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Abstract

This paper provides some new results on track fusion for radars. In particular, it provides a relationship between the

accuracies of fused tracks for co-located and non co-located radar sensors. The uncertainty volume corresponding to

the fused estimate is smaller than the volume of the intersection of the uncertainty ellipsoids associated to the individual

sensors. In terms of uncertainty volume, non co-located radars perform better than co-located radars. Analytical results

for a study case are reported.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Track-to-track fusion has been the subject of a wide research [1–7]. It has also relevant practical
applications for instance in air traffic control systems. One early implementation was for the flight
information region of Mazatlan in western Mexico (see [1, pp. 248–254]). The explicit expression of fusion
depends on the assumptions concerning the source tracks: they may be either dependent or independent.
Two tracks are dependent if the underlined target model has the same process noise (which specifies the
target acceleration characteristics) and/or if the a priori knowledge on the target track is shared by the two
trackers. The fusion in the dependent tracks case is discussed in [5–8]. A state vector fusion algorithm,
which combines the local estimates from each sensor, by taking into account their mutual dependency, was
derived in [8]. For track fusion as well as track association, it was recognized in [6] that a non-deterministic
e front matter r 2005 Elsevier B.V. All rights reserved.
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target model induces cross-correlation between state estimation errors of local tracks originating from the
same target. The performance of track-to-track fusion was evaluated in [5], showing that, as the number of
sensors increases, the performance of distributed tracking keeps degrading in comparison with the
centralized one. In [7] representative track fusion algorithms and track association metrics were
quantitatively compared, varying the non-deterministic components of the target dynamics (i.e. process
noises), and the degree of the initial condition uncertainty.

In the present paper we find an analytical relationship regarding the accuracy of the fused track for co-
located and non co-located sensors cases. In particular, we developed the theory for a parametric
estimation problem rather than for a dynamic state equation problem, showing that, in contrast to the
common belief, the uncertainty volume corresponding to the fused estimate is smaller than the volume of
the intersection of the uncertainty ellipsoids associated to the individual sensors.

The paper is organized as follows:
�
 to frame the problem at hand, Section 2 briefly recalls known results concerning the theory of track-to-
track fusion;
�
 Section 3 provides the new results concerning track fusion. It applies the theory to a study case in which
the target model is assumed to be a straight line with uniform speed; on the basis of radar measurements,
we are interested in estimating the initial position and the speed components of the target and using this
estimate to extrapolate the target position ahead in time.
�
 Section 4 summarizes the main findings of the paper, while Appendices A–C contain mathematical details
concerning the most significant results.

2. A review of track fusion

The need for a hierarchical distributed estimation arises when signals are generated by geographically
dispersed sensors with limited or costly communications. The steps which must be taken for the estimation
of a steady parameter, say s (e.g. coordinates of initial position, speed components and acceleration of a
target) by means of data fusion are depicted in Fig. 1.
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Fig. 1. Hierarchical distributed estimation.
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Local estimates are first produced on the purpose of robustness and data compression, then a global
estimator combines estimates from local processors to obtain a more accurate estimate of the state.
Measurement zi (which is available to the generic processor i, with i ¼ 1; 2; . . . ; k) is a random variable
related to the state. The value of the ith local estimate ŝi and the value ŝ of the global estimate of the state
are

ŝi ¼ Efs=zig,

ŝ ¼ Efs=z1; z2; . . . ; zkg. (2.1)

In the linear and Gaussian case, the local and global estimates are characterized by their mean values ŝi and
ŝ and by their covariance matrices Pi and P; respectively.

In the general case of dynamical systems, the rule for data fusion should take account of the time
evolution of the state (e.g. the kinematical coordinates of a moving target) and of the possibility of
statistical dependence between target tracks [2,8]. Such correlation between tracks generated by different
sensors may arise as a consequence of the process noise wðtÞ affecting the target model. Moreover, local
processors estimating the target state may make use of the same initial condition sð0Þ; with normal
distribution Nðs̄0;P0Þ; thus generating additional common information. Whatever the source, statistical
dependence between tracks has to be considered and appropriately managed.

Anyway, in the remainder of the paper, independence between tracks will be assumed, justifying the use
of the following track fusion algorithm in case of two distinct sensors [1]:

Pf ¼ ½P�1
1 þ P�1

2 
�1,

ŝf ¼ Pf ½P
�1
1 ŝ1 þ P�1

2 ŝ2
. (2.2)

The previous equations are easily extended to the case of more than two sensors.
No dynamical equations will be given for the system under consideration, so excluding the common

process noise that would otherwise correlate both estimation errors; in fact, we are interested in estimating
a steady vector s: Moreover, the unknown state parameter s will be calculated via the maximum likelihood
estimate (MLE) technique, with no a priori information. In conclusion, no common information source will
be considered.
3. New results on track fusion

To derive the new results, in Section 3.1 we consider a practical problem, concerning the estimation of a
vector of unknown parameters. The fusion of parametric estimates is then discussed in Section 3.2. Having
set the scene, the main results of the paper are presented in Section 3.3.

3.1. Study case

Let the trajectory of the target be described by the following equations:1

xðtÞ ¼ x0 þ vxt,

yðtÞ ¼ y0 þ vyt,

zðtÞ ¼ z0 þ vzt, (3.1)
1A more complex model of target motion could be studied; for instance, the ballistic flight of a missile or of an artillery shell.
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where ðx0; y0; z0Þ are the Cartesian coordinates of the target at time t0 and ðvx; vy; vzÞ are the Cartesian
components of the speed. Let zk be the kth measurement, out of N, produced by a radar which is the three-
dimensional vector as follows:

zk ¼

rðkÞ

fðkÞ

WðkÞ

2
664

3
775 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðkÞ2 þ yðkÞ2 þ zðkÞ2

q

arcsin
zðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðkÞ2 þ yðkÞ2 þ zðkÞ2
q

arctg
xðkÞ

yðkÞ

2
6666666664

3
7777777775

¼

hðsÞ

f ðsÞ

lðsÞ

2
664

3
775þ wk k ¼ 1; 2; . . . ;N, ð3:2Þ

being hðsÞ; f ðsÞ and lðsÞ functions of the state s; being wk a white Gaussian random variable with zero mean
and covariance matrix R

R ¼

s2
r 0 0

0 s2
f 0

0 0 s2
W

2
664

3
775, (3.3)

where s2
r; s

2
f; s

2
W are the variances of the three components of the radar measurement; it has been assumed

that the three measurements are pairwise independent. The time interval between contiguous radar
measurements is T [s].

The goal is to estimate the state vector s ¼ ½x0; y0; z0; vx; vy; vz

T and use the estimated parameters to

predict the target position ahead of the measurement interval. The components of the state vector s are
calculated using the MLE technique as follows [9]:

LðsÞ ¼ pðz1; z2; . . . ; zN ; sÞ

¼
YN
k¼1

1

sr
ffiffiffiffiffiffi
2p

p exp �
½rðkÞ � hðs; kÞ
2

2s2
r

 !YN
k¼1

1

sf
ffiffiffiffiffiffi
2p

p exp �
½fðkÞ � f ðs; kÞ
2

2s2
f

 !

�
YN
k¼1

1

sW
ffiffiffiffiffiffi
2p

p exp �
½WðkÞ � lðs; kÞ
2

2s2
W

� 

, ð3:4Þ

where

hðs; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 þ vx kT Þ

2
þ ðy0 þ vy kTÞ

2
þ ðz0 þ vz kTÞ

2
q

,

f ðs; kÞ ¼ arcsin
z0 þ vz kTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 þ vx kTÞ
2
þ ðy0 þ vy kTÞ

2
þ ðz0 þ vz kTÞ

2
q ,

lðs; kÞ ¼ arctg
x0 þ vx kT

y0 þ vy kT
, (3.5)

with T the time interval between contiguous measurements.



ARTICLE IN PRESS

A. Farina et al. / Signal Processing 85 (2005) 1189–1210 1193
The best estimate of the state vector s is the state ŝ obtained solving the following maximization
problem:

ŝ ¼ arg max
s

pðz1; z2; . . . ; zN ; sÞ

¼ arg max
s

LðsÞ ¼ arg max ln
s

LðsÞ. ð3:6Þ

Setting lðsÞ ¼ � ln LðsÞ and using expression (3.4) for LðsÞ; we obtain after some calculations

lðsÞ ¼ N½lnðsr
ffiffiffiffiffiffi
2p

p
Þ þ lnðsf

ffiffiffiffiffiffi
2p

p
Þ þ lnðsW

ffiffiffiffiffiffi
2p

p
Þ
 þ

XN

k¼1

½rðkÞ � hðs; kÞ
2

2s2
r

þ
½fðkÞ � f ðs; kÞ
2

2s2
f

þ
½WðkÞ � lðs; kÞ
2

2s2
W

( )
.

(3.7)

The maximization problem (3.6) is equivalent to the following minimization problem

ŝ ¼ arg min
s

lðsÞ. (3.8)

The covariance matrix of the unbiased estimator ŝ is bounded from below by the inverse of the Fisher
information matrix (FIM) J as follows [9]:

Efðŝ� sÞðŝ� sÞTgXJ�1ðŝÞ,

JðsÞ ¼ Ef½rslðsÞ
½rslðsÞ
Tg. (3.9)

The mathematical expression of the gradient vector rslðsÞ is

rslðsÞ ¼ rs

1

2s2
r

XN

k¼1

½rðkÞ � hðs; kÞ
2 þ rs

1

2s2
f

XN

k¼1

½fðkÞ � f ðs; kÞ
2

þrs

1

2s2
W

XN

k¼1

½WðkÞ � lðs; kÞ
2

¼
1

2s2
r

XN

k¼1

rs½rðkÞ � hðs; kÞ
2 þ
1

2s2
f

XN

k¼1

rs½fðkÞ � f ðs; kÞ
2

þ
1

2s2
W

XN

k¼1

rs½WðkÞ � lðs; kÞ
2

¼ �
1

s2
r

XN

k¼1

½rðkÞ � hðs; kÞ
rshðs; kÞ �
1

s2
f

XN

k¼1

½fðkÞ � f ðs; kÞ
rsf ðs; kÞ

�
1

s2
W

XN

k¼1

½WðkÞ � lðs; kÞ
rslðs; kÞ. ð3:10Þ
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Under the assumptions that the three components of the radar measurements are pair wise independent we
have

J ¼
1

s4
r

XN

k¼1

Ef½rðkÞ � hðs; kÞ
2grshðs; kÞðrshðs; kÞÞ
T

þ
1

s4
f

XN

k¼1

Ef½fðkÞ � f ðs; kÞ
2grsf ðs; kÞðrsf ðs; kÞÞ
T

þ
1

s4
W

XN

k¼1

Ef½WðkÞ � lðs; kÞ
2grslðs; kÞðrslðs; kÞÞ
T

¼
XN

k¼1

1

s2
r
rshðs; kÞðrshðs; kÞÞ

T
þ

1

s2
f

rsf ðs; kÞðrsf ðs; kÞÞ
T
þ

1

s2
W

rslðs; kÞðrslðs; kÞÞ
T

( )
. ð3:11Þ

The gradient vectors rshðs; kÞ; rsf ðs; kÞ and rslðs; kÞ have the following components:

rshðs; kÞ ¼

½rshðs; kÞ
x0
¼

x½k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx½k
Þ2 þ ðy½k
Þ2 þ ðz½k
Þ2

q ;

½rshðs; kÞ
y0
¼

y½k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx½k
Þ2 þ ðy½k
Þ2 þ ðz½k
Þ2

q ;

½rshðs; kÞ
z0
¼

z½k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx½k
Þ2 þ ðy½k
Þ2 þ ðz½k
Þ2

q ;

½rshðs; kÞ
vx
¼ kT ½rshðs; kÞ
x0

;

½rshðs; kÞ
vy
¼ kT ½rshðs; kÞ
y0

;

½rshðs; kÞ
vz
¼ kT ½rshðs; kÞ
z0

;

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(3.12)

rsf ðs; kÞ ¼

½rsf ðs; kÞ
x0

¼
�x½k
 z½k


½ðx½k
Þ2 þ ðy½k
Þ2 þ ðz½k
Þ2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx½k
Þ2 þ ðy½k
Þ2

q ;

½rsf ðs; kÞ
y0

¼
�y½k
 z½k


½ðx½k
Þ2 þ ðy½k
Þ2 þ ðz½k
Þ2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx½k
Þ2 þ ðy½k
Þ2

q ;

½rsf ðs; kÞ
z0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx½k
Þ2 þ ðy½k
Þ2

q
½ðx½k
Þ2 þ ðy½k
Þ2 þ ðz½k
Þ2


;

½rsf ðs; kÞ
vx
¼ kT ½rsf ðs; kÞ
x0

;

½rsf ðs; kÞ
vy
¼ kT ½rsf ðs; kÞ
y0

;

½rsf ðs; kÞ
vz
¼ kT ½rsf ðs; kÞ
z0

;

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(3.13)
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rslðs; kÞ ¼

½rslðs; kÞ
x0
¼

y½k


½ðx½k
Þ2 þ ðy½k
Þ2

;

½rslðs; kÞ
y0
¼ �

x½k


½ðx½k
Þ2 þ ðy½k
Þ2

;

½rslðs; kÞ
z0
¼ 0;

½rslðs; kÞ
vx
¼ kT ½rslðs; kÞ
x0

;

½rslðs; kÞ
vy
¼ kT ½rslðs; kÞ
y0

;

½rslðs; kÞ
vz
¼ 0;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3.14)

where x½k
; y½k
 and z½k
 denote the ideal position along the three Cartesian coordinates of the target in the
kth time instant.

The evaluation of expressions (3.12, 3.13, 3.14) finally enables us to calculate the FIM (3.11). After
inversion of matrix J, the Cramer–Rao lower bound (CRLB) for the estimated vector s of target parameters
(i.e. the covariance matrix of the unbiased estimator ŝ) is obtained

CRLB ¼

s2
x0

sx0y0
sx0z0

sx0vx
sx0vy

sx0vz

sx0y0
s2

y0
sy0z0

sy0vx
sy0vy

sy0vz

sx0z0
sy0z0

s2
z0

sz0vx
sz0vy

sz0vz

sx0vx
sy0vx

sz0vx
s2

vx
svxvy

svxvz

sx0vy
sy0vy

sz0vy
svxvy

s2
vy

svyvz

sx0vz
sy0vz

sz0vz
svxvz

svyvz
s2

vz

2
66666666664

3
77777777775

. (3.15)

Assume now that we wish to predict the target state ahead in time after the acquisition of N radar
measurements; we are interested in the target position in kT instants with k4N: We achieve the purpose by
inserting the target state vector ŝ; estimated by the N radar measurements, in the target model (3.1) which
will be calculated at the kth time instant. The corresponding covariance matrix P of the predicted target
position is

P ¼

s2
x sxy sxz

sxy s2
y syz

sxz syz s2
z

2
664

3
775, (3.16)

where

s2
xðkT Þ ¼ s2

x0
þ s2

vx
ðkTÞ

2
þ 2sx0vx

ðkTÞ,

s2
yðkTÞ ¼ s2

y0
þ s2

vy
ðkTÞ

2
þ 2sy0vy

ðkT Þ,

s2
zðkTÞ ¼ s2

z0
þ s2

vz
ðkT Þ

2
þ 2sz0vz

ðkTÞ,

sxyðkTÞ ¼ sx0y0
þ ðsy0vx

þ sx0vy
Þ ðkTÞ þ svxvy

ðkT Þ
2,

sxzðkT Þ ¼ sx0z0
þ ðsz0vx

þ sx0vz
Þ ðkT Þ þ svxvz

ðkTÞ
2,

syzðkTÞ ¼ sy0z0
þ ðsy0vz

þ sz0vy
Þ ðkTÞ þ svyvz

ðkTÞ
2.

The variances and co-variances in the equation above are given by the CRLB (3.15).
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3.2. Fusion of estimates

When two or more sensors are present, the combination of their actions gives rise to a multi-sensor
configuration. In this case, we consider two radars which are tracking the same target and processing the
measured data, as depicted in Fig. 2.

The use of the distributed architecture [1] aims at improving the accuracy of the prediction of target
trajectory. To this purpose, we need to calculate the covariance matrix of the target extrapolated position,
after that each radar has collected the N independent measurements.

The steps to take are:
1.
 evaluation of CRLB1 associated to the target state as perceived from radar 1;

2.
 evaluation of CRLB2 associated to the target state as perceived from radar 2;

3.
 evaluation of CRLBf for the estimated vector ŝf obtained after the track fusion by combination of the

CRLB matrices of each estimated vector [1,2]:

CRLBf ¼ ðCRLB�1
1 þ CRLB�1

2 Þ
�1 (3.17)
4.
 calculation of the covariance matrix Pf of the extrapolated trajectory from CRLBf according to (3.16).

We note that the previous fusion equation (3.17) holds true only when the tracks are independent, which is
our case; when the tracks are dependent random variables, a modified equation should be applied, as
specified in [8].

The following numerical experiment has been conducted. There are two radar sensors S1 and S2 which
are located, respectively, at the coordinates ð0; 0; 0Þ and ð�10;�10; 0Þ: Each coordinate is expressed in [km].
The position of the radar sensor S1 is in center of the Cartesian reference system. The standard deviations of
the three components of the radar measurements are assumed to be the same for both radars.

The standard deviation in range is set to 100 [m], while the standard deviations in azimuth and elevation
are both set to 0:2�: The data rate T is set to 12 [s], the number N of measurements used by both radars for
the estimation is set to 10, the target tracks are predicted at instant 5T after the last processed plot. In Fig. 3
we note that the 3rd plot of the ideal trajectory of the target is the 1st plot used for the estimation of the
state vector s. The true value of the initial target position vector, expressed in [km], is ðx0; y0; z0Þ ¼

ð10; 10; 10Þ; while the target velocity vector, expressed in [m/s], is ðvx; vy; vzÞ ¼ ð100; 100; 100Þ:
Under the assumptions described above, the uncertainty ellipsoids associated to the target tracks

predicted by the radar sensors S1 and S2; and the uncertainty ellipsoid associated to the target track
resulting from the fusion of the two covariance matrices CRLB1 and CRLB2; appear as shown in Fig. 3.
data

ŝ
1
,CRLB

1

ŝ
t 
,CRLB

f

ŝ
2 

,CRLB
2

data
RADAR 1

RADAR 2 ESTIMATOR

ESTIMATOR

TX / RX 

TX / RX 

TRACK
FUSION

Fig. 2. Distributed architecture for track fusion and CRLB evaluation.
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The equation of each ellipsoid is

fsTP�1
i spr2g; i ¼ 1; 2; f , (3.18)

where P1 and P2 denote the covariance matrices of the extrapolated trajectory calculated using CRLB1 and
CRLB2; respectively, while Pf is the covariance matrix of the extrapolated trajectory calculated using
CRLBf :

The value r is set to 3, which gives a 99% probability that the unknown target position falls within the
ellipsoid.
3.3. Main results

In Fig. 3 the ideal target trajectory is represented by a sequence of plots (�), occurring every T seconds: N

plots (�) are processed to evaluate the state vector s covariance matrices, one plot ðþÞ is chosen to show the
uncertainty ellipsoids for the extrapolated trajectory. We note that the uncertainty ellipsoid of the fused
track is much smaller than the intersection of the ellipsoids relative to tracks 1 and 2. This is in contrast to
the common belief that the accuracy of the fused track is related just to the intersection of the individual
tracks accuracies. To be more precise, we state the following results concerning the volumes of the
uncertainty ellipsoids taken as a suitable measurement of the track accuracy.

The volume of the uncertainty ellipsoid of the fused track is related to the volumes of the uncertainty
ellipsoids of individual tracks by the following equation:

Vf ¼ rncðnÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
f Þ

q , (3.19)
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where P�1
f ¼ P�1

1 þ P�1
2 : The value r is such that the probability of the random variable fsTP�1

i sg is not
greater than r2 and cðnÞ is the volume of the unit hypersphere.

The volume Vf is not greater than the volume V k

Vk ¼
V1V2

V1 þ V2
, (3.20)

that would be obtained applying the so-called rule of ‘‘parallel resistances’’ to the volumes V1 and V 2 of the
uncertainty ellipsoids of tracks 1 and 2. The proof of this statement is given in Appendix A.

In Appendix B we further develop this result referring to a target on the x– y plane. In particular, we find
results for the co-located and non co-located sensors cases. For the co-located case we find

Af ¼
A

2
. (3.21)

Eq. (3.21) shows that the uncertainty area Af associated to the fused track halves with respect to the
uncertainty area A relative to each individual track (sensors are co-located and identical to each other). A
physical explanation is also given. For the non co-located case we have

Af p
A1A2

A1 þ A2
. (3.22)

Eq. (3.22) states that the target parameter estimate obtained using two separate radars and fusing their
tracks is more accurate than the estimate that would be obtained by applying the rule for ‘‘parallel
resistances’’ ðAf pAkÞ: The equality holds (i.e. Af ¼ Ak) in two particular cases:
�
 the radars are co-located;

�
 the covariance matrices of the local estimates can be respectively expressed as P1 ¼ s2

1 � I and P2 ¼ s2
2 � I;

where I is the identity matrix.

Finally, in Appendix 3 we extend the previous results to k42 sensors, showing again that V f pVk:
In summary, the upper bound to Vf is given by the so-called rule of ‘‘parallel resistances’’. Concerning

the lower bound to V f ; the following considerations are in order.
For the sake of simplicity, the analysis is limited to the 2D case. Two sensors S1 and S2; characterized by

the same values of measurement accuracies (sr ¼ 50 m; sy ¼ 0:2�), are respectively located in ð�10; 0Þ and
ð10; 0Þ; being the coordinates expresses in km.

The target position is assumed to vary in the x– y plane defined by the interval ð�20; 20Þkm for the x-
coordinate and ð�20; 20Þkm for the y-coordinate. The area of the uncertainty ellipse resulting from track
fusion for each target position is depicted in Fig. 4. Note that the plot is symmetrical with respect to the
horizontal line S1–S2: The contour plot represents the uncertainty area, normalized to its maximum value,
in dB units. The minimum value of the uncertainty area is obtained when the target position is ð0; 10Þkm;
i.e. when the lines of sight sensor-target are perpendicular to each other. In this configuration, in fact, the
major axis of the S1 individual uncertainty ellipse is combined with the minor axis of the S2 individual
uncertainty ellipse, and vice versa. The consequent minimization of the result of track fusion can be justified
reminding the relationship rsW4sr; which generally holds for radars. If the two individual ellipses are
perpendicular to each other (i.e. the major axis of S1 is perpendicular to the minor axis of S2 and vice versa)
and their minor axes are both equal to sr; the area of the uncertainty ellipse resulting from track fusion
cannot be greater than the ‘‘safe area’’ ps2

r: A geometrical explanation for the lower bound to track fusion
in the 2D case is shown in Fig. 5. If the radars have different range accuracies, the area of the fused ellipse is
less than psr;1 sr;2:
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Fig. 4. Cantour plot of the uncertainty area resulting from track fusion for varying target position. The area is normalized to its

maximum value and expressed in dB units.

Fig. 5. The lower limit to track fusion in the 2D case.
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3.3.1. Fusion gain with respect to individual radars

It is assumed that the radar sensors are co-located and the signal to noise ratio (SNR) is the same for each
sensor. The following equalities apply:

1D3sf ¼
1ffiffiffi
2

p s,

2D3Af ¼ 1
2A,

3D3V f ¼
1

2
ffiffiffi
2

p V . (3.23)

The result relative to the 1D case directly follows from the expression for the theoretical error DMof a radar
measurement M [10]:

DM ¼
kMffiffiffiffiffiffiffiffiffiffiffiffiffi
2SNR

p , (3.24)

where the parameters k and M depend on the extracted measurement which can be either range, bearing or
elevation. In the fused case, the SNR value doubles because either the transmitted power or the radiated
number of pulses double.

For 2D radars the track resulting from the fusion of two tracks coming from two different radars
provides an accuracy that is better than the accuracy of each single track of a factor equal to 1

2
: see (B.23) of

Appendix B.
In the case of 3D radars, the volume Vf of the ellipsoid of uncertainty associated to the equivalent system

consisting of only one radar sensor is 1=2
ffiffiffi
2

p
of the volume of the ellipsoid of uncertainty associated to each

of the two radar sensors. Intuitively, this value comes from the product of 1=
ffiffiffi
2

p
reduction factors along

each one of the three axes.
In the general case of n-dimensional target state and k non co-located radars, the following result has been

found. Let E1 ¼ fsTP�1
1 spr2g; E2 ¼ fsTP�1

2 spr2g; . . . ; and Ek ¼ fsTP�1
k spr2g be the n dimensional

uncertainty ellipsoids associated to k non co-located radars. Let P�1
f ¼ P�1

1 þ P�1
2 þ � � � þ P�1

k and assume
without loss of generality that E1 has the maximum volume denoted by V1: It can be shown that (see
Appendix D for the detailed proof)

Vf

V 1
p

1

k
. (3.25)
4. Conclusions

In this paper we have investigated the track-to-track fusion for radar systems, developing the theory for a
parametric estimation problem. In particular, we have assumed the independence of the tracks, as a
consequence of the absence of a common process noise (which is instead typical of dynamical states) and of
any a priori statistical information on the state to estimate.

To derive our results, we have considered a target moving along a straight line in a Cartesian reference
system ðx; y; zÞ; even though other trajectories can be considered, as, for instance, the ballistic target motion.
On the basis of N measurements, we have first evaluated the CRLB matrices associated to each sensor and
to their track fusion. We have then calculated the covariance matrices of the extrapolated trajectory ahead
in the time interval. The volume of the ellipsoid has been taken as a metric of track quality. We have shown
that the prediction accuracy of the target position not only improves by fusing the tracks, but the
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improvement factor is larger than the simple intersection of the uncertainty ellipsoids of the individual
sensors. Equations for a number of study cases have been provided to measure the fusion gain.
Appendix A

Consider two distinct radar sensors S1 and S2: Let E1 ¼ fsTP�1
1 spr2g and E2 ¼ fsTP�1

2 spr2g be the
uncertainty ellipsoids associated, respectively, to the target tracks estimated by S1 and S2; where s

represents the n-dimensional target state vector and P1 and P2 are n by n positive definite matrices
representing the covariance matrices of the two tracks. The objective of this appendix is to show that the
volume Vf of the equivalent ellipsoid, which gives a measure of the accuracy of the fused track

Vf ¼ rncðnÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
f Þ

q , (A.1)

where P�1
f ¼ P�1

1 þ P�1
2 ; is not greater than the volume Vk obtained applying the rule of parallel resistances

to the volumes V 1 and V 2

Vk ¼
V1V2

V1 þ V2
, (A.2)

where Vi ¼ rncðnÞ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

i Þ

q
[11], i ¼ 1; 2; denotes the volume of the ellipsoid of uncertainty Ei

associated to the target track provided by sensor Si: The value r is such that the probability of the random
variable fsTP�1

i sg is not greater than r2 and cðnÞ is the volume of the unit hypersphere as follows:

cðnÞ ¼
pn=2

ðn=2Þ!
if n is even,

cðnÞ ¼
2npn�1=2ðn � 1=2Þ!

n!
if n is odd. (A.3)

The proof of this result is based upon the following well known inequality concerning the determinant of
the sum of two positive definite matrices. It states:

Lemma 1 ([12]). Let A1 and A2 be two n-dimensional positive definite matrices, nX1: Then it is trueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1 þ A2Þ

n
p

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

n
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

n
p

. (A.4)

Applying the lemma above, the following corollary can be proved.

Corollary 2. Let A1 and A2 be two n-dimensional positive definite matrices, nX2: Set an integer mpn we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1 þ A2Þ

m
p

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

m
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

m
p

. (A.5)

Proof. The proof of the corollary depends on the validity of the following statement.
Statement 3. For every pX1; a and b positive real numbers we have that

ða þ bÞpXap þ bp. (A.6)

Proof of Statement 3. Consider the function f ðxÞ ¼ ðx þ bÞp � xp � bp: Then f ð0Þ ¼ 0 and _f ðxÞX0 for every
xX0 ( _f denotes the first-order derivative of f). All that leads to the conclusion that f is an increasing
function which takes the value 0 when x ¼ 0: Hence, f ðxÞX0 for every xX0: Substituting the unknown
term x with the positive term a, we get that f ðaÞ ¼ ða þ bÞp � ap � bp

X0; so the inequality has been verified.
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Choose a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

n
p

; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

n
p

and p ¼ n=m: The fact that A1 and A2 are both positive definite
matrices means that detðA1Þ and detðA2Þ are positive values which itself implies that a and b are both
positive real numbers. Also note that mpn by the hypothesis of the corollary, thus pX1: &

Since a and b are both positive real numbers and pX1; we have by the inequality (A.6) that

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

n
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

n
p

Þ
n=m

Xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

n
p

Þ
n=m

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

n
p

Þ
n=m

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

m
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

m
p

. ðA:7Þ

The application of Lemma 1 leads to the inequality

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ þ detðA2Þ

n
p

ÞXð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

n
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

n
p

Þ, (A.8)

which combined with the increasing of the exponential function gives

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ þ detðA2Þ

n
p

Þ
n=m

Xð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

n
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

n
p

Þ
n=m. (A.9)

Hence, combining (A.7) and (A.9) we obtain

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ þ detðA2Þ

n
p

Þ
n=m

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

m
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

m
p

. (A.10)

After the simplification of the first term in the above inequality, it follows thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ þ detðA2Þ

m
p

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA1Þ

m
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA2Þ

m
p

, (A.11)

which is exactly the thesis of the Corollary 2. &

At this point there are all the ingredients needed to prove the main result of this appendix which is stated
in the form of the following theorem.

Theorem 4. V f pV k; where V f and Vk have been defined in (A.1) and (A.2) respectively.

Proof. After simplifying terms, it follows that Vf pV k if and only if

rncðnÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
f Þ

q prncðnÞ
1

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 Þ

q
Þ

, (A.12)

which is true if and only ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 Þ

q
. (A.13)

Since the order of the matrices P�1
1 and P�1

2 is at least 2 the inequality above is guaranteed to be true by
Corollary 2. &
Appendix B

In this appendix we consider a simple location problem to further demonstrate the general result of
Appendix A. A steady target having location ðx; yÞ is sensed by two non co-located radars S1 and S2: In this
two-dimensional case (i.e. n ¼ 2), the equation defining the uncertainty ellipse associated to the target
position and to the generic radar becomes

sTP�1s ¼ ½x y

s2

x sxy

sxy s2
y

" #�1
x

y

" #
pr2. (B.1)
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The state vector s consists of two Gaussian random variables ðx; yÞ; with variances s2
x and s2

y; respectively,
and correlation coefficient r ¼ sxy=sxsy: Eq. (B.1) describes an ellipse E in the arbitrary form ax2 þ bxy þ

cy2pr2

1

1 � r2

x

sx

� 
2

þ
y

sy

� 
2

� 2r
xy

sxsy

" #
pr2. (B.2)

The uncertainty area A is then given by

A ¼ r2 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p ¼ r2 p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

xs2
y � s2

xy

q
. (B.3)

Two distinct radars S1 and S2 generate two different two-dimensional joint Gaussian estimates ðx1; y1Þ and
ðx2; y2Þ; with covariance matrices P1 and P2 and uncertainty areas A1 and A2; respectively. The covariance
matrix obtained after the track fusion is

Pf ¼ ðP�1
1 þ P�1

2 Þ
�1. (B.4)

Eq. (B.4) can also be expressed in terms of variances and co-variances

s2
x;f sxy;f

sxy;f s2
y;f

" #
¼

s2
x;1 sxy;1

sxy;1 s2
y;1

" #�1

þ
s2

x;2 sxy;2

sxy;2 s2
y;2

" #�1
2
4

3
5
�1

. (B.5)

After some computation, we finally obtain

Pf ¼
1

A2
1 þ A2

2 þ p2 � T1;2

s2
x;1 A2

2 þ s2
x;2 A2

1 sxy;1 A2
2 þ sxy;2 A2

1

sxy;1 A2
2 þ sxy;2 A2

1 s2
y;1 A2

2 þ s2
y;2 A2

1

2
4

3
5, (B.6)

where T1;2 is defined as follows:

T1;2 ¼ s2
x;1 s

2
y;2 þ s2

x;2 s
2
y;1 � 2sxy;1 sxy;2. (B.7)

According to Eq. (B.3) and assuming for sake of simplicity r ¼ 1; the uncertainty area of the estimate
resulting from the fusion of the tracks, respectively, generated by radars S1 and S2 is

Af ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x;f s
2
y;f � s2

xy;f

q
¼

A1A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2 þ p2 T1;2

q . (B.8)

Our goal is to demonstrate that the uncertainty area Af relative to the track fusion estimate is equal to or
smaller than the uncertainty area Ak that would be obtained applying the rule for in parallel resistances

Ak ¼
1

A1
þ

1

A2

� 
�1

¼
A1 A2

A1 þ A2
. (B.9)

The aim is to prove that Af pAk; according to expressions (B.8) and (B.9), this reduces to prove

A1 A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2 þ p2 T1;2

q p
A1 A2

A1 þ A2
. (B.10)

Since the two numerators are identical, we can limit our analysis to the denominators, which are expected
to verify the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ p2 T1;2

q
XA1 þ A2. (B.11)
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Since A1 and A2 are both positive, the second term in Eq. (B.11) can also be written as

A1 þ A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1 þ A2Þ

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ A2
2 þ 2 A1 A2

q
. (B.12)

The comparison of Eqs. (B.11, B.12) shows that the relation Af pAk definitely holds if the following
equation is satisfied:

p2 T1;2X2 A1 A2. (B.13)

A way to prove the inequality above is to express the state vector variances and co-variances as functions of
radar measurement accuracies in range (sR) and azimuth (sW).

s2
x ¼ s2

R cos2 Wþ R2s2
W sin2 W,

s2
y ¼ s2

R sin2 Wþ R2s2
W cos2 W,

sxy ¼
s2

R

2
sin 2W�

R2

2
s2
W sin 2W. (B.14)

The two radars S1 and S2 are supposed to be identical, so they are characterized by the same values of
accuracy, both in range and azimuth. However, they are generally non co-located sensors, and this results
in different pairs of coordinates, ðR1;W1Þ and ðR2;W2Þ: Thus, we obtain

s2
x;1 ¼ s2

R cos2 W1 þ R2
1s

2
W sin2 W1,

s2
y;1 ¼ s2

R sin2 W1 þ R2
1s

2
W cos2 W1,

sxy;1 ¼
s2

R

2
sin 2W1 �

R2
1

2
s2
W sin 2W1, (B.15)

s2
x;2 ¼ s2

R cos2 W2 þ R2
2s

2
W sin2 W2,

s2
y;2 ¼ s2

R sin2 W2 þ R2
2s

2
W cos2 W2,

sxy;2 ¼
s2

R

2
sin 2W2 �

R2
2

2
s2
W sin 2W2. (B.16)

By means of Eqs. (B.15, B.16), the first term of Eq. (B.13) becomes:

p2 T1;2 ¼ p2 ðs2
x;1 s

2
y;2 þ s2

x;2 s
2
y;1 � 2sxy;1 sxy;2Þ

¼ p2 ½s4
R þ s4

WR2
1R2

2 � s2
R s2

WðR
2
1 þ R2

2Þ
 sin
2
ðW2 � W1Þ þ s2

R s2
WðR

2
1 þ R2

2Þ
n o

. ðB:17Þ

The second term of Eq. (B.13) is instead

2 A1 A2 ¼ 2p2R1R2s2
Rs

2
W. (B.18)

Eq. (B.13) finally becomes

½s4
R þ s4

WR2
1R2

2 � s2
Rs

2
WðR

2
1 þ R2

2Þ


sin2
ðW2 � W1Þ þ s2

Rs
2
WðR

2
1 þ R2

2ÞX2R1R2s2
Rs

2
W. ðB:19Þ

After some manipulation, we obtain

½s4
R þ s4

WR2
1R2

2 � s2
Rs

2
WðR

2
1 þ R2

2Þ
 sin2
ðW2 � W1Þ þ s2

Rs
2
WðR1 � R2Þ

2
X0. (B.20)
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In order to prove that the relationship above always holds, whatever are the values of R1;R2;W1;W2; we
should consider the sign of the expression in Eq. (B.20) among square brackets. If it is positive, then
Eq. (B.20) is always proved, regardless the value of sin2

ðW2 � W1Þ: If instead the expression among square
brackets is negative, then the minimum value which can be assumed by the global expression is obtained
when the expression among square brackets is multiplied by 1. In other words, if sin2

ðW2 � W1Þ ¼ 1;
Eq. (B.20) becomes

s4
R þ s4

WR2
1R2

2 � s2
Rs

2
WðR

2
1 þ R2

2Þ þ s2
Rs

2
WðR1 � R2Þ

2
X0. (B.21)

After simplification, we obtain

ðs2
R � s2

WR1R2Þ
2
X0, (B.22)

which is always true.
Eq. (B.13) has been proved by means of Eq. (B.22), so ensuring that Eq. (B.10) is always satisfied. In

other words, the ðx; yÞ estimate obtained by using two separate radars and fusing their tracks is more
accurate than the estimate that would be obtained by applying the rule for in-parallel resistances (Af pAk).

Two particular configurations make Af and Ak coincide:
(1)
 Radars S1 and S2 are co-located and their state vector estimates are characterized by identical
covariance matrices (P1 � P2). Under this hypothesis, uncertainty areas are equal as well
(A1 ¼ A2 ¼ A) and the equivalent area is given by

Af ¼
A

2
. (B.23)

The same rule applies for identical resistances, whose value is halved when they are connected in
parallel.
(2)
 Covariance matrices P1 and P2 are both diagonal, i.e. the two variables x and y are uncorrelated.
Moreover, they are supposed to be characterized by the same standard deviation. These hypotheses can
be represented as follows:

sxy;1 ¼ sxy;2 ¼ 0,

sx;1 ¼ sy;1 ¼ s1,

sx;2 ¼ sy;2 ¼ s2. (B.24)
According to Eq. (B.24), we obtain

A1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x;1s
2
y;1 � s2

xy;1

q
¼ ps2

1,

A2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x;2s
2
y;2 � s2

xy;2

q
¼ ps2

2,

p2 T1;2 ¼ 2p2s2
1s

2
2 ¼ 2 A1 A2. (B.25)

The track fusion uncertainty area is finally given by

Af ¼
A1 A2

A1 þ A2
� Ak. (B.26)



ARTICLE IN PRESS

A. Farina et al. / Signal Processing 85 (2005) 1189–12101206
Physical considerations: Radar measurement accuracies sr and sW can be both expressed as functions of
the signal-to-noise ratio (SNR)

sr ¼
DRffiffiffiffiffiffiffiffiffiffiffi
SNR

p ,

sW ¼
DWffiffiffiffiffiffiffiffiffiffiffi
SNR

p , (B.27)

where DR is the range resolution and DW is the �3 dB azimuth bandwidth.
Two radars S1 and S2 can be considered co-located either if they ‘‘collapse’’ into an equivalent radar

having the same geometrical area and transmitting double power, either if they are connected back to back,
so doubling the measurement data rate. In the former case, the SNR doubles as a consequence of the
double transmitted power, in the latter case the equivalent SNR doubles as well, due to the double number
of measurements (we assume there are no integration losses). Whatever the configuration, both standard
deviations in (B.27) are reduced by a factor

ffiffiffi
2

p
: Therefore, the state vector variances and co-variances in

(B.14) become

s2
x ¼

s2
R

2
cos2 Wþ R2 s

2
W

2
sin2 W,

s2
y ¼

s2
R

2
sin2 Wþ R2 s

2
W

2
cos2 W,

sxy ¼
s2

R

4
sin 2W�

R2

4
s2
W sin 2W. (B.28)

From (B.28), it can be easily computed that the uncertainty area halves, as previously demonstrated.
A geometrical and more intuitive explanation can also be given. Two co-located radars, tracking the

same target, are characterized by identical uncertainty ellipsoids. The ellipsoid resulting from track-to-track
fusion can be thought of as the envelope of a certain star of straight lines centered around the target. Along
each straight line, the accuracy of the fused track is obtained according to the rule that applies to in-parallel
resistances. Therefore, the extension of the fused track uncertainty ellipsoid along that straight line will be
even shorter than the smaller of the axes of each ellipsoid. For the 2D case, the uncertainty ellipses
associated to the tracks of co-located radars and to the fused track are depicted in Fig. B.1.

The same explanation applies to non co-located radars. Also in this case, the resulting ellipsoid can be
constructed line by line, via the rule of in-parallel resistances, applied to 1D random variables; again, the
lines pertain to the star with center on the target. A particular configuration analyzed in this section
(P1 ¼ s1 � I;P2 ¼ s2 � I) corresponds to two uncertainty ellipsoids with null eccentricity, so degenerating
into spheres. The resulting fused ellipsoid degenerates into a sphere, as well, and the gain of track-to-track
fusion reduces to its upper bound, i.e. the value corresponding to the case of co-located radars (1

2
for 2D

case). For a graphical example, refer to Fig. 5.
Appendix C

In this appendix it is proven that the inequality Vf pV k holds also in the case when more than two radar
sensors are considered. Let S1;S2; . . . ;Sk be the k radar sensors considered, kX2: Denote by Ei ¼

fsTP�1
i spr2g the ellipsoid of uncertainty associated to the target track estimated by the sensor Si; where s

represents the n-dimensional target state vector and Pi is an n � n positive definite matrix representing the
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covariance matrix of the track. The volume V f of the equivalent ellipsoid is given by

Vf ¼ rncðnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
f Þ

q ,

P�1
f ¼ P�1

1 þ P�1
2 þ � � � þ P�1

k , (C.1)

while the volume V k obtained applying the rule of parallel resistances to the volumes V 1;V 2; . . . ;Vk of the
ellipsoids E1;E2; . . . ;Ek is given by

Vk ¼
V1V2 � � �V k

V2V3 � � �Vk þ V 1V 3 � � �V k þ � � � þ V1V2 � � �V k�1
,

Vi ¼ rncðnÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
i Þ

q . (C.2)

The proof that the inequality Vf pV k holds is based upon the following lemma.

Lemma 5. Let A1;A2; . . . ;Ak; kX2; be n � n positive definite matrices, n ¼ 1: Set an integer m ¼ n; then it is

true that

½detðA1 þ A2 þ � � � þ AkÞ

1=m

X½detðA1Þ

1=m þ ½detðA2Þ


1=m þ � � � þ ½detðAkÞ

1=m. (C.3)

Proof. We proceed by induction on the number i of matrices considered.
Basic step: i ¼ 2: It reduces to Corollary 2 proved in Appendix A.
Inductive step: i þ 1: It is well known that the sum of two n � n positive definite matrices is an n � n

positive definite matrix [12]. Setting A ¼ A1 þ A2 þ � � � þ Ai and applying Corollary 2 we have

½detðAþ Aiþ1Þ

1=m

X½detðAÞ
1=m þ ½detðAiþ1Þ

1=m. (C.4)

By inductive hypothesis we can state that

½detðAÞ

1
mX½detðA1Þ


1=m þ ½detðA2Þ

1=m þ � � � þ ½detðAiÞ


1=m. (C.5)
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Combining the inequalities (C.4) and (C.5) it follows immediately that:

½detðAþ Aiþ1Þ

1=m

X½detðA1Þ

1=m þ ½detðA2Þ


1=m þ � � � þ ½detðAiþ1Þ

1=m. (C.6)

Since A ¼ A1 þ A2 þ � � � þ Ai by definition, the inequality (C.6) can be rewritten as

½detðA1 þ A2 þ � � � þ Aiþ1Þ

1=m

X½detðA1Þ

1=m þ ½detðA2Þ


1=m þ � � � þ ½detðAiþ1Þ

1=m, (C.7)

which proves the inductive step. &

We are now ready to prove the main result of this appendix which is stated in the following form.

Theorem 6. V f pV k; where V f and Vk have been defined, respectively, in (C.1) and (C.2).

Proof. Using the expressions for Vf and Vk defined in (C.1) and (C.2) and reminding the basic result in
matrix theory stating that detðABÞ ¼ detðAÞ detðBÞ [12] we can write the inequality V f pVk as follows:

rncðnÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
f Þ

q

p

½rncðnÞ
k
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
1 P�1

2 � � �P�1
k Þ

q
0
B@

1
CA

½rncðnÞ
k�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 P�1
3 � � �P�1

k Þ

q þ � � � þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
1 P�1

2 � � �P�1
k�1Þ

q
0
B@

1
CA

, ðC:8Þ

which is true if and only if

rncðnÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
f Þ

q p

½rncðnÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðP�1
1 P�1

2 � � �P�1
k Þ

q
0
B@

1
CA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 Þ

q
þ � � � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

k Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 P�1
2 P�1

3 � � �P�1
k Þ

q
0
B@

1
CA

, (C.9)

which is true if and only ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 Þ

q
þ � � � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

k Þ

q
. (C.10)

The inequality (C.10) is guaranteed to be true by the Lemma 5. This ends the proof of the theorem. &
Appendix D

Fact 1: The relationship between fused track and single track for co-located and non co-located radars.
Hypothesis: Let E1 ¼ fsTP�1

1 spr2g and E2 ¼ fsTP�1
2 spr2g; . . . ;Ek ¼ fsTP�1

k spr2g be the n-dimensional
uncertainty ellipsoids associated to k radars. Let P�1

f ¼ P�1
1 þ P�1

2 þ � � � þ P�1
k and assume without loss of

generality that E1 has the maximum volume denoted by V 1:

Thesis:
Vf

V 1
p

1

k
:
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Proof.

Vf

V 1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 þ P�1
2 þ � � � þ P�1

k Þ

q . (D.1)

Applying Lemma 5 (which is reported in Appendix C) with m ¼ 3 we have thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 þ P�1
2 þ � � � þ P�1

k Þ

q

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 Þ

q
þ � � � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

k Þ

q . ðD:2Þ

Since the volume of the generic ellipsoid Ei ¼ fsTP�1
i spr2g is given by Vi ¼ rncðnÞ1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

i Þ

q
and E1 has

the maximum volume among all ellipsoids, it must hold that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

i Þ

q
for every

i ¼ 1; 2; . . . ; k: This allows us to stateffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

2 Þ

q
þ � � � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

k Þ

q p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

1 Þ

q p
1

k
: & (D.3)

Fact 2: Lower bound for Vf :

Hypothesis: Let E1 ¼ fsTP�1
1 spr2g and E2 ¼ fsTP�1

2 spr2g;y, Ek ¼ fsTP�1
k spr2g be the n-dimensional

uncertainty ellipsoids associated to k radars.
Let P�1 ¼ P�1

i : Ei is the ellipsoid with the minimum value and set P�1
min ¼ Pf þ P� 1: Call Vmin the

volume of the ellipsoid associated to the matrix P�1
min:

Thesis: VminpV f :

Proof.

Vf

Vmin
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

minÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f þ P�1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q . (D.4)

Since P�1
f and P�1 are both positive definite matrices, due to Eq. (A.5) thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f þ P�1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP�1

f Þ

q X1. (D.5)

Being ðVf =VminÞX1 we have that VminpV f which is exactly our thesis. &
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