(¢)[x, then ¢y(z7) = 9(d(x)) = ¢'(x) = ¢y(x) for all z € domx(¢), which makes
the third conjunct hold, too. Hence, [Sval($)]4, is true.

Let us then assume that [[Sval(¢)]]¢/ is true. Since the first conjunct is true, there are two different
variables z, and x} representing the image of g, where a,b are different atoms in Im(¢), that are
mapped to the same value. This implies that ¢ is not an injection. Since the second conjunct holds,
the values of the variables x!/, where a € Im(¢), representing the image of g cover the atoms in the
image of ¢}. As g is a sortwise function, this implies that ¢" and g(¢) agree on the values of the
sorts. Finally, since the last conjunct is true as well, g(¢(z)) = ¢j(a},)) = ¢y(x) = ¢'(z) for all
x € domx(¢). Hence, ¢ is a (0,0, §)-subvaluation of g(¢) and the first part of the lemma holds.

2. Let us first assume that g is an injection and ¢’ is a proper (), II, =Z)-subvaluation of g(¢). Since g is
an injection, the variables x!/ representing the image of g, where a € Im(¢), are mapped to different
values. Hence, the first big conjunction is ¢true. Since ¢'|t = g(é)|r, |Im(¢>’)| = Im(¢")] = |Im(g(4))| =
{#y(z) | a € Tm(¢)}, which means that the values of the variables zj,, where a € Im(¢), cover the
atoms in the image of ¢/. Therefore, the second big conjunction is true, too. Because ¢’ is a (0,11, Z)-
subvaluation of g(¢), then ¢;(xg(x)) = g(9(x)) = ¢'(z) = ¢y(x) for all x € domgx(¢), which makes

the third big conjunction hold, too. Let us then assume that F' € IT and (a1, ...,a,) € ¢(F), which
implies that (g(a1),...,g(an)) € (9(¢))(F). Since ¢’ is a (0,11, Z)-subvaluation of g(¢), it implies
that (g(a1), - g(an)) ¢ &/(F). Hence, (&h(x), ... 0 (2)) = (g(ar), - g(an)) & &'(F) = 6, (F).
Therefore, the fourth big conjunction is true as well. Similarly, we can prove that the fifth big
conjunction holds, too. Finally, since ¢ is a proper ({, II, Z)-subvaluation of g(¢), there is F' € II and
(a1,...,an) € ¢(F) such that (g(a1),...,g(ay)) ¢ ¢'(F) or thereis F € Z and (a1,...,a,) € ¢(F) such
that (g(a1),...,g(an)) € ¢'(F). If the former holds, then (¢g (z7,), - .., ¢y (zy,) = (9(a1), ..., g(an)) ¢
¢'(F) = ¢, (F), which implies that the first big disjunction in the last line is true. If the latter holds,
then (¢p(z7,),-- -, ¢y (xy,) = (9(a1), ..., g(an)) € ¢'(F) = ¢},(F), which implies that the second big
disjunction in the last line holds. Hence, [Sval(¢, I ,H)]]cz)/ is true.

Let us then assume that [Sval(®, 7H)]](z)/ is true. Since the first big conjunction is true, the
variables z!/ representing the image of g, where a € Im(¢), are mapped to different values. Since the
second big conjunction holds as well, the values of the variables z/, where a € Im(¢), representing the
image of g cover the atoms in the image of ¢j. Therefore, g is a sortwise injection and the valuations
¢' and g(¢) agree on the values of the sorts, i.e., ¢'|r = g(¢)|r. Because the third big conjunct is
true, g(¢(x)) = ¢y (ay,)) = dy(x) = ¢'(x) for all x € domx(¢), which means that ¢ and g(¢) agree

on the values of the variables. Let us then assume that F' € II and (aq,...,a,) € (9(¢))(F), which
means that (g71(az),...,97 (a,)) € ¢(F). Since the fourth big conjunction holds, it implies that

(@2 1 s O 10) & G (F). Therefore, (ar, ., an) = (g(g~"(ar)).- -9l (an))) =
CACETIN RAC: ’_1<a)) ¢ ¢,(F) = ¢/ (F), which implies that ¢/ (F) C (g(¢))(F) for all F € IL
Similarly, we can prove that ¢/(F') C (g(¢))(F) for all F' € E. Finally, since the formula of the last line
holds, it means that there is ' € Il and (a1, ..., a,) € ¢(F) such that (¢} (z,),- .., ¢y (x,) € ¢, (F)
or there is F' € = and (ay,...,a,) € ¢(F) such that (¢f (27,), ..., ¢y(x;) € ¢5(F). In the former
case, (9(a1),---,g(an)) € (9((%5))() but (glar), ... glan)) = (@), .- d(al)) & &(F) = &/(F),
which implies that the containment ¢'(F') C (g(¢))(F) is proper. In the latter case, (g(a1),...,g9(ay)) €
(9(@))(F) but (g(ar), ..., g(an)) = (dy(xq,), .-, ¢g(27,)) & ¢4(F) = ¢'(F), which implies that the
containment ¢'(F) C (g(¢))(F') is proper. Hence, ¢’ is a proper (0, II, =)-subvaluation of g(¢) and also
the second part of the lemma holds. O

By using Lemma 38, the question on the existence of a strictly smaller valuation satisfying Formula 1 of
Proposition 37 (with respect to the size of the sorts or with respect to the values of the predicates) can be
encoded as the satisfaction of a first-order formula given in Proposition 39.

24

Proposition 39 (Valuation minimisation proposition). Let (P, Q, F) be a parameterised system and
® Cva(F | P,Q) a finite set of valuations.

1. If p e va(FAB | P, Q) is a valuation satisfying NoBas(P, Q, F, B, ®) for some B € str(P || Q), then ¢
is a minimal valuation with respect to the (T, 0, 0)-subvaluation order (modulo isomorphism) satisfying
NoBas(P,Q,F,B,®), if and only if the first-order formula

SMin(P,Q, F,B,®,¢) := NoBas(P,Q,F,B,®) A3z, .--- .3z, .Sval(¢) (2)

is unsatisfiable, where aq, ..., a, are the atoms in Im(¢).

Moreover, if ¢ € va(F A B | P,Q) is a valuation satisfying SMin(P, Q, F,B,®,¢) for some B €
str(P || Q), then ¢ is strictly smaller than ¢ in the (T, 0, 0)-subvaluation order modulo isomorphism.

2. If ¢ € va(F AB | P,Q) is a valuation satisfying NoBas(P,Q,F,B,®) for some B € str(P || Q),
then ¢ is a minimal valuation with respect to the (0, P || Q)-subvaluation order (modulo isomorphism,)
satisfying NoBas(P, Q, F, B, ®), if and only if the first-order formula

PMin(P,Q,F,B,®,) := NoBas(P, Q, F,B,®) A3zl .--- .3zl .Sval(¢,pr*(P|Q),pr (P Q)) (3)

is unsatisfiable, where ay, ..., a, are the atoms in Im(o).

Moreover, if ¢' € va(F A B | P,Q) is a valuation satisfying PMin(P, Q, F,B,®,¢) for some B €
str(P|| Q), then ¢ is strictly smaller than ¢ in the (0, P || Q)-subvaluation order modulo isomorphism.

PROOF.

1. Let us first assume that ¢ € va(F A B | P, Q) is a minimal valuation with respect to the (T, 0, 0)-
subvaluation order (modulo isomorphism) satisfying NoBas(P, Q, F, B, ®). This means that there is
no satisfying valuation ¢’ of NoBas(P, Q,F,B,®) and a sortwise non-injective function g : Im(¢) —
Im(¢’) such that ¢’ is a (0, @, §)-subvaluation of g(¢). In other words, if ¢ is a satisfying valuation of
NoBas(P,Q,F,B,®) and g is a sortwise function: Im(¢) — Im(¢’), then g is an injection or ¢’ is not
a (0,0, 0)-subvaluation of g(¢). By Item 1 of Lemma 38, it implies that [[Sval(qb)]]% is false. In other
words, [z, .--- .3z .Sval(¢)]g is false for every satisfying valuation ¢’ of NoBas(P,Q,F,B,®).
Therefore, Formula 2 is unsatisfiable.

Let us then assume that Formula 2 is unsatisfiable. It means that if ¢’ is a satisfying valuation
of NoBas(P, Q,F,B,®), then [z .--- 3z .Sval(d)]y is false. In other words, [Sval(p)]4- is false
for every ¢ € ext(¢’,{z/ | a € Im(¢)}). This, in turn, means that if ¢g is a sortwise function:
Im(¢) — Im(¢'), then [Sval(®)]y, is false. By Item 1 of Lemma 38, it implies that g is an injection
or ¢ is not a ((),), §)-subvaluation of g(¢). Hence, ¢’ is not a proper (T, @, #)-subvaluation of g(¢) for
any sortwise function g : Im(¢) — A. In other words, ¢ is a minimal valuation with respect to the
(T, 0,)-subvaluation order (modulo isomorphism) satisfying NoBas(P, Q, F, B, ®).

Finally, we assume that ¢’ is a satisfying valuation of Formula 2. It means that there is a valuation
¢" € ext(¢',{z)] | a € Im(¢)}) such that [Sval(¢)]s is true. In other words, there is a sortwise
function g : Im(¢) — Im(¢’) such that [Sval(¢)]s, is true. By Item 1 of Lemma 38, it implies that g
is not an injection and ¢’ is a (0, (), §)-subvaluation of g(¢). Hence, ¢’ is strictly smaller than ¢ with
respect to the (T,), })-subvaluation order modulo isomorphism.

2. Let us first assume that ¢ € va(F A B | P, Q) is a minimal valuation with respect to the (0,P || Q)-
subvaluation order (modulo isomorphism) satisfying NoBas(P, Q, F, B, ®). This means that if ¢’ is a
satisfying valuation of NoBas(P,Q,F,B,®) and g : Im(¢) — Im(¢’) a sortwise injection, then ¢’ is
not a proper (0, P || Q)-subvaluation of g(¢). By Item 2 of Lemma 38, it implies that [Sval(¢, prt (P ||
Q),pr™ (P || Q)] is false. Since [Sval(¢,pr™ (P || Q),pr™ (P || Q))]¢, is false also when g is not an
injection, 3z .--- .3z .Sval(p,pr* (P || Q),pr (P | Q))l¢ is false for every satisfying valuation ¢’
of NoBas(P, Q, F,B,®). Therefore, Formula 3 is unsatisfiable.

25

Let us then assume that Formula 3 is unsatisfiable. It means that if ¢’ is a satisfying valuation of
NoBas(P,Q, F,B,®), then [3z]] .--- .3z .Sval(¢,pr* (P Q),pr (P Q))]y is false. In other words,
[Sval(¢,prT (P Q),pr~ (P Q))]e~ is false for every ¢ € {z!/ | a € Im(¢)}. This, in turn, means that
if g is a sortwise function: Im(¢) — Im(¢'), then [Sval(¢, pr™ (P || Q),pr™ (P || Q))]¢, is false. By Item
2 of Lemma 38, it implies that g is not an injection or ¢’ is not a proper (), P || Q)-subvaluation of g(¢).
Hence, whenever g is an injection, ¢ is not strictly smaller than g(¢) in the (§, P || Q)-subvaluation
order. Since this holds for all satisfying valuations ¢’ of NoBas(P, Q, F, B, ®) and all sortwise injections
g : Im(¢) — Im(¢’), it implies that ¢ is minimal with respect to the (@, P || Q)-subvaluation order
modulo isomorphism.

Finally, we assume that ¢’ is a satisfying valuation of Formula 3. It means that there is a valuation
¢" € {2/ | a € Im(¢)} such that [Sval(¢,prt(P || Q),pr~ (P || Q)]s is true. In other words, there
is a sortwise function g : Im(¢) — Im(¢’) such that [Sval(¢,pr* (P || Q),pr™ (P || Q))]g, is true. By
Item 2 of Lemma 38, it implies that g is an injection and ¢’ is a proper (), P || Q)-subvaluation of
g(¢). Hence, ¢’ is strictly smaller than ¢ with respect to the (,P || Q)-subvaluation order modulo
isomorphism. O

The iterative application of Propositions 37 and 39 results in Algorithm 1 that allows us to determine a
cut-off set for parameterised systems with a finite basis by starting from the empty set and extending the
set with minimal valuations until Formula 1 becomes unsatisfiable for all branch formulae, i.e., all minimal
valuations are computed. In each iteration, we first compute some valuation satisfying the topology formula
and a branch formula. Then, we minimise the valuation, remove the branch formula specific variables, and
add the minimised valuation to the cut-off set meaning that in the following iterations, we do not consider
valuations that are greater than the newly computed minimal one. This is repeated until no satisfying
valuation is found. Even though the algorithm involves non-determinism in the form of decisions made by
the SMT solver, the returned cut-off set is the minimal one and hence unique. That is because the decisions
the solver makes do not affect the returned cut-off set, only the order in which the minimal valuations are
appended to the set.

In the optimal algorithm, the set is extended valuation by valuation whereas in the original dynamic
cut-off algorithm [1], the set is extended in larger chunks. In each iteration of the original algorithm, a
sort is queried from an oracle, the cut-off size of the sort is incremented, and all valuations up to the
cut-offs are appended to the set until Formula 1 becomes unsatisfiable for all branch formulae. Hence,
the optimal algorithm requires at least three solver calls for each valuation in the cut-off set, whereas the
original algorithm requires a single solver call for each appended chunk of valuations. The original algorithm
is sometimes faster due to fewer calls to the SMT solver (System 9 in Table 1) but in general, it makes more
complex solver calls and produces larger cut-off sets than the optimal algorithm presented here, because
the chunks may contain unnecessary valuations (Systems 1-3 in Table 1). Moreover, the efficiency of the
original algorithm heavily depends on the implementation of the heuristic oracle which is not an issue in the
optimal algorithm.

The correctness of Algorithm 1 is stated in Theorem 43, which gives a sufficient condition for termination
and states that upon termination, Algorithm 1 indeed returns the optimal cut-off set. For the proof of
partial correctness, we need Lemma 40 which states that the minimal basis is obtained as the set of minimal
valuations that satisfy the topology formula and a branch formula. In order to show that Algorithm 1
terminates for topologies expressible in the 3*V* fragment of FOL, we need Lemma 42 which states that the
fragment is decidable and parameterised systems with such topologies have a finite basis. The algorithm
also enables us to consider parameterised systems with a finite basis beyond this fragment, but termination
depends on the capabilities of the used SMT solver. The solver should be able to decide the satisfiability of
Formulae 1-3 used as the loop conditions and produce a satisfying valuation if such exists.

Lemma 40. Let (P,Q,F) be a parameterised system. For each branch formula B € str(P || Q), let ®F™"
be the set of all minimal valuations (w.r.t. the (T, P | Q)-subvaluation order) satisfying F A B modulo
isomorphism. Then the set ®™" of all non-isomorphic valuations Plsig(P||Q)Usig(F) Such that ¢ € <I>;’g”” for
some B € str(P || Q) is the minimal basis for (P, Q,F).

26

input : a parameterised system (P, Q, F)
output: the optimal cut-off set ® for (P, Q, F)

// Initialise the cut-off set

D+ 0

// Loop through all system components

foreach branch formula B € str(P||Q) do

// Loop as long as there is a parameter assignment not covered by the cut-off
set

while there is a valuation ¢ € va(F AB | P, Q) satisfying NoBas(P, Q, F,B,®) do

// Minimise the parameter assignment w.r.t. to the size of the sorts

while there is a valuation ¢' € va(FAB | P, Q) satisfying SMin(P, Q, F,B,®,¢) do ¢ + ¢';

// Minimise the parameter assignment w.r.t. to the values of the predicates

while there is a valuation ¢’ € va(F AB | P, Q) satisfying PMin(P,Q,F,B,®,¢) do ¢ + ¢';

// Remove extra parameters and add the parameter assignment to the cut-off

set
& @ U {lsig(pousia(#) 1
end
end
// Return the optimal cut-off set
return &;

Algorithm 1: Optimal cut-off algorithm

PROOF. First, we prove that ®™" is a basis of (P, Q,F). Let B € str(P || Q) and ¢ € va(F A B | P, Q).
Then there is a minimal (T, P || Q)-subvaluation ¢ of ¢ satisfying F A B. Since ¢ is minimal, there is
@' € ™ and a sortwise injection ¢’ : Im(¢’') — Im(¢) such that ¢’(¢’) = ¢. This means that ¢'(¢') is a
(T, P || Q)-subvaluation of 9 satisfying F A B. By Lemma 35, ®™" is a basis of (P, Q, F).

Next, we prove the minimality of ®™" by showing that every basis contains ™ (modulo isomorphism).
Let ® be a basis of (P,Q,F), B € str(P | Q), and ¢ € ®E™ a valuation satisfying F A B. Since ® is a
basis, by Lemma 35, there is a valuation ¢ € @5 and a sortwise injection ¢ : Im(¢) — Im(v) such that g(¢)
is a (T, P || Q)-subvaluation of ¢ satisfying F A B. However, since ®%*" is the set of all minimal valuations
satisfying F A B modulo isomorphism, it means that 1) = g(¢). Hence, v is isomorphic to a valuation in @,
which implies that ®™" is contained in ® (modulo isomorphism). O

Example 41. Recall the generalised Raft example and the branch formulae By, By, B3 of (Raft’|| Spec) from
Example 34. The minimal valuations satisfying B; are

1. @) T {s1}, Tr — {t1}, Qs — {(s1,t1,51) }, b)) — false, b — false, x(— s1,2) — s1,y — t1; and

2. ¢4 Ts v {s1,82}, T — {t1}, Qs > {(s1,t1, 82)}, b > false, by — false,xfy — s1, 2] — s2,y" +— 1.
For the branch formula By, the minimal satisfying valuations are

3. ¢ Ts— {s1,82}, Tr— {t1}, Qs — 0,b(— true, b} — false, x{ — s1,2) — s1,25 — 2,9y — t1;

4. ¢} : Ts — {s1,82}, Tr — {t1}, Qs — 0,b) — true,b| — false,x(— sa,x] > s1,25 — s2,y" — ¢1; and

5. ¢f : Ts v+ {s1, 82,83}, Tr — {t1}, Qs — 0,b(— true,b| — false, z{ — s1,x) > s2, 25 — s3,y" — 11,
and the minimal satisfying valuations of the branch formula Bz are

6. ¢ :Ts— {s1}, Tr — {t1}, Qs — {(s1,t1,51)}, b} — true,z(— s1, 2] — s1,2h — s1,y — t1;

7. ¢%: Ts = {51,852}, Tr — {t1}, Qs — {(51,t1,52)}, 0] — true,x(— 51,27 = 51,25 — s2,y = t1;

27

8. ¢4 : Ts — {s1,82},Tr — {t1},Qs — {(s1,t1,52), (s2,t1,82)},b) — true,af — s1,x] — S9,25 —
52,y = t1;

9. ¢y : Ts — {s1,82},Tr — {t1},Qs — {(s1,t1,82),(s2,t1,82)},b) — true,af — sa,x) — s1,25 —
s9,y’ > t1; and

10. @i : Ts — {s1,82,83}, Tr — {t1}, Qs — {(s1,t1,83), (s2,t1,83)},b) — true,z(— $1,x) — s2,25 —
!
S3,Y > 11.

When we remove the primed variables, we are left with six non-isomorphic valuations that are precisely
the valuations ¢1, @2, @3, P4, @5, ¢ of Example 20. Hence, by Lemma 40, we have proved that the set
{b1, b2, P3, P4, @5, d6} is the optimal cut-off set for our generalised Raft model. g

Lemma 42. Let F be a formula in the I*V* fragment of FOL. Then the satisfiability of F (over finite
valuations) is decidable and for any implementation PLTS P and specification PLTS Q, the parameterised
system (P, Q,F) has a finite basis.

PrOOF. The decidability of the 3*V* fragment over finite valuations is well-known [19, 36].

Let us then consider a topology F := dxj.--- .3x,.U, where U is in the V* fragment. Without loss of
generality, we may assume that the variables x1, ..., 2, do not occur in P and Q. By Theorem 50 in [17],
we know that the parameterised system (P, Q,U) has a finite basis ®.

Next, we will show that @ := {¢'|qom(¢/)\{21,....w.} | @' € @'} is a finite basis of the parameterised system
(P,Q,F). Let v € va(F | P,Q) and w € str(P || Q,%). Then there is ¢’ € ext(¥,{z1,...,z,}) such
that ¢’ € vald | P,Q) and w € str(P || Q,¢’). Since ¥’ is the basis of (P, Q,U), there is a valuation
¢’ € @ and a sortwise injection g such that w € str(P || Q,g(¢')) and g(¢’) is a (T, P || Q)-subvaluation of
Y. Because z1,...,2, do not occur in P || Q, it implies that ¢ := ¢'|dom(¢/)\{a1,...,z.} 15 @ valuation in @
such that w € str(P || Q,g(¢)) and g(¢) is a (T, P || Q)-subvaluation of ¢). Hence, ® is a finite basis of the
parameterised system (P, Q, F). a

Theorem 43 (Correctness of Optimal cut-off algorithm). Let (P, Q,F) be a parameterised system.

1. If Algorithm 1 terminates with a set ® of valuations, then ® is a cut-off set for (P, Q,F). Moreover,
® is optimal in the sense that it is the minimal finite basis of (P, Q,F).

2. If the parameterised system (P, Q,F) has a finite basis and the satisfiability (over finite valuations)
of the formulas of the form F AU (where U is in the I*V* fragment) is decidable, then Algorithm 1
terminates.

3. If F is in the 3*V* fragment, then Algorithm 1 terminates.

PROOF.

1. Let us assume that Algorithm 1 terminates with a set ®. Let Bi,..., B, be the branch formulae in
str(P||Q) and let us assume that this is the order in which they are processed in the for-each loop. Then
for every i € {1,...,n} there is a set ®; C va(F | P, Q) of valuations such that NoBas(P, Q, F, B;, ®;)
is unsatisfiable. Since ®; C &5 C --- C &,, = &, it means that NoBas(P, Q, F, B;, ®) is unsatisfiable
for all i € {1,...,n}. By Item 1 of Proposition 37, it implies that ® is a finite basis of (P, Q, F), and
by Proposition 31, we see that ® is a cut-off set for (P, Q, F).

In order to prove that the computed ® is the minimal finite basis of (P, Q, F), we show that ® is a
subset of ®™" during the execution of the algorithm. Let us assume that the computed cut-off set ®
is {¢1]s, ..., dnls}, where ¥ = sig(P || Q) Usig(F) and ¢; denotes the value of ¢ in the end of the i'h
iteration of the outer while loop. We claim that for each i € {0,1,...,n}, ® := {¢1]s,...,di|x} C

O™ and ¢, ..., ¢i|s are non-isomorphic. Obviously, ®° = () C ™" and the valuations in ®°
are non-isomorphic. Let us then assume that ®* C ®™" for some i € {0,1,...,n} and that the
valuations ¢1|s, ..., ®;|s are non-isomorphic. We need to show that ¢;;1 is a minimal valuation in

28

va(FAB | P, Q) for some B € str(P||Q) and ¢;1|s is non-isomorphic to the valuations in ®¢. For that
purpose, let us assume that ¢;; is the valuation that makes the condition SMin(P, Q, F, B, ot ¢! +1)
of the first inner while loop unsatisfiable in the ‘" iteration of the outer while loop. By Item 1 of
Proposition 39, we know that ¢}, ; is a minimal valuation with respect to the (T, 0, #)-subvaluation
order (modulo isomorphism) satisfying NoBas(P, Q, F, B, ®"). By Item 2 of Proposition 39, we also
know that ¢;;1 is a minimal valuation with respect to the (},P || Q)-subvaluation order (modulo
isomorphism) satisfying NoBas(P, Q, F, B, ®%). Especially, ¢; 1 is smaller (but not necessarily strictly)
than ¢}, with respect to the (0, P || Q)-subvaluation order (modulo isomorphism). This implies that
¢i+1 is a minimal valuation with respect to the (T, P || Q)-subvaluation order (modulo isomorphism)
satisfying NoBas(P, Q,F,B,®"). By Item 2 of Proposition 37, ¢;.; is a minimal valuation with
respect to the (T,P || Q)-subvaluation order (modulo isomorphism) satisfying F A B such that for
every valuation ¢ € ®% and for every sortwise injection ¢ : Im(¢) — Im(¢;41), g(¢) is not a (T, P|| Q)-
subvaluation of ¢;41. This implies that ¢;,1|s must be non-isomorphic to the valuations in ®. By
the induction principle, this implies that ® = ®* C ®™", Since ® is a finite basis and contained in
®™" which, by Lemma 40, is the minimal basis, this means that ® must be the minimal finite basis
(I)mm.

2. In order to show the termination of the algorithm, we need to prove a convergent for each while loop
and show that the conditions of the while loops are decidable (over finite valuations).

Let us first consider the decidability of the loop conditions. The formula NoBas(P,Q,F,B,®)
of the outer while loop consists of several conjuncts: the topology formula F, a branch formula B
involving only conjunctions and existential quantification, and universally quantified conjuncts. Since
quantification (over non-empty sets) can be pushed outside the conjunctions, the condition can be put
to the form F AU, where U is in the 3*V* fragment. The formulae of the inner while loops involve an
additional existentially quantified conjunct of quantifier-free and universally quantified conjuncts, but
also in these cases, quantification is over non-empty sets and can be pushed outside the conjunctions
yielding to a formula of the form F AU with U being in the 3*V* fragment. Hence, by the assumption,
the conditions of the while loops are decidable (over finite valuations).

Let us then prove a convergent for each while loop. If the parameterised system has a finite basis,
then also the minimal basis is finite. By the proof of Item 1, it implies that the size of ®™" \ @,
where the set difference is modulo isomorphism, decreases in each iteration of the outer while loop. By
Proposition 39, the size of the image of the sorts, |[Im(¢)|, decreases in each iteration of the first inner
while loop and the size of the values of the predicates occurring under an even number of negations
plus the size of the complement values of the predicates occurring under an odd number of negations,
Y reprt(P1) |2+ X pepr- (pio) [#(F)], decreases in each iteration of the second inner while loop.
Hence, the algorithm terminates.

3. Follows from Lemma 42 and (2). O

We have implemented Algorithm 1 in the Bounds tool [39]. The tool takes a parameterised system as
an input expressed in a language resembling machine readable CSP [3], a glimpse of the input language can
be found in Appendix A describing our Raft example. After that, the tool computes a cut-off set by using
the optimal cut-off algorithm, and provided the algorithm terminates, produces an LTS refinement checking
task for each valuation in the cut-off set. Finally, the verification is completed by refinement checking the
instances. Bounds consists of 30 kLOC of C/C++ code, roughly half of which is autogenerated by the
ANTLR parser generator [40]. Additionally, the tool uses Z3 SMT solver [41] for testing satisfiability and
generating satisfying valuations, the nauty package [42] for detecting isomorphic valuations, and FDR [43]
for finite-state refinement checking. The whole process is fully automated; the user only has to provide the
description of a parameterised system and wait for termination.

If the parameterised system is not correct, the cut-off set is computed as usual, but there is an instance
of the system generated by a valuation in the cut-off set for which refinement checking fails. In this case, the
tool reports that the parameterised system is not correct and returns a counterexample. Otherwise, if the
parameterised system is correct, then all LTS refinement checks are successful and the tool simply reports

29

the parameterised system to be correct. This also means that we can use the specification, which is usually
much smaller, in place of the system implementation in further verification efforts. This is possible since
our PLTS formalism is compositional. Bounds is publicly available at [44].

Example 44. We have applied Bounds to several system models by using the optimal, original dynamic [1],
and static cut-off algorithms [17, 16] (Table 1). The (non-generalised) Raft model for the static algorithm
uses specific quorum function variables [16] which in our formalism are modelled in FOL. The topology of the
generalised Raft models cannot be modelled by using quorum functions nor without existential quantification.
Therefore, these models are outside the scope of the static algorithms. The tree topology of taDOM2+ and
the lower bound for the number of transactions are naturally modelled by using existential quantification
but for the static algorithm, which does not support it, they are modelled by using free variables. Otherwise
the models are identical.

In general, we can see that larger cut-off sets take longer to compute. The size of the cut-off set
depends not only on the number of the parameters but also on the structure of a parameterised system. If
the parameterised system has many variables as parameters and involves lots of nested replicated parallel
compositions, this usually implies big cut-off sizes for the sorts and, hence, a large cut-off set.

Obviously, the size of the cut-off set affects refinement checking time as well. However, the refinement
checking time also depends on the number and size of elementary PLTSs in the parameterised system as
well as the number of times they are instantiated. This means that a high number of (replicated) parallel
compositions and large elementary PLTSs predict long refinement checking time.

In the case of Systems 5-9, the topology of which is within the V* fragment, all three algorithms are
equal in terms of cut-offs. There is no significant difference in the running time of the algorithms either
except in the last case where the computed cut-off set is the largest and consequently, the optimal algorithm
is the slowest due to the highest number of calls made to the SMT solver.

In the case of Systems 1-4, the topology of which is outside the V* fragment, the optimal algorithm
outperforms the other algorithms both in terms of the running time and the size of the cut-off sets. Moreover,
the optimal algorithm is the only one terminating on all cases. Hence, the optimal cut-off algorithm not
only enables extending the application domain of the static ones but also provides more compact cut-offs,
which is important in order to keep the refinement checking part feasible.

All experiments were made on a quad-core (octa-thread) Intel i7-4790 with 16 GB of memory running
Ubuntu 18.04.2 LTS by using Z3 4.8.4 as a back-end SMT solver and FDR, 4.2.3 as a back-end refinement
checker. An example run of Bounds on the generalised Raft model is in Appendix B. O

7. Conclusions and Future Work

We have shown how to parameterise the calculus of LTSs by using first order constructs, sorts, variables,
and predicates, in a compositionality preserving way. As the main contribution, we have provided a semi-
algorithm for reducing a refinement checking task in the parameterised LTS formalism to a finite set of
refinement checks between LTSs. This is done by iteratively computing a cut-off set of parameter values
such that in order to prove a parameterised system implementation correct with respect to its specification,
it is sufficient to consider only finitely many instances generated by the parameter values in the cut-off set.
The algorithm not only combines existing static cut-off techniques but also extends their application domain
beyond known decidable fragments. The algorithm is implemented in a tool and applied to several system
models, including the leader election phase of the generalised (Byzantine) Raft protocol.

The original version of the algorithm is presented in the conference version of this work [1]. The downside
of the original algorithm is that it is not guaranteed to produce an optimal cut-off set and its performance
depends on the implementation of a heuristic oracle. The new version of the algorithm presented here
overcomes these limitations; it does not involve an oracle and always produces the optimal cut-off set. By
using the new optimal algorithm, we were able to analyse the leader election phase of the Byzantine Raft
which turned out to be an infeasible task for the original algorithm. To the best of our knowledge, this is
the first time a Byzantine variant of the Raft leader election is automatically verified.

30

Table 1: The performance of the optimal cut-off algorithm with respect to the original dynamic and static ones, |T| is the
cut-off size for a sort T, |®| is the size of the cut-off set, and ¢ is the time (in seconds) taken by the computation of the cut-off

set @ plus refinement checking the ¢-instances for all ¢ € .

System Parameters Optimal Original Static [17, 16]
dynamic [1]
cut-offs | t(s) | cut-offs | t(s) cut-offs | t(s)
1. Raft [16] servers (S), terms (T), | [S|=3, | 141 | |S]=3, | 7T+2 S| =7, out of
quorum topology IT| =1, |T| =1, |T| =1, mem.
|®| =7 |®| = 20 |®| > 10°
2. servers (S), terms (T), | |S|=3, | 141 | |S]=3, | 148 n/a n/a
Generalised | quorum topology |T| =1, IT| =1,
Raft || =6 |®| = 74
3. servers (S), terms (T), | |S|=4, | 141 | |[S| >4, |outof | n/a n/a
Generalised | Byzantine quorum topol- | |T| =1, |T| > 1, | mem.
Byzantine ogy |®| =13 |®| =7
Raft
4. 2+ transactions (7)), TI=2, | 1+ T =2, | 1+ |T| =4, 11+
taDOM2+ nodes (N), tree topology | IN|=3, | 1116 | IN| =3, | 1121 | [N| =4, | out of
|®| =7 |®| =17 |®| =45 | mem.
5. transactions (7'), nodes | |T|=2, | 1+ T =2, |1+ IT| =2, 1+
taDOM2+ (N), forest topology [N|=3, | 1125 | |[N| =3, | 1122 | |N|=3, 1130
[17] |®| = 14 B| =14 B = 14
6. Shared users (U), resources (R), | |U| =2, | 146 | |U| =2, | 146 |U| = 2, 146
resources [17] | forest topology |R| = 3, |R| = 3, |R| =3,
|®| =6 || =6 |®| =6
7. Shared users (U), resources (R), | |U| =4, | 1+1 | [U| =4, | 1+1 |U| =4, 1+1
resources [17] | ring topology |R| =1, |IR| =1, |R| =1,
|®| = 4 |P| =4 |®| =4
8. Token users (U), ring topology | |U| =4, | 1+1 | |U| =4, | 1+1 |U| =4, 1+1
ring [39) |®| =3 || =3 |®| =3
9. Ring with | users (U), ring topology | |U| =5, | 156+ | |[U|=5, | 104+ | |U| =35, 25+
2 tokens [17] || =30 | 7 || =30 | 7 []=30 |7

31

In future, we aim to further extend the algorithm to other process algebraic formalisms such as modal
interface automata [18]. In general, the algorithm should be applicable to formalisms satisfying Proposition 5.
However, extending the technique to other modelling formalisms is probably difficult, for example, it is
unlikely that Promela [34] models could be easily treated with our approach because Promela does not
have the idempotence property. We are also investigating ways to integrate our optimal cut-off algorithm
with the induction method [22] and data-independence results [23] as in [45, 46]. Since the behaviour of
Raft is independent of the type of stored data, this could enable us to consider the log replication phase of
(Byzantine) Raft as well, i.e., to analyse the correctness of the full Raft protocol completely automatically.

Acknowledgement

The research is partly funded by Academy of Finland projects 313469 and 277522.

References

[1] A. Siirtola, K. Heljanko, Dynamic cut-off algorithm for parameterised refinement checking, in: K. Bae, P. C. Olveczky
(Eds.), Formal Aspects of Component Software, volume 11222 of LNCS, Springer, 2018, pp. 256-276.

[2] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[3] A. W. Roscoe, Understanding Concurrent Systems, Springer, 2010.

[4] E. A. Emerson, V. Kahlon, Reducing model checking of the many to the few, in: D. A. McAllester (Ed.), CADE-17,

volume 1831 of LNCS, Springer, 2000, pp. 236-254.

E. A. Emerson, K. S. Namjoshi, On reasoning about rings, Int. J. Found. Comput. Sci. 14 (2003) 527-550.

E. A. Emerson, V. Kahlon, Model checking large-scale and parameterized resource allocation systems, in: J.-P. Katoen,

P. Stevens (Eds.), TACAS ’02, volume 2280 of LNCS, Springer, 2002, pp. 251-265.

[7] E. A. Emerson, V. Kahlon, Exact and efficient verification of parameterized cache coherence protocols, in: D. Geist,

E. Tronci (Eds.), CHARME ’03, volume 2860 of LNCS, Springer, 2003, pp. 247-262.

E. A. Emerson, V. Kahlon, Parameterized model checking of ring-based message passing systems, in: J. Marcinkowski,
A. Tarlecki (Eds.), CSL ’04, volume 3210 of LNCS, Springer, 2004, pp. 325-339.
[9] A. Bouajjani, P. Habermehl, T. Vojnar, Verification of parametric concurrent systems with prioritised FIFO resource
management, Form. Method. Syst. Des. 32 (2008) 129-172.

[10] A. Kaiser, D. Kroening, T. Wahl, Dynamic cutoff detection in parameterized concurrent programs, in: T. Touili, B. Cook,
P. Jackson (Eds.), CAV ’10, volume 6174 of LNCS, Springer, 2010, pp. 645-659.

[11] Q. Yang, M. Li, A cut-off approach for bounded verification of parameterized systems, in: J. Kramer, J. Bishop, P. T.
Devanbu, S. Uchitel (Eds.), ICSE ’10, ACM, 2010, pp. 345-354.

[12] P. Abdulla, F. Haziza, L. Holik, Parameterized verification through view abstraction, Int. J. Softw. Tools Technol. Transf.
18 (2016) 495-516.

[13] B. Aminof, T. Kotek, S. Rubin, F. Spegni, H. Veith, Parameterized model checking of rendezvous systems, Distrib.
Comput. 31 (2018) 187-222.

[14] M. Haustein, T. Héarder, Optimizing lock protocols for native XML processing, Data Knowl. Eng. 65 (2008) 147-173.

[15] D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm, in: G. Gibson, N. Zeldovich (Eds.),
USENIX ATC ’14, USENIX Association, 2014, pp. 305-320.

[16] A. Siirtola, Refinement checking parameterised quorum systems, in: A. Legay, K. Schneider (Eds.), ACSD ’17, IEEE,
2017, pp. 39-48.

[17] A. Siirtola, J. Kortelainen, Multi-parameterised compositional verification of safety properties, Inform. Comput. 244
(2015) 23-48.

[18] A. Siirtola, K. Heljanko, Parametrised modal interface automata, ACM Trans. Embed. Comput. Syst. 14 (2015) 65:1—
65:25.

[19] Y. Gurevich, On the classical decision problem, in: G. Rozenberg, A. Salomaa (Eds.), Current Trends In Theoretical
Computer Science: Essays and Tutorials, volume 40 of World Scientific Series in Computer Science, World Scientific,
1993, pp. 254-265.

[20] O. Marié, C. Sprenger, D. Basin, Cutoff bounds for consensus algorithms, in: R. Majumdar, V. Kun¢ak (Eds.), CAV ’17,
volume 10427 of LNCS, Springer, 2017, pp. 217-237.

[21] C. Copeland, H. Zhong, Tangaroa: A Byzantine fault tolerant Raft, 2014. URL: http://www.scs.stanford.edu/
14au-cs244b/labs/projects/copeland_zhong.pdf.

[22] A. Valmari, M. Tienari, An improved failures equivalence for finite-state systems with a reduction algorithm, in: B. Jon-
sson, J. Parrow, B. Pehrson (Eds.), PSTV ’91, North-Holland, 1991, pp. 3-18.

[23] R.S. Lazi¢, A Semantic Study of Data Independence with Applications to Model Checking, Ph.D. thesis, Oxford University,
1999.

[24] S. J. Creese, Data Independent Induction: CSP Model Checking of Arbitrary Sized Networks, Ph.D. thesis, Oxford
University, 2001.

[25] R. P. Kurshan, K. L. McMillan, A structural induction theorem for processes, Inform. Comput. 117 (1995) 1-11.

32

[26]
27]
(28]
29]
(30]
(31]

32]
(33]

[34]
[35]
[36]
37]
(38]
(39]
[40]
[41]

[42]
[43]

[44]
[45]

[46]

P. Wolper, V. Lovinfosse, Verifying properties of large sets of processes with network invariants, in: J. Sifakis (Ed.),
Automatic Verification Methods for Finite State Systems ’89, volume 407 of LNCS, Springer, 1990, pp. 68-80.

R. S. Lazi¢, D. Nowak, A unifying approach to data-independence, in: C. Palamidessi (Ed.), CONCUR ’00, volume 1877
of LNCS, Springer, 2000, pp. 581-595.

Y. Hanna, D. Samuelson, S. Basu, H. Rajan, Automating cut-off for multi-parameterized systems, in: J. S. Dong, H. Zhu
(Eds.), ICFEM 10, volume 6447 of LNCS, Springer, 2010, pp. 338-354.

E. Clarke, M. Talupur, T. Touili, H. Veith, Verification by network decomposition, in: P. Gardner, N. Yoshida (Eds.),
CONCUR ’04, volume 3170 of LNCS, Springer, 2004, pp. 276—291.

P. Liu, T. Wahl, CUBA: interprocedural Context-UnBounded Analysis of concurrent programs, in: J. S. Foster, D. Gross-
man (Eds.), PLDI ’18, ACM, 2018, pp. 105-119

L. Zuck, A. Pnueli, Model checking and abstraction to the aid of parameterized systems (a survey), Comput. Lang. Syst.
Str. 30 (2004) 139-169.

A. Finkel, P. Schnoebelen, Well-structured transition systems everywhere!, Theor. Comput. Sci. 256 (2001) 63-92.

D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, T. Anderson, Planning for change in a formal verification of
the Raft consensus protocol, in: J. Avigad, A. Chlipala (Eds.), CPP ’16, ACM, 2016, pp. 154-165.

G. J. Holzmann, The SPIN model checker: Primer and reference manual, Addison-Wesley Reading, 2004.

J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Proving, Courier Dover Publications, 2015.
A. Abadi, A. Rabinovich, M. Sagiv, Decidable fragments of many-sorted logic, J. Symb. Comput. 45 (2010) 153-172.

C. J. Colbourn, J. H. Dinitz, D. R. Stinson, Quorum systems constructed from combinatorial designs, Inf. Comput. 169
(2001) 160-173.

A. Siirtola, Automated multiparameterised verification by cut-offs, in: ICFEM ’10, volume 6447 of LNCS, Springer, 2010,
pp. 321-337

A. Siirtola, Bounds2: A tool for compositional multi-parametrised verification, in: E. Abrahém, K. Havelund (Eds.),
TACAS ’14, volume 8413 of LNCS, Springer, 2014, pp. 599-604.

J. Bovet, T. Parr, ANTLRWorks: an ANTLR grammar development environment, Software Pract. Exper. 38 (2008)
1305-1332.

L. De Moura, N. Bjgrner, Z3: An efficient SMT solver, in: C. R. Ramakrishnan, J. Rehof (Eds.), TACAS ’08, volume
4963 of LNCS, Springer, 2008, pp. 337-340.

B. D. McKay, A. Piperno, Practical graph isomorphism II, J. Symb. Comput. 60 (2014) 94 — 112.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, A. W. Roscoe, FDR3: A parallel refinement checker for CSP, STTT
18 (2016) 149-167.

A. Siirtola, Bounds website, 2019. http://cc.oulu.fi/~asiirtol/bounds.

A. Siirtola, Cut-offs with network invariants, in: L. Gomez, V. Khomenko, J. Fernandes (Eds.), ACSD ’10, IEEE, 2010,
pp. 105-114

A. Siirtola, K. Heljanko, Parametrised compositional verification with multiple process and data types, in: J. Carmona,
M. T. Lazarescu, M. Pietkiewicz-Koutny (Eds.), ACSD ’13, IEEE, 2013, pp. 67-76.

Appendix A. Bounds Code for Generalised (Byzantine) Raft Leader Election

sort S
sort T

pred Q@S : S,T,S
// Uncomment for Byzantine version
// pred NB : T,S

var x0 :
var x1
var x2 :
var x3 :

0N n n wn

var y : T

// Comment for Byzantine version
frml Qrm = \/ x0,x1,y: ((\/ x2: 'QS(x0,y,x2)) | (\/ x2: !'QS(x1,y,x2)) |

'(\/ x2: 1(Qs(x0,y,x2) & QS(x1,y,x2))))

// Uncomment for Byzantine version
// frml Byz = \/ x0,x1,y: ((\/ x2: 'QS(x0,y,x2)) | (\/ x2: !'QS(x1,y,x2)) |

//

Y(\/ x2: '(QS(x0,y,x2) & QS(x1,y,x2) & NB(y,x2))))

chan vote : S, T, S
chan candidate : S, T

33

chan leader : S, T

plts Spec2 =
1ts
I = leader(x0,y) -> SO
[1 1leader(xl,y) -> S1
S0 = leader(x0,y) -> SO
S1 = leader(x1l,y) -> S1
from I

plts Spec = (|| x0,x1,x2,y: [QS(x0,y,x2) & QS(x1,y,x2)] Spec2)

plts Ldr2 =
1ts
c = candidate(x0,y) -> C1
[1 vote(xl,y,x0) -> C
Cc1 = vote(xl,y,x0) -> L
L = leader(x0,y) -> L
[l wvote(xl,y,x0) -> L
from C
plts Flw3d =
1ts
F = candidate(x0,y) -> FO
[1 vote(x0,y,x1) -> F1
[1 vote(x0,y,x2) -> F2
F1 = vote(x0,y,x1) -> F1
F2 = vote(x0,y,x2) -> F2
FO = vote(x0,y,x0) -> FO
from F

// Comment for Byzantine version

plts Raft = || x0: ((|| y,x1: [QS(x0,y,x1)] Ldr2) || (|| x1,x2: [!x1=x2] || y: Flw3))
// Uncomment for Byzantine version

// plts BRaft = || x0: ((|| y,x1: [QS(x0,y,x1)] Ldr2) ||

// (Il x1,x2: ['x1=x2] || y: [NB(y,x0)] Flw3))

pset LE = (_) x0,x1,y: {candidate(x0,y), vote(x0,y,x1)}

// Comment for Byzantine version

trace refinement: verify Raft \ LE against Spec when Qrm

// Uncomment for Byzantine version

// trace refinement: verify BRaft \ LE against Spec when Byz

Appendix B. Run of Bounds on Generalised Raft Leader Election

This is Bounds 3.1!
Created by Antti Siirtola 2010-2019 (contact: antti.siirtola®@oulu.fi)

Reducing a parameterised trace refinement task to a finitary one.
(implementation: (Raft\LE), specification: Spec, topology: Qrm)

Computing the optimal cut-off set.
The size of the cut-off set is now O.

Computing the extended valuatioms...

34

...Done!

Found O non-isomorphic valuations.

(#valuations: O, #canonical forms: O, max #valuations stored: O, #isomorphs removed: O,
#branches pruned: 0)

Searching for satisfying valuationms...

...New valuation found:

T -> {T0}

S -> {s0,s1,82}

Qs -> {(so0,T0,80), (s0,TO,S1), (s0,T0,S2), (81,T0,S0), (81,T0O,81), (81,T0,82), (S2,T0,80) , (S2,T0,S1),
(82,T0,82)}

Minimising the values of sorts...

...New valuation found:

T -> {T0}

S -> {s0,s1}

Qs -> {(so,T0,S0),(80,T0,S1),(51,T0,S0),(S1,TO,S1)}
Minimising the values of sorts...

...New valuation found:

T -> {T0}

S -> {so}

Qs -> {(s0,T0,s0)}

Minimising the values of sorts...

...Done!

Minimising the values of predicates...

. ..Done!

The size of the cut-off set is now 1.

Computing the extended valuations...
...Done!

Found 1 non-isomorphic valuations.
(#valuations: 3, #canonical forms: 3, max #valuations stored: O, #isomorphs removed: O,
#branches pruned: 0)

Searching for satisfying valuationms...
...New valuation found:

T -> {T0}

S -> {s0,s1,82}

Qs -> {(s2,T0,S0),(82,T0,S1)}
Minimising the values of sorts...
...New valuation found:

T -> {T0}

S -> {so0,s1}

Qs -> {(s1,T0,s0),(s1,T0,S1)}
Minimising the values of sorts...
...Done!

Minimising the values of predicates...
...New valuation found:

T -> {T0}

s -> {so0,s1}

Qs -> {(S1,T0,S0)}

Minimising the values of sorts...
...Done!

The size of the cut-off set is now 2.

Computing the extended valuations...

...Done!

Found 1 non-isomorphic valuations.

(#valuations: 7, #canonical forms: 4, max #valuations stored: 2, #isomorphs removed: O,

35

#branches pruned: 0)

Searching for satisfying valuations...

...Al11 found for this component, continuing to the next one.

Computing the extended valuations...

...Done!

Found 4 non-isomorphic valuations.

(#valuations: 19, #canonical forms: 14, max #valuations stored: 4, #isomorphs removed: O,
#branches pruned: 0)

Searching for satisfying valuatioms...

...New valuation found:

T -> {TO}
S -> {S0,81,82}
Qs -> {}

Minimising the values of sorts...
...New valuation found:

T -> {TO0}

S -> {s0,s1}

as -> {+

Minimising the values of sorts...
...Done!

Minimising the values of predicates...
...Done!

The size of the cut-off set is now 3.

Computing the extended valuations...

...Done!

Found 2 non-isomorphic valuations.

(#valuations: 9, #canonical forms: 7, max #valuations stored: 2, #isomorphs removed: 1,
#branches pruned: 0)

Searching for satisfying valuatioms...

...New valuation found:

T -> {T0}

S -> {s0,s1,82}

s -> {3

Minimising the values of sorts...

.. .Done!

Minimising the values of predicates...
...Done!

The size of the cut-off set is now 4.

Computing the extended valuations...

...Done!

Found 3 non-isomorphic valuations.

(#valuations: 13, #canonical forms: 10, max #valuations stored: 3, #isomorphs removed: 3,
#branches pruned: 0)

Searching for satisfying valuationms...

...Al1l found for this component, continuing to the next one.

Computing the extended valuations...

...Done!

Found 2 non-isomorphic valuations.

(#valuations: 55, #canonical forms: 39, max #valuations stored: 11, #isomorphs removed: 5,
#branches pruned: 0)

Searching for satisfying valuatioms...

...New valuation found:

T -> {T0}

s -> {s0,s1,582,83,54,585,56}

36

Qs -> {(ss3,T0,81),(83,T0,S2), (83,T0,S4), (s3,T0,S6) , (85,T0,S0), (85,T0,S1),(S5,T0,S4), (S5,T0,S6) }
Minimising the values of sorts...

...New valuation found:

T -> {T0}

s -> {s0,s1,582,33,34,55}

Qs —> {(s2,T0,80), (s2,T0,S1), (s2,T0,S83), (s82,T0,S5), (83,T0,80), (83,T0,S52) , (83,T0,83) , (S3,T0,S4),
(s3,T0,85), (S4,T0,S0), (S4,T0,S1),(S4,T0,S3), (S4,T0,S5)}
Minimising the values of sorts...

...New valuation found:

T -> {T0}

s -> {s0,s1,52,83}

Qs -> {(s1,T0,80),(s1,T0,82),(83,T0,S0), (S3,T0,S2)}
Minimising the values of sorts...

...New valuation found:

T -> {T0}

s -> {s0,81,82}

Qs -> {(s1,T0,S0),(s1,T0,81),(81,T0,S2), (52,T0,S0), (S2,T0,S1),(S2,T0,S2)}
Minimising the values of sorts...

...New valuation found:

T -> {T0}

S -> {so0,s1}

Qs -> {(s0,T0,S0),(s0,T0,S81),(81,T0,S0),(S1,TO,S1)}
Minimising the values of sorts...

...Done!

Minimising the values of predicates...

...New valuation found:

T -> {T0}

S -> {so0,s1}

Qs -> {(s0,T0,S0),(S1,T0,S0)}

Minimising the values of sorts...

...Done!

The size of the cut-off set is now 5.

Computing the extended valuations...

...Done!

Found 4 non-isomorphic valuations.

(#valuations: 22, #canonical forms: 18, max #valuations stored: 7, #isomorphs removed: O,
#branches pruned: 0)

Searching for satisfying valuatioms...

...New valuation found:

T -> {T0}

s -> {s0,s1,s2,53,54,585,56}

Qs -> {(ss3,T0,81),(S3,T0,S2), (s3,T0,S4) , (s3,T0,S6) , (85,T0,S0), (85,T0,S1),(S5,T0,S4), (S5,T0,S6) }
Minimising the values of sorts...

...New valuation found:

T -> {T0}

s -> {s0,s81,582,83,54}

Qs -> {(so0,T0,82),(S0,T0,S4), (s1,T0,S2), (51,T0,S4), (83,T0,54)}
Minimising the values of sorts...

...New valuation found:

T -> {T0}

s -> {s0,s51,S82,33}

Qs -> {(s1,T0,s0),(s1,T0,S83),(82,T0,83)}

Minimising the values of sorts...

...New valuation found:

T -> {T0}

37

S -> {s0,51,52}

Qs -> {(s1,T0,S0),(81,T0,S81),(82,T0,S0)}
Minimising the values of sorts...
...Done!

Minimising the values of predicates...
...New valuation found:

T -> {T0}

S -> {s0,s1,82}

Qs -> {(s0,T0,S2),(S1,T0,S2)}
Minimising the values of sorts...
...Done!

The size of the cut-off set is now 6.

Computing the extended valuationms...

...Done!

Found 2 non-isomorphic valuations.

(#valuations: 38, #canonical forms: 26, max #valuations stored: 13, #isomorphs removed: 3,
#branches pruned: 0)

Searching for satisfying valuationms...

...A11 found.

The optimal cut-off set is found.

Generating Instance O generated by valuation
T -> {T0}

s —> {so0}

Qs -> {(s0,T0,50)}

Generating Instance 2 generated by valuation
T -> {T0}

S -> {s0,s1}

Qs -> {(s81,T0,50)}

Generating Instance 3 generated by valuation

T -> {T0}

S -> {s0,s1}

Qs -> {}

Generating Instance 4 generated by valuation
T -> {T0}

s -> {s0,s1,s2}

Qs -> {}

Generating Instance 5 generated by valuation
T -> {T0}

S -> {s0,s1,52}

Qs -> {(s0,T0,S82),(S1,T0,S2)}

Generating Instance 1 generated by valuation
T -> {T0}

s -> {so0,s1}

Qs -> {(s0,T0,S0),(81,T0,S0)}

Instance O written successfully to file examples/raft_leader_election4_instance_O‘csp

Instance 3 written successfully to file examples/raft_leader_election4_instance_1.csp

38

Instance 2 written successfully to file examples/raft_leader_election4_instance_2.csp
Instance 1 written successfully to file examples/raft_leader_election4_instance_3.csp
Instance 4 written successfully to file examples/raft_leader_election4_instance_4.csp
Instance 5 written successfully to file examples/raft_leader_election4_instance_5.csp
Checking examples/raft_leader_election4_instance_0.csp, this may take a while or two...
Check of examples/raft_1eader_election4_instance_0.csp passed.
Checking examples/raft_leader_election4_instance_1.csp, this may take a while or two...
Check of examples/raft_leader_election4_instance_1.csp passed.
Checking examples/raft_1eader_election4_instance_2.csp, this may take a while or two...
Check of examples/raft_leader_election4_instance_2.csp passed.
Checking examples/raft_leader_election4_instance_3.csp, this may take a while or two...
Check of examples/raft_1eader_election4_instance_3.csp passed.
Checking examples/raft_leader_election4_instance_4.csp, this may take a while or two...
Check of examples/raft_leader_election4_instance_4.csp passed.
Checking examples/raft_1eader_election4_instance_5.csp, this may take a while or two...
Check of examples/raft_leader_election4_instance_5.csp passed.
==== The system is correct with respect to the specification! ====
The total number of instances generated: 6

(the total number of valuations generated: 186

the total number of canonical forms computed: 127

the maximum number of valuations stored all at once: 15)
Total time taken: 0.485503 seconds

(time taken by input processing: 0 seconds

time taken by the computation of valuations: 0.153 seconds

time taken by output processing: 0.002 seconds
time taken by trace refinement checking: 0.329 seconds)

39

