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Abstract

Plane-wave DOA estimation techniques yield biased estimates of source bearing angles in the ocean due to the multimode
nature of acoustic propagation in an oceanic waveguide. Bearing estimation using matched 5eld processing requires either
a computationally expensive three-dimensional search or a priori knowledge of the source ranges and depths. A new
subspace-based high-resolution bearing estimation technique which does not have any of these drawbacks is presented in
this paper.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Bearing estimation of acoustic sources is an im-
portant aspect of passive localization of targets in the
ocean. It is known that conventional delay-and-sum
beamforming yields biased estimates of the source
bearing due to the multimode nature of acoustic prop-
agation in the ocean [2,6]. For the same reason, other
plane-wave direction-of-arrival (DOA) estimation
techniques such as MUSIC [13], ESPRIT [12], and
min-norm [9] algorithms also yield biased bearing
estimates in the ocean. The bias increases as the num-
ber of propagating modes increases or as the bearing
angle (with respect to the broadside direction of a
linear horizontal array) increases. Unbiased bearing
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estimates can be obtained using matched 5eld
processing techniques [16] such as the Bartlett
processor or three-dimensional MUSIC. But these
methods involve a computationally expensive
three-dimensional search in the bearing-range-depth
space unless prior estimates of range and depth are
available.
In this paper, we present a new high-resolution

method, called the subspace intersection method, for
obtaining unbiased bearing estimates of multiple un-
correlated sources in a horizontally strati5ed ocean
using a one-dimensional search without the prior
knowledge of the source ranges and depths. The orga-
nization of the paper is as follows. The acoustic 5eld
structure in a horizontally strati5ed ocean is described
in Section 2. The maximum likelihood (ML) and MU-
SIC estimation techniques are reviewed in Section 3,
and the limitations of these techniques are discussed
especially with reference to their computational
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complexity. The new subspace intersection method
is described in Section 4. Salient features of the new
bearing estimation technique are discussed in Sec-
tion 5. A detailed performance analysis is carried
out in Section 6 with the help of simulation results.
Conclusions are presented in Section 7.

2. Acoustic �eld at the array

We model the ocean as a horizontally strati5ed wa-
ter layer of constant depth d overlying a horizontally
strati5ed bottom. This model implies that the ocean is
range-independent, i.e. variation of its acoustic prop-
erties in the horizontal direction is negligible in the
range of interest. Let J mutually uncorrelated nar-
rowband sources of center frequency f0 be located at
depths zj and ranges rj (j = 1; : : : ; J ) with respect to
the 5rst element of a uniform linear horizontal array of
N narrowband sensors located at depth z and having
interelement spacing H. Let the bearing angle of the
jth source with respect to the end5re direction of the
array be denoted by 
j. The geometry of the problem
is shown in Fig. 1.
Let the signal at the nth element of the array due to

the jth source be represented by

sjn(t) = pjn�j(t)ei2�f0t ;

j = 1; : : : ; J ; n= 1; : : : ; N; (1)

where �j(t) is a slowly varying zero-mean random
function that accounts for the random Iuctuations of
the source and the intervening medium, and the vari-
ance of �j(t) given by

�2
j = E[|�j(t)|2] (2)

is a measure of the strength of the source. In Eq. (1),
the signal amplitude pjn can be written as the sum of
the discrete normal modes of the channel [1]

pjn =
M∑

m=1

bmjei(n−1)kmH cos 
j ; (3)

where

bmj =
(

2�
kmrj

)1=2

 m(zj) m(z)e−�mrj−i(kmrj−�=4) (4)

is the complex amplitude of the mth normal mode at
the 5rst element of the array due to the jth source, the

Fig. 1. Geometry of the source and receiver array, (a) top view
(b) side view.

function  m(z) is the eigenfunction of the mth normal
mode of the oceanic waveguide, and the quantities km
and �m are the corresponding wavenumber and attenu-
ation coeJcient, respectively. The output of the array
of narrowband sensors can be expressed as the vector

y(t) = [y1(t) · · ·yN (t)]T

=P(X)�(t) + n(t); (5)

where �(t)=[�1(t) · · · �J (t)]T is the source signal vec-
tor, n(t) = [n1(t) · · · nJ (t)]T is the array noise vector,

X = [xT1 · · · xTJ ]; (6)

xj = [
j rj zj]T; j = 1; : : : ; J (7)

is the (unknown) position vector of the jth source, and

P = P(X) = [p(x1) · · · p(xJ )] (8)

is an N × J matrix whose columns

p(xj) = [pj1 · · ·pjN ]T; j = 1; : : : ; J (9)

are the array signal amplitude vectors. The vectors
p(xj) can, in turn, be expressed as

p(xj) = A(
j)b(rj; zj); j = 1; : : : ; J; (10)
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where

b(rj; zj) = [b1j · · · bMj ]
T; j = 1; : : : ; J (11)

are the mode amplitude vectors whose elements bmj

are de5ned by Eq. (4), and

A(
) = [a(k1 cos 
) · · · a(kM cos 
)] (12)

is an N × M matrix whose columns are the steering
vectors de5ned as

a(km cos 
) = [1 eikmH cos 
 · · · ei(N−1)kmH cos (
)]T;

m= 1; : : : ; M: (13)

3. Review of bearing estimation techniques

3.1. ML estimator

One method of estimating the source bearing
angles 
1; : : : ; 
J is to obtain the maximum like-
lihood estimate (MLE) of all the source coordi-
nates X = [xT1 x

T
2 · · · xTJ ]. The MLE of X , which is

asymptotically eJcient, maximizes the conditional
log-likelihood function of L observation vectors
{y(t); t = 1; : : : ; L} with respect to X . An analyti-
cally tractable solution to this maximization problem
is possible if the noise is Gaussian and spatially and
temporally white, i.e.

E[n(t)nH(t)] = �2I ; (14)

E[n(t)nH(u)] = 0 for t �= u: (15)

Under these conditions, the conditional log-likelihood
function is given by

‘({y(t)}L
t=1 | �(t)) = Constant − NL ln �2

− 1
�2

L∑
t=1

[y(t) − P(X)�(t)]H

×[y(t) − P(X)�(t)]: (16)

It can be shown [15] that the ML estimate of X min-
imizes the following cost function:

CML(X) = tr([I −�(X)](ĈL)); (17)

where

�(X) = P(X)[PH(X)P(X)]−1PH(X); (18)

ĈL =
1
L

L∑
t=1

y(t)yH(t); (19)

I is the N × N identity matrix, and tr(:) denotes the
trace of (.). The matrix ĈL is a consistent estimator
of the data covariance matrix C de5ned as

C = E[y(t)yH(t)]; (20)

so that the sequence {ĈL; L = 1; 2; : : :} converges in
probability to C .
It is known [15] that the MLE is based on the as-

sumption that the following conditions are satis5ed:

• Condition(C1): N ¿J , and the signal vectors p(x)
corresponding to every set of (J +1) diMerent val-
ues of x (i.e. every set of (J + 1) diMerent source
positions) are linearly independent. Satisfaction of
this condition guarantees the uniqueness of the ML
estimator.

• Condition(C2): Noise is spatially white, i.e.
Eq. (14) is satis5ed.

• Condition(C3): Noise is Gaussian and also tempo-
rally white, i.e. Eq. (15) is satis5ed.

It is shown in Appendix A that a suJcient condition
for the linear independence of every set of (J + 1)
signal vectors with distinct bearing angles is that the
sensor array satis5es the following constraints:

N¿M (J + 1); (21)

H¡�=k1 = !1=2; (22)

where !1 is the wavelength of the 5rst normal mode of
the oceanic waveguide. Hence, unambiguous bearing
estimation of J sources is guaranteed if conditions
(21) and (22) are satis5ed.
A major drawback of the MLE is its computational

complexity. Estimation of the positions of J sources
involves a search in a 3J -dimensional space.

3.2. MUSIC estimator

Multiple signal classi5cation (MUSIC) is an esti-
mation technique based on the eigendecomposition of
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the data covariance matrix C . We assume that the
signal and noise are uncorrelated and that the noise is
spatially white with variance �2. Using Eqs. (5)–(13),
we can write

C = [p(x1) · · · p(xJ )]Cs[p(x1) · · · p(xJ )]H + �2I ;
(23)

where

Cs = E[�(t)�H(t)] (24)

is the source covariance matrix. We assume that the
sources are not fully correlated, so that the following
condition is satis5ed:

• Condition(C4): The matrix Cs =E[�(t)�H(t)] is
a full rank matrix, i.e. a matrix of rank J .

To proceed further with the development of the MU-
SIC algorithm we assume that condition (C1) is satis-
5ed, i.e. signal vectors corresponding to every set of
(J +1) distinct source positions are linearly indepen-
dent. It follows from this assumption that the matrix
[p(x1) · · · p(xJ )]Cs[p(x1) · · · p(xJ )]H in Eq. (23) is a
matrix of rank J whose unit-norm eigenvectors are
equal to the J unit-norm eigenvectors of C with the
largest eigenvalues. Let these eigenvectors of C be
denoted by u1; : : : ; uJ , and let the remaining unit-norm
eigenvectors of C be denoted by uJ+1; : : : ; uN ,. The
signal subspace S is de5ned as

S= span{u1; : : : ; uJ} = span{p(x1); : : : ; p(xJ )}: (25)
The noise subspace N de5ned as

N= span{uJ+1; : : : ; uN} (26)

is the orthogonal complement of S. Let Ts =
{x1; : : : ; xJ} be the set of source position vectors. It
follows from the assumption of linear independence
of the signal vectors p(x1); : : : ; p(xJ ) that

p(x)∈S if and only if x∈Ts: (27)

In other words, p(x) is orthogonal to the noise sub-
space N if and only if x∈Ts. Consequently, unique
estimates of x1; : : : ; xJ are provided by the positions
of the J peaks of the ambiguity function

BMUSIC(x) =

[∑N
n=J+1 |pH(x)un|2

‖p(x)‖2
]−1

: (28)

MUSIC requires a knowledge of the data covariance
matrix C . In practice, C is unknown, but it can be
consistently estimated from the available data using
Eq. (19). Accordingly, the unit-norm eigenvectors un
in Eq. (28) are replaced by the unit-norm eigenvectors
ûn of the matrix ĈL.

Conditions (C1) and (C2) required for MLE are
also required for MUSIC. MUSIC estimator also re-
quires the satisfaction of condition (C4). However,
MUSIC does not require condition (C3), i.e. Gaussian-
ity and temporal uncorrelatedness of noise is not re-
quired. This is a major advantage since acoustic noise
in ocean is often non-Gaussian in character [11].
Another signi5cant advantage of MUSIC over MLE

is the reduction in computational complexity. MLE in-
volves a search in a parameter space of dimension 3J ,
whereas MUSIC involves only a three-dimensional
search. But even this three-dimensional search is quite
demanding. It involves a lot of wasteful eMort if one is
interested in estimating only the source bearing angles.

3.3. Plane-wave beamformers

One method of reducing the computational com-
plexity of the MUSIC algorithm is to approximate the
vector p(x) in Eq. (28) as

p(x) � a(k1 cos 
); (29)

based on the approximation that the incident signal
from each search direction is a plane wave. The choice
of the wavenumber k1 is based on the assumption that
the 5rst mode is the dominant mode in each inci-
dent signal. Eq. (28) reduces, under this approxima-
tion, to the well-known plane-waveMUSIC ambiguity
function

BPWM(
) =

[
N∑

n=J+1

|aH(k1 cos 
)un|2
]−1

: (30)

The peaks of BPWM(
), which are obtained through a
one-dimensional search, yield biased estimates of the
bearing angles 
j. An illustration of the biased bear-
ing estimates provided by plane-wave MUSIC and the
corresponding estimates by three-dimensional MUSIC
beamformer [Eq. (28)] are given in Fig. 2. The ocean
is modelled as a Pekeris channel [1] whose parame-
ters are given in Section 6. A 40-element array with
H=10 m is located at depth z=50 m. Three sources
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Fig. 2. Solid line: response of the plane-wave MUSIC beamformer
for 3 sources at 
1 = 10◦, 
2 = 45◦ and 
3 = 80◦. Dash, dot,
and dash–dot lines: response of the 3D-MUSIC beamformer for
3 sources at 
1 = 10◦, 
2 = 45◦ and 
3 = 80◦.

of frequency 50 Hz are located at range 10 km, depth
20 m and bearing angles of 10◦, 45◦ and 80◦. It is seen
from Fig. 2 (solid line) that the bias of the plane-wave
MUSIC beamformer [Eq. (30)] is small only if the
source is close to the broadside direction (90◦), but
the bias increases as the source moves away from the
broadside direction. It can be shown that bearing es-
timates in the ocean obtained using a delay-and-sum
beamformer exhibit a similar behavior [2,6,7]. The
bias is also dependent on the source range and depth
and on various ocean parameters. The response of
the three-dimensional MUSIC beamformer has been
obtained through three one-dimensional searches as-
suming prior knowledge of the range and depth of
each source. Since the three estimates are obtained by
three diMerent one-dimensional searches, the curves
are shown with dot, dash, and dot–dashed lines. The
three-dimensional MUSIC yields unbiased bearing es-
timates, as expected.

3.4. Limitations of ML and MUSIC estimators

The ML and MUSIC estimators described in the
preceding sections may be considered to belong to the
broad class of matched 5eld processors. In matched
5eld processing (MFP) [16], the data vector y is
matched with a set of replica signal vectors s(�),
corresponding to a set of values of the parameter vec-
tor �, to 5nd the best ‘match’. The simplest and the
most obvious way of matching the data vector with

replica signal vectors is to use the Bartlett processor
whose ambiguity function is de5ned as

BBart(�) = E[|sH(�)y|2] = sH(�)Cs($); (31)

where C = E[yyH] is the data covariance matrix.
The Bartlett processor is essentially a linear proces-
sor which may be used for localization of a single
source or for low-resolution localization of multiple
sources. More sophisticated nonlinear processors are
required for localization of multiple sources with
a higher resolution. In general, the parameters re-
quired to compute the replica signal vectors may be
divided into 3 categories. The 5rst category consists
of ‘known’ parameters which may be denoted by the
vector �(k). The second category consists of parame-
ters of ‘interest’ which are unknown parameters to be
estimated, denoted by the vector �(i). The third cat-
egory consists of ‘nuisance’ parameters which need
not be estimated, denoted by the vector �(n). Let
d(k), d(i) and d(n) denote the dimensions of these pa-
rameter vectors. If there are no nuisance parameters,
the search is conducted in a d(i)-dimensional space to
estimate the d(i) components of �(i). But, if nuisance
parameters are present, �(i) and �(n) have to be esti-
mated simultaneously even though we are not inter-
ested in estimating the components of �(n). Thus the
dimension of the search space increases to d(i) +d(n).

In the bearing estimation problem, all the channel
parameters (viz., ocean depth, density and sound speed
pro5le of water, and density and sound speed pro5le of
ocean bottom), and the signal frequency are assumed
to be known. The source powers {�2

j ; j = 1; : : : ; J}
are the unknown nuisance parameters, and the source
positions {
j; rj; zj; j=1; : : : ; J} are the unknown pa-
rameters of interest. In the case of the ML estimator,
the problems of estimating the source powers and esti-
mating the source positions can be decoupled from one
another. Hence, for bearing estimation using MLE, the
dimension of the search space is 3J . The enormous
complexity of a high-dimensional search renders MLE
unsuitable for multiple-source localization. MUSIC is
representative of the class of MFP techniques in which
the data vector is matched with the signal vectors
from individual sources separately, and not with the
total signal vector from J sources. This mutual decou-
pling of sources is possible provided that the source
covariance matrix �=E[�(t)�H(t)] is a full-rank ma-
trix. Under these conditions, d(i) =1, d(n) =2, and the
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dimension of the search space is d(i) + d(n) = 3,
irrespective of the number of sources. Therefore,
the J largest peaks of BMUSIC(x), where x is a
three-dimensional vector, provide estimates of the
positions of J sources.
A common feature of all MFP based source local-

ization algorithms is the need to know the channel pa-
rameters with suJcient accuracy. An incorrect choice
of channel parameter values, known as environmental
mismatch, leads to erroneous replica vector computa-
tions and hence to erroneous localization.
In the next section, we present the new subspace-

intersection (SI) algorithm, which is a one-dimensional
search technique for bearing angle estimation without
involving the plane-wave approximation for the prop-
agation of signals through the oceanic waveguide.
The new method provides a signi5cant reduction in
computational complexity compared to the MUSIC
estimator which involves a three-dimensional search.
This simpli5cation is achieved by isolating a feature
of the signal vector that depends only on the source
bearing angle. An additional advantage of the SI al-
gorithm is that it does not require the knowledge of
the channel parameters; a knowledge of the modal
wavenumbers {km; m= 1; : : : ; M} is suJcient.

4. Subspace intersection method

4.1. Modal subspace

We consider a uniform horizontal linear array of N
sensors with intersensor spacing H, satisfying condi-
tions (21) and (22), i.e.N¿M (J+1) andH6 1

2 !1=
�=k1. A distinct steering vector a(km cos 
), de5ned by
Eq. (13), is associated with each normal mode. We
de5ne the modal subspaceM(
) as the span of all the
modal steering vectors

M(
) = span{a(k1 cos 
); : : : ; a(kM cos 
)};
06 
6 �: (32)

For a given 
 �= �=2, the modal steering vectors are
linearly independent, and hence the subspaceM(
) is
M -dimensional for 
 �= �=2.
Consider the modal subspaces M(
) and M(
′)

corresponding to two diMerent steering angles 

and 
′. Inequalities (22) and (36) ensure that
a(km cos 
) �= a(km′ cos 
′) ∀m∈ {1; : : : ; M} and

∀m′ ∈ {1; : : : ; M} if 
 �= 
′. Hence the 2M vectors
{a(km cos 
), a(km′ cos 
′); m; m′ = 1; : : : ; M} are lin-
early independent in view of inequality (21). Hence
M(
) �= M(
′) if 
 �= 
′.

We shall now explore the relation between M(
)
and the signal subspace S(
). Satisfaction of con-
ditions (21) and (22) ensures that (see Section 3.1
and Appendix A) J signal vectors p(x1); : : : ; p(xJ )
corresponding to every set of J sources with dis-
tinct bearing angles 
1; : : : ; 
J are linearly indepen-
dent. Hence, in accordance with Eq. (25), we can de-
5ne the J -dimensional signal subspace S as

S= span{p(x1); : : : ; p(xJ )}
= span{u1; : : : ; uJ}: (33)

It follows from Eqs. (10), (12) and (32) that

p(xj)∈M(
j); j = 1; : : : ; J: (34)

Hence, the subspaces M(
) and S intersect if

∈ {
1; : : : ; 
J}.

Let us now consider the structure of the signal vec-
tors p(xj). We recall [see Eqs. (10)–(12)] that

p(xj) =
M∑

m=1

bmja(km cos 
j); j = 1; : : : ; J: (35)

The mth mode amplitude bmj is zero only if either
the jth source or the sensor array is located at a
node of the mth normal mode. Hence, assuming that
neither the source nor the array is at the ocean sur-
face, we have b1j �= 0. If we avoid locating the
array at a node of any normal mode, at most one
element of the set {b2j; : : : ; bMj} is zero. Finally, all
the distinct elements of the set of M (J + 1) vectors
{a(km cos 
j); a(km cos 
); m=1; : : : ; M ; j=1; : : : ; J}
are linearly independent since N¿M (J + 1). Re-
calling that the wavenumbers k1; : : : ; kM are ordered
as [1]

k1 ¿k2 ¿ · · ·¿kM ; (36)

it follows that p(xj)∈M(
) for 
 �= 
j if and only if
the following conditions are satis5ed:

k1
k2

=
k2
k3

= · · · = kM−1

kM

=
cos 

cos 
j

¿ 1; and bMj = 0: (37)
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Let us now consider a linear combination of two signal
vectors which may be written as

p(xj) + cp(xk) =
M∑

m=1

[bmja(km cos 
j)

+ cbmka(km cos 
k)]; (38)

where c is an arbitrary constant. Assuming that

k ¿
j, it follows that p(xj) + cp(xk)∈M(
) for

 �∈ {
j; 
k} if and only if

k1
k2

=
k2
k3

= · · · = kM−1

kM
=

cos 

cos 
j

=
cos 
j

cos 
k
;

cb(M−1)k + bMj = 0; bMk = 0: (39)

Proceeding in a similar fashion it can be easily seen
that, in a horizontally strati5ed ocean supporting 3 or
more normal modes of propagation, a nontrivial lin-
ear combination of signal vectors belonging to the set
{p(x1); : : : ; p(xJ )} can be an element ofM(
) for 
 �∈
{
1; : : : ; 
J} only if the modal wavenumbers k1; : : : ; kM
form a geometric series, which may be considered to
be an event of zero probability. It follows that the in-
tersection of S and M(
) for 
 �∈ {
1; : : : ; 
J} is an
event of zero probability.

4.2. Bearing estimation

Let the N × (M + J ) matrix D(
) be de5ned as

D(
) =
[
a(k1 cos 
)√

N
· · · a(kM cos 
)√

N
u1 · · · uJ

]
: (40)

The 5rst M columns of D(
) are the (linearly inde-
pendent) basis vectors of M(
) and the remaining J
columns are the orthonormal basis vectors of S. The
scaling factors 1=

√
N appearing in the 5rstM columns

of D(
) have been introduced for the sake of normal-
ization. For convenience, we shall rewrite the matrix
D(
) as

D(
) = [d1(
) · · · dP(
)]; (41)

where

P =M + J; (42)

dj(
) =



a(kj cos 
)√

N
; 16 j6M;

uj−M ; M + 16 j6P:

(43)

Obviously, dj(
) depends on 
 only for j6M . Using
QR decomposition [4], D(
) can be factorized as

D(
) =Q(
)R(
); (44)

where

Q(
) = [q1(
) · · · qP(
)] (45)

is an N ×P matrix whose columns qj(
) are orthonor-
mal vectors, and R(
) is a P × P upper triangular
matrix with elements rij(
). The columns of D(
) are
related to the columns of Q(
) through the equations

dj(
) =
j∑

i=1

rij(
)qi(
); j = 1; : : : ; P; (46)

and hence

dj(
)∈ span{q1(
); : : : ; qj(
)}; j = 1; : : : ; P: (47)

The elements rij(
) and the vectors qj(
) can be de-
termined recursively using the relations

r11(
) = ‖d1(
)‖2; q1(
) =
d1(
)
r11(
)

; (48)

rij(
) = qHi (
)dj(
); 16 i6 j − 1;

j = 2; : : : ; P; (49)

rjj(
) =

∥∥∥∥∥dj(
) −
j−1∑
i=1

rij(
)qi(
)

∥∥∥∥∥
2

;

j = 2; : : : ; P; (50)

qj(
) =
dj(
) − ∑j−1

i=1 rij(
)qi(
)
rjj(
)

;

j = 2; : : : ; P; (51)

where ‖:‖2 denotes the Euclidean norm. A diagonal
element rjj(
) of the matrix R(
) is zero if and only
if dj(
) ∈ span{d1(
); : : : ; dj−1(
)}. We shall exploit
this property in the formulation of the bearing estima-
tion algorithm.
We know that the subspaces M(
) = span{d1(
);

: : : ; dM (
)} and S = span{dM+1; : : : ; dP} intersect if
and only if 
∈ {
1; : : : ; 
J}. Hence 
∈ {
1; : : : ; 
J} if
and only if one of the following conditions is satis5ed:

dj ∈ span{d1(
); : : : ; dM (
)}
for some j ∈ {M + 1; : : : ; P} (52)
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or

dP ∈ span{d1(
); : : : ; dP−1(
)}: (53)

We can combine conditions (52) and (53) to obtain
the following result:

dj ∈ span{d1(
); : : : ; dj−1(
)}
for some j ∈ {M + 1; : : : ; P}
if and only if 
∈ {
1; : : : ; 
J}: (54)

Since rjj(
) = 0 if and only if dj(
)∈ span{d1(
);
: : : ; dj−1(
)}, it follows that rjj(
) = 0 for some
j ∈ {M + 1; : : : ; P} if and only if 
∈ {
1; : : : ; 
J}.
Hence the function {minM+16j6P|rjj(
)|} vanishes
at 
= 
1; 
2; : : : ; 
J .

The subspace-intersection (SI) algorithm for bear-
ing estimation may be described as follows:

(1) Estimate the covariance matrix C from the array
data vector y(t) by averaging y(t)yH(t) over L
snapshots as in Eq. (19). Let the estimated co-
variance matrix be denoted by Ĉ .

(2) Determine the eigenvectors of Ĉ . Divide the
eigenvectors into two groups, viz. the signal
eigenvectors û1; : : : ; ûJ and the noise eigenvec-
tors ûJ+1; : : : ; ûN .

(3) Form the matrix D̂(
) by appending the columns
û1; : : : ; ûJ to the columns a(k1 cos 
)=

√
N; : : : ;

a(kM cos 
)=
√
N .

(4) Do the QR factorization of D̂(
) as D̂(
) =
Q̂(
)R̂(
). Let r̂jj(
) denote the diagonal ele-
ments of the upper triangular matrix R̂(
).

(5) Compute the function

BSI(
) =
[

min
M+16j6P

r̂jj(
)
]−1

: (55)

The location of the peaks of BSI(
) provides
estimates of the source bearing angles.

5. Discussion

Before presenting numerical results to illustrate
the performance of the SI algorithm, we shall dis-
cuss its salient qualitative features. The conditions
N¿M (J + 1) and H6 !1=2 are incorporated in the
SI algorithm to ensure that the signal vectors are lin-
early independent and that the intersection of S and

M(
) is extremely unlikely when 
 �= {
1; : : : ; 
J}.
A necessary condition for the columns of D(
) to be
linearly independent when 
 �∈ {
1; : : : ; 
J} is

N¿M + J: (56)

Usually, the satisfaction of this necessary condition is
adequate for achieving unambiguous bearing estima-
tion as borne out by the simulation results presented in
Section 6. Simulation results also indicate that values
of H well in excess of !1=2 may be used without in-
troducing any ambiguity. This tolerance to larger val-
ues of H is due to the multimodal nature of the signal
and the noncoincidence of the ambiguity directions
for diMerent normal modes. The problem of determi-
nation of the minimal suJcient conditions on N and
H for unambiguous bearing estimation still remains
unresolved.
The resolution provided by the SI algorithm is de-

termined by the sharpness of the peaks of the function
BSI(
). In general, the resolution would depend on the
parameters N , (, the array depth, the source position,
and the number of snapshots used to estimate the co-
variance matrix C . The determination of an analytical
expression for resolution appears to be a diJcult task.
But we can get some useful insights by considering
a de5nition of resolution that is not speci5c to the SI
algorithm, but one that may be applied to any bearing
estimation algorithm. We note that bearing estimation
is performed by identifying the values of 
 at whichS
and M(
) intersect. If a source is located at (
; rj; zj),
the unit vector that is common to S and M(
) is
given by [see Eqs. (33)–(35)]

e(
) =
∑M

m=1 bmja(km cos 
)∥∥∥∑M
m=1 bmja(km cos 
)

∥∥∥
2

; (57)

where bmj is the complexmode amplitude that depends
on the range rj and depth zj [see Eq. (14)]. Hence, we
de5ne

Q(
) =
∥∥∥∥de(
)d


∥∥∥∥
2

(58)

as a measure of resolution in the direction 
. It is
shown in Appendix B that for N�1,

Q(
) ∼= 1√
3
NH

{∑M
m=1 k2m|bmj|2∑M
m=1 |bmj|2

}1=2

|sin 
|: (59)
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Thus, the resolution depends not only on the source
direction but also on the range and depth. The resolu-
tion may be improved either by increasing the num-
ber of sensors N or by increasing intersensor spac-
ing H. However, it must be remembered that values
of H greater than !1=2 may lead to ambiguity due to
the appearance of false peaks in the function BSI(
).
Eq. (59) also indicates that resolution declines as one
approaches the end5re direction (
= 0 or �).
It is interesting to note that the expression for

Q(
) in the last equation depends on a weighted
root-mean-square value of the modal wavenum-
bers, the weights being proportional to the modal
amplitudes. Since the wavenumbers are ordered as
k1 ¿k2 ¿ · · ·¿kM , it follows that resolution is
higher for those source/array positions for which the
lower order modes are predominant.
The bearing estimation accuracy of the SI algorithm

depends on the accuracy with which the signal eigen-
vectors u1; : : : ; uJ are estimated. Errors in the estima-
tion of {uj; j = 1; : : : ; J} are caused by the error in
estimating the covariance matrix C from a 5nite num-
ber of samples or snapshots of the data vector. The
covariance matrix estimation error can be reduced by
increasing the number of snapshots L; but increases in
processing delay and computational complexity due
to increasing L impose an upper limit on the value
of L. For a given L, the covariance matrix estimation
error increases as the signal-to-noise ratio is reduced
[16], leading to a progressive degradation of the SI
processor performance.
The outstanding feature of the SI technique

is that it retains the computational simplicity of
one-dimensional search without invoking the planar
wavefront assumption or requiring a priori knowledge
of source ranges and depths. Another advantage of
the SI technique over the MFP techniques is that the
former requires less information about the environ-
ment. MFP requires the knowledge of a host of ocean
acoustic parameters such as the density, sound speed
and sound absorption pro5les of the sea water and
sediment, and roughness of the sea surface. The val-
ues of these parameters, some of which are time vary-
ing, are often not known with suJcient accuracy, and
their estimation is quite a diJcult task. On the other
hand, the SI algorithm requires only the knowledge of
modal wavenumbers {km; m=1; : : : ; M}, and several
methods of estimating the wavenumbers accurately

are known [3,8,14]. Hence, the SI technique is much
less susceptible to environmental mismatch than MFP
techniques. The SI technique shares with MUSIC the
capabilities of high-resolution and multiple-source
bearing estimation. Like MUSIC, the SI technique too
requires prior knowledge of the number of sources
for reliable estimation of the signal subspace.

6. Simulation results

Simulation results on the performance of the SI
algorithm are presented in this section for two ocean
models. The 5rst model is the ideal Pekeris channel
[1] consisting of a homogeneous water layer of con-
stant depth overlying a homogeneous Iuid half-space.
The channel parameters are: water depth=d=100 m,
sound speed in water = c = 1500 m=s, sound speed
in bottom = cb = 1700 m=s, ratio of density of bot-
tom to density of water = *b=* = 1:5, attenuation
in bottom = ( = 0:5 dB=!. The second model corre-
sponds to a site in the Gulf of Mexico [5] with a mean
water depth d = 115 m, and a range-independent
sound-speed pro5le in water as shown in Fig. 3.
In this model, both the surface and bottom of the
ocean are rough with an rms height of 0:1 m, and
the bottom has two sediment layers of thicknesses
d1 = d2 = 50 m, sound speeds cb1 = 1780 m=s, and
cb2 = 1800 m=s, and density ratios *b1 =* = 1:7 and
*b2 =*=1:9, overlying a rigid half-space. The acoustic
5eld in the Pekeris channel can be computed easily
[1], and simulation results for this channel are pre-
sented in considerable detail to assess the eMect of
variation of several parameters, viz. the number of
elements in the array, interelement spacing, number
of modes propagating in the channel, signal-to-noise
ratio, and number of snapshots. The eMect of errors
in the assumed values of the wavenumbers on the SI
processor performance is also investigated. Acoustic
5eld computations in the Gulf of Mexico channel
are carried out using the Kraken normal mode pro-
gram [5]. Results for this channel are presented to
demonstrate that the SI algorithm is equally ef-
fective in estimating source bearing in a realistic
environment.
The output of each sensor in the array is the sum

of signals received from J noncoherent sources and
an independent zero-mean spatially white Gaussian
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Fig. 3. Sound speed pro5le in the Gulf of Mexico channel. 1st
sediment layer: cb = 1780 m=s, *b=* = 1:7, ( = 0:24 dB=!. 2nd
sediment layer: cb = 1800 m=s, *b=* = 1:9, ( = 0:32 dB=!. Half
space: cb = 2100 m=s, *b=* = 2:12.

noise. The lth sample of the simulated output of the
qth element of the array is given by

yq(l) =
J∑

j=1

pjq�j(l)ei-j(l) + nq(l); (60)

where {nq(l); q=1; : : : ; N ; l=1; : : : ; L} are indepen-
dent sample values of a circular complex zero-mean
Gaussian random variable with variance �2. Indepen-
dent samples of uniformly distributed random phases
-j(l) are included to render the sources noncoherent.
The quantities {pjq; j=1; : : : ; J ; q=1; : : : ; N} are com-
puted from Eqs. (3) and (4). The signal-to-noise ratio
(SNR) is de5ned as the logarithmic ratio of the total
signal power at the array to the total noise power, i.e.,

SNR = 10 log10

∑N
q=1 E

[∣∣∣∑J
j=1 pjq�j(l)

∣∣∣2]
NE[|nq(l)|2] : (61)

Since the sources are noncoherent, Eq. (61) reduces to

SNR = 10 log10

∑N
q=1

∑J
j=1 �2

j |pjq|2
N�2 ; (62)
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Fig. 4. SI processor response for 6 sources at 10◦, 30◦, 60◦, 120◦,
150◦, and 170◦ in a noiseless Pekeris channel. f=50 Hz, N =9,
H = !=2.

The elements of the estimated data correlation matrix
Ĉ are given by (see Eq. (19))

ĉnq =
1
L

L∑
l=1

yn(l)y∗
q (l); n= 1; : : : ; N;

q= 1; : : : ; N: (63)

In all the simulations except those in Figs. 4–6 and
13, the matrix Ĉ was computed from 200 snapshots
(L = 200) of the data vector, and the bearing esti-
mates were obtained by averaging over 100 simula-
tions. Fig. 4 shows the SI processor response BSI(
) in
the Pekeris channel when 6 sources at 10◦, 30◦, 60◦,
120◦, 150◦ and 170◦ bearing are present in a noise-
less environment. All the sources are at 10 km range
and 51 m depth. The signal frequency f is 50 Hz,
and the number of modes M at this frequency is 3.
The number of elements N in the array is 9, which is
the minimum number required to satisfy the necessary
condition N¿M + J . The interelement distance is
!=2, i.e. 15 m. The response function has well-de5ned
peaks whose positions match very well with the source
directions. In a noisy environment, the same perfor-
mance is achieved asymptotically as L → ∞. Fig. 5
shows the asymptotic response in the Gulf of Mexico
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Fig. 5. Asymptotic response of SI processor for 6 sources at 10◦,
30◦, 60◦, 120◦, 150◦, and 170◦ in the Gulf of Mexico channel.
f = 50 Hz, N = 30, H = !=2.
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Fig. 6. Asymptotic performance of the SI processor at diMerent
frequencies for 2 sources at 30◦ and 80◦. N =M +2 and H=!=2
in each case.

channel for the same source locations and for N =30.
It is seen that the performance of the SI processor in
the Gulf of Mexico channel is qualitatively similar to
that in the Pekeris channel.
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Fig. 7. Finite-data performance of SI processor in the Pekeris
channel at 20 dB SNR with 200 snapshots and 100 Monte Carlo
simulations. Six sources are located at 10◦, 70◦, 90◦, 110◦, 150◦,
and 170◦. f = 50 Hz, N = 30, H = !=2.

The asymptotic performance of the SI processor at
diMerent frequencies for 2 sources at 30◦ and 80◦ bear-
ings, is shown in Fig. 6. As the frequency increases,
the number of modes M also increases, and the num-
ber of sensors N is chosen so that N =M + J . Figs. 4
and 6 show that in a channel that supports M normal
modes, it is possible to achieve unbiased bearing esti-
mation of J sources using an array of M+J sensors if
C is known exactly. But, if C is estimated from 5nite
data, a larger value of N has to be used to overcome
the correlation matrix estimation error.
Fig. 7 shows the plot of BSI(
) for the 5nite data

case, obtained using an array of 30 sensors with
!=2-spacing. The SNR is 20 dB, and results of 100
simulations of 200 snapshots each have been aver-
aged to generate the plot in Fig. 7. The source bearing
angles are 10◦, 70◦, 90◦, 110◦, 150◦ and 170◦. All the
other parameters have the same values as before. Un-
biased, high-resolution bearing estimation has been
achieved once again. Fig. 8 shows the result of re-
peating an identical experiment in the Gulf of Mexico
channel. It is seen once again that the performance
of the SI processor in the realistic environment of
the Gulf of Mexico channel is similar to that in the
idealized Pekeris channel.
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Fig. 8. Finite-data performance of SI processor in the Gulf of
Mexico channel at 20 dB SNR with 200 snapshots and 100 Monte
Carlo simulations. Six sources are located at 10◦, 70◦, 90◦, 110◦,
150◦, and 170◦. f = 50 Hz, N = 30, H = !=2.

Having established the ability of the SI processor to
achieve multiple-source bearing estimation in a hori-
zontally strati5ed range-independent ocean, we shall
now study the 5nite-data performance in greater de-
tail. For the sake of computational simplicity, we shall
henceforth con5ne our attention to Pekeris channel
with one or two sources only. Values of f, N , H, SNR
and L are the same as those in Fig. 7, unless otherwise
stated.
Fig. 9 shows the bearing estimation of 2 sources at

10◦ and 80◦ for two diMerent range-depth combina-
tions viz. r1 = r2 = 3 km, z1 = z2 = 21 m (solid line)
and r1 = r2 = 10 km, z1 = z2 = 51 m (broken line).
Results in Fig. 9 as well as many other simulations
carried out prove conclusively that bearing estima-
tion can be done eMectively for all source ranges and
depths, though the heights of the main peaks of BSI(
)
vary in an apparently irregular manner.
The response functions of the SI processor and the

plane-wave MUSIC processor are compared in Fig. 10
for 2 sources at 10◦ and 80◦. As expected, plane-wave
MUSIC yields a biased bearing estimate of the source
at 10◦. However, for the near-broadside (80◦) source,
plane-wave MUSIC shows no bias and provides
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Fig. 9. Finite-data performance of SI processor for 2 sources at 10◦
and 80◦ with diMerent range-depth combinations. SNR = 20 dB,
f=50 Hz, N=30, H=!=2. Solid line: r1=r2=3 km; z1=z2=21 m.
Dash–dot line: r1 = r2 = 10 km; z1 = z2 = 51 m.
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Fig. 10. Comparison of 5nite-data performance of SI and
plane-wave MUSIC processors for 2 sources at 10◦ and 80◦.
SNR=20 dB, f=50 Hz, N =30, H= !=2. Solid line: SI. Dash–
dot line: plane-wave MUSIC. SNR = 20 dB, f= 50 Hz, N = 30.
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Fig. 11. Enhancement of the resolution of the SI processor by
increasing the spacing H between sensors. The sources are located
at 10◦, 11◦, 80◦ and 81◦. H = 0:5!, !, and 2!.

a higher resolution than the SI processor. The SI
processor localizes both sources equally well.
The enhancement of the resolution of the SI pro-

cessor by increasing the spacing H between sensors is
illustrated in Fig. 11. The sources are located at 10◦,
11◦, 80◦ and 81◦. BSI(
) is shown for diMerent values
of H, viz. H=0:5!, !, and 2!. The simulation param-
eters are 30 sensors, SNR=20 dB, 100 simulations of
200 snapshots each. For H=2! all the sources are well
resolved except for some false peaks around 70◦. It is
noteworthy that unambiguous localization with high
resolution can be achieved by choosing a suJciently
high value of H that is well above !=2. However, as
H is increased, more and more ripples (sidelobes) ap-
pear in the response function BSI(
). At larger values
of H or lower SNR, the amplitude of a sidelobe, may
become comparable to one of the main peaks.
Another way of improving resolution is to increase

the number of sensors N . Plots of BSI(
) for diMer-
ent values of N are shown in Fig. 12 for sources at
10◦, 11◦, 80◦ and 81◦. The SNR is 0 dB and the
interelement distance H is equal to !=2. It is seen
that a good resolution can be achieved at 80◦ with a
30-sensor array, but 50 sensors are required to achieve
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Fig. 12. Improvement in the resolution of SI processor with in-
creasing N . Sources are at 10◦, 11◦, 80◦ and 81◦. SNR = 0 dB,
H = !=2.

comparable resolution at 10◦. The advantage of in-
creasing N instead of increasing H is that ambigu-
ity due to the possible appearance of large sidelobes
is avoided. Especially at low SNR, increasing N is a
more reliable way of improving performance.
The eMect of reduction in SNR on the performance

of SI processor is depicted in Fig. 13. It is seen once
again that decreasing SNR leads to a more rapid degra-
dation of performance near the end5re direction.
The degradation in performance with decreasing

SNR can be arrested by increasing the number of
snapshots. The eMect of increasing the number of
snap- shots from 200 to 1000 is shown in Fig. 14.
This 5gure shows plots of BSI(
) for 2 sources at 10◦

and 80◦, and 0 dB SNR. The peak at 10◦ is seen only
in the panel corresponding to 1000 snapshots. The
peak at 80◦ is seen in all the panels, but the sharpness
of this peak is seen to increase with an increase in the
number of snapshots.
Extensive simulations have been carried out to

compute the bias and mean square errors (MSE) of
the estimated source directions as a function of SNR,
number of sensors N , and the source direction 
. A
representative set of results is given in Figs. 15–17.
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Fig. 13. Finite-data performance of the SI processor for diMerent
SNR. Two sources are present at 10◦, 80◦. f = 50 Hz, N = 30,
H = !=2.

The bias and MSE were computed by averaging over
300 Monte Carlo simulations. The corresponding re-
sults for the MUSIC estimator are also given in these
5gures for comparison. While the MUSIC estimator
performs better, it may be recalled that MUSIC re-
quires either a 3-D search or a prior information of
the source range and depth. Also, the MUSIC estima-
tor requires the knowledge of all the ocean acoustic
parameters while the SI algorithm needs only the
knowledge of the modal wavenumbers.
Knowledge of the modal wavenumbers {km; m =

1; : : : ; M} is required for bearing estimation. Values
of km may be either computed from known/assumed
values of the channel parameters or estimated from
acoustic 5eld data using a wavenumber estimation
technique [3,8,14]. In either case, the assumed values
of km may not be the true values. Fig. 18 shows the
eMect of errors in the assumed values of km on the
SI processor response function BSI(
). The received
signal vector for a 50 Hz source in the Pekeris chan-
nel was computed using the actual wavenumbers km.
But the modal steering vectors were computed as-
suming erroneous wavenumbers k̂m = km(1 + .=100),
where the error percentage . is the same for all the
modes. It is seen from Fig. 18 that the bearing esti-
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Fig. 14. EMect of variation of the number of snapshots on the
5nite-data performance of the SI processor at 0 dB SNR. Two
sources are present at 10◦ and 80◦. f=50 Hz, N =30, H= !=2.

Fig. 15. Plots of the bias and MSE of the estimated source direction
as a function of 
 for 5xed N and SNR.

mates have a positive/negative bias according as the
assumed wavenumbers have a positive/negative error.
It is also seen that bearing estimates are not very sen-
sitive to wavenumber errors for sources near broad-
side. Sensitivity to wavenumber mismatch increases
as a source approaches the end5re direction.
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7. Summary and conclusions

In the absence of prior knowledge of source range
and depth, all known bearing estimation techniques
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Fig. 18. EMect of errors in the assumed values of km on the 5nite
data performance of the SI processor for 2 sources at 10◦ and
80◦. f = 50 Hz, N = 30, H = !=2.

invoke either a plane-wave assumption or make a
simultaneous estimation of range and depth also.
It has been shown that a plane-wave assumption
leads to biased estimates, the bias being higher for
sources closer to the end5re direction. Simultaneous
estimation of bearing, range and depth using
MFP involves a highly computation-intensive
three-dimensional search. The subspace-intersection
(SI) algorithm presented in this paper yields unbiased
bearing estimates without requiring prior or concur-
rent range-depth estimation. Also, the environmental
information (modal wavenumbers) required by the SI
algorithm is less exhaustive and more easily obtain-
able than that required by MFP.
The SI algorithm exploits the relationship be-

tween the signal subspace and the modal subspace. In
common with other subspace-based direction-of-
arrival estimation algorithms, the SI algorithm
possesses the attributes of high resolution and
multiple-source bearing estimation capability. Prior
knowledge of the number of sources is necessary for
a reliable determination of the signal subspace. The
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SI method requires relatively large arrays, and the
number of sensors required for satisfactory perfor-
mance increases with an increase in the number of
modes in the channel. Theoretically, N¿M (J + 1)
is a suJcient condition for unambiguous localiza-
tion of J sources while N¿M + J is a necessary
condition, where N is the number of sensors and M
is the number of modes. But under the limitation of
5nite data in a noisy channel, much larger values
of N may be required to increase the array gain for
obtaining a satisfactory performance. The resolution
of the SI algorithm is not uniform for all directions,
the resolution being lower for sources closer to the
end5re direction. This nonuniformity may be avoided
by using a circular array [10]. The resolution of the
SI algorithm can be enhanced either by increasing the
number of sensors N or by increasing the interelement
spacing H. But, if H¿!1=2, appearance of large
sidelobes may cause an ambiguity in localization.
In conclusion, the SI algorithm presented in this

paper has several attractive features compared to all
known methods of bearing estimation in a horizon-
tally strati5ed ocean. Even when three-dimensional
source localization is required it is often important
to estimate bearing with a higher degree of accuracy
than range and depth. It may then be preferable to use
the SI method for bearing estimation and use MFP
for range-depth estimation only, since the SI method
is less vulnerable to environmental uncertainty than
MFP.
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Appendix A. Linear independence of signal vectors

Consider the signal vectors {p(x′
j); j = 1; : : : ; J +

1} at a uniform horizontal linear array generated by
(J + 1) sources with arbitrary position vectors {x′

j =
(
′

j; r
′
j; z

′
j); j=1; : : : ; J+1} and distinct bearing angles

{
′
j; j = 1; : : : ; J + 1} in the interval [0; �]. Let the

angles be ordered as

cos 
′
1 ¿ cos 
′

2 ¿ · · ·¿ cos 
′
J+1: (A.1)

We recall that

p(x′
j) =

M∑
m=1

bmja(km cos 
′
j); j = 1; : : : ; J + 1;

(A.2)

a(km cos 
′
j) = [1eikmH cos 
′

j · · · ei(N−1)kmH cos(
′
j )]T;

m= 1; : : : ; M; (A.3)

k1 ¿k2 ¿ · · ·¿kM : (A.4)

We shall prove that p(x′
1); : : : ; p(x

′
J+1) are linearly in-

dependent if the sensor array satis5es the following
conditions:

N¿M (J + 1); (A.5)

H¡�=k1 = !1=2; (A.6)

where !1 =2�=k1 is the wavelength of the 5rst normal
mode.

Proof. We note that, in view of (A.1) and (A.4), we
have for all i∈ {1; 2; : : : ; J + 1}
k1 cos 
′

i ¿ km cos 
′
i for m= 2; : : : ; M

k1 cos 
′
i ¿ km cos 
′

j for m= 1; : : : ; M ;

j = i + 1; : : : ; J + 1: (A.7)

Consider a linear combination of the signal vectors∑J+1
j=1 cjp(x′

j). We can write
J+1∑
j=1

c1p(x′
j) = c1b11a(k1 cos 
′

1)

+ c1
M∑

m=2

bm1a(km cos 
′
1)

+
M∑

m=1

J+1∑
j=2

cjbmja(km cos 
′
j): (A.8)

Inequalities (A.5)–(A.7) imply that the vector
a(k1 cos 
′

1) is linearly independent of all the other
vectors on the right-hand side of Eq. (A.8). Also, we
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shall assume that neither the source nor the sensor
array is at the ocean surface. It follows that

b1j �= 0 ∀j; (A.9)

since b1j is the 5rst mode amplitude of the jth source
signal, which can be zero only if either the source or
the sensor array is on the oceanic surface. Hence,

J+1∑
j=1

cjp(x′
j) = 0 ⇒ c1 = 0 ⇒

J+1∑
j=2

cjp(x′
j) = 0: (A.10)

Proceeding in a similar fashion, we can show that∑J+1
j=2 cjp(x′

j) = 0 ⇒ c2 = 0 ⇒ ∑J+1
j=3 cjp(x′

j) = 0

and so on. It follows that
∑J+1

j=1 cjp(x′
j) = 0 ⇒ c1 =

c2 = · · · = cJ+1 = 0. Hence the vectors {p(x′
j); j =

1; : : : ; J + 1} are linearly independent.

Appendix B. Determination of Q(�) for large N

The unit vector e(
) is de5ned as [see Eq. (57)]

e =
∑M

m=1 bmja(km cos 
)∥∥∥∑M
m=1 bmja(km cos 
)

∥∥∥
2

(B.1)

and

∥∥∥∥∥
M∑

m=1

bmja(km cos 
)

∥∥∥∥∥
2

2

=
N−1∑
n=0

∣∣∣∣∣
M∑

m=1

bmj exp(inkmHcos 
)

∣∣∣∣∣
2

=
N−1∑
n=0

M∑
l=1

M∑
m=1

bijb∗
mjexp[in(kl − km)H cos 
]:

(B.2)

Denoting the magnitude and phase of bmj by Bm and
$m, respectively, we get

∥∥∥∥∥
M∑

m=1

bmja(km cos 
)

∥∥∥∥∥
2

2

=
N−1∑
n=0

M∑
l=1

M∑
m=1

BlBm exp[i(-l − -m)]

exp[in(kl − km)H cos 
]

=N
M∑

m=1

B2
m + 2

M∑
l=1
1¡m

M∑
m=1

BlBm

×
{
cos(-l − -m)

N−1∑
n=0

cos[n(kl − km)H cos 
]

− sin(-l − -m)
N−1∑
n=0

sin[n(kl − km)H cos 
]

}

∼= N
M∑

m=1

B2
m if N�

∣∣∣∣ 2�
(kl − km)H cos 


∣∣∣∣ : (B.3)

From Eqs. (B.1) and (B.3), we get

∥∥∥∥de(
)d


∥∥∥∥
2

2
=

1

N
∑M

m=1 B2
m

×
∥∥∥∥∥ d
d


M∑
m=1

bmja(km cos 
)

∥∥∥∥∥
2

2

: (B.4)

Consider

∥∥∥∥∥ d
d


M∑
m=1

bmja(km cos 
)

∥∥∥∥∥
2

2

=
N−1∑
n=1

∣∣∣∣∣
M∑

m=1

nbmjkmHsin 
 exp(inkmHcos 
)

∣∣∣∣∣
2

=
N−1∑
n=1

M∑
l=1

M∑
m=1

n2BlBmklkmH2 sin2


×exp[i(-l − -m)] exp[in(kl − km)H cos 
]

=
N (N − 1)(2N − 1)

6

M∑
m=1

B2
mk

2
mH

2 sin2 
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+2H2 sin2 

M∑
l=1

M∑
m=1

BlBmklkm

{
cos(-l − -m)

×
N−1∑
n=1

n2cos[n(kl − km)H cos 
] + sin(-l − -m)

×
N−1∑
n=1

n2 sin[n(kl − km)H cos 
]

}

∼= 1
3
N 3

M∑
m=1

B2
mk

2
mH

2 sin2 


if N�
∣∣∣∣ 2�
(kl − km)H cos 


∣∣∣∣ : (B.5)

The last step in (B.5) follows from the fact that∑N
n=1 n2 cos nx=O(N 2) and

∑N
n=1 n2 sin nx=O(N 2)

if Nx�2�. It follows from (B.4) and (B.5) that

Q(
) =
∥∥∥∥de(
)d


∥∥∥∥
2

∼= 1√
3
NH

{∑M
m=1 k2m|bmj|2∑M
m=1 |bmj|2

}1=2

|sin 
|: (B.6)
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