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Abstract5

In this article, we revise our constraint-based abstraction refinement technique6

for checking temporal logic properties of concurrent software systems. Our7

technique employs predicate abstraction and SAT-based three-valued bounded8

model checking. In contrast to classical refinement techniques where a single9

state space model is iteratively explored and refined with predicates, our ap-10

proach is as follows: We use a coarsely-abstracted global state space model11

where we check for abstract witness paths for the property of interest. For12

each detected abstract witness we construct a local model whose state space13

is restricted to refinements of the witness only. On the local models we check14

whether the witness is real or spurious. We eliminate spurious witnesses in the15

global model via spurious segment constraints, which do not increase the state16

space complexity. Our technique is complete and terminates when a real witness17

in a local model can be detected, or no more witnesses in the global model exist.18

While our technique was originally restricted to the verification of safety19

properties, we extend it here to the verification of liveness properties. For this,20

we make use of the state recording translation of the input system, which reduces21

liveness model checking to safety checking. Another restriction of our original22

approach was its incompleteness due to the nature of bounded model checking.23

Here we show how abstraction refinement-based bounded model checking can24

be combined with the k -induction principle, which enables unbounded model25

checking. Our approach is iterative with regard to the bound. The extended26

approach also allows us to define enhanced concepts for strengthening the con-27

straints that we use to rule out spurious behaviour and for reusing constraints28

between bound iterations. We demonstrate that our approach enables the com-29

plete verification of safety and liveness properties with a reduced state space30

complexity and a better solving time in comparison to classical abstraction re-31

finement techniques.32
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1. Introduction1

Three-valued abstraction (3VA) [1] is an established technique for reducing2

the complexity of software verification. It proceeds by generating an abstract3

representation of an input software system over predicates with the possible4

truth values true, false and unknown, where the latter value is used to express5

the loss of information due to abstraction. The state space of an abstract soft-6

ware system can then be represented as a three-valued model. The evaluation7

of temporal logic properties on such models is known as three-valued model8

checking (3MC) [2]. Under three-valued abstraction both true and false model9

checking results can be transferred to the modelled software system, whereas10

an unknown result indicates that the current model is too coarse for a definite11

outcome. In the latter case a so-called unconfirmed witness is produced, which12

is an execution path in the abstract state space with some unknown transitions13

or predicates that characterises a potential violation of the property of interest.14

Witness-guided abstraction refinement [3] then iteratively adds further predi-15

cates to the abstract model until a previously unconfirmed witness turns out16

to be definite, or no more witnesses exist. The described approach follows the17

classical abstract–check–refine paradigm [4] where a single model that represents18

the entire system is iteratively refined. Since each refinement iteration involves19

an exponential growth of the state space to be explored, this approach can easily20

suffer from state explosion.21

In [5] we introduced a novel abstraction refinement technique that facili-22

tates the verification of safety properties of concurrent software systems with23

an improved state space complexity. In this approach we make use of two kinds24

of state space models: We use a global model that considers all parts of the25

underlying system, and we use local models that are restricted to previously26

detected unconfirmed witness paths. Both global and local models are subject27

to three-valued abstraction. But only the local models are refined by adding28

predicates, whereas the global model is iteratively pruned via spurious witness29

constraints derived from local models. Our technique proceeds as follows: In30

the same manner as in a classical abstract–check–refine approach, we start with31

a coarsely-abstracted global model of the input system and we check whether32

the safety property of interest can be proven or refuted. If the check returns33

unknown along with an unconfirmed witness, then we derive new predicates34

for refinement. Now instead of refining the global model, we construct a new35

local model that is narrowed down to refinements of the unconfirmed witness36

only. Checking the local model either proves the previously unconfirmed wit-37

ness to be definite or to be spurious. In the first case we are done. In the38

latter case we generate a constraint for ruling out the spurious witness. In the39

subsequent pruning iteration we return to the global model and prune its state40

space via the generated spurious witness constraint. The procedure terminates41

when either no more witnesses in the global model exist or a definite witness in42

a local model can be detected. In contrast to standard approaches to constraint43

reusing in bounded model checking [6] our technique does not only enable the44

reuse of constraints between bound iterations but also between different levels45
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of abstraction. A constraint generated based on a refined local model is also1

admissible for the more abstract global model. Our approach reduces the state2

space complexity in two ways. Refinement is only applied to local models whose3

state space is already strongly limited by being restricted to refinements of a4

certain unconfirmed witness. The state space of the global model is pruned5

by spurious witness constraints derived from local models. But the refinement6

predicates that were used in the local model in order to derive these constraints7

do not have to be added to the global model. Hence, we gain precision in the8

global model without enlarging its state space. The price that we pay is an in-9

creased number of global pruning iterations and local refinement iterations until10

a definite result can be obtained. The actual number depends on the strength11

of the generated constraints in terms of ruling out spurious behaviour. The12

spuriousness of a witness typically originates from a spurious segment of the13

path that it represents. A constraint that rules out all paths that exhibit the14

spurious segment is naturally stronger than a constraint that only rules out the15

spurious witness itself.16

As a background technique we use satisfiability-based three-valued bounded17

model checking [7] in order to process the model checking problems to be solved18

within our abstraction refinement approach. We have shown that the abstracted19

input systems together with the safety property to be checked can be directly20

encoded into propositional logic such that the construction of an explicit state21

space model is avoided [7]. Encoded three-valued bounded model checking prob-22

lems can be solved via two Boolean satisfiability checks. The first check con-23

siders an over-approximating completion of the encoding where all unknowns24

are assumed to be true. The second check considers an under-approximating25

completion where all unknowns are assumed to be false. If both completions26

are satisfiable, then the corresponding model checking result is true. If both27

completions are unsatisfiable, then the corresponding model checking result is28

false. Otherwise the result is unknown. In [5] we demonstrated that in the29

satisfiability-based approach a spurious segment of a witness is characterised by30

a part of an unsatisfiable core of the SAT-encoded problem. The constraint for31

ruling out the spurious segment corresponds to the negation of this part. This32

enables us to efficiently generate spurious segment constraints via unsatisfiable33

core extraction [8]. Bounded model checking, as we used it in [3, 5, 7], is in-34

herently incomplete. The bound k ∈ N restricts the length of execution paths35

of the modelled system, which makes this technique only usable for detecting36

property violations but not for proving their absence. Completeness for finite-37

state systems can be theoretically established by iterating over the bound until38

a completeness threshold is reached [9]. However, the determination of mini-39

mal or tight (close to minimal) completeness thresholds is a computationally40

hard problem by itself and even tight thresholds are mostly still impractical for41

efficient verification. In [5] we added a bound iteration loop around our abstrac-42

tion refinement technique. The loop is incremental [10] in the sense that clauses43

learned by the solver for a particular model M in iteration k can be reused in44

for pruning the search space of the same model in iteration k + 1. In addi-45

tion, our novel approach allows for further pruning based on spurious segment46
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constraints. We proved that iteration-independent spurious segment constraints1

derived from any local model can be used for restricting the search space of the2

global model in all bound iterations. The admissibility of reusing constraints3

between different models gives us pruning capabilities that are beyond what is4

feasible with standard incremental SAT solving [10]. The approach allows us to5

avoid computational overhead caused by repeating constraint generation that6

has been already conducted based on local models in previous iterations7

While our novel refinement approach [5] already revealed promising results8

in terms of reducing the state space complexity of verification tasks in com-9

parison to classical abstraction refinement [3], it was still subject to a number10

of drawbacks and limitations. Our original definition of iteration-independence11

was overly restrictive and resulted in a very limited reusability of constraints.12

In this extended article we define seven different types of independence (resp.13

dependence) of spurious segment constraints and we prove an admissible form14

of reuse for each type. This also includes the additional strengthening of fully-15

independent constraints and the adaptation of initial state-independent con-16

straints for reuse in higher bound iterations. The type of independence of a17

constraint follows immediately from unsatisfiable core extraction. Our enhanced18

constraint reusing concept facilitates a more extensive pruning of spurious be-19

haviour, and thus, a better verification performance.20

A second limitation of [5] is that it is incomplete due to the nature of bounded21

model checking. Although we use a bound iteration loop, this does not allow22

us to prove the absence of property violations in large-scale state space mod-23

els. Completeness of bounded model checking can be established via k-induction24

[11]. This technique was originally introduced for the verification of safety prop-25

erties of hardware systems. It proceeds as follows: Given a state space model of26

the system to be analysed and a safety predicate safe, it is checked whether all27

paths of length k that start in an initial state of the model are safe, i.e. whether28

safe holds in each state along the paths. This is the base case of k -induction,29

which is equivalent to standard bounded model checking. If the base case holds,30

then the inductive step is checked: Assuming k consecutive states where safe31

holds in each state, then safe also has to hold in every (k +1)-st successor state.32

The inductive step does not restrict the k consecutive states to start in an ini-33

tial state. If the inductive step holds as well, then it can be concluded that all34

unbounded execution paths of the modelled system are also safe. Otherwise the35

procedure needs to be repeated with an incremented k . For finite-state models36

termination is guaranteed and the final bound is typically considerably smaller37

than a precomputed approximation of a completeness threshold. In [12] we al-38

ready demonstrated that k -induction is compatible with three-valued bounded39

model checking. In this article we show that the k -induction technique can40

be also combined with our novel abstraction refinement approach. For this,41

we introduce a shared bound iteration loop and within this loop two separate42

refinement loops, one for the base case and one for the inductive step. This43

combination enables us to conduct complete verification of safety properties via44

SAT-based model checking. The base case and the inductive step are two dis-45

tinct problems to be solved. Although they exhibit certain similarity, constraint46
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reuse between the two is not admissible in general. However, we show that gen-1

erated initial state-independent constraints can be reused between the base case2

and the inductive step, which gives us further pruning capabilities.3

k -induction is limited to the verification of safety properties and so is our4

original approach presented in [5]. For concurrent systems also liveness proper-5

ties are of great importance. Liveness model checking under fairness involves a6

considerably higher complexity than safety checking and many safety checking7

techniques are not compatible with liveness. In order to facilitate the verification8

of liveness properties with our approach, we adopt the state recording transla-9

tion [13]. This translation transfers an original state space model into a state10

recording model, which reduces an original liveness model checking problem to11

a safety problem. The translation comes at the cost of a quadratic increase12

of the number of states, but it gives us the benefit to utilise efficient safety13

checking techniques in order to solve liveness problems. We show that the state14

recording translation can be already applied to our abstracted systems before15

the corresponding state space models are encoded in propositional logic.16

1.1. Contributions and Relation to Previous Work17

The main contributions of this work are the establishment of considerably en-18

hanced constraint reusing capabilities for our automatic abstraction refinement19

approach proposed in [5], the completion of previously incomplete verification20

techniques [3, 5, 7], and the extension of a pure safety checking technique to a21

technique that also supports liveness checking under fairness. Table 1 provides22

an overview on how this article, denoted as SCP 2020, extends and combines23

our previous work on SAT-based three-valued bounded model checking.24

Table 1: Comparison with previous work.

[7] [3] [12] [5] SCP 2020

liveness checking X X 7 7 X

automatic refinement 7 X X X X

multi-model approach 7 7 7 X X

reuse of path constraints 7 7 7 X X (enhanced)

completeness 7 7 X 7 X

[7] and [3] support liveness model checking based on an explicit encoding25

of the liveness property to be checked, which turned out to be inefficient in26

experiments. Thus, in subsequent papers we focussed on safety model checking27

only. SCP 2020 re-introduces liveness support based on a reduction to safety.28

In [3] we introduced a fully-automatic abstraction refinement technique. Pred-29

icates for refinement are derived from unsatisfied clauses. Refined models are30

generated with the help of the prover Z3 [14]. The originally single-model ap-31

proach to abstraction refinement has been extended to a multi-model approach32
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in [5]. This also involved the introduction of path constraint reusing, which we1

enhance in SCP 2020. Based on thresholds, complete model checking is theo-2

retically conceivable but practically infeasible in [7], [3], [5]. The k -induction3

approach allows for the feasibility of complete verification in [12] and SCP 2020.4

We have implemented our approach. In experiments we demonstrate that5

our constraint-based refinement technique allows for significant performance6

improvements in comparison to classical abstraction refinement. Moreover, we7

show that our implemented tool can compete with the Spin model checker [15]8

for certain verification tasks.9

1.2. Outline10

The remainder of this article is organised as follows. In Section 2 we in-11

troduce the concurrent software systems that we consider in our approach and12

the three-valued abstraction technique that we employ. Section 3 provides the13

background on three-valued bounded model checking. In Section 4 we show14

how the state recording translation can be applied to our abstracted systems in15

order to reduce liveness to safety model checking. In Section 5 we show how k -16

induction can be combined with three-valued bounded model checking in order17

to establish completeness. Section 6 reviews basic three-valued abstraction re-18

finement. In Section 7 we introduce our novel witness refinement technique with19

constraint reuse. We show in this section how the novel refinement technique20

can be combined with k -induction. Moreover, we define the different types of21

constraints that occur in our approach and we prove an admissible form of reuse22

and strengthening for each type. In Section 8 we introduce our propositional23

logic encoding of three-valued bounded model checking problems. Furthermore,24

we show how constraint types can be determined based on unsatisfiable core25

extraction. In Section 9 we introduce the implementation of our approach and26

we present experimental results. Section 10 discusses related work. We conclude27

this paper in Section 11 and give an outlook on future work.28

2. Abstracted Concurrent Software Systems29

We start with a brief introduction to the systems that we want to verify30

and the abstraction technique that we use in our work. Our approach supports31

integer arithmetic-based concurrent systems with the data types int, bool and32

semaphore (but no arrays and pointers). Moreover, almost all control structures33

of the C language are supported, such as if-then-else, while-do, for and goto. A34

concurrent software system Sys consists of a number of possibly non-uniform35

processes P1 to Pn composed in parallel: Sys = ‖ni=1 Pi . It is defined over a36

set of variables Var = VarSys ∪ VarPC . VarSys is a set of typed system vari-37

ables, whereas VarPC is a special set that holds for each process Pi a dedicated38

program counter variable pci ranging over control locations from a set Loci .39

Locations of a process are labelled with conditional operations with regard to40

system variables and with a reference to the subsequent location.41

An example for a concurrent system implementing mutual exclusion is de-42

picted in Figure 1.43
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y : semaphore where y = 1;

P1 ::


loop forever do 0: acquire (y);

1: CRITICAL

release (y);


 ‖ P2 ::


loop forever do 0: acquire (y);

1: CRITICAL

release (y);




Figure 1: Concurrent system Sys.

Here we have two processes operating on a shared semaphore variable y .1

Processes Pi can be formally represented as control flow graphs (CFGs) Gi =2

(Loci , δi , τi) where Loci = {0, . . . , |Loci − 1|} is a set of control locations given3

as numbers. We implicitly assume that 0 is the initial location of a control flow4

graph. δi ⊆ Loci × Loci is a transition relation and τi : δi → Op is a function5

labelling transitions with operations from a set Op.6

Definition 1 (Operations).7

Let Var = {v1, . . . , vm} be a set of typed variables. The set of operations Op on8

Var consists of all statements of the form assume(e) : [v1 :=e1]◦ . . .◦ [vm :=em ]9

where e is a Boolean expression over Var that acts as a guard. Moreover, ◦10

is the append operator and [. . .] ◦ . . . ◦ [. . .] is a list of type-correct assignments11

where e1, . . . em are expressions over Var.12

Hence, every operation consists of a guard and a list of assignments. For13

convenience, we sometimes just write e instead of assume(e), we omit the as-14

sume part completely if the guard is true, and we write v1 := e1, . . . , vm := em15

for an assignment list [v1 := e1] ◦ . . . ◦ [vm := em ]. The control flow graphs G116

and G2 corresponding to the processes of our example system are depicted in17

Figure 2. G1 and G2 also illustrate the semantics of the operations acquire(y , 1)18

and release(y , 1).19

y : semaphore where y = 1;

0

G1

1

y < 1

y > 0 : y := y − 1 ‖y := y + 1

0

G2

1

y < 1

y > 0 : y := y − 1y := y + 1

Figure 2: Control flow graphs G1 and G2 composed in parallel.

A concurrent system given by n individual control flow graphs G1, . . . ,Gn20

can be modelled by one composite CFG G = (Loc, δ, τ) where Loc =×n
i=1 Loci .21

G is the product graph of all individual CFGs. We assume that for any Sys22

a deterministic initialisation of all its variables is given in terms of a predicate23

expression Init , e.g., Init = (y = 1) ∧ (pc1 = 0) ∧ (pc2 = 0) for our example. A24

computation of a concurrent system corresponds to a sequence where in each25
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step one process is non-deterministically selected and an operation at its cur-1

rent location that is not blocked by the guard is executed, i.e. the variables2

are updated according to the assignment part and the process advances to the3

consequent control location. We assume that for each step and each control lo-4

cation of a process there will be always at least one non-blocked operation that5

can be executed. This might be an explicit idling step, such as the waiting for6

the semaphore to become available at location 0 in Figure 2. We assume that7

all assignments of an operation are executed simultaneously and that an oper-8

ation assigns to each variable at most once. The state space of a system over9

Var corresponds to the set SVar of all type-correct valuations of the variables.10

Given a state s ∈ SVar and an expression e over Var , then s(e) denotes the11

valuation of e in s. Thus, a computation can be likewise considered as sequence12

of states s0s1s2 . . . where the transition from si to si+1 correctly characterises13

the execution of the associated operation. For verifying properties of concurrent14

software systems typically only fair computations are considered. Our notion15

of fairness for concurrent systems is as follows: In an infinite computation, each16

process executes an operation infinitely often.17

Control flow graphs allow us to model concurrent systems formally. For18

an efficient verification it is additionally required to reduce the state space19

complexity. For this purpose, we use three-valued predicate abstraction [1].20

Such an abstraction is an approximation in the sense that all definite verifi-21

cation results (true, false) obtained for an abstract system can be transferred22

to the original system. Only unknown results necessitate abstraction refine-23

ment [16]. For a given set ASys of atomic predicates over system variables,24

the corresponding three-valued abstraction of the system can be automatically25

constructed via a theorem prover. In our approach we employ the prover Z326

[14]. In abstract systems operations do not refer to concrete system variables27

from VarSys but to predicates from a set ASys with the three-valued domain28

3 = {true, false, unknown} which we typically abbreviate by {t , f , u}. Unknown29

is used to represent the loss of information due to abstraction and is a valid truth30

value as we operate with the three-valued Kleene logic K3 [17] whose semantics31

is given by the truth tables in Figure 3.32

∧ true u false
true true u false
u u u false
false false false false

∨ true u false
true true true true
u true u u
false true u false

¬
true false
u u
false true

Figure 3: Truth tables for the three-valued Kleene logic K3.

The information order ’≤K3
’ of the Kleene logic is defined as u ≤K3

true,
u ≤K3 false, and true, false incomparable. Operations in abstract systems are
of the following form:

assume(choice(a, b)) : p1 :=choice(a1, b1), . . . , pm :=choice(am , bm)

8



where {p1, . . . , pm} = ASys is a set of predicates and a, b, a1, b1, . . . , am , bm1

are logical expressions over ASys . choice(a, b)-expressions have the following2

semantics:3

Definition 2 (Choice Expressions).
Let s be a state over a set of three-valued predicates ASys . Moreover, let a and
b be logical expressions over ASys that may evaluate to true false or unknown
in s. Then

s (choice (a, b)) =


true if, and only if, s(a) is true,

false if, and only if, s(a) is not true and s(b) is true,

u else.

Thus, predicates in ASys may be set to unknown by an abstract operation.4

Given a concrete operation assume(e) : v1 := e1, . . . , vm := em and a set5

of predicates ASys , a corresponding abstract operation assume(choice(a, b)) :6

p1 := choice(a1, b1), . . . , pm′ := choice(am′ , bm′) has to satisfy the following7

implications a |= e, b |= ¬e, ai |= wpop(pi), and bi |= ¬wpop(pi) with 1 ≤ i ≤8

m ′ where a, b, ai and bi are logical expressions over ASys and wpop(pi) is the9

weakest precondition of pi with regard to op. The abstraction of operations can10

be performed fully-automatically. In our approach we use the prover Z3 [14] for11

generating abstract operations.12

While our abstraction technique reduces the complexity induced by system13

variables, it preserves the original control flow. For this, the set of 2-valued14

predicates APC = {(pci = li) | i ∈ [1,n], li ∈ Loci} is used that covers all15

locations of the system. A state s with s(pci = li) = true means that in s16

process Pi is at control location li . Since a process can be only at one location17

at a time, s(pci = l ′i ) must be false for all l ′i 6= li . The overall set of predicates18

is A = ASys ∪APC .19

The application of three-valued predicate abstraction ensures that for any20

state s and for any expression choice(a, b) in an abstract control flow graph the21

following holds: s(a) = true ⇒ s(b) = false and s(b) = true ⇒ s(a) = false.22

Moreover, the following equivalences hold:23

choice(true, false) ≡ true

choice(false, true) ≡ false

choice(false, false) ≡ u

choice(a,¬a) ≡ a

choice(¬a, a) ≡ ¬a

choice(a, b) ≡ (a ∨ ¬b) ∧ (a ∨ b ∨ u)

choice(b, a) ≡ ¬choice(a, b)

A three-valued expression choice(a, b) over ASys approximates a Boolean
expression e over Var , written choice(a, b) � e, if, and only if, a implies e and

9



b implies ¬e:

choice(a, b) � e ≡ (a |= e) ∧ (b |= ¬e).

The three-valued approximation relation can be extended to operations as1

follows [1]:2

Definition 3 (Approximation of Operations).
Let Var be a set of variables and let ASys be a set of predicates over Var.
Moreover, let

op = assume(e) : v1 :=e1, . . . , vm :=em

be a concrete operation over Var and let

op′ = assume(choice(a, b)) : p1 :=choice(a1, b1), . . . , pm′ :=choice(am′ , bm′)

be an abstract operation over ASys . Then op′ approximates op, written op′ � op,
if and only if

choice(a, b) � e ∧
∧m′

i=1 (choice(ai , bi) � wpop(pi))

where wpop(pi) is the weakest precondition of pi with respect to op.3

An abstract system Sys ′ over ASys approximates a concrete system Sys over4

Var , written Sys ′ � Sys, if the systems have isomorphic control flow graphs and5

the operations in the abstract system approximate the corresponding ones in6

the concrete system. In the same manner we can also define the approximation7

relation for pairs of abstract systems Sys ′ over A′ and Sys ′′ over A′′ with A′ ⊆8

A′′.9

Figure 4 depicts different degrees of abstraction of the concrete system Sys10

in Figure 2. We have that Sys ′ � Sys ′′ � Sys ′′′ � Sys. For illustration: the11

abstract operation (y > 0) := choice((y > 0), false) in Sys ′′ sets the predicate12

(y > 0) to true if (y > 0) was true before, and it never sets the predicate13

to false. This is a sound three-valued approximation of the concrete operation14

y := y + 1 over the predicate (y > 0).15

The state space of an abstract system is defined as S = SASys × SAPC where16

SASys is the set of all possible valuations of the three-valued predicates in ASys17

and SAPC
is the set of all possible valuations of the two-valued predicates in18

APC . So far we have seen how concurrent systems can be formally represented19

and abstracted. Next we will take a look on how bounded model checking of20

abstracted systems is defined.21

3. Three-Valued Bounded Model Checking22

CFGs allow us to model the control flow of a concurrent system. The veri-23

fication of a system additionally requires to explore a corresponding state space24

10



no predicates

0

‖2i=1 G ′i

1

u

u

(a) CFGs representing an abstract system Sys′ over ASys′ = ∅.

(y > 0) : predicate where (y > 0) = true;

0

‖2i=1 G ′′i

1

¬(y > 0)

(y > 0) : (y > 0) := choice(false,¬(y > 0))(y > 0) := choice((y > 0), false)

(b) CFGs representing an abstract system Sys′′ over ASys′′ = {(y > 0)}.

(y > 0) : predicate where (y > 0) = true;

(y > 1) : predicate where (y > 1) = false;

0

‖2i=1 G ′′′i

1

¬(y > 0)

(y > 0) :
(y > 0) := choice((y > 1),¬(y > 1))

(y > 1) := choice(false,¬(y > 1))

(y > 0) := choice((y > 0),¬false)

(y > 1) := choice((y > 0),¬(y > 0))

(c) CFGs representing an abstract system Sys′′′ over ASys′′′ = {(y > 0), (y > 1)}.

Figure 4: Control flow graphs representing different degrees of abstraction of the concrete
system Sys.
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model. Since we use three-valued abstraction, we need a model that incorpo-1

rates the truth values true, false and unknown. Three-valued Kripke structures2

are models with a three-valued domain for transitions and labellings of states:3

Definition 4 (Three-Valued Kripke Structure).4

A three-valued Kripke structure over a set of atomic predicates A is a tuple5

M = (S , I ,R,L,F ) where6

• S is a finite set of states,7

• I ⊆ S is a set of initial states,8

• R : S ×S → 3 is a transition function such that ∀ s ∈ S : ∃ s ′ ∈ S with9

R(s, s ′)∈{true, unknown},10

• L :S×A→3 is a labelling function that associates a truth value with each11

atomic predicate in each state,12

• F ⊆ P({(s, s ′) | R(s, s ′) ∈ {true, unknown}}) is a set of fairness con-13

straints where each constraint is a set of non-false transitions.14

A concurrent system Sys = ‖ni=1 Pi abstracted over a set of system predicates15

ASys can be represented as a three-valued Kripke structure according to the16

following definition:17

Definition 5 (Concurrent System as Three-Valued Kripke Structure).18

Let Sys = ‖ni=1 Pi over Var be a concurrent system abstracted over a set19

of system predicates ASys and given by a composite control flow graph G =20

(Loc, δ, τ) and an initial state predicate Init . The corresponding three-valued21

Kripke structure is a tuple M = (S , I ,R,L,F ) over the set of atomic predicates22

A = ASys ∪APC where APC = {(pci = li) | i ∈ [1..n], li ∈ Loci} with23

• S := SASys
× SAPC

,24

• I := {s ∈ S | s(Init) = true},25

• R(s, s ′) :=
∨n

i=1 Ri(s, s ′) :=26 ∨n
i=1(δi(li , l

′
i )∧

∧
i′ 6=i(li′ = l ′i′)∧s(choice(a, b))∧

∧m
j=1 s ′(pj ) = s(choice(aj , bj )))27

28
assuming that li is the location of Pi with s(pci = li) = true,29

l ′i is the location of Pi with s ′(pci = l ′i ) = true and30

τi(li , l
′
i ) = assume(choice(a, b)) : p1 :=choice(a1, b1), . . . , pm :=choice(am , bm),31

• L(s, p) := s(p) for each p ∈ A,32

• F := {{(s, s ′) | Ri(s, s ′) ∈ {true, unknown}} | i ∈ [1..n]},33

i.e. for each Pi one constraint that contains all transitions caused by Pi .34
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The abstraction technique that we use guarantees that all states of the re-1

sulting three-valued Kripke structure have a unique labelling. Hence, we can2

assume that a pair of states s, s ′ ∈ S with ∀ p ∈ A : L(s, p) = L(s ′, p) implies3

that s = s ′.4

A three-valued Kripke structure representing the state space of our example5

system can be defined over the predicate set A = {(pc1 = 0), (pc1 = 1), (pc2 =6

0), (pc2 =1)}. Here we only have predicates over the control flow, but so far no7

predicates over the semaphore variable y . The corresponding Kripke structure8

is depicted in Figure 5. For the sake of simplicity, only the predicates that9

evaluate to true are shown for each state. Each transition is labelled with its10

truth value and the identifier of the process that causes it. As we can see, the11

lack of predicates over y leads to several unknown transitions in the model.12

s0 :
(pc1 =0)
(pc2 =0)

M

s1 :
(pc1 =1)
(pc2 =0)

s2 :
(pc1 =0)
(pc2 =1)

s3 :
(pc1 =1)
(pc2 =1)

t , 1

u, 1 u, 2

t , 2

t , 2

u, 2 u, 1

t , 1

u, 2u, 1

u, 2 u, 1

Figure 5: Three-valued Kripke structure corresponding to abstracted mutual exclusion system.

Computations of a modelled system correspond to paths of a Kripke struc-13

ture:14

Definition 6 (Path).15

Let M = (S , I ,R,L,F ) be a three-valued Kripke structure. A path π of M is a16

sequence of states s0s1s2 . . . with s0 ∈ I and ∀ i : R(si , si+1) ∈ {true, unknown}.17

πi denotes the i -th state of π and πi denotes the i -th suffix sisi+1 . . . of π. ΠM18

denotes the set of all paths in M and ΠF
M denotes the set of all infinite paths19

in M that are fair with regard to F .20

A fair path of our example Kripke structure must take infinitely many tran-21

sitions associated with P1 and infinitely many transitions associated with P2.22

While paths can be generally infinitely long, bounded model checking only looks23

at finite k -prefixes π0 . . . πk of paths π where k ∈ N is the so-called bound. A24

finite prefix can still represent an infinite path if the prefix has a k -loop.25

13



Definition 7 (k-Loop).1

Let π be a path of a three-valued Kripke structure M and let l , k ∈ N with l ≤ k.2

Then π has a (k , l)-loop if R(πk , πl) ∈ {true, unknown} and π is of the form3

v ·wω where v = π0 . . . πl−1 and w = πl . . . πk . π has a k-loop if there exists an4

l ≤ k such that π has a (k , l)-loop.5

On prefixes with or without a loop we can evaluate temporal logic properties.6

Here we use the linear-time temporal logic LTL.7

Definition 8 (Syntax of LTL).
Let A be a set of atomic predicates. The syntax of LTL formulae ψ is inductively
defined as

ψ ::= p | ¬p | ψ ∨ ψ | ψ ∧ ψ | Gψ | Fψ | Xψ,

where p denotes arbitrary atomic predicates from A.8

The temporal operator G is read as globally, F is read as finally (or eventu-9

ally), and X is read as next. For the sake of simplicity, we omit the temporal10

operator U (until). Due to the extended domain of truth values in three-valued11

Kripke structures, the bounded evaluation of LTL formulae is based on the12

Kleene logic K3 (compare Section 2). For the bounded evaluation of LTL for-13

mulae on paths of three-valued Kripke structures we have to distinguish between14

prefixes with and without a k -loop.15

Definition 9 (Three-Valued Bounded Evaluation of LTL).16

Let M = (S , I ,R,L,F ) over A be a three-valued Kripke structure. Moreover,17

let k ∈ N and let π be a path of M with a k-loop. Then the bounded evaluation18

of an LTL formula ψ on the k-prefix of π, written [π |= ψ]
i
k where i ≤ k denotes19

the current position along the path, is inductively defined as follows:20

[π |= p]ik ≡ L(πi , p)

[π |= ¬p]ik ≡ ¬L(πi , p)

[π |= ψ ∨ ψ′]ik ≡ [π |= ψ]ik ∨ [π |= ψ′]ik
[π |= ψ ∧ ψ′]ik ≡ [π |= ψ]ik ∧ [π |= ψ′]ik
[π |= Gψ]ik ≡

∧
j≥i([π |= ψ]jk ∧ R(πj , πj+1))

[π |= Fψ]ik ≡
∨

j≥i([π |= ψ]jk ∧
∧j−1

j ′=i R(πj , πj+1))

[π |= Xψ]ik ≡ [π |= ψ]i+1
k ∧ R(πi , πi+1)

Let π be a path of M without a k-loop. Then the bounded evaluation of an
LTL formula ψ on the k-prefix of π is defined as follows:

[π |= Gψ]ik ≡ false

[π |= Fψ]ik ≡
∨k

j=i([π |= ψ]jk ∧
∧j−1

j ′=i R(πj , πj+1))

[π |= Xψ]ik ≡ if i < k then [π |= ψ]i+1
k ∧ R(πi , πi+1) else false

The other cases are identical to the case where π has a k-loop.21
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Note that in contrast to standard LTL, the three-valued evaluation of LTL for-1

mulae requires to take the transition relation into account: Transitions in three-2

valued models are either true or unknown and the value of a transition may3

affect the result of model checking. Moreover, note that in the no k-loop case of4

bounded model checking any formula of the form Gψ always evaluates to false5

because ψ might not hold at the successor position k +1 of the considered path.6

For convenience, we introduce the following abbreviation that allows for a
shorter representation of certain temporal logic properties. Let ψ be an arbitrary
LTL formula then:

ψi := Xi ψ = X . . .X︸ ︷︷ ︸
i-times

ψ.

Hence, ψi states that ψ has to hold for the i -suffix of a considered path.7

The bounded evaluation of temporal logic properties on entire three-valued8

Kripke structures is what is known as three-valued bounded model checking with9

the possible outcomes true, false and unknown. Here we distinguish between10

universal and existential model checking.11

Definition 10 (Three-Valued Bounded Model Checking).
Let M = (S , I ,R,L,F ) be a three-valued Kripke structure over A, let k ∈ N and
let ψ be an LTL formula. The corresponding universal model checking problem
is

A[M , I |=F
∀ ψ]k =

∧
π∈ΠF

M ,π0∈I [π |= ψ]0k

and the corresponding existential model checking problem is

A[M , I |=F
∃ ψ]k =

∨
π∈ΠF

M ,π0∈I [π |= ψ]0k .

Note that model checking without fairness constraints is a special case of12

model checking under fairness with F = ∅. For certain verification tasks fairness13

is not relevant and thus can be ignored in order to avoid an unnecessary growth14

of complexity. If we neglect fairness, we will simply write M = (S , I ,R,L) for15

a Kripke structure and A[M , I |=Q ψ]k with Q ∈ {∀,∃} for a model checking16

problem.17

In practice, universal model checking is of major interest as it allows to show18

that all computations of a modelled system satisfy certain temporal logic prop-19

erties. Certain model checking techniques such as satisfiability-based bounded20

model checking are only defined for the existential case. However, universal21

model checking can always be transformed into existential model checking based22

on the equation A[M , I |=F
∀ ψ]k = ¬ A[M , I |=F

∃ ¬ψ]k , which also makes exis-23

tential approaches generally applicable. In this work we will particularly focus24

on the existential case. In [3] Lemma 1 has been proven:25

Lemma 126

Let Sys over Var be a concurrent system and let Aa and Ar be sets of pred-27
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icates over Var with Aa ⊂ Ar . Let Sysa over Aa and Sysr over Ar be ab-1

stract systems with Sysa � Sys, Sysr � Sys and Sysa � Sysr . Moreover,2

let Ma = (Sa , Ia ,Ra ,La ,Fa) be the three-valued Kripke structure modelling the3

state space of Sysa , let Mr = (Sr , Ir ,Rr ,Lr ,Fr ) be the structure modelling the4

state space of Sysr , let ψ be an LTL formula and k ∈ N be a bound. Then the5

following holds:6

1. Aa
[Ma , Ia |=F

∃ ψ]k = true ⇒ Ar
[Mr , Ir |=F

∃ ψ]k = true7

2. Aa
[Ma , Ia |=F

∃ ψ]k = false ⇒ Ar
[Mr , Ir |=F

∃ ψ]k = false8

Hence, all definite (true and false) bounded model checking results obtained9

under three-valued abstraction of Sys over a predicate set Aa can be transferred10

to any refined abstraction over an extended predicate set Ar with Aa ⊂ Ar .11

Since the most refined abstraction represents the concrete state space of Sys,12

definite results can be also transferred to the concrete system. An unknown13

result indicates that the current level of abstraction is too coarse and further14

predicates need to be added.15

Bounded model checking is inherently incomplete as it only considers paths
up to a length k . The existence of a k -prefix that satisfies a formula ψ allows
us to conclude that ψ is also existentially satisfied in the unbounded case. But
the non-existence of such a k -prefix does not allows us to conclude that ψ is not
satisfied in the unbounded case. A straightforward but typically impracticable
way of making bounded model checking complete is to iterate over all possible
bounds up to a completeness threshold ct [9] with:

A[M , I |=F
∃ ψ]ct = A[M , I |=F

∃ ψ]∞

Two types of temporal logic properties are of particular interest in model16

checking concurrent software systems: safety and liveness. Checking safety17

properties such as mutual exclusion can be done via reachability analysis for18

which many efficient techniques exist. In particular, only loop-free paths need19

to be considered and fairness can be neglected for safety model checking. How-20

ever, many requirements of concurrent systems cannot be formulated as safety21

properties. For instance, the requirement that the processes of a system make22

continuous progress refers to a liveness property. Checking liveness requires23

the consideration of fairness and the exploration of paths with loops, which is24

significantly more complex than reachability analysis.25

In the following we exemplify one safety and one liveness model checking
problem that we will consider throughout this work. For our running example,
we can define the universal safety model checking problem A[M , I |=∀ G safe]k
without fairness constraints where safe = ¬(pc1 = 1)∨¬(pc2 = 1). This charac-
terises the mutual exclusion requirement that globally at most one process shall
be at the critical location 1 at the same time. A counterexample to this require-
ment can be always given by a finite loop-free prefix that reaches a state were
both processes are at the critical location. The complementary existential model
checking problem is A[M , I |=∃ F¬safe]k where we check for the existence of a

16



path prefix that violates mutual exclusion. In existential model checking we call
a path that satisfies the temporal logic property a witness. A counterexample
for a universal problem always corresponds to a witness for the complementary
existential problem and vice versa. A completeness threshold for model check-
ing safety properties is the diameter of the underlying Kripke structure, i.e. the
longest distance between any two states. In incremental bounded model check-
ing that iterates over k from 0 up to a completeness threshold, we can assume
that in all previous iterations k ′ < k no witness has been detected (otherwise
model checking would have terminated). This allows us to slightly re-formulate
the property to be checked. The formula

Ok ¬safe ≡ safe0 ∧ safe1 ∧ . . . ∧ safek−1 ∧ ¬safek

where safei = Xisafe, characterises that safe is only (O) violated in the k -th1

state of a k -prefix. Model checking such a conjunctive formula is generally more2

efficient than checking a disjunctive formula, since the conjunctive form involves3

a stronger restriction of the search space.4

In the three-valued scenario, we have to distinguish between two kinds of5

witnesses, definite ones when the model checking result is true and unconfirmed6

ones when the result is unknown.7

Definition 11 (Definite Witness for Safety).
Let A[M , I |=∃ Ok ¬safe]k be a three-valued bounded model checking problem
with regard to safety where safe is a propositional logic expression over A. A
definite witness for Ok ¬safe is a prefix ω = π0 . . . πk of a path π ∈ ΠM , π0 ∈ I
with

πk (safe) = false and ∀ 0 ≤ i < k : R(πi , πi+1) = true

A definite witness implies that a safety violation has been detected, and thus,8

no further model checking runs are required. In our example Kripke structure9

from Figure 5 there exists no definite witness for Ok ¬safe.10

An unknown result in three-valued bounded model checking indicates that11

there exists a path π ∈ ΠM such that its k -prefix ω = π0 . . . πk is an unconfirmed12

witness for the safety formula Ok ¬safe.13

Definition 12 (Unconfirmed Witness for Safety).
Let A[M , I |=∃ Ok ¬safe]k be a three-valued bounded model checking problem
with regard to safety where safe is a propositional logic expression over A. An
unconfirmed witness for Ok ¬safe is a prefix ω = π0 . . . πk of a path π ∈ ΠM ,
π0 ∈ I with either

πk (safe) = unknown, or

πk (safe) = false and ∃ 0 ≤ i < k with R(πi , πi+1) = unknown

For our Kripke structure from Figure 5 the path prefix s0s1s3 is an uncon-14

firmed witness for Ok ¬safe.15
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A fair universal liveness model checking problem for our running example is1

A[M , I |=F
∀ GF progress]k where progress = (pc1 = 1) ∨ (pc2 = 1). This char-2

acterises the requirement that in a fair computation always eventually some3

process will reach the critical location. A counterexample would be a path4

that reaches an infinite loop where each process continues to execute operations5

but no process will be in the critical location ever again. The complementary6

existential model checking problem is A[M , I |=F
∃ FG¬progress]k . A witness7

for the existential problem corresponds to a counterexample to the comple-8

mentary universal problem. Again, we can distinguish between definite and9

unconfirmed witnesses for liveness. In our example, the prefix s0
u,1−−→ s0

u,2−−→ s010

which has a fair (2, 0)-loop is an unconfirmed witness for the liveness formula11

FG¬progress. Thus, the corresponding three-valued bounded model checking12

result is unknown.13

So far, our three-valued bounded model checking approach fails for our run-14

ning example because of the following two reasons. Firstly, we are only able to15

obtain unknown results. Hence, three-valued abstraction refinement is necessary16

for which we will present a technique in Section 6. Secondly, bounded model17

checking is incomplete and completeness thresholds for liveness properties are18

hard to compute and typically impracticable for efficient verification. We ap-19

proach this limitation in two ways. We adopt the state recording technique of20

[13] that allows to translate liveness model checking problems into safety prob-21

lems, for which smaller completeness thresholds exist. Moreover, we employ the22

k-induction technique [11], which allows to make safety bounded model check-23

ing complete without the need of a predetermined threshold. We start with the24

reduction of liveness to safety in the subsequent section.25

4. From Liveness to Safety via State Recording26

In this section, we review the state recording technique originally introduced27

in [13] which allows to reduce model checking liveness to model checking safety.28

In particular, we show that state recording can be implemented based on a29

transformation of our concurrent systems to be verified. For the purpose of an30

easier understanding, we divide the transformation into two steps: a first step31

that enables loop detection and a second step that allows for model checking32

liveness under fairness. The first step translates the input system into a state33

recording system for the purpose of loop detection. A looped path corresponds34

to a finite prefix where the last state is identical to an arbitrary previous state.35

Hence, the search for a loop can be performed by ”recording” an arbitrary36

state along an explored path and checking whether this state will be reached37

again. The recording creates a copy of the current state. Thus, a state recoding38

system introduces a copy pc of each original predicate p in order to represent39

the recorded state.40

Definition 13 (State Recording System).41

Let Sys = ‖ni=1 Pi be a concurrent system abstracted over a set of system42

predicates ASys and given by n control flow graphs Gi = (Loci , δi , τi). Moreover,43
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let A = ASys ∪ APC with APC = {(pci = li) | i ∈ [1..n], li ∈ Loci} be the1

overall set of predicates and let Init be the initial state predicate of Sys. Then2

the corresponding state recoding system Syssr is defined over the predicate set3

Asr with initial state predicate Initsr and given by the control flow graphs4

Gsr
i = (Loci , δi , τ

sr
i ) where5

• Asr := A ∪Ac ∪Aux6

where Ac = {pc | p ∈ A} is a set of copies of the original predicates in A7

and Aux = {record , recorded} is a set of Boolean auxiliary predicates,8

• Initsr := Init ∧
∧

pc∈Ac (pc ↔ p) ∧ ¬recorded ,9

• ∀(li , l
′
i ) ∈ δi : τ sri (li , l

′
i ) :=

τi(li , l
′
i ) ◦ [record := ∗] (1)

◦ [recorded := record ∨ recorded ] (2)

◦ [∀ pc ∈ Ac : pc := (firstRecord → p) ∧ (¬firstRecord → pc)] (3)

where ∗ denotes the non-deterministic choice between true and false10

and firstRecord = record ∧ ¬recorded .11

12

Hence, the state recording translation adds a copy pc of each original pred-13

icate p ∈ A and two Boolean auxiliary predicates record and recorded to the14

system. The copies receive the same initialisation as the original predicates.15

While there is no restriction with regard to the initialisation of record, the pred-16

icate recorded is initially set to false. The control flow and the operations of17

the original system are preserved, but each original operation gets extended by18

assignments to the new predicates. Remember that the list of assignments asso-19

ciated with an operation is executed in an atomic manner. Thus, if an operation20

changes the value of record from false to true, then on the right-hand side of the21

assignment recorded := record ∨ recorded the predicate record is still evaluated22

with false.23

The extension allows to reduce the detection of a looped path to a reach-24

ability problem on the level of the corresponding Kripke structure. For now25

we can ignore fairness. Let M = (S , I ,R,L) over A be the Kripke struc-26

ture modelling the original system Sys and let M sr = (S sr , I sr ,Rsr ,Lsr ) over27

Asr be the Kripke structure modelling Syssr . The set of states of M sr is28

S sr = SA × SAc × SAux and each state is a triple ssr = 〈s, sc , saux 〉 where29

s refers to the state of Sys. M sr still comprises all the behaviour of M with30

regard to original predicate set A, i.e. for each path π in M there exists a path31

πsr in M sr with ∀ i ≥ 0 : ∀ p ∈ A : L(πi , p) = L(πsr
i , p) and vice versa. The32

new predicates and extended operations add a state recording mechanism to the33

modelled system, which works as follows. Each execution of an extended opera-34

tion along a computational path now sets the value of the new predicate record35
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non-deterministically to either true or false (1). When record evaluates to true1

for the first time, this indicates that the current state of the original system is2

selected to be recorded. In order to ensure that a recording only happens once,3

the predicate recorded is used. While initially evaluated with false, recorded is4

set to true after a record has been triggered and then remains true in all further5

computational steps (2). The actual state recording now has the condition that6

firstRecord = record ∧¬recorded holds. The recording happens by assigning the7

predicate copies pc to the current values of the original predicates p (3).8

While classical state space exploration is memoryless, state recording allows9

to check whether a previously recorded state can be reached again, which reduces10

loop detection to a reachability problem. Let looped = recorded∧
∧

p∈A(p ↔ pc),11

then the model checking problem Asr [M sr , I sr |=∃ F looped ]k is equivalent to12

the question of whether there exits a looped path of length k − 1 in the original13

system. Note that if the state recording model checking problem has the bound14

k , then only paths of length k−1 will be considered. This is due to the fact that15

under state recording a detected loop indicates that the state sk is identical to16

some previously reached state sl . Hence, the associated loop is actually from17

position k − 1 to l .18

The prefix of a path πsr depicted in Figure 6 illustrates reachability-based19

loop detection in a state recording Kripke structure M sr corresponding to some20

original Kripke structure M .21

s0

s0

record = f
recorded = f

¬firstRecord
¬looped

πsr
0

s :
sc :

saux :

s1

s0

record = f
recorded = f

¬firstRecord
¬looped

πsr
1

s2

s0

record = t
recorded = f

firstRecord
¬looped

πsr
2

s3

s2

record = f
recorded = t

¬firstRecord
¬looped

πsr
3

s4

s2

record = t
recorded = t

¬firstRecord
¬looped

πsr
4

s2

s2

record = f
recorded = t

¬firstRecord
looped

πsr
5

Figure 6: Witness for a looped path.

As we can see, πsr comprises the looped path π = s0s1 · (s2s3s4)ω of some22

original model. The execution of the operation associated with the transition23

from πsr
1 to πsr

2 sets record to true for the first time. Hence, the original state24

s2 is the one chosen to be recorded. Note that this transition only indicates25

the choice of the state to be recorded. The actual recording happens by the26

execution of the operation associated with the subsequent transition, as only in27

πsr
2 the condition firstRecord for state recording evaluates true. In the overall28

state πsr
3 the state copy sc has been set to s2, while the state of the original29

system has already changed to s3. In πsr
4 the predicate record is true again, but30

since firstRecord does not hold any more the state copy will not be overwritten31

in the subsequent state. The path finally reaches the state πsr
5 where s = sc as32

well as recorded holds. Thus, we can conclude that the prefix of πsr characterises33

a looped path of the original model. Since we use existential model checking,34

any reachable original state will be considered for recording. Hence, if the state35

recording model checking problem Asr [M sr , I sr |=∃ F looped ]k returns false, then36

no looped path of length k − 1 exists in the original model.37
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So far, the state recording approach only allows to detect looped paths but1

not to perform liveness model checking. In Definition 14, we further extend2

state recording systems in order to enable model checking liveness properties3

under fairness assumptions.4

Definition 14 (State Recording System with Liveness Extension).5

Let Syssr over Asr = A ∪ Ac ∪ Aux be a state recording system given by n6

control flow graphs Gsr
i = (Loci , δi , τ

sr
i ). Moreover, let FG¬progress be a7

temporal logic formula characterising a liveness violation where progress is a8

predicate expression over A. Then the corresponding state recoding system with9

liveness extension Sys le is defined over the predicate set Ale with initial state10

predicate Init le and given by the control flow graphs G le
i = (Loci , δi , τ

le
i ) where11

• Ale := Asr ∪ F ∪ {live}12

where F = {fairi | i ∈ [1..n]} is a set of Boolean fairness predicates13

and live is a Boolean auxiliary predicate,14

• Init le := Initsr ∧
∧

i∈[1..n] ¬fairi ∧ ¬live,15

• ∀(li , l
′
i ) ∈ δi : τ lei (li , l

′
i ) :=

τ sri (li , l
′
i ) ◦ [fairi := loopStarted ] (1)

◦ [live := live ∨ (loopStarted ∧ progress)] (2)

where loopStarted = record ∨ recorded .16

17

For each process Pi the liveness extension adds a predicate fairi to the18

system. Moreover, a predicate live is added. All new predicates are initially19

assigned to false. The predicate fairi is used to indicate whether a computation20

is fair with regard to Pi in the sense that the process infinitely often executes21

an operation. On looped execution paths this is the case if Pi executes an22

operation after the loop has started. Hence, an operation τ lei (li , l
′
i ) by Pi sets23

fairi to true if the condition loopStarted = record ∨recorded is satisfied (1). The24

predicate expression loopStarted is used to indicate whether the starting point of25

a potential loop has already been reached and recorded. (If the recorded starting26

point belongs to an actual loop is determined by solving the model checking27

problem defined in Corollary 1.) Once a computation of a state recording system28

leads to a state where loopStarted holds, this expression will also evaluate to29

true in all future states resulting from the computation (Definition 13). Thus, a30

predicate fairi will also evaluate to true forever once it has been true for the first31

time along a computational path. The predicate live is used to indicate whether32

progress holds infinitely often, i.e. at some point after the loop has started (2).33

By combining the results of [13] with our definitions, we get Corollary 1:34

Corollary 1
Let Sys be a concurrent system and M be the Kripke structure modelling the
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state space of Sys abstracted over A. Let progress be a predicate expression
over A. Moreover, let Sys le be the state recording system with liveness extension
corresponding to Sys and M le be the Kripke structure modelling the state space
of Sys le over Ale . Then the following holds:

A[M , I |=F
∃ FG¬progress]k ⇔ Ale [M le , I le |=∃ F (looped ∧ fair ∧ ¬live)]k+1

where looped = recorded ∧
∧

p∈A(p ↔ pc) and fair =
∧n

i=1 fairi .1

Hence, liveness model checking under fairness can be reduced to simple safety2

model checking.3

The prefix of a path πle depicted in Figure 7 illustrates reachability-based4

detection of liveness violations in a state recording Kripke structure with liveness5

extension M le corresponding to some original Kripke structure M .6

s0

s0

record = f
recorded = f

live = f

fair1 = f
fair2 = f

¬loopStarted
¬looped
¬progress

πle
0

s :

sc :

saux :

s f :

s1

s0

record = f
recorded = f

live = f

fair1 = f
fair2 = f

¬loopStarted
¬looped
¬progress

πle
1

s2

s0

record = t
recorded = f

live = f

fair1 = f
fair2 = f

loopStarted
¬looped
¬progress

πle
2

s3

s2

record = f
recorded = t

live = f

fair1 = t
fair2 = f

loopStarted
¬looped
¬progress

πle
3

s4

s2

record = t
recorded = t

live = f

fair1 = t
fair2 = f

loopStarted
¬looped
¬progress

πle
4

s2

s2

record = f
recorded = t

live = f

fair1 = t
fair2 = t

loopStarted
looped
¬progress

πle
5

Figure 7: Witness for liveness violation.

As we can see, πle comprises the looped path π = s0s1 · (s2s3s4)ω of some7

original model M . The reachability of the state πle
5 allows us to conclude that8

there exists a looped path satisfying fairness but violating liveness. Similar as9

proposed in Section 2, an incremental approach to bounded model checking10

allows us to re-formulate the property to be checked to Ok (looped ∧ fair ∧¬live)11

which gives us a more restricted search space.12

With the state recording translation we are able to detect liveness violations13

in our abstracted system via safety model checking. The price to be paid for14

the reduction from liveness to safety is a quadratic increase of the number of15

states in the state recording Kripke structure, i.e. |S le |= O(|S |2) [13]. How-16

ever, for safety model checking many efficient algorithms and typically smaller17

completeness thresholds exist. While the determination of tight thresholds for18

checking safety is also challenging, an alternative approach to the completeness19

of bounded model checking is k-induction [11]. We review k -induction in Section20

5 and show how we have integrated it into our abstraction-based three-valued21

bounded model checking technique in Section 6.22
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5. Unbounded Model Checking via k-Induction1

In the previous section we have shown that liveness model checking problems
can be translated into safety model checking problems. Hence, we can assume
that all our verification problems to be solved are of the form

A[M , I |=∀ G safe]∞

where safe is an arbitrary predicate expression over the set of atomic predicates
A. This unbounded model checking problem requires the consideration of all
infinite paths of the model in order to prove that no property violations exist.
The k -induction approach [11] allows to reduce an unbounded safety model
checking problem into two bounded model checking problems: In the base case
it is checked whether all k -prefixes of paths starting in an initial state s ∈ I of
M are safe, i.e.

A[M , I |=∀
∧k

i=0 safei ]k .

In the inductive step it is checked whether, assuming a path prefix of k safe
states, also any successor state is safe, i.e.

A[M ,S |=∀ (
∧k

i=0 safei)→ safek+1]k+1.

Note that in the inductive step the considered prefixes can start in an arbi-2

trary state s ∈ S . As proven in [11], if there exists a k for which the base case3

fails, then the property G safe is violated. And, if there exists a k for which4

both the base case and the inductive step hold, then the property G safe holds5

for the model. k -induction is typically performed incrementally with regard to6

the bound. Thus, if the base case holds but the inductive step fails then k gets7

incremented and the model checking problems corresponding to the increased8

bound are solved.9

The universal problems above refer to the safety of all paths. However,
model checking via satisfiability solving is based on the existential case. We have
already seen that each universal model checking problem can be transformed
into a complementary existential problem referring to the existence of an unsafe
path:

A[M , I |=∃ F¬safe]∞

The corresponding existential base case is

A[M , I |=∃
∨k

i=0 ¬safei ]k

and the existential inductive step is

A[M ,S |=∃ (
∧k

i=0 safei) ∧ ¬safek+1]k+1.

Now an unsafe path exists if for some k the existential base case holds, whereas

23



all paths are safe if both the existential base case and the existential inductive
step fail. We want to follow an incremental approach with regard to the bound.
Thus, when checking the base case for some k we can assume that all shorter
base cases have already been proven to be safe, and we can add these facts as
constraints to the problem to be solved:

A[base]k := A[M , I |=∃ (
k−1∧
i=0

safei) ∧ ¬safek︸ ︷︷ ︸
= Ok ¬safe

]k

This strengthening of the temporal logic formula to be checked involves a re-1

striction of the state space to be explored, and thus, allows for model checking2

with an improved efficiency.3

In order to make the k -induction approach complete, i.e. terminating for
finite-state systems, it is necessary to restrict the inductive step to loop-free
computations [11]. This gives us a slightly revised inductive step:

A[step]k+1 := A[M ,S |=∃ (
k∧

i=0

safei) ∧ ¬safek+1︸ ︷︷ ︸
= Ok+1 ¬safe

∧loopFree0,k+1]k+1

where loopFree0,k+1 =
∧

0≤i<j≤k+1 (
∨

p∈AP ((pi ∧ ¬pj ) ∨ (¬pi ∧ pj ))).4

Adding the loop-free constraint to the inductive step is an implicit way5

of determining whether the current bound is a completeness threshold of the6

model checking problem to be solved. Hence, a threshold does not have to be7

explicitly computed in the k -induction approach. Algorithm 1 illustrates the8

basic principle of incremental k -induction:9

Algorithm 1: Incremental k -induction.

1 for k = 0 to ∞ do
2 if (A[base]k = true) then
3 return ”safety property violated”
4 if (A[base]k = false and A[step]k+1 = false) then
5 return ”safety property holds”

Hence, incremental k -induction iterates over the bound until either a prop-10

erty violation can be detected or until the bound is sufficiently large to conclude11

that the property holds. In [11] it has been proven that the k -induction approach12

yields the correct unbounded model checking result.13

However, Algorithm 1 does not take into account that our model checking14

problems have a three-valued domain, i.e. solving the base case or the inductive15

step might yield unknown. In order to handle this case, we combine k -induction16

with three-valued abstraction refinement, which we discuss in the next section.17
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6. Basic Three-Valued Abstraction Refinement1

Solving a three-valued bounded model checking problem A[M , I |=∃ ψ]k ,2

where the temporal logic formula ψ characterises the violation of a safety prop-3

erty, has the possible outcomes false, true and unknown. A false result indicates4

that there exists no k -prefix in M that is a witness for ψ. A true result indicates5

that there exists a k -prefix ω in M that is a definite witness for ψ (Definition6

11). An unknown result indicates that there exists a k -prefix ω in M that is7

an unconfirmed witness for ψ (Definition 12). Model checking tools are typi-8

cally not only capable of returning the result of the input problem, but also the9

corresponding witness in case the result is true or unknown [3].10

Our example Kripke structure in Figure 5 abstracts the mutual exclusion11

system over the predicate set A = {(pc1 = 0), (pc1 = 1), (pc2 = 0), (pc2 = 1)}.12

Assuming a bound of k = 2 and the temporal logic formula ψ = Ok ¬safe with13

safe = ¬((pc1 =1)∧(pc2 =1)), three-valued bounded model checking will return14

unknown along with the corresponding unconfirmed witness shown in Figure 8.15

ω = s0s1s3 = (0, 0)
u−−→ (1, 0)

u−−→ (1, 1)

Figure 8: Unconfirmed witness.

16

In this representation, a tuple (l1, l2) denotes a state where process P1 is17

at location l1 and P2 is at location l2. Moreover,
u−−→ denotes an unknown18

transition between states. The witness ω is unconfirmed because it reaches the19

abstract state (1, 1) where safety is definitely violated, but unknown transitions20

are taken in order to reach this state. An unconfirmed witness implies that the21

current level of abstraction, characterised by the predicate set A, is too coarse22

for a definite model checking result. In this case, refinement in the sense of23

extending the set A is required. In [3] we defined the function analyseWitness.24

It takes an unconfirmed witness ω = π0 . . . πk for a model checking problem25

A[M , I |=∃ Ok safe]k as an input where M models the state space of a system26

Sys abstracted over A. Based on the concrete operations of Sys and the weakest27

precondition calculus analyseWitness derives suitable predicates for refinement,28

which works as follows:29

1. Let p = safe. One possible reason for ω = π0 . . . πk being an unconfirmed30

witness is that πk (p) = unknown.31

• Determine the largest index i , 0 ≤ i < k , with πi(p) 6= unknown.32

• Determine the concrete operation op of Sys that is associated with33

the transition (πi , πi+1).34

• Let p′ = wpop(p) be the weakest precondition of p with respect to35

op. If p′ 6∈ A then return p′ and p′ as predicates for refinement. Else36

repeat Step 1 for p′.37
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2. The other possible reason for ω = π0 . . . πk being unconfirmed is a transi-1

tion (πi , πi+1) with R(πi , πi+1) = unknown for some index 0 ≤ i < k .2

• Determine the concrete operation op of Sys that is associated with3

the transition (πi , πi+1).4

• Let assume(e) be the guard of op. If e 6∈ A then return e and e as5

predicates for refinement. Else repeat Step 1 for e.6

For our current example and the unconfirmed witness ω = s0s1s3 we get7

analyseWitness(s0s1s3) = {(y>0), (y>0)}. This is the set containing the guard8

(y>0), associated with the acquire operation in the mutual exclusion system, as9

well as its complement (y>0)1. While a detailed description of analyseWitness10

can be found in [3], we subsequently focus on the integration of this function into11

a fully-automatic abstraction refinement algorithm. Algorithm 2 defines a basic12

three-valued abstraction refinement algorithm AR that utilises analyseWitness.13

Algorithm 2: AR(A[M , I |=∃ ψ]k )

1 loop forever do /*refinement loop*/

2 if A [M , I |=∃ ψ]k = false then

3 return false, ‘no witness for safety violation of length k exists’

4 if A [M , I |=∃ ψ]k = true and definite witness ω then

5 return true, ‘ω is a definite witness for safety violation’

6 if A [M , I |=∃ ψ]k = unknown and unconfirmed witness ω then

7 A := A ∪ analyseWitness(ω)

AR takes a three-valued bounded model checking problem A[M , I |=∃ ψ]k14

as an input. We assume that M is the state space model corresponding to the15

system to be verified abstracted over the initial predicate set A. Within the16

algorithm the model checking problem is solved. If the outcome is true or false17

the algorithm terminates and returns the definite result. In case of an unknown18

result, an unconfirmed witness ω is generated and new predicates are derived19

via analyseWitness. The predicate set of the next iteration is defined by the20

predicates of the current iteration joined with the newly derived predicates.21

Now the steps of model checking the Kripke structure corresponding to the22

extended predicate set and deriving new refinement predicates are repeated until23

a definite result can be obtained. The termination of AR is guaranteed for finite-24

state systems. In [3] we showed that the result of AR correctly characterises25

the computational behaviour of the system modelled by M . For our running26

1In contrast to the Boolean predicates over the control flow, predicates over system vari-
ables have a three-valued-valued domain as they may evaluate to unknown due to abstraction.
In order to enable the later reduction of three-valued bounded model checking to Boolean
satisfiability, there must be a complementary predicate p with p ≡ ¬p for each predicate p
over system variables [18].
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example with the fixed bound k = 2 AR terminates with a false result after one1

refinement iteration that adds the predicates (y > 0) and (y>0). Thus, there2

does not exist a witness of length 2 that violates mutual exclusion.3

AR can be easily integrated into the algorithm for incremental k -induction.4

For the integration it is advisable to use distinct predicate sets for the base case5

and for the inductive step. In this way both problems can be independently6

refined, which is typically more efficient than always forcing the same level of7

abstraction, i.e. identical predicate sets for both problems. An approach that8

combines incremental k -induction with abstraction refinement will process our9

running example as follows: In bound iteration k = 0 the base case yields false10

and the inductive step yields true. Hence, we move to bound iteration k = 111

where the base case yields false and the step yields unknown. Consequently,12

the inductive step gets refined by adding the predicates (y > 0) and (y>0) to13

its associated predicate set. After refinement, the inductive step yields true.14

Thus, we move to bound iteration k = 2 where we receive an unknown result15

for the base case. We refine the base case by adding (y > 0) and (y>0) to16

its associated predicate set. After refinement, the base case yields false. The17

algorithm continues with the inductive step which yields also false for the current18

bound iteration. Hence, we can conclude that mutual exclusion is generally not19

violated for the system under consideration. Note that in each bound iteration20

k , the bound of the inductive step is always k + 1. In the next section we21

introduce our enhanced abstraction refinement technique.22

7. Witness Refinement and Constraint Generation23

Abstraction refinement-based model checking is still challenged by the state24

explosion problem. Each additional predicate involves an exponential growth25

of the state space to be explored. In the following, we introduce an enhanced26

abstraction refinement algorithm that allows to reduce the number of predicates27

that are actually considered during model checking. Our enhancement is based28

on restricting the search space of the model checking problem by path constraints29

that can be formulated as temporal logic formulae:30

Definition 15 (Path Constraints).
Let M = (S , I ,R,L) be a three-valued Kripke structure defined over a set of
atomic predicates A. Moreover, let π0 . . . πk be the k -prefix of a path π in M .
Then the corresponding focussing path constraint is

σ(π0 . . . πk ) :=
k∧

i=0

((
∧

p∈T (πi )

pi) ∧ (
∧

p∈F(πi )

¬pi))

and the corresponding excluding path constraint is

σ(π0 . . . πk ) :=
k∨

i=0

((
∨

p∈T (πi )

¬pi) ∨ (
∨

p∈F(πi )

pi))

where T (πi) = {p ∈ A |L(πi , p) = true} and F(πi) = {p ∈ A |L(πi , p) = false}.31
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Hence, a focussing path constraint is of the form φ0∧. . .∧φk and an excluding1

path constraint is of the form φ0∨ . . .∨φk where each φi is a propositional logic2

expression over i -indexed predicates (φi = Xiφ).3

Given a prefix π0 . . . πk , the corresponding focussing constraint σ(π0 . . . πk )
is an LTL formula that is only satisfied for paths π′ that have the same def-
inite properties as π0 . . . πk . Such a constraint can be especially useful in the
context of three-valued abstraction where refinement always preserves definite
properties but may also make previously unknown properties definite. For the
unconfirmed witness ω depicted in Figure 8 we can construct the corresponding
path constraint σ(ω).

σ(ω) = (pc1 =0)0 ∧ ¬(pc1 =1)0 ∧ (pc2 =0)0 ∧ ¬(pc2 =1)0

∧¬(pc1 =0)1 ∧ (pc1 =1)1 ∧ (pc2 =0)1 ∧ ¬(pc2 =1)1

∧¬(pc1 =0)2 ∧ (pc1 =1)2 ∧ ¬(pc2 =0)2 ∧ (pc2 =1)2

Now after a refinement step that adds the predicate (y > 0), the prefix

ω′ = (0, 0, (y > 0) = t) −−→ (1, 0, (y > 0) = u)
u−−→ (1, 1, (y > 0) = f )

satisfies the constraint σ(ω), since ω′ follows the same control flow as ω, whereas
the prefix

ω′′ = (0, 0, · ) −−→ (0, 1, · ) −−→ (1, 1 · )

where the · denotes an arbitrary valuation of the predicate (y > 0), does not4

satisfy σ(ω) because the prefixes ω and ω′′ differ in their control flow. We will5

show that focussing path constraints can be used to focus on a particular un-6

confirmed witness in order to confirm it or to show that it is spurious after7

refinement. Conversely, we will use excluding path constraints to rule out un-8

confirmed witnesses that turn out to be spurious. A constraint can be added to9

a model checking problem by simply conjugating it with the safety property to10

be checked. We will see that, in particular in the context of satisfiability-based11

model checking, path constraints can substantially narrow down the search space12

of the model checking problem to be solved.13

While the algorithm AR follows the classical abstract–check–refine loop [4],
we now introduce an enhanced abstraction refinement algorithm that makes use
of path constraints. The new algorithm is based on a loop

abstract—check—(refineWitness—checkWitness)
∗
—generateConstraint

where the * denotes that the steps in brackets belong to an internal loop with14

potentially multiple iterations. The idea of the new approach is as follows. If15

abstraction-based model checking on a model that covers the global state space16

returns an unconfirmed witness ω, then we start an internal refinement loop with17

a local model that is restricted to refinements of the witness ω only. The local18

model can be straightforwardly obtained by using the focussing path constraint19

σ(ω), which masks out all prefixes that differ from ω. The witness refinement20
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loop either results in a definite witness, which means we are done, or it tells1

us that ω is spurious. In the latter case, we generate the constraint σ(ω) that2

excludes the unconfirmed witness ω from further consideration. In the next3

overall loop, we return to the global model and we use the constraint σ(ω) in4

order to restrict the state space exploration. But we do not need to add the5

refinement predicates that we used in the local model in order to generate the6

constraint. Hence, we have two forms of refinement respectively concretisation7

here: predicate refinement along unconfirmed witnesses in a local model and8

the pruning of infeasible paths via constraints in the global model. The latter9

does not involve any increase of the state space. Algorithm 3 shows our new10

abstraction refinement algorithm WRC.11

Algorithm 3: WRC (A[M , I |=∃ ψ]k )

1 Σk := true /*cumulative excluding path constraint*/

2 loop forever do /*global constraint loop*/

3 if A[M , I |=∃ Σk ∧ ψ]k = false then

4 return false, ‘no witness for safety violation of length k exists’

5 if A[M , I |=∃ Σk ∧ ψ]k = true and definite witness ω then

6 return true, ‘ω is a definite witness for safety violation’

7 if A[M , I |=∃ Σk ∧ ψ]k = unknown and unconfirmed witness ω then

8 Aω := A ∪ analyseWitness(ω)

9 loop forever do /*refinement loop local to ω*/

10 if Aω [M , I |=∃ σ(ω) ∧ ψ]k = false then

11 /* ω is spurious */

12 Σk := Σk ∧ σ(ω)

13 goto 3

14 if Aω [M , I |=∃ σ(ω) ∧ ψ]k = true and witness υ then

15 return true, ‘υ is a definite witness for safety violation’

16 if Aω [M , I |=∃ σ(ω) ∧ ψ]k = unknown and witness υ then

17 Aω := Aω ∪ analyseWitness(υ)

WRC consists of an outer constraint loop where we operate on a global state12

space model defined over a global predicate set A and cumulative excluding path13

constraint Σk that is initially true, i.e. no paths are excluded. While A remains14

constant throughout the execution of the algorithm, Σk will be gradually ex-15

tended with constraints that rule out spurious witnesses. The cases where a16

definite result is obtained in the outer loop are identically handled as in AR. If17

an unknown result together with an unconfirmed witness ω is obtained in the18

outer loop, then the algorithm enters an inner refinement loop local to ω. In the19

inner loop, we use a model defined over the predicate set Aω. Aω is initialised20

as the union of A and the refinement predicates derived from the unconfirmed21

witness ω. Moreover, the temporal logic formula to be checked is conjugated22
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with the focussing path constraint σ(ω), which restricts the feasible paths to1

those whose prefix is a refinement of ω. Hence, the model checking problem2

in the inner loop has a refined state space defined over Aω, but the employed3

model is local in the sense that the state space exploration is narrowed down to4

refinements of ω. In case of a false result in the inner loop, we have that ω is5

a spurious witness. We then extend the cumulative excluding path constraint6

Σk by the constraint σ(ω), which excludes ω from further consideration, and we7

return to the outer loop where we operate again with the global model and the8

original predicate set A. In case of a true result in the inner loop, we obtain9

a definite witness υ that is a refinement of ω. Thus, WRC can terminate. In10

case of an unknown result in the inner loop, we obtain an unconfirmed witness11

υ that is a refinement of ω. We then derive new predicates from υ and continue12

with a further refinement iteration local to ω. We get the following theorem13

with regard to the return values of AR and WRC :14

Theorem 115

Let A[M , I |=∃ ψ]k be a three-valued bounded model checking problem where M16

is a state space model of a system Sys abstracted over A and ψ is an LTL safety17

formula defined over A. Then the following holds:18

1. AR(A[M , I |=∃ ψ]k ) = true iff WRC (A[M , I |=∃ ψ]k ) = true19

2. AR(A[M , I |=∃ ψ]k ) = false iff WRC (A[M , I |=∃ ψ]k ) = false20

Proof. See http://github.com/ssfm-up/TVMC/raw/master/SCICOProofs.pdf21

Hence, both algorithms return the same result for the same input model check-22

ing problem with regard to a system Sys. We have already shown in [3] that23

the result of AR correctly characterises the computational behaviour of Sys.24

Thus, we can conclude that the result of WRC also correctly characterises the25

behaviour of Sys.26

We now illustrate how WRC processes verification tasks based on our run-27

ning example with regard to the mutual exclusion system and a bound of k = 2.28

The initial predicate set is again: A = {(pc1 =0), (pc1 =1), (pc2 =0), (pc2 =1)}.29

The set is de facto reducible to just {(pc1 =0), (pc2 =0)} by assuming the equiv-30

alences (pc1 = 1) ≡ ¬(pc1 = 0) and (pc2 = 1) ≡ ¬(pc2 = 0), which we effectively31

do in the implementation of our approach. However, for illustrative purposes32

we use the expanded set A here. In the first global constraint iteration, WRC33

detects the unconfirmed witness ω = (0, 0)
u−−→ (1, 0)

u−−→ (1, 1). Similar as in34

our illustration of the basic algorithm, WRC now derives the refinement pred-35

icates (y > 0) and (y>0). But the predicates are added to the local predicate36

set Aω. Moreover, the focussing path constraint σ(ω) is added to the model37

checking problem, which gives us a local state space model. Hence, when we are38

solving the refined problem in the inner loop, the valuation of the control flow39

predicates in each state along a prefix is now fixed by σ(ω). This means that the40

complexity of the state space to be explored is solely induced by the predicates41

over y . Model checking yields that ω is spurious. Consequently, σ(ω) is added42

to the cumulative excluding path constraint Σk via conjunction. This excludes43

30
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any further consideration of ω and its possible refinements. The next iteration1

detects another unconfirmed witness ω′ = (0, 0)
u−−→ (0, 1)

u−−→ (1, 1). WRC2

now enters a refinement loop local to ω′. It detects that ω′ is also spurious,3

and thus, can be ruled out via the excluding path constraint σ(ω′). In the final4

constraint iteration WRC terminates with the definite result that no witness5

for safety violation of length k = 2 exists.6

With WRC we are able to reduce the number of predicates that actually7

contribute to the size of the state space to be explored. In our simple example,8

WRC had to solve model checking problems on global and local models with9

a maximum number of two predicates, whereas AR had to solve a problems10

with maximum four predicates. The price that we pay is an increased number11

of model checking runs. In our experiments we will show that the savings due12

to the reduced number of predicates typically outweigh the extra costs due to13

additional model checking runs. Similar to AR, the enhanced algorithm can be14

straightforwardly combined with a bound iteration loop ranging over k . The15

corresponding algorithm is depicted below.16

Algorithm 4: k-IND(Ab
[base]k ,As [step]k )

1 for k = 0 to ∞ do
2 if WRC (Ab

[base]k ) = true then
3 return ”safety property violated”
4 else if WRC (As

[step]k+1) = false then
5 return ”safety property holds”

Here the input Ab
[base]k is a three-valued bounded model checking problem17

corresponding to the base case of the k -induction approach where Ab is the ini-18

tial set of predicates and k is the bound parameter which gets initialised within19

the algorithm. Likewise, As
[step]k is a three-valued bounded model checking20

problem corresponding to the inductive step with initial predicate set As .21

7.1. Constraint Strengthening and Reuse Between Bound Iterations22

In general, it is not admissible to reuse generated constraints σ(ω) for ruling23

out spurious witnesses between bound iterations and between the base case and24

the inductive step. For instance, a witness ω = π0 . . . πk might be spurious25

in iteration k , but it might be still the prefix of a definite witness in some26

later iteration k + j . However, we have identified different types of spurious27

witness constraints. Depending on the type, a spurious witness constraint may28

be straightforwardly reused or adapted for reuse in a higher bound iteration.29

The algorithm WRC identifies an unconfirmed witness ω to be spurious if30

Aω [M , I |=∃ σ(ω) ∧ ψ]k yields false (line 10). We can re-formulate this model31

checking problem as Aω [M ,S |=∃ I0 ∧ σ(ω) ∧ ψ]k with I0 =
∨

s∈I σ(s). This32

gives us an equivalent model checking problem where the initial state constraint33

is part of the temporal logic formula to be checked. A sufficient condition for34

Aω [M ,S |=∃ I0 ∧ σ(ω) ∧ ψ]k = false is that any conjunct or combination of35
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conjuncts of the overall formula I0 ∧ σ(ω)∧ ψ is not satisfied by M . We denote1

such a conjunct (combination) as a cause of violation of the model checking2

problem:3

Definition 16 (Cause of Violation).4

Let A[M ,S |=∃ φ∧φ′]k be a bounded model checking problem that yields false.5

Then φ is a cause of violation of the problem if A[M ,S |=∃ φ]k = false.6

Evidently, for every model checking problem that yields false, the overall
LTL formula is always a cause of violation itself. However, smaller causes may
exist. For our abstraction refinement approach and the model checking problem

Aω [M ,S |=∃ I0∧σ(ω)∧ψ]k local to an unconfirmed witness ω a cause of violation
is also a cause of spuriousness of the witness. While the cumulative constraint
Σk of the current bound iteration is simply extended by the spurious witness
constraint σ(ω) (line 12), σ(ω) may have to be adapted for reuse in a higher
bound iteration k + j . In our context, adaptation means to increment the
index values that occur in σ(ω) according to the higher bound. We define a
j -increment of the indices occurring in a constraint as

σ(ω)j := σ(ω)[i ← i + j | 0 ≤ i ≤ k ].

Thus, a j -increment substitutes i -indexed predicates pi in σ(ω) by (i + j )-7

indexed predicates pi+j . While the incrementation of indices may be necessary8

for reusing a constraint in a higher iteration, it may be additionally feasible9

(but not necessary) to strengthen a generated constraint. Note that since the10

focussing path constraint σ(ω) is a pure conjunction, a cause of violation may11

only contain a sub-formula σ(ω)sub of σ(ω). We will see that in this case the12

stronger formula σ(ω)sub is a feasible constraint for excluding spuriousness. We13

denote such a σ(ω)sub as a spurious segment constraint.14

We have proven Theorem 2 that assigns to the possible causes of violation of15

Aω [M ,S |=∃ I0 ∧ σ(ω) ∧ ψ]k admissible extensions of the constraints Σk+j with16

j ∈ N.17

Theorem 218

Let φx be a cause of violation of the three-valued bounded model checking problem19

Aω [M , I |=∃ σ(ω) ∧ ψ]k local to an unconfirmed witness ω. Then in bound20

iteration k +j with j ∈ J it is admissible to extend the cumulative path constraint21

Σk+j of the corresponding global model checking problem A[M , I |=∃ Σk+j∧ψ]k+j22

as follows: Σk+j := Σk+j ∧ ϕx where23

φ1 = I0 ∧ σ(ω)sub ∧ ψ ϕ1 = σ(ω)sub J = {0}
φ2 = I0 ∧ σ(ω)sub ϕ2 = σ(ω)sub J = N
φ3 = σ(ω)sub ∧ ψ ϕ3 = σ(ω)subj J = N
φ4 = I0 ∧ ψ ϕ4 = false J = {0}
φ5 = σ(ω)sub ϕ5 =

∧j
l=0 σ(ω)subl J = N

φ6 = ψ ϕ6 = false J = {0}
φ7 = I0 ϕ7 = false J = N

24

32



Proof. See http://github.com/ssfm-up/TVMC/raw/master/SCICOProofs.pdf1

2

Here the set J denotes the range of bound iterations for which the constraint ϕx3

is admissible. If J = {0} then ϕx is an admissible constraint in iteration k + 04

only. If J = N then ϕx admissible in all iterations k + 0, k + 1, k + 2, . . ..5

In our context, admissible means that the added spurious segment constraint6

σ(ω)sub will only rule out paths that would anyway turn out to be spurious after7

the refinement of the global model checking problem A[M , I |=∃ Σk+j ∧ ψ]k+j8

over some extended predicate set A′ ⊃ A. However, with our approach we are9

able to exclude all paths that exhibit the spurious segment without refining the10

global problem. For each distinct cause of violation we defined a descriptive11

type of the associated constraint:12

cause of violation constraint type
φ1 full-dependent
φ2 property-independent
φ3 initial state-independent
φ4 redundant I
φ5 fully-independent
φ6 redundant II
φ7 redundant III

13

We now illustrate certain interesting cases of causes of violation resp. con-14

straint types and the consequent reuse of constraints. Remember that ψ is of15

the form Ok ¬safe. Hence, in bound iteration k we check for safety violation at16

position k whereas in a higher bound iteration k +j we check for safety violation17

at position k + j .18

• If the cause of violation is of the form φ1, this tells us that there exists no19

k -prefix s0 . . . sk satisfying σ(ω)sub that starts in an initial state s0 ∈ I and20

ends in a state sk in which safe is violated. Hence, the cause of violation is21

linked to an initial state at position 0 and to an error state at position k .22

We denote the corresponding constraint as fully-dependent on the current23

bound iteration. The excluding path constraint σ(ω)sub is admissible in24

the current iteration k . However, in any bound iteration k + j with j > 025

we search for a path prefix from an initial state to an error state at position26

k + j rather than at position k . Such a prefix may still satisfy σ(ω)sub ,27

and thus, σ(ω)sub is not an admissible constraint in iteration k + j .28

• If the cause of violation is of the form φ2, this tells us that there exists no29

k -prefix s0 . . . sk satisfying σ(ω)sub that starts in an initial state s0 ∈ I .30

Hence, the cause of violation is linked to an initial state at position 031

but not to any error state. We denote the corresponding constraint as32

(error) property-independent. If there exists no k -prefix satisfying σ(ω)sub33

in iteration k then there is also not such a prefix in any iteration k + j .34

Thus, it is admissible to reuse the excluding path constraint σ(ω)sub in35

higher bound iterations.36

33
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• If the cause of violation is of the form φ3, this tells us that there exists1

no k -prefix s0 . . . sk satisfying σ(ω)sub ends in a state sk in which safe is2

violated. Since the cause of violation is not linked to an initial state such a3

k -prefix may start in an arbitrary state. The cause is however linked to an4

error state at position k . We denote the corresponding constraint as initial5

state-independent. In bound iteration k +j with j > 0 we search for a path6

prefix s0 . . . sk+j from an initial state to an error state at position k + j .7

Note that the j -suffix sj . . . sk+j of such a prefix is a k -prefix leading to8

an error state. Hence, σ(ω)sub must be violated for this j -suffix. In order9

to exclude corresponding paths it is admissible to use the j -incremented10

constraint σ(ω)subj in iteration k + j .11

• If the cause of violation is of the form φ5, this tells us that there exists12

no k -prefix s0 . . . sk satisfying σ(ω)sub . Hence, the cause of violation is13

neither linked to an initial state nor to an error state. We denote the14

corresponding constraint as fully-independent. We have that σ(ω)sub is15

violated for arbitrary sequences of states s0 . . . sk in the model. Thus,16

in any bound iteration k + j all l -incremented constraints σ(ω)subl with17

0 ≤ l ≤ j are admissible.18

As we can see in Theorem 2, there are also causes of violation were we can19

immediately conclude that the model checking problem yields false, regardless20

of the constraint. In this cases we denote the corresponding constraint as re-21

dundant. In case of a redundant I or redundant II constraint the false result22

only holds for the current bound iteration. In the latter case the false result is23

additionally transferable from the base case to the corresponding inductive step.24

In case of a redundant III constraint the false result can be even transferred to25

higher bound iterations.26

Based on a similar argumentation we are also able to characterise admissible27

constraint reuse between the base case and the inductive step: If the cause of28

violation of the base case does not contain the initial state condition I0 then29

the corresponding constraint is initial state-independent and can be reused for30

the inductive step (because there is no initial state condition in the step). And,31

if the cause of violation of the inductive step does not contain the loop-free32

condition loopFree0,k+1 then the corresponding constraint can be reused for the33

base case (because there is no loop-free condition in the base case). Based on34

the results of Theorem 2 constraint reusing can be easily integrated into the35

algorithm k -IND that invokes the algorithm WRC for ascending bounds.36

Remember our running example where we detected in bound iteration k = 2
of the base case that the unconfirmed witness ω = (0, 0)

u−−→ (1, 0)
u−−→ (1, 1) is

spurious. A corresponding cause of violation is

σ(ω)sub = (pc1 =0)0 ∧ (pc2 =0)0 ∧ (pc1 =1)2 ∧ (pc2 =1)2

The cause is of the form φ5 as introduced in Theorem 2. Hence, the correspond-37

ing spurious witness constraint σ(ω)sub is full-independent, i.e. neither linked38

to an initial state nor to an error state, and thus, reusable in all future bound39
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iterations k + j of the base case and the inductive step. Moreover, all index1

increments σ(ω)subl with 0 ≤ l ≤ j are also admissible constraints in iterations2

k + j . Note that the cause of violation σ(ω)sub is a real sub-formula of σ(ω),3

which positively affects the strength of the spurious segment constraint σ(ω)sub4

and its index increments. The constraint reveals that there does not exist any5

sequence of two transitions leading from (0, 0) to (1, 1) – independent of which6

state will be reached between (0, 0) and (1, 1). After reusing this constraint for7

the inductive step, the algorithm k -IND will immediately terminate with the8

result that the safety properties holds.9

We have outlined the benefits of cause-based constraint reusing between10

bound iterations in terms of ruling out spurious behaviour. However, so far we11

have not discussed how causes of violation of a model checking problem can12

be automatically and efficiently computed. In the next section we introduce13

the propositional logic encoding of three-valued bounded model checking. The14

encoding enables us to solved model checking problems via Boolean satisfiability15

(SAT) solving. Moreover, we will see that the SAT-based approach reduces the16

detection of causes of violation to the extraction of unsatisfiable cores of a17

propositional logic formula, for which efficient tools exist.18

8. Reduction to Propositional Logic Satisfiability19

In our previous work [7] we showed how a three-valued bounded model check-
ing problem A[M , I |=∃ ψ]k can be encoded as a propositional logic formula

A[[M , I , ψ, k ]]. The encoding corresponds to an implicit problem representation
such that the construction of an explicit Kripke structure is avoided. The for-
mula A[[M , I , ψ, k ]] is defined over a set of Boolean atoms Atoms, the constants
true, false, and a special atom ⊥ that is used to represent the unknowns due to
abstraction. The atom ⊥ occurs solely non-negated in A[[M , I , ψ, k ]]. Based on
the encoding, three-valued bounded model checking can be performed via two
satisfiability checks. The first check considers an under-approximating comple-
tion, marked with ‘−’, where all ⊥’s are assumed to be false:

A[[M , I , ψ, k ]]− := A[[M , I , ψ, k ]][⊥ 7→ false]

and the second check considers an over-approximating completion, marked with
‘+’, where all ⊥’s are assumed to be true:

A[[M , I , ψ, k ]]+ := A[[M , I , ψ, k ]][⊥ 7→ true].

Here [⊥ 7→ z ], z ∈ {true, false} denotes the assumption that the special atom20

⊥ is assigned to z . This gives us the notion of 3-valued satisfiability sat3:21

Definition 17 (sat3).
Let A[[M , I , ψ, k ]] over Atoms be the propositional logic encoding of a three-
valued bounded model checking problem A[M , I |=∃ ψ]k . Then sat3 is defined
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as:

sat3(A[[M , I , ψ, k ]]) =


true if sat(A[[M , I , ψ, k ]]−) = true

false if sat(A[[M , I , ψ, k ]]+) = false

unknown else

Thus, a sat3 problem is reducible to two Boolean satisfiability problems. In [7]1

the following lemma has been proven:2

Lemma 2 Let A[[M , I , ψ, k ]] over Atoms be the propositional logic encoding of
a three-valued bounded model checking problem A[M , I |=∃ ψ]k . Then:

A[M , I |=∃ ψ]k = sat3(A[[M , I , ψ, k ]])

Hence, by solving sat3 we obtain the result of the encoded three-valued bounded
model checking problem. If the results of the two Boolean satisfiability checks
are sat(A[[M , ψ, k ]]−) = false and sat(A[[M , ψ, k ]]+) = true, then we can con-
clude that the result of the encoded problem is unknown. In this case, a truth
assignment A : Atoms → {true, false} that satisfies A[[M , ψ, k ]]+ characterises
an unconfirmed witness ω. Thus, witness generation in the SAT-based ap-
proach is straightforward. The details on how the formula A[[M , I , ψ, k ]] is
built and on how witnesses ω can be derived from satisfying assignments A
can be found in [7]. A[[M , I , ψ, k ]] is in conjunctive normal form (CNF) and
we assume a representation of the CNF formula as a set of sets of literals
{{l , . . . , l ′}, . . . , {l ′′, . . . , l ′′′}}. The construction of A[[M , I , ψ, k ]] is divided into
the encoding of initial states I , the encoding of k unrollings of the transition
relation of M and the encoding of the temporal logic formula ψ for bound k :

A[[M , I , ψ, k ]] = [[M , k ]] ∪ [[I ]] ∪ [[ψ, k ]]

In the expanded representation, we omit the reference to the associated pred-
icate set A, as this is clear from the context. Since path constraints Σk and
σ(ω) are also temporal logic formulae, the propositional logic encoding of model
checking problems with constraints, as used in the refinement algorithm WRC,
is straightforward. For a global model checking problem A[M , I |=∃ Σk ∧ ψ]k
with a cumulative path constraint Σk we get

A [[M , I ,Σk , ψ, k ]] = [[M , k ]] ∪ [[I ]] ∪ [[Σk ]] ∪ [[ψ, k ]]

and for a model checking problem Aω [M , I |=∃ σ(ω)∧ψ]k local to an unconfirmed
witness ω we get

Aω [[M , I , σ(ω), ψ, k ]] = [[M , k ]] ∪ [[I ]] ∪ [[σ(ω)]] ∪ [[ψ, k ]].

This allows us to redefine the algorithm WRC as a satisfiability-based version3

SATWRC.4

As we can see, each three-valued bounded model checking problem to be5
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Algorithm 5: SATWRC (A[M , I |=∃ ψ]k )

1 Σk := true /*cumulative excluding path constraint*/

2 loop forever do /*global constraint loop*/

3 if sat3(A[[M , I ,Σk , ψ, k ]]) = false then

4 return false, ‘no witness for safety violation of length k exists’

5 if sat3(A[[M , I ,Σk , ψ, k ]]) = true and definite witness ω then

6 return true, ‘ω is a definite witness for safety violation’

7 if sat3(A[[M , I ,Σk , ψ, k ]]) = unknown and unconfirmed witness ω
then

8 Aω := A ∪ analyseWitness(ω)

9 loop forever do /*refinement loop local to ω*/

10 if sat3(Aω [[M , I , σ(ω), ψ, k ]]) = false then

11 /* ω is spurious */

12 Σk := Σk ∧ σ(ω)

13 goto 3

14 if sat3(Aω [[M , I , σ(ω), ψ, k ]]) = true and witness υ then

15 return true, ‘υ is a definite witness for safety violation’

16 if sat3(Aω [[M , I , σ(ω), ψ, k ]]) = unknown and witness υ then

17 Aω := Aω ∪ analyseWitness(υ)

solved is substituted by a sat3 problem. Thus, the soundness of SATWRC1

in terms of returning the correct model checking result follows from Theorem2

1 and Lemma 2. The algorithm extends the cumulative path constraint Σk3

in the same manner as WRC. The extended constraint then gets encoded as4

part of A[[M , I ,Σk , ψ, k ]]. So far, none of the improvements that we introduced5

in the previous section are integrated into the algorithm. Remember that our6

improvements with regard to constraint strengthening and constraint reusing7

were based on causes of violation of a model checking problem. We will now8

show that there is a strong correspondence between a cause of violation of an9

explicit model checking problem and an unsatisfiable core of the propositional10

logic encoding of a model checking problem.11

Definition 18 (Unsatisfiable Core).12

Let α be a propositional logic formula in conjunctive normal form with sat3(α)=13

false. An unsatisfiable core is a subset αuc⊆α of clauses of α with sat3(αuc)=14

false.15

State-of-the-art SAT solvers support the efficient extraction of small or
even minimal unsatisfiable cores [19]. Thus, when SATWRC detects that
sat3(Aω [[M , I , σ(ω), ψ, k ]]) yields false, i.e. that ω is a spurious witness, then
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we can extract an unsatisfiable core of the encoded model checking problem

Aω [[M , I , σ(ω), ψ, k ]] = [[M , k ]] ∪ [[I ]] ∪ [[σ(ω)]] ∪ [[ψ, k ]]

which is a sub-formula

Aω [[M , I , σ(ω), ψ, k ]]uc = [[M , k ]]uc ∪ [[I ]]uc ∪ [[σ(ω)]]uc ∪ [[ψ, k ]]uc

with

[[M , k ]]uc ⊆ [[M , k ]], [[I ]]uc ⊆ [[I ]], [[σ(ω)]]uc ⊆ [[σ(ω)]] and [[ψ, k ]]uc ⊆ [[ψ, k ]].

Hence, such an unsatisfiable core consists of a model-related part [[M , k ]]uc ,1

an initial state-related part [[I ]]uc , a constraint-related part [[σ(ω)]]uc and a2

property-related part [[ψ, k ]]uc . For our approach, the constraint related part3

is of major interest. We have proven the following lemma:4

Lemma 35

Let sat3(Aω [[M , I , σ(ω), ψ, k ]]) = false and let [[σ(ω)]]uc be the constraint-related6

part of the unsatisfiable core of Aω [[M , I , σ(ω), ψ, k ]]. Then there exists a unique7

sub-formula σ(ω)uc of the constraint σ(ω) such that [[σ(ω)]]uc ⊆ [[σ(ω)uc ]] and8

sat3(Aω [[M , I , σ(ω)uc , ψ, k ]]) = false.9

Proof. See http://github.com/ssfm-up/TVMC/raw/master/SCICOProofs.pdf10

11

12

Hence, if SAT-based model checking yields that the unconfirmed witness ω is13

spurious, then the constraint-related part [[σ(ω)]]uc of the unsatisfiable core en-14

codes a sub-formula σ(ω)uc of σ(ω) which already contributes to the violation of15

the encoded model checking problem. While σ(ω) characterises the entire spu-16

rious witness ω, σ(ω)uc characterises a segment of ω that is already spurious by17

itself. Both complements σ(ω) and σ(ω)uc are admissible constraints for ruling18

out spurious behaviour. However, while the spurious witness constraint σ(ω)19

excludes ω only, the spurious segment constraint σ(ω)uc excludes all paths that20

exhibit the spurious segment. We can immediately obtain σ(ω)uc from [[σ(ω)]]uc21

by applying the inverse [[ · ]]−1 of the encoding [[ · ]]: σ(ω)uc := [[[[σ(ω)]]uc ]]−1.22

Beside extracting the stronger spurious fragment constraints, unsatisfiable23

cores allow for further improvements of SATWRC. Note that it is possible that24

certain parts of an unsatisfiable core [[M , k ]]uc ∪ [[I ]]uc ∪ [[σ(ω)]]uc ∪ [[ψ, k ]]uc are25

the empty set, e.g. [[I ]]uc = ∅. In the following, we will omit the empty parts of26

an unsatisfiable core of an encoded model checking problem and we assume that27

all shown parts are non-empty. In Theorem 3 we consider the different cases28

of unsatisfiable cores of Aω [[M , I , σ(ω), ψ, k ]] with empty parts and we assign an29

admissible extension of the cumulative constraint Σk+j with j ∈ N to each case.30

Theorem 331

Let φx be an unsatisfiable core of the encoding Aω [[M , I , σ(ω), ψ, k ]] of a three-32

valued bounded model checking problem local to an unconfirmed witness ω. Then33

38
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in bound iteration k + j with j ∈ J it is admissible to extend the cumulative path1

constraint Σk+j of the encoding A [[M , I ,Σk+j , ψ, k + j ]] of the corresponding2

global model checking problem as follows: Σk+j := Σk+j ∧ ϕx with3

4

φ1 = [[M , k ]]uc ∪ [[I ]]uc ∪ [[σ(ω)]]uc ∪ [[ψ, k ]]uc ϕ1 = σ(ω)uc J = {0}
φ2 = [[M , k ]]uc ∪ [[I ]]uc ∪ [[σ(ω)]]uc ϕ2 = σ(ω)uc J = N

φ3 = [[M , k ]]uc ∪ [[σ(ω)]]uc ∪ [[ψ, k ]]uc ϕ3 = σ(ω)ucj J = N

φ4 = [[M , k ]]uc ∪ [[I ]]uc ∪ [[ψ, k ]]uc ϕ4 = false J = {0}
φ5 = [[M , k ]]uc ∪ [[σ(ω)]]uc ϕ5 =

∧j
l=0 σ(ω)ucl J = N

φ6 = [[M , k ]]uc ∪ [[ψ, k ]]uc ϕ6 = false J = {0}
φ7 = [[M , k ]]uc ∪ [[I ]]uc ϕ7 = false J = N

5

where σ(ω)uc = ¬[[[[σ(ω)]]uc ]]−1.6

Proof. See http://github.com/ssfm-up/TVMC/raw/master/SCICOProofs.pdf7

8

9

As we can see, Theorem 3 is the SAT-based version of Theorem 2. The10

new theorem allows us to implicitly determine causes of violation of a model11

checking problem and to derive corresponding constraints via unsatisfiable core12

extraction. Subsequently, we outline some of the cases that are considered in13

Theorem 3. If the unsatisfiable core is initial state-independent (φ2 with [[I ]]uc =14

∅), then the extracted spurious segment constraint σ(ω)uc is an admissible15

constraint in all bound iterations k + j . If the unsatisfiable core is property-16

independent (φ4 with [[ψ]]uc = ∅), then the j -increment of the extracted spurious17

segment constraint σ(ω)uc is an admissible constraint in all bound iterations k +18

j . If the unsatisfiable core is fully-independent, i.e. both initial state-independent19

and property-independent (φ5), then all l -increments of the extracted spurious20

segment constraint σ(ω)uc with 0 ≤ l ≤ j are admissible constraints in all bound21

iterations k + j .22

The admissible use, reuse and incrementation of spurious segment con-23

straints can be straightforwardly integrated into a combination of the algorithms24

k -IND and SATWRC by storing all reusable constraints in a global set Σglobal25

and by initialising Σk with Σglobal in each bound iteration. Note that the index26

increments of constraints in Σglobal may be parameterised with regard to the27

current bound. Thus, a constraint σ(ω)ucj in iteration k may be adapted to28

σ(ω)ucj+1 in iteration k + 1. In the subsequent section we introduce the imple-29

mentation of our approach and we present experimental results.30

39
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9. Implementation and Experiments1

We have prototypically implemented our novel refinement approach on top of2

the SAT-based three-valued bounded model checker Tvamcus 2. Our tool takes3

a concurrent system Sys within integer arithmetic as a first input. It supports4

almost all control structures of the C language as well as int, bool and semaphore5

as data types. The second input is a temporal logic formula that is either of the6

form G safe (safety) or GF progress (liveness) where safe and progress are pred-7

icate expressions over the control flow or the variables of the system. The tool8

employs a three-valued abstractor [1] that automatically builds abstract control9

flow graphs corresponding to the system and an initial predicate set A that10

covers the predicates referenced in the temporal logic formula to be checked.11

In case the input is a liveness formula, we apply the state recording translation12

to the abstract control flow graphs, which reduces liveness checking to safety13

checking. Hence, the formula to be evaluated will be always of the form G safe.14

Tvamcus iterates over the bound starting with k = 0. In each bound iteration,15

the three-valued bounded model checking problems A[base]k and A[step]k+1 cor-16

responding to the inputs are encoded into propositional logic. For each, the base17

case and the inductive step we run our refinement algorithm until both invo-18

cations yield a definite result. Within Tvamcus we use an implementation of19

MiniSat [20] for processing the satisfiability problems and for extracting unsat-20

isfiable cores. If the base case yields true, we have detected a property violation.21

If both the base case and the inductive step yield false, we have proven that22

no property violation exists. Otherwise our tool proceeds to the next bound23

iteration and repeats the computations for the incremented bound. Generated24

spurious segment constraints are reused between bound iterations and between25

the base case and the inductive step according to our results in terms of the26

admissible reuse of constraints.27

In our experimental evaluation, we considered implementations of mutual28

exclusion algorithms for multiple processes, namely Dijkstra’s mutual exclusion29

algorithm and Lamport’s bakery algorithm. Both algorithms ensure mutual30

exclusion and progress in the sense that some process will be always able to31

enter the critical section. While Dijkstra’s algorithm is prone to starvation,32

Lamport’s algorithm ensures starvation-freedom. Moreover, we considered a33

deadlock -prone instantiation of a semaphore-based dining philosopher system34

with ten philosophers and forks. We checked safety and liveness properties of35

the systems under the assumption of weak fairness in the case of liveness. In36

experiments we compared our model checker Tvamcus with Spin [15]. Spin37

is an established model checking tool for verifying temporal logic properties of38

concurrent systems under fairness. Thus, Tvamcus and Spin focus on similar39

kinds of verification tasks. We employed our Tvamcus model checker in two40

different modes. In Tvamcus-AR we used standard abstraction refinement,41

whereas in Tvamcus-WRC we used our novel refinement approach with mul-42

2available at https://github.com/siocnarff/tvamcus
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tiple models and constraint generation. The experiments were conducted on a1

2.6 GHz Intel Core i5 system with 8 GB. The experimental results are depicted2

in Table 2. A “X” indicates that the property holds for the system, whereas a3

“7” indicates that the property does not hold. Moreover, a “-” means that the4

model checker did not solve the task within 2 hours.5

Table 2: Experimental results

Tvamcus-AR Tvamcus-WRC Spin

case study processes
maximum

time
maximum

time time
predicates predicates

Dijkstra
2 10 2.0s 8 0.8s 0.1s

Mutual Exclusion (X)
3 15 9.2s 12 3.2s 0.2s

4 20 19.9s 16 4.8s 3.9s

Dijkstra
2 16 14.2s 10 1.3s 0.3s

Progress (X)
3 24 227s 15 9.3s 4.8s

4 32 - 20 178s 166s

Dijkstra
2 16 14.7s 10 2.8s 0.4s

Starvation-Freedom (7)
3 24 806s 15 20.5s 9.1s

4 32 - 20 343s 307s

Lamport 2 18 248s 10 12.6s 17.7s

Progress (X) 3 30 - 18 169s -

Philosophers
10 30 98.1s 20 54.6s 93.6s

Deadlock-Freedom (7)

If we compare the results for Tvamcus-AR and Tvamcus-WRC we can ob-6

serve that the multi-model approach allows to significantly reduce the maxi-7

mum number of predicates in the problems to be solved. The reduced amount8

of predicates results from the fact that Tvamcus-WRC makes use of a global9

model that is solely defined over the set of initial predicates, and of local mod-10

els where the initial predicates are fixed by an unconfirmed witness and only11

the refinement predicates contribute to the state space complexity. Constraints12

derived from local models are added to the global model without increasing its13

state space complexity. Operating on smaller models under Tvamcus-WRC14

results in considerably faster model checking in all experiments in comparison15

to Tvamcus-AR. If we compare the results for Tvamcus-WRC and Spin for16

the Dijkstra case studies we can see that Spin clearly outperforms Tvamcus-17

WRC for smaller instances with two and three processes. In the case of four pro-18

cesses Spin is still faster than Tvamcus-WRC but the differences are less sig-19

nificant. The Lamport and Philosophers case studies show that Tvamcus-20

WRC is even capable of outperforming Spin for the specified instances. These21

promising results demonstrate that our multi-model approach with constraint22

reuse can compete with existing tools. We have ideas for further enhancing our23

approach that we discuss in the outlook of this article.24
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10. Related Work1

Some of the earliest work on the application of three-valued reasoning about2

software specifications and their properties is [21]. There, however, no reason-3

ing algorithm was provided to deal with the unknown in a constructive manner.4

More recent work on three-valued reasoning about system specifications can be5

found in [22], whereby techniques of theorem-proving are used additionally to6

deal with unknown model checking results. Other interesting applications of7

three-valued model checking can be found in the domain of multi-agent systems8

[23], whereas model checking of temporal logic properties with multi-valued log-9

ics is described in [24].10

Our verification technique is related to existing approaches for improving the11

classical abstract-check-refine paradigm [4, 25]. Lazy abstraction [26, 27, 28, 29]12

is a concept that builds and refines a single abstract model where different13

parts of the model exhibit different degrees of precision. This is achieved by14

adding refinement predicates only at parts where they are required for proving15

the spuriousness of witnesses. The major difference to our approach is that we16

work with one full and multiple partial models. Only the partial models are17

refined in order to prove whether a particular witness is spurious or not. In18

the full model we take proven spuriousness as a fact in order to prune the state19

space. The separation of proving and eliminating spuriousness enables us to20

conduct verification on smaller models in comparison to lazy abstraction where21

only a single model is used. Another refinement strategy for SAT-based model22

checking, which also uses a combination of over- and under-approximations in23

order to solve reachability problems can be found in [30, 31].24

The propositional logic encoding of bounded model checking problems has25

been initially introduced in [32]. An improved encoding that is linear in both26

the size of the formula to be checked and the length of the bound has been27

presented in [33]. Both techniques are incomplete. Liveness model checking28

is supported by explicitly evaluating liveness formulae on lasso-shaped paths.29

In our approach we enabled complete liveness checking by reducing liveness to30

reachability via state recording [13] and by employing induction. Earliest ap-31

proaches to complete bounded model checking via k -induction can be found32

in [11, 34] where induction is used for the verification of safety properties of33

finite-state systems. k -induction for infinite-state systems such as communi-34

cation protocols and timed automata has been proposed in [35]. In [36] we35

can find the use of counterexample-guided k -induction for bug detection, where36

counterexamples produced from over-approximating the loops are exploited to37

shorten the number of steps that are required to find bugs. Other upper-bound38

considerations, also with the purpose of making bounded model checking com-39

plete, can be found in [37].40

Another related approach is local abstraction refinement [38] which extends41

the lazy abstraction idea. The technique also adds predicates only to relevant42

parts of the model. While a new predicate typically splits an abstract state in43

two refined states, local abstraction refinement uses heuristics for determining44

whether a single refined state is sufficient for the underlying verification task.45
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This enables smaller state spaces. The approach is still based on a single model,1

and thus, does not have the same state space reduction capabilities as our multi-2

model approach.3

Our work also is related to conditional model checking (CMC) [39], which4

reformulates model checking as follows: If model checking fails (due to state5

explosion) to fully prove or disprove the property of interest, then it at least6

returns a condition under which the property holds. This allows for a sequential7

combination of model checking runs where a first run generates a condition and a8

second run checks whether the condition holds. Our approach can be regarded as9

an application and generalisation of the CMC idea in the context of abstraction10

refinement. We take unconfirmed witnesses as conditions for our partial models11

and we use conditions for excluding spurious witnesses in the full model.12

Whereas our approach exploits control flow knowledge for the purpose of13

abstraction refinement in the context of SAT solving, the exploitation of con-14

trol flow knowledge to obtain better results in SMT solving is described in [40],15

whereas the approach of [41] is designed to verify program properties by way of16

CHC-solving with constrained Horn clauses. An automatic on-the-fly decompo-17

sition of large specifications into their most interesting or most relevant parts18

can be found in [42].19

The practical applicability of SAT-based model checking for various applica-20

tion purposes is well known, for instance [43] in the railway domain. While we21

are using SAT solvers to reason about temporal logic properties of concurrent22

systems, it is in principle possible to use SAT solving also for reasoning about23

other modal logic system properties that are not temporal e.g. [44].24

In a wider context one can observe that model checking via SAT solving,25

with potentially unknown results for any α-interpretation of the given logical26

atoms, is somewhat similar to the path coverage problem in software testing27

where different value interpretations of the input variables of a program lead28

to different execution paths being covered, whereby the problem arises which29

execution paths remain unknown for a given set of input values. In [45] we can30

find an incremental method that generates input data from atomic predicates in31

software specifications with the aim of achieving full path coverage. Somewhat32

similar to our approach, distance-based reasoning is applied in [45] to incremen-33

tally refine the generation of input data leading to better path coverage in the34

software model under analysis.35

11. Conclusion and Outlook36

We presented an iterative abstraction refinement technique for the verifica-37

tion of temporal logic properties of concurrent software systems. The novelty38

of our approach is that we use separate models for producing abstract witness39

paths and for checking whether witnesses are definite or spurious. Our local40

models are restricted to refinements of particular witnesses only. The abstract41

state space of our global model is pruned via constraints derived from local42

models. We hereby gain precision in the global model without increasing its43

state space. Our multi-model approach allows for a significant reduction of the44
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state space complexity in comparison to single-model approaches. It comes at1

the cost of an increased number of constraint generation iterations. Our con-2

straint strengthening concept enables us to diminish this number, which gives3

us a space- and time-efficient verification technique. Our approach employs4

satisfiability-based bounded model checking [46], and thus, profits from the ca-5

pabilities of today’s SAT solvers. Since bounded model checking is inherently6

incomplete, we integrated the k-induction principle [47] into our verification7

technique. This iterative approach reduces an unbounded model checking prob-8

lem to two bounded model checking problems, which enables us to perform9

complete verification via satisfiability solving. We showed that constraints for10

ruling out spurious behaviour can be generated via unsatisfiable core extraction11

[8] and we introduced a concept for the admissible reuse of constraints between12

bound iterations. In general, k -induction is limited to model checking safety13

properties. We additionally enabled liveness checking by applying the state14

recording translation [13] to the systems to be verified, which reduces liveness15

to safety checking. In experiments we received promising performance results16

with our new approach.17

As future work we intend to enhance our constraint strengthening concept18

based on ideas adopted from symmetry reduction [48] and partial-order reduc-19

tion [49]. Since we focus on the verification of concurrent systems, these systems20

typically exhibit a considerable amount of symmetry. If a constraint has been21

generated that reveals that a particular pair of processes will never be at a22

certain location at the same time, this observation may be transferable to ar-23

bitrary pairs based on symmetry arguments. Similarly, certain behaviour may24

be spurious, independent of the order in which the processes execute their op-25

erations. Thus, a constraint that does not only exclude one but all orders that26

lead to spuriousness may be admissible as well. We are working on a concept27

for detecting symmetric and order-independent constraints that will allow us28

to rule out spurious behaviour on a larger scale. Moreover, we plan to extend29

our verification technique to systems beyond linear integer arithmetic and to30

multi-agent systems.31
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