
This is a repository copy of Minimizing characterizing sets.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173162/

Version: Accepted Version

Article:

Turker, U.C., Hierons, R. orcid.org/0000-0002-4771-1446 and Jourdan, G.-V. (2021)
Minimizing characterizing sets. Science of Computer Programming, 208. 102645. ISSN
0167-6423

https://doi.org/10.1016/j.scico.2021.102645

© 2021 Elsevier. This is an author produced version of a paper subsequently published in
Science of Computer Programming. Uploaded in accordance with the publisher's self-
archiving policy. Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Minimizing Characterizing sets

Uraz Cengiz Türkera,∗, Robert M. Hieronsb, Guy-Vincent Jourdanc

aUniversity of Leicester, School of Informatics, Leicester, UK
bThe University of Sheffield, Department of Computer Science, Sheffield, UK

cSchool of Electrical Engineering and Computer Science, Faculty of Engineering, University

of Ottawa, Ottawa, CA

Abstract

A characterizing set (CS) for a deterministic finite state machine (FSM) M

is a set of input sequences that, between them, separate (distinguish) all of

the states of M . CSs are used within several test generation techniques that

return test suites with guaranteed fault detection power. The number of input

sequences in a CS directly affects the cost of applying the resultant test suite.

In this paper, we study the complexity of decision problems associated with

deriving a smallest CS from an FSM, showing that checking the existence of a

CS with K sequences is PSPACE-complete. We also consider the length of a CS,

which is the sum of the lengths of the input sequences in the CS. It transpires

that the problem of deciding whether there is a CS with length at most K is

NP-complete. Motivated by these results, we introduce a heuristic to construct

a CS, from a deterministic FSM, with the aim of minimizing the number of

input sequences. We evaluated the proposed algorithm by assessing its effect

when used within a classical test generation algorithm (the W-method). In the

evaluation, we used both randomly generated FSMs and benchmark FSMs. The

results are promising, with the proposed algorithm reducing the number of test

sequences by 37.3% and decreasing the total length of the test suites by 34.6%

on average.

∗Corresponding author
Email addresses: u.c.turker@leicester.ac.uk (Uraz Cengiz Türker),

r.hierons@sheffield.ac.uk (Robert M. Hierons), gjourdan@uottawa.ca (Guy-Vincent
Jourdan)

Preprint submitted to Journal of LATEX Templates March 16, 2021

Manuscript

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Keywords: Model-based testing, Characterizing set, Complexity

1. Introduction

Testing is an indispensable aspect of a development-cycle for any kind of

system. However, manual testing is typically expensive and error prone. This

has led to significant interest in test automation and, in particular, Model Based

Testing (MBT). MBT techniques and tools use behavioural models and usually5

operate on either a finite state machine (FSM), extended finite state machine

(EFSM) or labelled transition system (LTS) that defines the semantics of the

model. This paper concentrates on testing from a (deterministic) FSM. There

has been significant interest in automating testing based on an FSM model

in areas such as sequential circuits [1], lexical analysis [2], software design [3],10

communication protocols [3, 4, 5, 6, 7, 8, 9, 10], object-oriented systems [11],

and web services [12, 13, 14, 15]. Such techniques have also been shown to be

effective when used in large industrial projects [16].

The literature contains many formal methods to automatically generate test

suites (sets of test sequences) from FSM models (specifications) of systems [9,15

17, 18, 19, 20, 21, 22, 23, 24]. These methods represent testing as running

fault detection experiments [25]. Formal methods for generating fault detection

experiments are based on particular types of sequences that are derived from the

specification M . Different test techniques use different types of sequence but we

focus on the use of a characterizing set (W-set), to identify the current state of20

the implementation, motivated by the fact that every (minimal, deterministic)

FSM has a W-set. A W-set is a set of input sequences such that for any pair

(s,s′) of distinct states of M there exists an input sequence x̄ in the W-set that

separates (distinguishes) s and s′ [26].

1.1. Motivation and Problem Statement25

Characterizing sets are widely used in test generation. For example, they

are used in the classical W-method [3, 27], which has two steps: state recogni-

tion and transition verification. Importantly, test generation involves separately

2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

following a particular set of input sequences by every input sequence from the

characterizing set W used. In testing, the system under test is reset before an30

input sequence is applied, ensuring that the input sequences are applied in the

same state of the system under test.

Characterizing sets are used in some other test generation techniques. For

example, the well known HSI-method [28]1 requires harmonized state identifiers

(HSIs) to construct test sequences from a given possibly non-deterministic FSM35

M . Construction of HSIs requires one to harmonize the elements of a W-set

of M . That is, in order to construct HSIs for M , one first has to construct a

W-set [28].

A further example, of the use of characterizing sets, can be found in auto-

mated model learning [29]. Here, the W-method is used to decide whether a40

given hypothesis (FSM) is correct or not [30]. Since testing whether the hypoth-

esis holds (the oracle problem) is computationally expensive it has been referred

to as the bottleneck for learning models from complex systems [31]. Therefore,

any method that generates compact W-sets could help such learning methods

to scale to larger problems.45

It is clear that the size of the test suite returned by a test generation

algorithm that use a characterizing set W is directly affected by the num-

ber of input sequences that are in W. As explained above, if the W-set W

contains k input sequences then test generation techniques such as the W-

method will (separately) follow a set of input sequences by all k input se-50

quences in W. In addition, there are cases where the reset between test se-

quences is particularly time consuming or expensive since, for example, it may

require a system to be reconfigured or may require manual intervention. As

a result, there has been interest in constructing test generation techniques

that return test suites with the minimum number of resets (and so test se-55

1Note that in [28] there are two algorithms: the HSI-method for constructing the test suite,

and the HSI-algorithm for constructing state identifiers. Therefore we use HSI-method and

HSI-algorithm to denote the method and the algorithm respectively.

3

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

quences) [3, 9, 21, 22, 32, 27, 33, 34, 35, 36, 28, 37, 38, 39].

This paper revisits the long-standing problem of finding a smallest charac-

terizing set for an FSM [26]. The aim is to reduce the number of test sequences,

within a test suite, by minimizing the number of elements in W-sets. At a

high-level, this paper makes two main contributions. First, we determine the60

computational complexity of decision problems associated with the generation

of a smallest characterizing set, a problem that has been open for more than

half a century (see, [26]). We prove that the problem of deciding whether an

FSM has a W-set that contains at most K test sequences is PSPACE-complete.

In addition, we prove that the problem of deciding whether an FSM has a W-set65

W, such that the sum of the lengths of the test sequences in W is at most K, is

NP-complete. Complexity is in terms of the size of the problem description but

it will transpire that the most important parameter is the number (n) of states

of the FSM M , since it is possible to place upper bounds on ‘interesting’ val-

ues of K, with these upper bounds being polynomials in n. For example, every70

(minimal) FSM with n states has a characterizing set that contains at most n−1

input sequences. We then give a heuristic that aims to generate a small charac-

terizing set and evaluate this heuristic through experiments with both randomly

generated FSMs and benchmark FSMs. To the best of our knowledge, this is

the first attempt to devise heuristics for generating a small characterizing set.75

In this paper, we therefore focus on the following problems, along with their

complexities (these problems are formally defined in Section 2).

1. The MinSize W-set problem: given a deterministic FSM M and positive

integer K, does M have a W-set that contains no more than K input

sequences.80

2. The MinLengthW-set problem: given a deterministic FSMM and positive

integer K, does M have a W-set W such that the sum of the lengths of

the input sequences in W does not exceed K.

In naming the problems, we differentiate between the size of a W-set W (the

number of input sequences in set W) and the length of a W-set W (the sum85

4

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

of the lengths of the input sequences in W). As explained above, the size and

length of a W-set are both of interest.

1.2. Results

We show that the MinSize W-set problem is PSPACE-complete. We also

prove that the MinLength W-set problem is NP-complete.90

We also introduce a heuristic that uses a breadth first search strategy, on in-

put sequences, to find a relatively small W-set for deterministic FSMs. We eval-

uated the heuristic through experiments with randomly generated and bench-

mark FSMs. In these experiments we assessed the impact of using the heuristic

for W-set generation, when the W-sets are used in the W-method. We found95

that the heuristic can reduce the number of test sequences (for the W-method)

by 37.3% and can decrease the total length of the test suite by 36.4% on average.

This paper extends a previous conference paper [40] in the following ways.

First, previous work only considered the complexity of the MinSize W-set prob-

lem; this paper extends this by also considering the overall W-set length (the100

MinLength W-set problem). Second, we extended the experimental evaluation

in several ways. First, we report additional results, such as the overall W-set

size, test suite size, and test suite length; previously, only ratios were reported.

Second, we report the results of an analysis that demonstrates that the differ-

ences observed are statistically significant (except for the smallest FSMs) and105

that there is a large effect-size. Finally, we extended the set of benchmark FSMs

used from five to sixteen.

1.3. Practical Implications of our Results and Future Directions

W-sets are used in many formal methods that automate the generation of

test suites, therefore methods that use these sequences will directly benefit from110

the research in this paper. In order to assess the effect of deriving smaller W-sets,

future work will extend the empirical evaluation to other test suite generation

algorithms and also learning.

5

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1.4. Structure of the paper

This paper is structured as follows. In the next section, we provide the ter-115

minology and notation used throughout the paper. In Section 3, we prove that

the MinSize W-set problem is PSPACE-complete and that the MinLength W-set

problem is NP-complete. This section is then followed by a section (Section 4)

that introduces the proposed algorithm. In Section 5, we describe the exper-

iments performed to evaluate the proposed algorithm and the results of these120

experiments. Section 6 then describes related work and we conclude the paper

by providing some future directions in Section 7.

2. Preliminaries

2.1. Finite State Machines (FSMs)

An FSM M is defined by a tuple (S, s0, X, Y, h) where S = {s1, s2, . . . , sn}125

is a finite set of states, s0 ∈ S is the initial state, X = {x1, x2, . . . , xp} and

Y = {y1, y2, . . . , yq} are finite sets of inputs and outputs, and h : S×X×Y ×S

is the set of transitions (the transition relation). Tuple τ = (s, x, y, s′) ∈ h is

a transition that has starting state s, ending state s′, and label x/y. We can

interpret τ as meaning that if M receives input x when in state s then it can130

output y and move to state s′. M can then receive another input when in state

s′.

Given a set X we let X∗ denote the set of finite sequences of elements of X

and let Xk denote the set of sequences in X∗ of length k. We use ε to denote the

empty sequence and given sequences x̄ and x̄′, x̄x̄′ denotes the concatenation of135

x̄ and x̄′. It is possible to extend h, to a relation h∗ : S × X∗ × Y ∗ × S that

is the smallest relation such that: 1) for all s ∈ S, (s, ε, ε, s) ∈ h∗; and 2) if

(s1, x̄, ȳ, s2) ∈ h∗ and (s2, x, y, s3) ∈ h then (s1, x̄x, ȳy, s3) ∈ h∗. If (s, x̄, ȳ, s′) ∈

h∗ then this means that input sequence x̄ can take the FSM from state s to

state s′ while producing output sequence ȳ.140

An FSM M can be represented by a directed graph in which nodes represent

states of M and edges represent transitions of M . Figure 1 gives an example

6

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

of a directed graph that represents an FSM that will be called M1. Here,

for example, the edge from the vertex with label s4 to the vertex with label s1

represents the transition (s4, x2, y1, s1). In the diagram, if a list of input/output145

pairs is given on an edge then this correspond to multiple transitions that have

the same starting and ending states. For example, the edge from the node

with label s1 to the node with label s2 represents transitions (s1, x1, y1, s2) and

(s1, x3, y1, s2).

s1 s3

s2s4

x2/y3

x
1/y

1 , x
3/y

1

x
1
/y

1
,
x
3
/y

2

x2/y2

x2/y2

x
1 /y

3 ,
x
3 /y

3
x
2
/y

1

x1/y2, x3/y4

Figure 1: FSM M1. Note that the initial state is highlighted with a dashed line.

FSM M is said to be completely-specified if for every state s and input x150

there is at least one transition τ = (s, x, y, s′) ∈ h with starting state s and input

x. It is straightforward to check that M1 is completely-specified. If M is not

completely-specified then it is partial. In this paper we only consider completely-

specified FSMs, motivated by two factors. First, the vast majority of FSM-based

test generation algorithms assume that the FSM specification is completely-155

specified. Second, if the FSM specification M is not completely-specified then

it is often possible to complete M by adding, for example, self-loops or an error

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

state. FSM M is said to be deterministic if for every state s and input x, M

has only one transition τ = (s, x, y, s′) ∈ h with input x and starting state s.

For example, M1 is deterministic. In this paper we only consider deterministic160

FSMs. Although not all FSMs are deterministic, deterministic FSMs have been

the main focus of FSM-based test generation.

A walk ρ of M is a sequence (s1, x1, y1, s2)(s2, x2, y2, s3) . . . (sk, xk, yk, sk+1)

of consecutive transitions and ρ has starting state start(ρ) = s1, ending state

end(ρ) = sk+1, and label(ρ) = x1/y1 . . . xk/yk. The behaviour of an FSM165

M is defined in terms of the labels of walks leaving the initial state; such la-

bels of walks are called traces. For example, ρ1 = (s1, x1, y1, s2)(s2, x2, y2, s4)

(s4, x2, y1, s1) is a walk of M1 (Figure 1); ρ1 has starting state s1, ending state

s1, and label x1/y1 x2/y2 x2/y1. Here σ = x1/y1 . . . xk/yk is an input/output

sequence, sometimes called a trace, that has input portion in(σ) = x1 . . . xk and170

output portion out(σ) = y1 . . . yk. An FSM M with initial state s0 is initially

connected if for every state s of M there exists some walk that has starting state

s0 and ending state s. It is straightforward to see that M1 is initially connected.

2.2. FSM behaviour

FSM M defines the language L(M) of labels of walks with starting state175

s0 and LM (s) denotes the language obtained if we make s the initial state.

Thus, LM (s) = {x1/y1 . . . xm/ym ∈ X∗/Y ∗|∃s1, . . . , sm+1.s1 = s ∧ ∀1 ≤ i ≤

m.(si, xi, yi, si+1) ∈ h}. For example, x1/y1 x1/y2 ∈ LM1
(s1). Given state s

and input sequence x̄ we use M(s, x̄) = {σ ∈ LM (s)|i(σ) = x̄} to denote the

set of traces in LM (s) that have input portion x̄. For example, in M1 we have180

that M1(s1, x1x2) = {x1/y1 x2/y2} and M1(s3, x1x2) = {x1/y3 x2/y2}. Given

S′ ⊆ S, LM (S′) = ∪s∈S′LM (s) is the set of traces that can be produced if the

initial state of M is in S′. In addition, M(S′, x̄) = ∪s∈S′M(s, x̄) denotes the

set of traces that can result from applying x̄ to a state in S′.

States s, s′ of M are equivalent if LM (s) = LM (s′) and FSMs M and N185

are equivalent if L(M) = L(N). FSM M is minimal if no two of its states are

equivalent. As usual, in this paper we only consider minimal FSMs. This is

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

not a restriction since an FSM can be rewritten to an equivalent minimal FSM

in polynomial time using any technique that minimizes a deterministic finite

automaton. To summarise, we consider deterministic FSMs that are minimal190

and completely-specified.

We also make the usual assumption, when using techniques such as the W-

method, that the system under test has a reliable reset: some process that is

guaranteed to return the system under test to its initial state. A reliable reset

is required in order to ensure that the test sequences are all applied in the same195

state of the system under test.

2.3. Characterizing sets

The notion of a characterizing set is typically defined in terms of what it

means for an input sequence x̄ to separate two states of an FSM M .

Definition 1. Input sequence x̄ separates states s and s′ of FSM M if and only200

if M(s, x̄) ∩M(s′, x̄) = ∅.

We now define W-Sets.

Definition 2. Given FSM M , W ⊆ X∗ is a W-Set for M if for any pair of

distinct states of M there exists a sequence x̄ ∈ W such that x̄ separates the pair,

i.e., ∀s, s′ ∈ S, such that s 6= s′, there is some x̄ ∈ W with M(s, x̄)∩M(s′, x̄) =205

∅.

Consider again the FSM M1 in Figure 1. If we consider the set {x1, x2}

of inputs, the corresponding output responses for the states of M1 are shown

in Table 1. From this, one can see that every pair of distinct states of M1 is

separated by either x1 or x2 (or both). As a result, W = {x1, x2} is a W-set of210

M1.

In the next section, we formalise and then explore the complexity of the

following problem.

Definition 3. Let M be a minimal deterministic completely specified FSM, and

let K be a positive integer. In the MinSize W-set problem we are asked to decide215

whether there exists a W-set W for M such that |W| ≤ K.

9

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

State Response to x1 Response to x2

s1 y1 y3

s2 y1 y2

s3 y3 y2

s4 y2 y1

Table 1: Response to x1 and x2

We might also be interested in a W-set with smallest overall length, leading

to the following problem in which |wi| is the length of the sequence wi.

Definition 4. Let M be a minimal deterministic completely specified FSM, and

let K be a positive integer. In the MinLength W-set problem we are asked to220

decide whether there exists a W-set W for M such that
∑

wi∈W
|wi| ≤ K.

3. Complexity results

This section concerns the computational complexity of W-set decision prob-

lems.

3.1. Complexity of the MinSize W-set problem225

In this section we start by showing that the problem is in PSPACE; we then

prove that it is PSPACE-hard.

Proposition 1. It is possible for a non-deterministic Turing Machine to decide

in polynomial space whether a completely-specified deterministic FSM M has a

W-set of size at most K.230

Proof. We will show how a non-deterministic Turing Machine can solve the

problem in polynomial space. This Turing Machine will guess K input se-

quences, extending all K input sequences by one input in each iteration. It will

keep tuples of the form (s, s′, c) where s, s′ ∈ S and c ∈ {0, 1}. For each pair

(s, s′) of distinct states of M , the Turing Machine will start with K copies of235

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

(s, s′, 0); one copy for each input sequence that the Turing Machine is to guess.

As the process of guessing an input sequence progresses, the value of c will be

changed to 1 if s and s′ have been distinguished by the corresponding input

sequence.

As mentioned, the Turing Machine will guess K input sequences x̄0, x̄1, . . . ,240

x̄K−1 in an iterative manner, extending all sequences by one input in each iter-

ation. There are n(n− 1)/2 pairs of states. Since M has n states and p inputs,

encoding a state identifier requires O(log(n)) space and encoding an input re-

quires O(log(p)) space. As a result, the Turing Machine requires polynomial

space to store the tuples and the inputs guessed in the current iteration. At245

each iteration, K next inputs are guessed non-deterministically. Each guessed

input x is used to update the corresponding tuples in the natural way (i.e. if

(s, x, y, s1), (s
′, x, y′, s′1) ∈ h then (s, s′, cb) → (s1, s

′
1, c) where c = 1 if cb = 1 or

y 6= y′, and c = 0 otherwise).

Consider now how the Turing Machine terminates. First, it terminates with250

success if each pair (s, s′) of distinct states has been distinguished; s and s′ have

been distinguished if for some guessed input sequence the tuple (s, s′, 0) has been

transformed into some (s1, s
′
1, 1). The Turing Machine also has a counter ctr,

which is increased in each iteration, in order to ensure termination and we now

give a bound that can be placed on this counter. If we consider the process255

of extending one of the input sequences x̄i being guessed, in each iteration we

obtain a sequence of tuples of the form (s, s′, c); one for each (s, s′, 0) that

we started with. Clearly, when looking for a bound on sequence length, it is

sufficient to consider sequences x̄i such that for every pair of prefixes x̄′i and

x̄′′i of x̄i, with |x̄′i| < |x̄′′i |, we have that x̄′i and x̄′′i define different sequences of260

tuples (otherwise, we can replace x̄′′i by x̄′i to obtain a shorter sequence). There

are 2n2 possible values for each tuple and n(n − 1)/2 tuples and so at most

2n(n−1)/2nn(n−1) possible values for the tuples. Thus, the Turing Machine can

terminate with failure if c exceeds this bound. As a result, the space required to

store the counter is of O(log2(2
n(n−1)/2nn(n−1))) and so only polynomial space265

is required. The result therefore follows.

11

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

We now show that the MinSize W-set problem is PSPACE-complete.

Theorem 1. The MinSize W-set problem for completely specified deterministic

FSMs is PSPACE-complete.

Proof. First, by Proposition 1 we know that the problem is in PSPACE. We270

now show that the problem is PSPACE-hard. Consider the case where K = 1.

Then there is a W-set of size at most K for M if and only if there is a preset

distinguishing sequence (PDS)2 for M . Thus, any algorithm that can decide

whether an FSM has a W-set of size K can also be used to decide whether an

FSM has a PDS. Since the problem of deciding whether a deterministic FSM275

has a PDS is PSPACE-hard [41], we have that the problem of deciding whether

an FSM has a W-set of size at most K is also PSPACE-hard. The result thus

follows.

3.2. Complexity of the MinLength W-set problem

The motivation for the work in this paper is that a small W-set is likely280

to lead to a small test suite and here we are interested in how many input

sequences are contained in the W-set. However, as discussed earlier, we might

instead be interested in the overall length of a W-set W: the sum of the lengths

of the input sequences in W. We now consider the complexity of this problem

for deterministic FSMs.285

We will first show that the problem is NP-hard by relating it to the Hitting

Set Problem.

Definition 5. Let us suppose that A is a finite set, {A1, . . . , Ak} is a set of

subsets of A, and K is an integer. The Hitting Set Problem is to decide whether

there exists some subset A′ of A, of size at most K, such that every Ai contains290

at least one element of A′ (Ai ∩A′ 6= ∅).

The hitting set problem is known to be NP-complete [42]. We use this result

to prove that the MinLength W-set problem is NP-hard.

2An input sequence x̄ is a PDS for M if x̄ distinguishes all of the states of M .

12

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Proposition 2. The MinLength W-set problem is NP-hard.

Proof. Let us assume that we are given an instance of the Hitting Set Problem295

defined by set A = {a1, . . . , ap}, set A = {A1, . . . , An} of subsets of A, and

integer K. We will show how one can construct an FSM MA,A such that MA,A

has a W-set of length at most K if and only if there is a solution to the instance

of the Hitting Set Problem defined by A, A, and K.

The FSM MA,A will have one state sj for each element Aj of A (1 ≤ j ≤ n).300

There is an additional state s0, which is also the initial state. We will have

output set Y that, for all 1 ≤ i ≤ n and 1 ≤ j ≤ p, contains a unique output

yij , as well as another output y0. Thus, Y contains np + 1 outputs. For each

ai ∈ A we will introduce a unique input xi and we will add transitions so that

xi distinguishes state sj from other states (including s0) if and only if ai ∈ Aj .305

This will be achieved through the following transitions (1 ≤ i ≤ n, 1 ≤ j ≤ p).

1. If ai ∈ Aj then MA,A has transition (sj , xi, yij , sj).

2. If ai 6∈ Aj then MA,A has transition (sj , xi, y0, sj).

For all 1 ≤ i ≤ p, MA,A also has the transition (s0, xi, y0, s0).

Note that MA,A is not initially connected as all its transitions loop. It310

is straightforward to extend this FSM to form an initially connected FSM by

introducing additional input symbols and transitions that connect the initial

state with all other states but that cannot be used for distinguishing the states

of MA,A. Specifically, for all 1 ≤ j ≤ n we introduce a new input x′j that reaches

state sj from the initial state. The transitions with input x′j are defined by: for315

every state sk, 0 ≤ k ≤ n, the transition from sk with input x′j takes the FSM

to state sj with output y0.

Let us suppose that X ′ is a subset of X. By construction, we have that X ′

distinguishes sj from the other states of MA,A if and only if there exists xi ∈ X ′

such that ai ∈ Aj . Thus, X
′ is a W-set for MA,A if and only if {ai|xi ∈ X ′} is320

a hitting set.

We now know that any algorithm that solves the MinLength W-set problem

for MA,A and K has also solved the Hitting Set Problem defined by A, A,

13

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

and K. In addition, MA,A can be constructed in polynomial time. The result

therefore follows from the Hitting Set Problem being NP-hard.325

The problem is also in NP. The following result is easier to prove because

we know that an FSM has a characterising set of length at most (n− 1)2.

Proposition 3. The MinLength W-set problem is in NP.

Proof. First observe that a deterministic FSM with n states has a W-set if

and only if it has a W-set with no more than n − 1 input sequences, each of330

length at most n − 1. Thus, we can place an upper bound of (n − 1)2 on the

value of K considered.

A non-deterministic Turing Machine can simply guess a setW = {x̄1, . . . , x̄k}

of input sequences of total length at most K. It is then sufficient to check

whether this set W of input sequences is a W-set. For every pair s, s′ of distinct335

states of M , the algorithm proceeds through up to k iterations. Here, in the

ith iteration we compute M(s, x̄i) and M(s′, x̄i). If M(s, x̄i) 6= M(s′, x̄i) then

the Turing Machine records that s and s′ are distinguished by W and moves

on to check the next pair of states. If all pairs of states have been considered,

and found to be distinguished by W then the Turing Machine terminates with340

success. If M(s, x̄i) = M(s′, x̄i) and i < k then we move to iteration i+ 1 and

otherwise (M(s, x̄i) = M(s′, x̄i) and i = k) the Turing Machine concludes that

W is not a W-set.

The outer loop of this algorithm iterates at most n(n−1) times. In addition,

the inner loop iterates at most |W| ≤ (n−1)2. The number of iterations is thus345

of O(n4) times. Further, given input sequence x̄i and state s it is possible to

compute M(s, x̄i) in polynomial time.

To conclude, this algorithm takes polynomial time and returns success if

and only if W is a W-set (it succeeds in separating all pairs of states). Thus,

a non-deterministic Turing Machine can solve the problem in polynomial time350

and so the result follows.

From the above, we have the following result.

14

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Theorem 2. The MinLength W-set problem is NP-complete.

4. Algorithm for Constructing W-sets.

This section introduces a novel algorithm that takes a deterministic minimal355

FSM and tries to generate a W-set with relatively few elements (please see

Algorithm 1 for details). It does so without specifying a bound (K) on the

number of elements.

The algorithm receives an FSM M and performs a breadth-first search

(BFS), on input sequences, and checks for solutions using a greedy heuristic.360

The BFS continues until one of the following termination conditions holds.

1. A W-set is formed; or

2. An upper bound on the depth of the tree is exceeded. We set this bound as

n−1 since, for an FSM with n states, every pair of states can be separated

by an input sequence of length at most n− 1 [26].365

Upon receiving its input, the algorithm initiates a pair set ∆ (Line 1 of

Algorithm 1). The pair set (∆) initially contains the set of all pairs of distinct

states (i.e., the set defined by
(

S
2

)

) and is used to check which pairs have been

separated so far. The algorithm uses ∆ to keep the remaining pairs to be

separated and hence the algorithm terminates with success if |∆| = ∅. The370

algorithm applies the BFS iteratively, constructing a tree structure that we call

a BFS tree. A BFS tree contains a set of vertices V , where each vertex v ∈ V has

four pieces of information: a set of current states vc; a set of initial states vI ; an

input sequence v(x̄); and finally an output sequence v(ȳ). These are related by:

for all s ∈ vI , there exists a corresponding s′ ∈ vC such that (s, x̄, ȳ, s′) ∈ h∗.375

15

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 1: Minimal W-set for M
Input: FSM M = (S, s0, X, Y, h) such that |S| > 1

Output: A W-set for M

begin

1 ∆← {(si, sj)|si, sj ∈ S and i < j}

2 v ← (S, S, ε, ε), push(v, V)

3 ℓ← 0.

4 while l ≤ n− 1 do

5 V ∗ ← ∅

6 while V 6= ∅ do

7 v ← pop(V)

8 foreach input symbols x ∈ X do

9 Retrieve P (vC , x).

10 foreach vy ∈ P (vC , x) do

11 vy

C
= {s′ ∈ S|∃s ∈ vC .(s, x, y, s′) ∈ h}

12 vy

I
= {s ∈ vI |x̄/ȳ ∈ LM (s)}

13 vy(x̄) = v(x̄)x, vy(ȳ) = v(ȳ)y

14 push(vy, V ∗)

15 V ← V ∗

16 ℓ← ℓ + 1

17 Seq ← 〈〉

18 foreach v ∈ V do

19 χ← number of pairs removed from set ∆ by v(x̄)

20 Seq ← Seq〈(χ, v(x̄))〉

21 Sort(Seq)

22 foreach χ ∈ Seq do

23 Remove pairs separated by x̄⋆ from ∆

24 if A pair has been separated then

25 W ←W ∪ {x̄⋆}

26 if ∆ = ∅ then

27 Return W after prefix removal.

16

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

The BFS tree is constructed as follows. In each iteration (considering a

given depth), the algorithm processes the set V that contains the vertices that

correspond to the current leaves of the tree. Initially, the vertex set V has a

single element v such that vC = S, vI = S, and v(x̄) = v(ȳ) = ε (Line 2

of Algorithm 1). In each iteration, the algorithm, while processing a vertex380

v ∈ V , then separately applies all the inputs from x ∈ X to vC (Lines 8-14 of

Algorithm 1). By considering the output produced by M , in response to x, the

state sets of v are partitioned ; for all y such that x/y ∈ M(vC , x), we introduce

a new vertex vy such that vyC = {s′ ∈ S|∃s ∈ vC .(s, x, y, s
′) ∈ h}, vy(x̄) = v(x̄)x,

vy(ȳ) = v(ȳ)y, and we form vyI by simply inheriting the corresponding initial385

states of s. We use P (vC , x) to denote the set of vertices that are created by

applying x to vC . The newly created vertices are then added to a set V ∗ (Line 14

of Algorithm 1). When all the vertices of the current level have been processed,

the algorithm copies V ∗ to V (Line 15 of Algorithm 1), increments the level

variable (ℓ) by one (Line 16 of Algorithm 1) and initiates a sequence Seq (Line390

17 of Algorithm 1).

This is then followed by analyzing the outcome of the BFS step. In order

to do this, the algorithm first gathers all the distinct input sequences from the

vertices in the set V ∗ and forms a set X̄. Then, for each input sequence x̄ ∈ X̄,

it counts the number of pairs of states from ∆ that are separated by x̄ and395

stores this value in χ (Lines 18-20 of Algorithm 1). Note that the algorithm

does not remove a pair of states from ∆ at this step but it removes pairs after

processing all the vertices in V (see Lines 22-25), it only counts the number of

pairs that can be removed by the input sequence under consideration. Then the

algorithm associates this value with the input sequence, i.e., (x̄, χ), and stores400

this in set Seq. The algorithm then sorts Seq according to the χ values (Line

21 of Algorithm 1).

After this, the algorithm moves to an iterative step in which it removes

pairs (through a heuristic step) from ∆ (∆ stores the pairs of states not yet

separated). The algorithm uses a (greedy) heuristic in which it selects an input405

sequence (x̄), from one of the new vertices, that is associated with one of the

17

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

largest χ values. That is, it selects an input sequence that separates as many

states as possible. If the algorithm can eliminate one or more pairs from ∆ with

x̄, then the algorithm adds x̄ to W. Note that x̄ will not always be included;

it may be that the pairs of states separated by x̄ have been separated by input410

sequences previously added. This process continues until all pairs have been

separated (or it runs out of input sequences) (Lines 22-25 of Algorithm 1).

At the end of an iteration, if ∆ is empty then the algorithm returns W after

removing all the sequences that are proper prefixes of other sequences (i.e. given

sequences W = {x1x2, x1} we drop x1 and we have W = {x1x2}) (Lines 26-27415

of Algorithm 1). Otherwise the algorithm continues to execute. We now show

that if Algorithm 1 terminates with success, then the set W returned defines a

W-set for M .

Proposition 4. Let us suppose that v is a vertex formed during the BFS and

that vp is the parent vertex of v. If states s and s′ are both in vI(v
p) but only420

one of s and s′ is in vI(v) then v(x̄) is a separating sequence for s and s′.

Proof. The result follows from the definition of a separating sequence.

Therefore, if a pair (s, s′) of states is removed from ∆ then the algorithm has

computed a separating sequence for s and s′. Since the algorithm terminates

when all the pairs have been removed from ∆, we have the following result.425

Theorem 3. Let us suppose that M is a completely specified minimal deter-

ministic FSM. If Algorithm 1, when given M , returns non-empty set W, then

W is a W-set for M .

In the worst case, the proposed algorithm constructs a BFS tree by applying

every input sequence of length up to n− 1 and so the worst time complexity of430

the algorithm is exponential. In the next section we report on experiments that

evaluated this algorithm, finding that (compared to the existing algorithm [3])

the proposed algorithm reduces the number of test sequences and the number

of inputs in the test suite by 37.3% and 36.4% on average respectively and does

so within a reasonable time.435

18

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

We now provide an example to show how the proposed algorithm (Algo-

rithm 1) can be used to construct a W set when given the FSM M1 in Figure 1.

The algorithm first evaluates all inputs (lines 8-14), leading to there being a V

set. Recall that each element of V is defined by a tuple (vI , vC , v(x̄), v(ȳ)).

V ={({s1, s2}, {s2, s3}, x1, y1), ({s3}, {s2}, x1, y3), ({s4}, {s2}, x1, y2),

({s1}, {s1}, x2, y3), ({s2, s3}{s4, s1}, x2, y2), ({s4}, {s1}, x2, y1),

({s1}, {s2}, x1, y1), ({s2}, {s3}, x1, y2), ({s3}, {s2}, x3, y3), ({s4}, {s2}, x3,4)}

After this, the set Seq is constructed (lines 18-20) and it should have the440

following elements: Seq = 〈(5, x1), (5, x2), (6, x3)〉. This is because the input x1

can separate all pairs except (s1, s2), the input x2 can separate all pairs except

(s2, s3), and finally the input x3 can separate all 6 pairs of states. Then after

the sorting step at line 21 of Algorithm 1, the elements of the set Seq will have

the following order Seq = 〈(6, x3), (5, x2), (5, x1)〉. After processing lines 22-25445

the algorithm removes all the elements from ∆ and returns the characterising

set as W1 = {x3}.

5. Empirical Evaluation

In this section we describe the experiments carried out to evaluate the pro-

posed W-set generation technique and the results of these. We start, in Sec-450

tion 5.1, by describing the existing W-set generation algorithm and also the

W-method. Section 5.2 then outlines the research questions addressed by the

experiments. In Section 5.3, we describe the experimental subjects (FSMs).

In Section 5.4 we then give the measures used in the evaluation, while Section

5.5 describes the results of the experiments. Finally, in Section 5.6 we discuss455

threats to validity and how they were addressed.

We used an Intel I7 CPU with 32GB RAM to carry out the experiments.

We implemented the W-set construction algorithm (from now on EA) as given

19

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

in [26], the W-method as given in [3] and the proposed algorithm using C++

on Microsoft Visual studio .Net 2013.460

5.1. Existing W-set generation algorithm and the W-method

The existing W-set generation algorithm, given in [26], has two steps.

In the first step, the algorithm determines the set of pairs of states (S) that

can be separated by a single input symbol. While doing this the algorithm

associates a pair of states in S with the input sequence (which has only one465

input) that separates them.

In the second phase, the algorithm enters a loop that ends when all pairs

are distinguished. At each iteration of the loop, the algorithm finds pairs of the

form (s, s′) such that s and s′ have not yet been separated and there is some

input x that takes (s, s′) to a pair that has already been separated by some470

input sequence x̄. When the algorithm finds such a pair (s, s′), it associates

(s, s′) with the input sequence xx̄. The original algorithm given in [26] uses a

set of tables (called Pk tables). In our implementation, we used lists instead of

tables. Please see Algorithm 2 for more details.

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Algorithm 2: The W-Set generation algorithm.
Input: FSM M = (S, s0, X, Y, h) such that |S| > 1

Output: A W-set W for M

begin

1 S ← {}

2 foreach (s, s′) ∈ S, s 6= s′ do

3 if there exist x, y, y′ such that x/y ∈ LM (s), x/y′ ∈ LM (s′) and y 6= y′

(randomly pick one such x ∈ X) then

4 S ← S ∪ {(s, s′), x}

5 while Not all pairs of states of M are separated do

6 S′ ← {}

7 foreach pair of state (s, s′) that is not included in S do

8 if there exist x, y, x̄, s1, s
′

1
such that (s, x, y, s1) ∈ h, (s′, x, y, s′

1
) ∈ h and

(s1, s
′

1
, x̄) ∈ S then

9 S′ ← S′ ∪ {(s, s′), xx̄}

10 S ← S ∪ S′

11 foreach {(s, s′), x̄} ∈ S do

12 W ←W ∪ x̄

13 Return W after prefix removal.

As a running example consider the FSM given in Figure 1. After initializa-

tion, lines 2-4 of Algorithm 2 are executed and this may lead to the following

set.

S = {{(s1, s2), x2}, {(s1, s3), x1}, {(s1, s4), x1}, {(s2, s3), x1}, {(s2, s4), x1}, {(s3, s4), x1}}

475

Since all the pairs are separated, the algorithm executes lines 11-13 and

returns W2 = {x1, x2}.

Note that the existing algorithm could also return {x3} as the W-set. How-

ever we show in the experiments section that this need not be the case.

We now describe the W-method test generation algorithm, which has three480

phases to construct a test suite (TS):

TS = r.R.W ∪ r.R.X.W

where r denotes the reset operation that brings the FSM to the initial state,

21

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

and R denotes the set of prefix closed sequences that reaches each state from

the initial state. The details of the W-method are given in Algorithm 3.

In lines 1-3 of Algorithm 3, the algorithm constructs the R sequences, (ε is

used to reach the initial state s0). Then in lines 4-6 of Algorithm 3, it introduces

a new set Z by concatenating the elements of {{ǫ} ∪ X} with W. That is it

forms

Z = {{ǫ} ∪X} · W

In lines 7-9 of Algorithm 3, the W-method constructs the test suite by con-485

catenating the elements of R and Z. i.e., the test suite is R ·Z. The W-method

returns a test suite by removing input sequences that are proper prefixes of

other sequences.

The W-method has a parameter m, which is an upper bound on the number

of states of the system under test; in all cases, we set m to be equal to the490

number of states of the specification FSM. The time complexity of the W-

method given in [3] is O(n3 ∗ p) where p = |X|, when m = n. The source code

for the implementations can be found through https://zenodo.org/badge/

latestdoi/258352564.

We now describe the application of the W-method using the previously men-495

tioned characterizing sets (W1 = {x3} and W2 = {x1, x2}) and FSM M1. First,

consider the case where Algorithm 3 is given FSM M1 (Figure 1) and W1 as

inputs. The algorithm will construct the R and the Z sets as follows:

R ={ε, x1, x1x1, x1x2}

Z ={ε, x1, x2, x3, x1x1, x1x2, x1x3, x1x1x1, x1x1x2, x1x1x3, x1x2x1, x1x2x2, x1x2x3}

Since W1 = {x3}, after prefix removal the test suite TS1 is as follows

TS1 ={x2x3, x3x3, x1x3x3, x1x1x1x3, x1x1x2x3, x1x1x3x3,

x1x2x1x3, x1x2x2x3, x1x2x3x3}

22

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Therefore TS1 contains 9 sequences with 31 inputs.500

Now suppose that Algorithm 3 is given M1 and W2 as inputs. The algorithm

will construct the same R and Z sets. However, because W2 = {x1, x2}, after

prefix removal, the test suite set TS2 is as follows.

TS2 ={x2x1, x3x1, x2x2, x3x2, x1x3x1, x1x3x2, x1x1x1x1,

x1x1x2x1, x1x1x3x1, x1x1x1x2, x1x1x2x2, x1x1x3x2,

x1x2x1x1, x1x2x2x1, x1x2x3x1, x1x2x1x2, x1x2x2x2, x1x2x3x2}

The test suite TS2 contains 18 sequences with 62 inputs. So in this example,

the proposed method reduced both the number of inputs and the number of505

sequences by 50%.

Algorithm 3: The W-Method.
Input: FSM M = (S, s0, X, Y, h), and W-set W for M

Output: A test suite TS for M

begin

1 Initialize R← {ε}, Z ← ∅, and TS ← ∅

2 foreach s ∈ S \ {s0} do

3 Find an input sequence x̄ that takes M from s0 to s and add this sequence to R

(R ∪ {x̄})

4 foreach x̄ ∈ R do

5 foreach x ∈ X ∪ {ǫ} do

6 Z∪{x̄x}

7 foreach x̄ ∈ Z do

8 foreach x̄′ ∈ W do

9 TS ← TS ∪ {x̄x̄′}

10 Return TS after prefix removal.

5.2. Research questions

The experiments were designed to address the following research questions.

RQ1 Does the proposed algorithm tend to return W-sets with fewer input se-

quences than the standard W-set generation algorithm?510

23

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

RQ2 Does the proposed algorithm tend to lead to test suites with fewer input

sequences, when the W-set is used within the W-method?

RQ3 Does the proposed algorithm tend to lead to test suites with fewer inputs

in total (sum of lengths of input sequences), when the W-set is used within

the W-method?515

RQ4 Does the proposed algorithm run in a reasonable amount of time?

Observe that the first research question directly relates to the objective of the

proposed algorithm: to return a W-set with relatively few input sequences. The

second research questions is related to the motivation for producing such a W-

set, which is that its use should lead to test suites with a relatively small number520

of input sequences (and so, also, resets). Thus, positive answers to the first two

research questions would suggest that the algorithm is effective in returning

small W-sets and its use leads to relatively small test suites. We considered the

third research question in order to check that any benefits of having smaller test

suites (fewer input sequences) are not potentially outweighed by the overall test525

suite length (the sum of the lengths of the input sequences). The final research

question addresses the scalability of the proposed algorithm.

5.3. Experimental subjects

In order to compare the proposed algorithm and the existing W-set gener-

ation algorithm, we randomly generated two classes of FSMs and we also used530

benchmark FSMs. In this section, we provide more details regarding the FSMs

used.

5.3.1. FSMs in Class I

The FSMs in the first class (C1) were generated as follows. First, for each

input x and state s we randomly assigned the next state and output values.535

After an FSMM was generated we checked its suitability as follows. We checked

whether M was initially connected and was also minimal (and so has a W-set).

If the FSM passed these tests then we included it into C1, otherwise we omitted

24

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

this FSM and produced another one. Consequently, all generated FSMs were

initially connected, minimal, and had W-sets.540

By using this procedure, we constructed six sets of 1000 FSMs with n states,

for each n ∈ {50, 60, . . . , 150}. In all cases, there were three input symbols and

three output symbols. In total, we therefore constructed 11, 000 FSMs for the

first class of FSMs.

5.3.2. FSMs in Class II545

Note that for the FSMs in C1, the next state of each transition is randomly

selected, hence the in-degrees3 of different states will be similar. In order to

reduce the potential impact of this, we also generated a second class (C2),

where we aimed to have FSMs with less similar in-degree values. To create

such an FSM, we first randomly generated an FSM as before and then selected550

a subset S̄ of states, the intention being to give these states higher in-degree

values than the states in S\S̄. To create higher in-degree values for the states in

S̄, we randomly selected a subset Γ of the set of transitions (where each element

of Γ is a pair (s, x) denoting the transition from state s with input symbol x).

We then forced the transitions in Γ to end in states in S̄. Similar to C1, after555

an FSM M was generated we checked its suitability.

When constructing this set of FSMs it was necessary to choose the cardinal-

ities of S̄ and Γ. If |Γ| was too large and |S̄| was too small then one might not

be able to construct a connected FSM, or one might tend to construct FSMs

that are not minimal and so do not have a W-set. On the other hand, if |Γ| was560

too small and |S̄| was too large then the in-degrees of the states will again be

similar.

In these experiments we chose |S̄| to be 10% of the states and we set |Γ| to

be 30% of the transitions. We observed that if |Γ| is a much higher proportion

of the number of transitions then it takes too much time to construct suitable565

FSMs.

3The in-degree of a state s is the number of transitions ending in s.

25

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

We constructed 11, 000 FSMs in C2, with the number of states n being in

{50, 60, . . . , 150}; for each n there were 1, 000 FSMs. We again used input and

output alphabets of size three.

5.3.3. Benchmark FSMs570

In addition to the randomly generated FSMs, we used benchmark FSM

specifications from a repository4. The FSM specifications were available in the

Dot format. In order to process the FSMs, we converted the Dot file format to

our FSM specification format. We used 16 FSMs from the benchmark; these

were minimal, deterministic, had a W-set and had fewer than 10 input bits5.575

We can split the set of benchmark FSMs used into groups. The first group

originated from the ACM/SIGDA benchmarks, a set of test suites (FSMs) used

in workshops between 1989 and 1993 [43] These FSMs, ranging from simple

circuits to circuits obtained from industry, were: DVRAM, Ex4 6, Log, Rie, and

Shift Register. For these FSMs we flattened the transitions with don’t care (“-580

”) symbols. That is, for each string with don’t care symbol, we introduce two

strings with 0 and 1 symbols, i.e., −01010 will be replaced to lead to 101010 and

001010 We also used FSMs that model the alternating bit protocol and FSMs

obtained by learning algorithms applied to Coffee Machine and Maestro credit

card case studies [44]. Table 2 gives the number of states and transitions of the585

benchmark FSMs.

5.4. Measures used

The experiments applied the proposed algorithm and the previously pub-

lished algorithm, using these to generate W-sets and then test suites (using the

W-method). Thus, for each algorithm and group of FSMs, such as all FSMs590

4The repository can be accessed via https://automata.cs.ru.nl/.
5This was for practical reasons since the circuits receive inputs in bits and b bits correspond

to 2b inputs.
6FSM specification Ex4 is partially specified. We complete the missing transitions by

adding self looping transitions with a special output symbol, and do not use these inputs for

W-set construction.

26

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Name No of states No of transitions

Shift Register 8 16

Coffee Machine 6 24

ABPSender.flat01 11 55

Maestro 6 84

ABPSender.flat02 15 105

ABPChannelflame.flat02 10 110

ABPSender.flat03 19 171

ABPSender.flat04 23 253

ABPChannel.Frame.flat03 17 306

ABPSender.flat05 27 351

ABPSender.flat06 31 465

ABPSender.flat07 35 595

Ex4 14 896

Log 17 8704

DVRAM 35 8960

Rie 29 14848

Table 2: Benchmark FSMs and their sizes

in C1 with a given number of states, we computed the following: mean W-set

size (number of input sequences); the mean test suite size (number of input

sequences); and the mean test suite length (total number of inputs).

In the analysis, we also used three measures to compare the results produced

by the two W-set generation techniques. These measures are directly associated

with the first three research questions. The first measure (M1) is the percent-

age reduction in the number of elements of the W-sets constructed using the

proposed algorithm (P), when compared to the W-sets returned by the existing

algorithm (EA). If we let WEA be the W-set returned by EA, and WP be the

27

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

W-set returned by P , then this measure can be defined as follows.

M1 =
|WEA| − |WP |

|WEA|
∗ 100

The second measure (M2) gives the percentage reduction in the number

of test sequences returned by the W-method when it is fed with the W-set595

returned by the proposed algorithm. Let T (.) be the number of test sequences

given by the parameter. We will use EA(M) to denote the test suite returned

by the W-method using WEA and P (M) to denote the test suite returned by

the W-method when using WP . Then M2 is computed as follows:

M2 =
T (EA(M))− T (P (M))

T (EA(M))
∗ 100

The final measure (M3) is the percentage reduction in the total number of600

inputs in the test suites returned by the W-Method when using WP and WEA

respectively. M3 is computed as follows:

M3 =
Lt(EA(M))− Lt(P (M))

Lt(EA(M))
∗ 100

where Lt(.) returns the sum of the lengths (number of inputs) of the input

sequences in the test suite given in the parameter.

5.5. Results and Evaluation605

In order to evaluate the relative performance of different approaches, for

each FSM M , we separately computed W-sets using the proposed algorithm

and the existing algorithm. We then generated test suites using the W-method

and computed the values of the three measures. In these experiments, we used

two existing tools to check all of the W-sets and test suites produced during the610

experiments. Given an FSM M , one tool [37] checks that a given set of input

sequences is a W-set for M and the other tool [45] checks whether a given set

of input sequences defines a checking experiment for M .

We start with the results for the first set of experimental subjects, the ran-

domly generated FSMs in C1. The results are given in Figure 2.615

28

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

We observe from Figure 2b that, for the proposed algorithm, the number of

input sequences in the W-sets increases only very slowly as the number of states

increases. In contrast, the number of input sequences increases quite noticeably

when we use the traditional approach. Recall that the proposed algorithm

selects the input sequence that distinguishes more pairs than the others while620

constructing the W-set (Lines 21-25 of Algorithm 1). Therefore, as the number

of states increases the algorithm has more options for reducing the number of

input sequences and hence can pick input sequences that distinguish more pairs

than others. This helps explain why the W-set size grows more slowly when

using the proposed algorithm.625

The results, regarding the size and length of the test suites returned by the

W-method, are given in Figure 2c and Figure 2d respectively. In both figures,

we observe that using the P algorithm leads to test suites with fewer elements

and fewer inputs than the EA algorithm.

Finally, the values of the metrics can be found in Figure 2a. As would be630

expected, given the other results, the percentage gains increase as the number

of state increase, reaching nearly 80% for FSMs with 150 states.

The results for C2 are given in Figure 3. We observe from Figure 3b that

the sizes of the W-sets plateaued for the FSMs if the proposed algorithm is

used. In contrast, the mean W-set size increases steadily with the number of635

states when computed by EA. This again stems from the heuristic step taken

by P . The results regarding test suite size and length are given in Figures 3c

and 3d respectively. Similar to before, the proposed algorithm leads to smaller

and shorter test suites, with the differences increasing as the number of states

increases.640

The values of the three metrics are given in Figure 3a. The results are similar

to those with C1: there are savings associated with all three metrics and these

savings increase as the number of states increases.

To investigate the results further, we conducted a non-parametric two-tailed

paired hypothesis test on the results where the null hypothesis stated that the645

paired P (M), EA(M) values were equal and the significance level was α =

29

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

50

60

70

80

o
f (
%
) g
a
in

M1 M2 M3

0

10

20

30

40

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o

Number of States

(a) Averages of the gain with respect to metrics

M1, M2 and M3 from C1.

30

40

50

o
f e

le
m
e
n
ts

EA P

0

10

20

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o
f n

u
m
b
e
r o

in
 W

‐s
e
t

Number of States

(b) Averages of the total number of input se-

quences in W-sets constructed from C1.

15000

20000

25000

o
f t
e
st
 ca

se
s

EA P

0

5000

10000

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o
f n

u
m
b
e
r o

Number of States

(c) Averages of the total number of input se-

quences in test suites constructed from C1.

300000

400000

500000

a
l n
u
m
b
e
r o

f

EA P

0

100000

200000

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o
f t
o
ta

in
p
u
ts

Number of States

(d) Averages of the total number of inputs in test

suites constructed from C1.

Figure 2: Performance comparison of algorithms WEA and WP on different metrics observed

from C1.

30

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

50

60

70

80

o
f (
%
) g
a
in

M1 M2 M3

0

10

20

30

40

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o

Number of States

(a) Averages of the gains with respect to metrics

M1, M2 and M3 from C2.

40

50

60

o
f e

le
m
e
n
ts

EA P

0

10

20

30

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o
f n

u
m
b
e
r o

in
 W

‐s
e
t

Number of States

(b) Averages of the total number of input se-

quences in W-sets constructed from C2.

15000

20000

25000

o
f t
e
st
 ca

se
s

EA P

0

5000

10000

50 60 70 80 90 100 110 120 130 140 150

T
h
e
 a
v
e
ra
g
e
 o
f n

u
m
b
e
r o

Number of States

(c) Averages of the total number of input se-

quences in test suites constructed from C2.

300000

400000

500000

l n
u
m
b
e
r o

f

EA P

0

100000

200000

50 60 70 80 90 100 110 120 130 140 150T
h
e
 a
v
e
ra
g
e
 o
f
to
ta

in
p
u
ts

Number of States

(d) Averages of the total number of inputs in test

suites constructed from C2.

Figure 3: Performance comparison of algorithms WEA and WP on different metrics observed

from C2.

(a) p-values for C1 (b) p-values for C2

Figure 4: p-values obtained from non-parametric paired hypothesis test (Wilcoxon-test) for

the experiments conducted on C1 and C2 where α = 0.05.

31

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8

10

12
e
s

M1 M2 M3

0

2

4

6

50 60 70 80 90 100 110 120 130 140 150

d
v
a
lu

Number of States

(a) Cohen’s d metric results on results of metrics

M1, M2 and M3 retrieved from C1.

5

6

7

8

e
s

M1 M2 M3

0

1

2

3

4

50 60 70 80 90 100 110 120 130 140 150

d
v
a
lu

Number of States

(b) Cohen’s d metric results on results of metrics

M1, M2 and M3 retrieved from C2.

Figure 5: Cohen’s d metric results on test suites C1 and C2.

0.05 [46]. We used the R tool to conduct the statistical evaluation [47]. The

resultant p-values are given in Figure 4. We can see that when n ≥ 60, the p

value is less than 0.05 for the M1, M2, and M3 values for both C1 and C2.

Moreover, we complemented our statistical analysis by considering the sta-650

tistical effect size through computing Cohen’s distance d for M1, M2, and M3

metrics computed over the FSMs in C1 and C2 (Figure 5) [48]. As can be seen

from Figure 5a and Figure 5b, in all cases the effect size were larger than 0.5

and so the effect size was large.

Considering the results provided for C1 and C2 we can deduce that there655

is clear evidence that the proposed algorithm leads to smaller W-sets which

addresses the first research question.

The results also provide information about the mean test suite sizes and

here we see an average reduction of 37.3% in the number of test sequences. In

addition, the reduction increases as the number of states increases. Moreover,660

the effect of non-uniform transition distribution (C2) was found to be negligible.

We investigated the effect of non-uniform transition distribution using the one

way ANOVA test for which the null hypothesis (the mean value is the same for

C1 and C2) was accepted for measures M1, M2, and M3 [47].

Likewise, Figure 4 and Figure 5 indicate that when n ≥ 60, the p value is less665

than 0.05 for M2, with both C1 and C2, and with large effect size (Figure 5).

This addresses the second research question, and suggests that the proposed

32

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1400

C1‐P C2‐P C1‐EA C2‐EA

800

1000

1200

m
e
 (s
e
c.
)

400

600

800

e
ra
g
e
 t
im

0

200

50 60 70 80 90 100 110 120 130 140 150

A
v
e

50 60 70 80 90 100 110 120 130 140 150

Number of States

Figure 6: Time comparison of the W-set generation algorithms. X axis labels the number of

states, and Y axis labels the time (seconds).

algorithm tends to lead to smaller test suites.

In addition to the above, we observe a reduction of 36.4% on average in the

total number of inputs in a test suite. Similar to before, the reduction increases670

as the number of states increases. Again, from Figure 4 and Figure 5, we can

see that when n ≥ 60, the p value is less than 0.05 for M3 with both C1 and

C2. The effect sizes are also large (Figure 5). This addresses the third research

question.

We recorded the time taken, by the two methods, to construct the W-sets,675

with the results being given in Figure 6. The proposed algorithm was found to

be slower; 2.218 times slower on average. This generally stems from the fact

that the proposed method generates and checks a high number of vertices, i.e.

the number of vertices grows with l|X|. However, the times were acceptable

for even the larger FSMs. Note that, for a given FSM M , the developer will680

run the proposed algorithm once, that is, it is a one-time computation. In

contrast, the resultant test suite will typically be run many times (for example,

in regression testing) and so it makes sense to “invest” in the generation of a

smaller test suite. In addition, test suite execution time will often exceed test

suite generation time.685

33

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

The results of the experiments conducted on the benchmarks are given in

Table 3. We see that, for some of the specifications, there is no difference in the

number of elements in the W-sets and the number of test sequences. However,

this is not too surprising since these FSMs are relatively small. Nevertheless,

for 9 out of 16 FSMs the results are promising: we observe that the proposed690

algorithm reduces the number of elements in the W-set, reduces the number of

test sequences, and reduces the total number of inputs of the test suite as well.

Figure 7a shows the values of the metrics, M1-M3, plotted against the num-

ber of states of the benchmark FSMs. These results indicate that the FSMs

where there were no benefits were FSMs with fewer states, suggesting that the695

reduction tends to increase with the number of states. We also plotted the val-

ues of the metrics against the number of transitions of the FSMs (Figure 7b)).

Interestingly, there is no clear pattern. This suggests that the savings intro-

duced by the proposed algorithm depend more on the number of states than

the number of transitions.700

Table 3 also shows the time taken by the two algorithms. We see that the

time required to generate the W-sets is, in general, higher when the proposed

algorithm is used. However, the time is negligible for these examples.

5.6. Threats to validity

In this section we discuss some potential threats to the validity of the ex-705

perimental results and how these were addressed.

M1 M2 M3

35

40

45

25

30

35

g
a
in

15

20

25

(%
) g

0

5

10

0

6 8 10 11 14 15 17 19 23 27 29 31 35

Number of States

(a) Percentage gain-number of states chart for

the benchmark FSMs with respect to M1, M2

and M3 metrics.

M1 M2 M3

40

50

30

g
a
in

10

20(%
)

0

10

1 2 5 8 1 1 1 2 3 3 4 5 8 8 8 11
6

2
4

5
5

8
4

1
0
5

1
1
0

1
7
1

2
5
3

3
0
6

3
5
1

4
6
5

5
9
5

8
6
9

8
7
0
4

8
9
6
0

1
4
8
4
8

Number of Transitions

(b) Percentage gain-number of transitions chart

for the benchmark FSMs with respect to M1, M2

and M3 metrics.

34

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Name M1 M2 M3 P(msec.) EA(msec.)

Shift Register 0 0 0 25 24

Coffee Machine 0 0 0 < 1 < 1

ABPSender.flat01 25% 25% 25% 1 1

Maestro 0 0 0 < 1 < 1

ABPSender.flat02 25% 25% 25% 1 1

ABPChannelflame.flat 02 0 0 0 1 1

ABPSender.flat03 25% 25% 25% 1 1

ABPSender.flat04 33% 34% 32% 3 2

ABPChannelflame.flat03 0 0 0 1 1

ABPSender.flat05 33% 34% 32% 4 3

ABPSender.flat06 33% 34% 32% 6 7

ABPSender.flat07 33% 34% 32% 15 10

Ex4 0 0 0 270 195

Log 0 0 0 260 234

DVRAM 40% 32% 29% 567 267

Rie 34% 41% 31% 689 304

Table 3: Results of experiments conducted on benchmark FSMs

35

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

First, there are threats to generalisability. We evaluated the performance of

our algorithm by using randomly generated FSMs. It is possible that the per-

formance of our proposed algorithm differs for FSMs used in real-life situations.

Although using random FSMs is normal in this field, in order to evaluate the gen-710

eralization of the proposed algorithm, we also evaluated the proposed algorithm

using case studies consisting of benchmark FSM specifications (Section 5.3.3).

We see that the experimental results obtained from randomly generated FSMs

are similar to the results obtained with the larger benchmark FSMs. How-

ever, for small FSMs, we did not observe any difference between the proposed715

algorithm and the existing algorithm.

There are also threats to internal validity and the possibility that one or

more of the implementations were incorrect. In order to reduce this threat,

we also used two existing tools [37, 45]. The first tool checks if a given set of

sequences is a W-set for an FSM. The second tool checks whether or not a given720

set of input sequences defines a checking experiment for an FSM M .

6. Related Work

Minimizing the W-set is inherently related to i) minimizing the size of sep-

arating sequences and ii) test suite minimization.

To begin with, to our knowledge, this work is the first to investigate the725

problem of finding a small W-set. In [49] the author discusses an algorithm that

constructs W-sets with short sequences. Note that the algorithm presented in

this previous work is identical to the algorithm given in [26].

However, for a given FSM there are a number of different types of sequences

that can separate states, with examples including adaptive distinguishing se-730

quences (ADSs), and unique input output sequences (UIOs). Previous work

explored the problem of construct minimal ADSs. It was proven that minimiz-

ing the height of an ADS (in fact minimizing ADS size with respect to some

other metrics as well) is an NP-hard problem [50]. Türker and Yenigün proposed

two heuristics as a modification of the existing ADS generation algorithm for735

36

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

minimization [50]. Recently Türker et al. also presented a BFS based algorithm

called the lookahead based algorithm (LA) for minimizing ADSs [51]. In LA, a

branch of a BFS tree is extended if it satisfies certain conditions. However, the

algorithm proposed in this paper expands each branch of a BFS tree until the

W-set is constructed. Regarding UIOs, the literature contains several works on740

reducing the size of these sequences. First, the algorithm introduced in [9] is a

brute-force algorithm based on a BFS tree. Therefore, this algorithm finds the

shortest such sequences. Later in [52], the author introduced a heuristic to find

UIOs faster.

The proposed W-set generation algorithm includes a step in which the choice745

of input sequence is based on how many pairs of states are separated by the

sequences. The approach taken is a form of greedy algorithm, in which the test

sequence with greatest ‘score’ (number of pairs of states separated) is chosen.

Greedy algorithms have been used in a number of areas of software testing,

including two topics relevant to regression testing: test minimization and (later)750

test prioritization (see, for example, [53, 54, 55]). The context of this previous

work is that we have a regression test suite T and wish to either reduce the cost

of applying regression testing by only using a subset of T (test minimization)

or to apply the test cases in an order that means that any failures are likely to

be observed relatively early.755

One possibility would have been to simply sort the sequences based on how

many pairs of states are distinguished and this would then have been similar to

the Greedy Algorithm that was devised for prioritizing test cases based on cov-

erage information (see, for example, [55]). This prioritization technique involves

computing the coverage provided by each test case and then simply sorting the760

test cases based on the coverage scores. However, instead, whenever the se-

quence length is increased we use an updated set ∆ of pairs of states not yet

covered and the choice of next input sequence is based on the updated ∆. This

is a little like the so-called Additional Greedy approach to test prioritisation.

Here, in each iteration, the approach chooses the test case providing highest765

additional coverage and then updates the coverage information [55].

37

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Although Additional Greedy has been found to be an effective prioritiza-

tion technique, it has been observed that it can be sub-optimal. As a result,

a number of alternatives have been explored. In particular, it has been found

that metaheuristic algorithms, such as Genetic Algorithms, can outperform Ad-770

ditional Greedy (see, for example, [56, 57]). It may well be that the proposed

algorithm can be improved by incorporating such algorithms. However, such

approaches are likely to significantly increase the (algorithm) execution time

and so probably will only be of value in situations in which the benefits of a

small reduction in test suite size are not outweighed by such an increase in W-set775

generation time.

7. Conclusion

Software testing is typically performed manually and is an expensive, error

prone process. This has led to interest in automated test generation, includ-

ing significant interest in model based testing (MBT). Most MBT techniques780

generate test suites from either finite state machines (FSMs) or labelled tran-

sition systems, with such a model potentially representing the semantics of a

specification in a richer language.

In this paper, we investigated the problem of computing a minimal W-set

for a given deterministic, minimal completely specified FSM. We introduced the785

associated decision problem and showed that the problem of deciding whether

an FSM has a W-set with at most K input sequences is PSPACE-complete. In

contrast, the problem of deciding whether an FSM has a W-set with total length

K is NP-complete.

The initial motivation for minimizing a W-set was the use of W-sets in the790

context of test suite generation. Ideally one uses a minimal W-set, since the

W-set is used in state recognition and state verification. Therefore, the size of a

test suite generated using a W-set should correlate with the number of elements

of the W-set. Due to the hardness of W-set minimization, a heuristic algorithm

was proposed. Experiments were conducted to evaluate the proposed algorithm.795

38

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

In these, the use of a W-set returned by the proposed algorithm reduced the

number of test sequences in a test suite by 37.3% on average, with the total

number of inputs being reduced by 36.4% on average.

Although the proposed algorithm was evaluated in the context of the W-

method, there are potential implications for some other FSM-based test gener-800

ation techniques. The Wp [9], the HSI-method [28], the HIS [58]7, H [35, 32],

and incremental methods (such as [59]) rely on the presence of a W-set and

one might conjecture that the use of a small W-set is likely to lead to these

returning more efficient test suites.

There are a number of additional lines of future work. First, it would be805

interesting to explore realistic conditions under which the decision and optimisa-

tion problems can be solved in polynomial time. Such conditions might lead to

new notions of testability. Although the results of the experiments suggest that

the use of relatively small W-sets leads to test suites that require fewer resets,

it would be interesting to extend the experiments and possibly also consider810

the Wp, HIS and SPY algorithms [9, 58, 22]. Finally, it would be interest-

ing to investigate complexity results and effective algorithms that can generate

minimum W-sets from non-deterministic FSMs.

Acknowledgement

This work is dedicated to the memory of Prof. Hasan Ural, who was our815

mentor/friend. Prof. Ural was a good teacher who introduced new scientists to

the testing community, he was also a dedicated scientist who provided important

contributions relentlessly to the testing spectra for nearly half a century.

7Note, we use the naming convention used in [32] and use the HIS method to refer to the

test suite generation algorithm.

39

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

References

[1] A. Friedman, P. Menon, Fault detection in digital circuits, Computer Ap-820

plications in Electrical Engineering Series, Prentice-Hall, 1971.

[2] A. Aho, R. Sethi, J. Ullman, Compilers, principles, techniques, and tools,

Addison-Wesley series in computer science, Addison-Wesley Pub. Co., 1986.

[3] T. S. Chow, Testing software design modelled by finite state machines,

IEEE Transactions on Software Engineering 4 (1978) 178–187.825

[4] E. Brinksma, A theory for the derivation of tests, in: Proceedings of Pro-

tocol Specification, Testing, and Verification VIII, North-Holland, Atlantic

City, 1988, pp. 63–74.

[5] A. Dahbura, K. Sabnani, M. Uyar, Formal methods for generating protocol

conformance test sequences, Proceedings of the IEEE 78 (8) (Aug) 1317–830

1326.

[6] D. Lee, K. Sabnani, D. Kristol, S. Paul, Conformance testing of protocols

specified as communicating finite state machines-a guided random walk

based approach, IEEE Transactions on Communications 44 (5) (May) 631–

640.835

[7] D. Lee, M. Yannakakis, Principles and methods of testing finite-state ma-

chines - a survey, Proceedings of the IEEE 84 (8) (1996) 1089–1123.

[8] S. Low, Probabilistic conformance testing of protocols with unobservable

transitions, in: 1993 International Conference on Network Protocols, Oct,

pp. 368–375.840

[9] K. Sabnani, A. Dahbura, A protocol test generation procedure, Computer

Networks 15 (4) (1988) 285–297.

[10] D. P. Sidhu, T.-K. Leung, Formal methods for protocol testing: A detailed

study, IEEE Transactions on Software Engineering 15 (4) (1989) 413–426.

40

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[11] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and845

Tools, Addison-Wesley, 1999.

[12] M. Haydar, A. Petrenko, H. Sahraoui, Formal verification of web appli-

cations modeled by communicating automata, in: Formal Techniques for

Networked and Distributed Systems FORTE, Vol. 3235 of LNCS, Springer-

Verlag, Madrid, 2004, pp. 115–132.850

[13] A. Betin-Can, T. Bultan, Verifiable concurrent programming using concur-

rency controllers, in: Proceedings of the 19th IEEE international confer-

ence on Automated software engineering, IEEE Computer Society, 2004,

pp. 248–257.

[14] I. Pomeranz, S. M. Reddy, Test generation for multiple state-table faults855

in finite-state machines, IEEE Transactions on Computers 46 (7) (1997)

783–794.

[15] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing

approaches, Software Testing, Verification and Reliability 22 (5) (2012)

297–312.860

[16] W. Grieskamp, N. Kicillof, K. Stobie, V. A. Braberman, Model-based qual-

ity assurance of protocol documentation: tools and methodology (2011).

[17] A. V. Aho, A. T. Dahbura, D. Lee, M. U. Uyar, An optimization technique

for protocol conformance test generation based on UIO sequences and rural

chinese postman tours, in: Protocol Specification, Testing, and Verification865

VIII, Elsevier (North-Holland), Atlantic City, 1988, pp. 75–86.

[18] F. C. Hennie, Fault-detecting experiments for sequential circuits, in: Pro-

ceedings of Fifth Annual Symposium on Switching Circuit Theory and

Logical Design, Princeton, New Jersey, 1964, pp. 95–110.

[19] G. Gonenc, A method for the design of fault detection experiments, IEEE870

Transactions on Computers 19 (1970) 551–558.

41

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[20] S. T. Vuong, W. W. L. Chan, M. R. Ito, The UIOv-method for protocol

test sequence generation, in: The 2nd International Workshop on Protocol

Test Systems, Berlin, 1989.

[21] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi,875

Test selection based on finite state models, IEEE Transactions on Software

Engineering 17 (6) (1991) 591–603.

[22] A. da Silva Simão, A. Petrenko, N. Yevtushenko, On reducing test length

for FSMs with extra states, Software Testing, Verification and Reliability

22 (6) (2012) 435–454.880

[23] H. Ural, K. Zhu, Optimal length test sequence generation using distin-

guishing sequences, IEEE/ACM Transactions on Networking 1 (3) (1993)

358–371.

[24] A. Petrenko, N. Yevtushenko, Testing from partial deterministic FSM spec-

ifications, IEEE Transactions on Computers 54 (9) (2005) 1154–1165.885

[25] Z. Kohavi, Switching and Finite State Automata Theory, McGraw-Hill,

New York, 1978.

[26] A. Gill, Introduction to The Theory of Finite State Machines, McGraw-Hill,

New York, 1962.

[27] M. P. Vasilevskii, Failure diagnosis of automata, Cybernetics 4 (1973) 653–890

665.

[28] G. Luo, A. Petrenko, G. V. Bochmann, Selecting test sequences for

partially-specified nondeterministic finite state machines, in: Protocol Test

Systems, IFIP The International Federation for Information Processing,

Springer US, 1995, pp. 95–110.895

[29] D. Angulin, Learning regular sets from queries and counterexamples, In-

formation and Computation 75 (1987) 87–106.

42

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[30] D. Huistra, J. Meijer, J. van de Pol, Adaptive learning for learn-based re-

gression testing, in: Formal Methods for Industrial Critical Systems, Vol.

11119 of Lecture Notes in Computer Science, Springer International Pub-900

lishing, Cham, 2018, pp. 162–177.

[31] N. Yang, K. Aslam, R. Schiffelers, L. Lensink, D. Hendriks, L. Cleophas,

A. Serebrenik, Improving model inference in industry by combining active

and passive learning, in: 2019 IEEE 26th International Conference on Soft-

ware Analysis, Evolution and Reengineering (SANER), 2019, pp. 253–263.905

[32] R. Dorofeeva, K. El-Fakih, N. Yevtushenko, An improved conformance

testing method, in: Proceedings of the 25th IFIP WG 6.1 International

Conference on Formal Techniques for Networked and Distributed Systems,

FORTE’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 204–218.

[33] A. Petrenko, G. v. Bochmann, R. Dssouli, Conformance relations and test910

derivation, in: Proceedings of Protocol Test Systems VI (C-19), 1993, pp.

157–178.

[34] A. D. Friedman, P. R. Menon, Fault detection in digital circuits, Prentice-

Hall Englewood Cliffs, N.J, 1971.

[35] I. Koufareva, M. Dorofeeva, A novel modification of W-method, Joint Bull.915

Novosibirsk Comput (2002) 69–81.

[36] E. P. Hsieh, Checking experiments for sequential machines, IEEE Transac-

tions on Computers 20 (1971) 1152–1166.

[37] R. M. Hierons, U. C. Türker, Parallel algorithms for generating harmonised

state identifiers and characterising sets, IEEE Transactions on Computers920

65 (11) (2016) 3370–3383.

[38] R. M. Hierons, Minimizing the number of resets when testing from a finite

state machine, Information Processing Letters 90 (6) (2004) 287–292.

43

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[39] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, N. Yevtushenko, FSM-

based conformance testing methods: a survey annotated with experimental925

evaluation, Information and Software Technology 52 (12) (2010) 1286–1297.

[40] K. Bulut, G. Jourdan, U. C. Türker, Minimizing characterizing sets, in:

16th International Conference on Formal Aspects of Component Software

(FACS 2019), Vol. 12018 of Lecture Notes in Computer Science, Springer,

2019, pp. 72–86.930

[41] D. Lee, M. Yannakakis, Testing finite-state machines: State identification

and verification, IEEE Transactions on Computers 43 (3) (1994) 306–320.

[42] M. R. Garey, D. S. Johnson, Computers and Intractability, W. H. Freeman

and Company, New York, 1979.

[43] F. Brglez, ACM/SIGMOD benchmark dataset, Available on-935

line at https://people.engr.ncsu.edu/brglez/CBL/benchmarks/

Benchmarks-upto-1996.html, accessed: 2014-02-13 (1996).

[44] D. Neider, R. Smetsers, F. W. Vaandrager, H. Kuppens, Benchmarks for

automata learning and conformance testing, Vol. 11200 of Lecture Notes

in Computer Science, Springer, 2018, pp. 390–416.940

[45] C. Güniçen, U. C. Türker, H. Ural, H. Yenigün, Generating preset distin-

guishing sequences using SAT, in: Computer and Information Sciences II,

Springer London, 2012, pp. 487–493.

[46] F. Wilcoxon, Individual Comparisons by Ranking Methods, Springer New

York, New York, NY, 1992, pp. 196–202.945

[47] P. Teetor, R Cookbook, 1st Edition, O’Reilly, 2011.

[48] J. Cohen, Statistical power analysis for the behavioral sciences, Routledge,

1988.

44

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[49] M. Soucha, Finite-state machine state identification sequences, Avail-

able online at https://cyber.felk.cvut.cz/theses/papers/555.pdf,950

accessed: 2020-12-06 (1996).

[50] U. Türker, H. Yenigün, Hardness and inapproximability of minimizing

adaptive distinguishing sequences, Formal Methods in System Design 44 (3)

(2014) 264–294.

[51] U. Türker, T. Ünlüyurt, H. Yenigün, Lookahead-based approaches for mini-955

mizing adaptive distinguishing sequences, in: Testing Software and Systems

- 26th IFIP WG 6.1 International Conference, ICTSS 2014, Madrid, Spain,

September 23-25, 2014. Proceedings, 2014, pp. 32–47.

[52] K. Naik, Efficient computation of unique input/output sequences in finite-

state machines, IEEE/ACM Transactions on Networking 5 (4) (1997) 585–960

599.

[53] T. Y. Chen, M. F. Lau, Dividing strategies for the optimization of a test

suite, Information Processing Letters 60 (3) (1996) 135 – 141.

[54] G. Rothermel, M. J. Harrold, Analyzing regression test selection tech-

niques, IEEE Transactions on Software Engineering 22 (8) (1996) 529–551.965

[55] G. Rothermel, M. J. Harrold, J. von Ronne, C. Hong, Empirical studies of

test-suite reduction, Software Testing, Verification and Reliability 12 (4)

(2002) 219–249.

[56] Z. Li, M. Harman, R. M. Hierons, Search algorithms for regression test case

prioritization, IEEE Transactions on Software Engineering 33 (4) (2007)970

225–237.

[57] S. Yoo, M. Harman, Regression testing minimization, selection and pri-

oritization: a survey, Software Testing, Verification and Reliability 22 (2)

(2012) 67–120.

45

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[58] A. Petrenko, N. Yevtushenko, A. Lebedev, A. Das, Nondeterministic state975

machines in protocol conformance testing, in: Proceedings of Protocol Test

Systems, VI (C-19), Elsevier Science (North-Holland), Pau, France, 1994,

pp. 363–378.

[59] K. El-Fakih, R. Dorofeeva, N. Yevtushenko, G. V. Bochmann, FSM-based

testing from user defined faults adapted to incremental and mutation test-980

ing, Programming and Computer Software 4/38 (2012) 1608–3261.

46

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

