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ABSTRACT 
In our earlier work, we introduced a class of stochastic processes 
obeying a structure of the form, E [ X ( t ) X ( t X ) ]  = R(X), t ,  X > 0, 
and outlined a mathematical framework for the modeling and analy- 
sis for these processes. We referred to this class of processes as scale 
stationary processes. We demonstrated that scale stationarity frame- 
work leads to engineering oriented mathematical tools and concepts, 
such as autocorrelation and spectral density function and finite pa- 
rameter ARMA models for modeling and analysis of statistically 
self-similar signals. In this work, we will introduce a state space rep- 
resentation for self-similar signals and systems based on scale sta- 
tionary ARMA models. Such a representation provides a complete 
description of the inner and outer dynamics of a self-similar system 
or signal that can not be obtained from transfer function represen- 
tation. We will introduce Kalman filtering techniques and Ricatti 
Equations for smoothing and prediction of self-similar processes. 

1. INTRODUCTION 
l/f processes occur in a broad range of engineering and science 
applications including network traffic, noises in electronic devices, 
biomedical systems, burst error in communication channels to men- 
tion a few [1]-[9]. 

The major characteristics of these processes are their long term 
correlation structure, and their statistical self-similarity. These char- 
acterizations are apparent in the empirical l/fT power spectrum. 
Qpically, the parameter y controls both the degree of long term 
correlations and the statistical self-similarity. Mathematical tools 
and concepts for such processes were first formulated and advocated 
in practice by Mandelbrot 121 within the context of “fractals”. He 
proposed the well-known fractional Brownian motion (fBm) model 
to capture the long term correlation and statistical self-similarity of 
the l/f processes. Given the elaborate fBm model, and the aura 
of “fractal science”, a flurry of activity evolved around the model- 
ing and analysis of 1/ f processes in engineering literature [3]-[6]. 
However, these efforts never hold a strong ground in engineering ap- 
plications, mainly due to the mathematical intractability of the fBm 
model, and the lack of foundational principles. In [l], Yavci et al. 
proposed a class of second order processes obeying a structure of 
the form E [ X ( t ) X ( t X ) ]  = R(X), t ,  X > 0 to model and analyze 
l/f processes. These models, referred to as scale stationary, enjoy 
theoretical properties parallel to the ordinary wide sense stationary 
processes. Most importantly, their foundation is based on the exten- 
sions of the concept of stationarity on which powerful time series 
analysis tools are derived. Scale stationary processes come with the 
spectral analysis tools, and ARh4A models just like the ordinary sta- 
tionary processes. They are also directly linked to the linear scale 
invariant systems. Let us not forget to mention that, fBm model is 
simply a trended scale stationary model with stationary increments. 
It may be academically dissapointing! but true that the issue of ”sta- 

tistical self-similarity” can be managed to a large degree by the sim- 
ple framework of ”scale stationarity” . 

In [ 11, authors introduced scale stationary ARMA models based 
on Euler-Cauchy system and showed that any scale stationary pro- 
cess can be captured by a finite parameter scale stationary autore- 
gressive model. In this study, we extend the ARMA modeling to 
multiple input and multiple output (MIMO) systems and propose 
a state space representation for the self-similar processes. At first 
glance, both the state space representation and the Kalman filter may 
appear simply as time-varying models. However, with the proper 
definition of the derivative operation on the multiplicative group and 
the self-similarity, both the state space model and the Kalman filter 
are captured with constant matrix vector representation. This new 
definition of the derivative operation guides the implementation of 
the Kalman filter for self-similar processes, both in recursive update 
and the Ricatti equation, leading to superior performance than the 
ordinary time varying implementation. 

The proposed state space representation and the Kalman filter- 
ing can be used in estimation, and prediction tasks involving l/f 
phenomena. Applications include inverse filtering for communica- 
tion channels and blurred images in which the blur or the channel is 
time varying and the underlying data and noise have 1/ f character- 
istics. Another obvious application of the tool is in communication 
network traffic prediction which has potential implications in net- 
work management and quality service provisioning. 

The organization of the paper is as follows: Section 2 covers the 
basic background on scale stationary processes and scale stationary 
ARMA modeling. Section 3 presents the state space representation 
and the derivative operator for functions defined on the multiplica- 
tive group. Section 4 introduces the Kalman filter for self-similar 
processes. Section 5 discusses the implementation of he Kalman fil- 
ter and the Ricatti Equation and presents some simulation results. 
Section 6 discusses the applications of the proposed Kalman filter 
in various engineering problems. Finally, Section 7 concludes the 
discussion. 

Before giving the derivation of our state space model and Kalman 
filtering, we like to summarize related background information on 
self-similar processes as introduced in detail in [l]. A linear system 

2. BACKGROUND ON SELF-SIMILAR PROCESSES 

satisfying 
S{z(tX)} = X H y ( t X )  (1) 

is called a Linear Self-similar (LSS) system with self-similarity pa- 
rameter H. As it can be seen from this definition, analogous to LTI 
systems which are invariant to time shifts, LSS systems are invariant 
to scale changes within a constant parameter. 

The output of the LSS system to any input is found by a scale 
convolution operation defined as: 
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y(t) = h(t)  * u(t)  = t /" h( -j;)u(X)dlnX, t t O  (2) 

where t H k ( t )  is the response of the system to the unit driving force, 
S(t)  [l] defined as: i) 8(t)  = 0, t # 1 t > 0, ii) JOw i(t/X)dZnX = 
1, t > 0, iii) z ( t )  = sow z ( A ) b (  5)dlnX. 

A linear dynamical model for LSS systems is represented as 
time varying Euler-Cauchy type differential equations: 

M+H dM bMt ---u(t) + ' ' . + bltl+H %(t) + bot%@) ( 3 )  dt M dt 

This type of system satisfies the self-similarity definition as in (1). 
The difference of the Euler-Cauchy system actually comes from the 
fact that the dynamics of the system is captured in scale derivatives 
defined on the multiplicative group [ 101 as: 

d Zim y(tA) - y(t) 
dt A + l  1nA 

t - y ( t )  = (4) 

Since the model is invariant to scale changes, the memory of the 
system is stored in infinitesimal time scalings, similar to the Euler 
dynamical model for LTI systems where the memory of the system 
is stored in infinitesimal time shifts since these systems are time 
invariant. 

In a probabilistic setting Euler-Cauchy system generates self- 
similar processes with 1/ f spectrum [ 11. Using the input-output 
relationship of the LSS system (2), the power spectrum of the Euler- 
Cauchy system in Fourier domain driven by a white noise having 
autocorelation &(t l ,  t z )  = a28(t2/t1) is shown to have power- 
law or a 1/ f spectrum [I]. Therefore, any 1/ f process can be ap- 
proximated with a finite order Euler-Cauchy system which makes 
signal processing techniques for estimation and prediction of such 
processes possible. It is because of these facts that we use Euler- 
Cauchy systems in the derivation of the state space representation 
and Kalman filtering algorithm for LSS systems. 

3. STATE SPACE REPRESENTATION OF SELF-SIMILAR 
PROCESSES 

Beginning from the Euler-Cauchy system in (3 ) ,  the general state 
space representation with states having different self-similarity pa- 
rameters can be obtained as: 

t-x(t) = tH(A + H)t-Hx(t) + tHBu(t) (5) 
d 
dt 

y ( t )  = Cx(t) +Du(t)  (6)  

where x(t) = [zl(t) z2(t) ... X N ( t ) l T  ([.I' is the transpose oper- 
ation) is the Nzl  state vector, u(t) is the &l input vector, y ( t )  is 
the Mzl output vector, A is a N z N  matrix, B is a N z R  matrix, C 
is a M z N  matrix, D is a M x R  matrix and H is a N z N  diagonal 
matrix having values H I ,  H z ,  ..., H N  in its diagonal entries. 

In this representation, the self-similarity parameters, Hi for i = 
1, ..., N of the states can be equivalent, then the external system 
representation reduces to the Euler-Cauchy system in (3). However, 
for the states to have same self-similarities is not very realistic and 
it is a specific case of the general form. Therefore, we use the most 
general state space representation with the states having different 
His throughout the paper. 

It can be argued that the state space representation for LSS sys- 
tems can be expressed as fist  order time varying ordinary differen- 
tial equations %x(t) = tH(A+H)t-Ht x(t) + p u ( t )  and time 

varying state space techniques can be used in their analysis. In this 
type of representation, the memory of the states are captured in in- 
finitesimal time shifts as in the LTI systems. However, here for the 
LSS systems, expressing the inner dynamics of the whole system 
with first order self-similar Euler-Cauchy systems as states is more 
appropriate to the nature of the dynamics of the system. This is be- 
cause of the fact that the states are also self-similar in nature there- 
fore, their energy should be stored in infinitesimal time scalings as 
in (4). 

In order to analyze the self-similar dynamics of the states more 
closely, let us consider the general kth state, x k  ( t )  whose dynamical 
equation is: N 

d 
d t  t - - Z k ( t )  = ( a k , k  + H k ) Z k ( t )  + t H k  C a k , l t - " z l ( t )  + 

I = 1  
I f k  

tHkBu(t) (7) 
As can be seen from this equation, the dynamics of a state is affected 
by the state itself, other states and the input depending on the A and 
B matrices. The dependency on the state itself can be seen as an 
intrinsic self-similarity since the self-similarity parameter appears 
as a constant gain factor. If there is coupling to the other states, 
these states can be treated as inputs where the self-similarity of the 
state is provided with the fractional or self-similar leakage term t H k .  

Note here that the self-similarity of the coupled states 21 ( t )  for Z = 
1, ..., N and 1 # k with parameters Hl does not have an effect on 
the self-similarity of the state X k ( t )  which guarantees a self-similar 
first order system for each state X k ( t )  with only one self-similarity 
parameter, Hk . 

The solution of the states can be found using the state transition 
matrix @(t, T) as: 

x(t) = *(t ,  tl)x(tl) + * ( t ,  T)THBu(r)dlnT (8) 

where @ (t,  T) can be obtained using the fundamental matrix @ ( t )  = 
tHtA which is a solution of the homogeneous state equation in (5) 

(9) 

Note here that the state transition matrix is also a solution of the 
homogeneous state equation and it satisfies the same properties as 

LTI counterpart [ 121. The unit driving force response is found as 
h( t ,  T) = tH( using (8). Then the solution for the states and 
the outputs are: 

1: 
* ( t , T )  = *(t)@-l(T) = tH(t)A(T)-H as: 

x(t) = tHtAx(ti) + tH (-)ABu(.r)dZnr 1: 5 
y ( t )  = CtHtAX(tl) + CtH (-)ABu(T)dZn.r (10) 6 4 

Although each state Xk ( t )  for k = 1, . . . , N is self-similar with self- 
similarity parameter Hk. depending on the matrix C ,  the outputs 
yj ( t )  for j = 1, . .. , M can be expressed with either one self-similar 
state or a linear combination of self-similar states with different self- 
similarity parameters. 

4. KALMANFILTERING 
In this section we will investigate the problem of estimating the state 
variables of a self-similar process by using noisy measurements of 
the linear combination of the states. Consider the LSS system in 
state space: 

d 
dt t-x(t) = A(t)x(t) + B(t)w(t) (11) 

y ( t )  = Cx(t) +v(t)  (12) 

83 



where A(t) = tH(A + H)tPH and B(t) = tHB. Equation (11) is 
the system model where w(t) is the system noise and equation (12) 
is the measurement model where w(t) is the measurement noise. 
Both w(t)  and w ( t )  are zero mean white Gaussian noise with co- 
variances: 

E{w(t)wT(7)) = Q ( t ) & t / ~ )  
E{v(t)vT(T)) = R(t)J(t/.r) (13) 

They are also uncorrelated with each other and the states. 
Assuming that A@), B(t), C and H are completely known, the 

state estimate x ( t )  is obtained by feeding a correction term back to 
the estimated system depending on the difference between the actual 
measurement and the estimated measurement as: 

tx ( t )  = tH(A + H)t-Hlz(t) + K(t)(y(t) - Clz(t)) (14) 

where K(t) is the Kalman gain matrix that has to be estimated opti- 
mally. 

5. IMPLEMENTATION AND SIMULATION RESULTS 
We simulate a first order LSS system with parameters H = -0.2, 
A = -0.1, B = 0.1, C = 1, Q = 1 to test the performance of the 
proposed Kalman filter. 

We generate the l/f data, z ( t )  via a covariance method that 
‘r- .-- uses Karhunen-Loeve (KL) transform. The autocovariance of z ( t )  

(20) 

where /3 = B2Q/(-2A). Then using this covariance matrix and 
KL transform we generate the l/f data, z ( t )  for 1 < t < 20. In the 
Kalman filtering algorithm, the estimated state in continuous time is 
approximated using the scale derivative definition (4) in geometric 
time intervals: 

for the first order system given above 

CZZ( t l ,  t z )  = /3(tlt*)(A+H)(maz(tl, tz)(-*A) - 1); 

j.(At) = ?(t) + lnA(Aj.(t) + K( t ) ( y ( t )  - C?(t)))  (21) 

and the Riccati equation solution: 

A(t)P(t) + P(t)AT(t) + B(t)Q(t)BT(t) - Then the error states between the actual and estimated states 
x( t )  = k( t )  - x(t) satisfy: 

K(t)R(t)KT(t) = 0 (22) 
tL(t)  = (A(t) - K(t)C)x(t) + K(t)v(t) - B(t)w(t) (15) is obtained using the S&ur algorithm as given in [13]. The continu- 

ous time approximation becomes more accurate when the scale step 
A is selected as close to 1 as possible. H ~ ~ ~ ,  in our application we 
select it as A = 1.01. 

We test the performance of the Kalman filter for two different 
SNRs of 20, and lOdBs using 100 Monte Carlo Runs (MCR). The 
S N R  of the signal is calculated as: 

Using the solution of the error state in terms of its state transition 
matrix +%(t, T), the covariance of the error state P(t) is: 

P(t) = E{x(t)x*(T)} = *%(t,  tl)P(tl)*,T(t, tl) + 

>- 
1: +%(t, T)K(T)R(r)KT(T)*:(t, ~ ) d l n r  + 

6 +%(t, r)B(r)Q(.r)BT(T)*z(t, ~ ) d Z n r  (16) A sample data z ( t )  (solid h e ) ,  y(t) (dash-dot line) and the esti- 
mated data $(t)  (dashed line) for S N R  = 20 and lOdBs out of 100 
MCR are given in Figure 1 and 2, respectively. 

Then the estimation SNR‘ for each estimated signal i ( t )  is 
calculated as: 

S N R  = war(z)/war(~) (23) 

where P ( t l )  is the initial error covariance matrix at initial time ti.  
For the estimated state to be optimal, the error should be mini- 

mized in time via K(t). In order to find the optimum Kalman filter SNR‘ WU~(Z)/WU~(X - j.) (24) 
gain, the cost function J ( t )  related to the error state as: 

For the input S N R  = 20 and lOdB, the range of estimation 
SNR’s for 100 MCR in each case are found as 7.73dB< SNR‘ < 
8.15dB and 3.02dB< SNR‘ < 3.69dB where the mean values of 

J ( t )  = E { x T ( t ) X ( t ) )  = Trace{P(t)) (17) 

should be minimized in the MMSE sense. 

matrix that minimizes the cost function is found as: 
After some manipulations as explained in [ 111 the Kalman gain 

K(t) = PCTR-l(t) (18) 

Then using this K(t) in (16), the change in the error covariance or 
the Riccati equation can be obtained as: 

t P ( t )  = A(t)P(t) + P(t)AT(t) + B(t)Q(t)BT(t) - 
K(t)R(t)KT(t) (19) 

Here, the Kalman filtering algorithm has the same structure as 
its LTI counterpart. The major difference of our algorithm from the 
LTI case lies in the state update (14) and error covariance propaga- 
tion equations (19). Here, the memory is captured in infinitesimal 
time scalings instead of time shiftings as opposed to the LTI case. 
Therefore, the self-similar nature of the state estimate and error co- 
variance is satisfied. 

them are 7.92dB and 3.36db, respectively. 
Let us mention that the proposed Kalman filter also suffers from 

the same problems as the usual Kalman filter, such as the build- 
ing up of the “random walk” type error as the prediction time in- 
creases. This problem can be overcome with the usage of a back- 
ward smoother if the offline processing is possible. 

6. APPLICATION AREAS 
In this section, we will explain two potential application areas of the 
proposed Kalman filtering procedure 1) packet arrival estimation in 
self-similar network traffic and 2) time varying fading channel esti- 
mation during self-similar signal transmission in wireless commu- 
nication applications. 

Network traffic studies show that the aggregate of the packet ar- 
rival shows the same statistics of long range correlations which de- 
cays hyperbolically, the variance of the sample mean decays slowly 
and their power spectrum obey power law near the origin over dif- 
ferent time scales. This observation is apparently valid for Ether- 
net traffic, ISDN packet networks, signaling (CCSN/SS7) networks 
for public telephone networks, [7, 81. If z1,z2, 23, ... denote the 

lc 
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number of arrivals in the first, second, ... interval, the aggregate 
of these arrivals in consecutive, non-overlapping block of m in- 
tervals are calculated as follows: Let 23“ denote the mean anival 
rate of the first m intervals (21 + 2 2  + ... + zm) /m,  xp denote 
( z , ( ~ - ~ ) + ~  + ... + zkm)/m and so on. Actually these aggre- 
gate processes give the whole arrival process in different time scales 
and since the aggregate arrival process shows the same long range 
statistics with slowly decaying variances and self similar character- 
istic, it is a self-similar process as opposed to the early assumptions 
of Poisson distribution. Therefore, analysis techniques for traffic 
density must consider this self-similar nature. Especially, since the 
buffering requirements for self-similar processes are larger than that 
are estimated with Poisson processes, the techniques should be se- 
lected carefully for the estimation of buffer size. Using the proposed 
Kalman filtering technique, the self-similar data traffic can be pre- 
dicted recursively. 

Another application area for the proposed Kalman filter is in 
communications. In present wireless communication applications 
such as radar, sonar, acoustics, etc., the transmission channel is 
usually modeled as a multipath fading channel having slowly time- 
varying characteristics. At the receiver end the transmitted signal 
through a multipath fading channel is further corrupted by noise. It 
is an important and a difficult task to deconvolve the original signal 
from this received data, especially when the transmitted signal and 
the corruption noise are nonstationary or l/f type. To the best of 
our knowledge, there is only one work in the literature [9] that solves 
this problem optimally using a multiscale Wiener filter in wavelet 
domain. As an alternative, the proposed Kalman filter can be used 
for the estimation and prediction of the transmitted l/f signal from 
the observation data in a recursive fashion where no extra steps of 
wavelet filtering is needed. 

7. CONCLUSION 
In this paper, we have developed continuous time state space rep- 
resentation and an optimal state estimation algorithm using Kalman 
filtering for self-similar processes. Beginning from the most gen- 
eral and mathematically tractable dynamical representation such as 
Euler-Cauchy type differential equation definition of 1/ f processes, 
the dynamics of the states are represented with respect to the mul- 
tiplicative group derivatives where the memory is captured in in- 
finitesimal scalings of time. 

Using this state space representation, we formulate the continu- 
ous time Kalman filter to estimate or predict the self-similar or l/f 
data. Although the algorithm appears to be in the same form of 
LTI systems, the major difference is once again in the memory con- 
tent or the dynamics of the estimated state and the error covariance 
matrix which is appropriate to capture the self-similar nature of the 
statistics. 

This work can be extended to several further research areas. 
Here we assumed that the state space system parameters i.e. A, 
B, C and D are available. However this may not be possible in 
some real time applications, such as in network trafiic or in fad- 
ing channels in communication networks. Therefore, a generalized 
Kalman filtering technique that estimates and updates the unknown 
system matrices can further be investigated. This framework can be 
extended and tested for 2D self-similar signals such as deblurring of 
textured images. 
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Figure 1: The input signal, z ( t )  (solid line), the observed signal, 
y ( t )  (dash-dot line) and the predicted signal, 2 ( t )  (dashed line) for 
a)input S N R  = 20dB b) input S N R  = 1OdB. 
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