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Abstract

Based on the equation�error approach� two constrained weighted least squares algorithms are

developed for unbiased in�nite impulse response system identi�cation� Both white input and output

noise are present� and the ratio of the noise powers is known� Through a weighting matrix� the �rst

algorithm uses a generalized unit�norm constraint which is a generalization of the Koopmans�Levin

method� The second method employs a monic constraint which in fact is a relaxation algorithm

for maximum likelihood estimation in Gaussian noise� Algorithm modi�cations for the input�noise�

only or output�noise�only cases are also given� Via computer simulations� the e�ectiveness of the

proposed estimators is demonstrated by contrasting with conventional benchmarks in di�erent

signal�to�noise ratio and data length conditions�
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� Introduction

The problem of identifying linear systems from their input and output measurements has received

signi�cant attention because of its important applications in signal processing� communications and

control �������� In this study� we consider in�nite impulse response �IIR� system identi�cation in

the presence of white input and�or output measurement noise� which is also known as the errors�in�

variables �EIV� problem ���� Standard techniques for system identi�cation include joint output �JO�

approach ���� Frisch scheme �����	�� structured total least squares �STLS� ������
� and Koopmans�Levin

�KL� ��������� approach� One major advantage of the JO and Frisch methods are that they can estimate

the unknown input and output noise powers as well� While the STLS and KL methods assume that

the ratio of the noise powers is available� In this paper� we will formulate the EIV problem using the

equation�error �EE� ��������� approach which has the major advantage of global convergence� although

compensation of the parameter bias is required to achieve unbiased estimation�

In the presence of white output noise only� Regalia ���� has proposed to minimize the EE cost

function subject to a unit�norm constraint� Recently� it has been shown ��	������ that the constrained

EE optimization can be formulated in a mixed least squares �LS��total least squares framework�

Furthermore� the KL scheme� which can also be cast in the EE framework� provides unbiased estimates

by �nding the eigenvector corresponding to the minimum eigenvalue of the sample covariance matrix

����� or the right singular vector corresponding to the smallest singular value of the data matrix �����

����� However� all the above EE schemes only use standard LS optimization and they generally cannot

produce optimum estimation performance� that is� minimum achievable mean square errors of the

parameter estimates� In this paper� our major contribution is to utilize the technique of weighted

least squares �WLS�� together with appropriate constraints� to boost the estimation accuracy of the

EE approach for system identi�cation�

The rest of the paper is organized as follows� In Section �� we �rst consider solving the EIV

problem with the use of LS� assuming that the noise power ratio is available� An improvement to the

LS solution is then devised by minimizing a WLS cost function subject to a generalized unit�norm

constraint� where the weighting matrix is determined iteratively� The second algorithm we develop also

employs WLS but with the monic constraint� Simulation results are presented in Section � to evaluate

the proposed algorithms by comparing with di�erent benchmarks� namely� the LS� KL� output�error

�OE� ���� prediction�error �PE� ��� and STLS methods ��� as well as the asymptotic Cram�er�Rao lower

bound �CRLB� for in�nite measurements ��
�� It is shown that the mean square errors of the proposed

WLS algorithms attain the CRLB for su�ciently high signal�to�noise ratios �SNRs� and�or large data

lengths� Finally� concluding remarks are drawn in Section ��
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� Algorithm Development

In the following� the problem of IIR system identi�cation in the presence of input and output noise

based on the EE formulation is �rst reviewed� A unit�norm LS solution via minimization of the EE�

based LS cost function subject to a generalized unit�norm constraint is obtained� which is identical

to the KL method� This approach is then improved by using WLS with an iterative procedure� The

second approach also employs WLS but with the monic constraint� Finally� we present the required

modi�cations of the proposed unit�norm WLS algorithm for the output�noise�only systems and the

results can be readily applied to the input�noise�only systems as well as to the monic WLS algorithm�

��� Equation�Error Formulation

The unknown IIR system is stable and causal and has the form

H�z� �
B�z�

A�z�
���

where

A�z� � a� �
LX
l��

alz
�l

B�z� � �
LX
l��

blz
�l

with a� � �� Let the orders of the denominator and numerator polynomials be known� and without

loss of generality� have identical values of L� The observed system input and output are

xk � sk �mk

rk � dk � nk� k � 
� �� � � � � N � �

���

where sk and dk denote the noise�free input and output� respectively� and mk and nk represent the

input and output measurement noise which are independent of sk � It is assumed that sk is a stochastic

process while mk and nk are uncorrelated zero�mean white processes with unknown variances ��m and

��n� respectively� but the ratio of the noise powers� say� �
� � ��n��

�
m� is available ����� ���������� Given

the N samples of xk and rk� the task is to �nd al� l � �� �� � � � � L� and bl� l � 
� �� � � � � L�

In the EE formulation� the error function ek has the form

ek �
LX
l��

�alrk�l �
LX
l��

�blxk�l ���

where f�alg and f�blg are optimization variables of falg and fblg up to a scalar because we have not

assigned �a� � ��
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��� Weighted Least Squares with Generalized Unit�Norm Constraint

The corresponding LS cost function is then

J���� � eTe � ��TYTY�� ���

where

e � �eN��� eN��� � � � � eL�
T

Y �

�
��������

rN�� rN�� � � � rN�L�� xN�� xN�� � � � xN�L��

rN�� rN�� � � � rN�L�� xN�� xN�� � � � xN�L��

���
���

���
���

���
���

���
���

rL rL�� � � � r� xL xL�� � � � x�

�
��������

�� � ��a�� �a�� � � � � �aL��b���b�� � � � ��bL�
T

and T denotes the transpose operation� It is easy to show that the expected value of J���� is

EfJ����g � Ef�S���TS��g� ��TEfQTQg��

� Ef��TSTS��g� �N � L���T�����m ���

where

� � diag���� � � � � ��� �z 	
L��

� �� � � � � �� �z 	
L��

�

S �

�
��������

dN�� dN�� � � � dN�L�� sN�� sN�� � � � sN�L��

dN�� dN�� � � � dN�L�� sN�� sN�� � � � sN�L��

���
���

���
���

���
���

���
���

dL dL�� � � � d� sL sL�� � � � s�

�
��������

and

Q �

�
��������

nN�� nN�� � � � nN�L�� mN�� mN�� � � � mN�L��

nN�� nN�� � � � nN�L�� mN�� mN�� � � � mN�L��

���
���

���
���

���
���

���
���

nL nL�� � � � n� mL mL�� � � � m�

�
��������

The S and Q represent the signal and noise components of Y� respectively� such that Y � S � Q�

We observe that when f�alg and f�blg equal the true system parameters� then S�� is a zero vector�

However� the minimum of EfJ����g will not correspond to the desired falg and fblg in the presence of
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input and�or output noise because the second term of ��� also contains the unknown parameters to

be estimated� Extending the idea of the unit�norm constraint approach for output�noise�only systems

���� to noisy input�output systems� unbiased IIR system identi�cation can be achieved via minimizing

EfJ����g subject to

��T��� � � ���

This is a generalized unit�norm constraint and we refer this scheme to as the unit�norm LS method�

Using the technique of Lagrange multipliers� the constrained optimization problem can be solved by

computing the generalized eigenvector corresponding to the smallest generalized eigenvalue of the pair

�YTY���� Comparing with ���������� it is easy to see that the unit�norm LS method is in fact identical

to the KL solution computed from the data matrix� although we use eigenvalue decomposition while

the latter is realized by singular value decomposition �SVD��

Since it is well known ���� that the KL approach is inferior to the maximum likelihood �ML�

method� the unit�norm LS method will also produce suboptimum parameter estimates as well� Nev�

ertheless� the formulation of the unit�norm LS approach leads directly to an improvement through

adding a symmetric positive de�nite matrix� say� W� to the LS cost function� An optimal choice of

W is the Markov estimate ����

W � ��m�Ef� � �
T g��� �	�

where

� � ��N��� �N��� � � � � �L�
T

and

�k �
LX
l��

�alnk�l �
LX
l��

�blmk�l

being the residual error� The inverse of W is shown to be

W�� � GT��G ���

where

GT �

�
��������

�aL �aL�� � � � �a� 
 
 � � � 
 �bL �bL�� � � � �b� 
 
 � � � 



 �aL � � � �a� �a� 
 � � � 
 
 �bL � � � �b� �b� 
 � � � 

���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���


 
 � � � � � � � � � � � � �a� �a� 
 
 � � � � � � � � � � � � �b� �b�

�
��������

is of dimension �N � L� � N and �� � diag���� � � � � ��� �z 	
N

� �� � � � � �� �z 	
N

�� With weighting matrix� the cost

function is now�

Junit�norm���� � e
TWe � ��TYTWY�� ���

�



From ���� ��� and ���� it is easy to show that for WLS minimization� the corresponding constraint will

become�

��T��� � � ��
�

where � � EfQTWQg���m is a matrix of dimension ��L� ��� ��L� �� and has the form�

� �

�
���������������������

��D� ��D� � � � ��DL�� ��DL 
 
 � � � 
 


��D� ��D� � � � ��DL ��DL�� 
 
 � � � 
 

���

���
���

���
���

���
���

���
���

���

��DL ��DL�� � � � ��D� ��D� 
 
 � � � 
 



 
 � � � 
 
 D� D� � � � DL�� DL


 
 � � � 
 
 D� D� � � � DL DL��

���
���

���
���

���
���

���
���

���
���


 
 � � � 
 
 DL DL�� � � � D� D�

�
���������������������

����

where Dj �
PN�L�j

i�� �W�i�i�j � j � 
� �� � � � � L� with �W�i�j representing the �i� j��entry of W� It is

observed that ��� and ��� are only a special case of ��� and ��
� whenW is the identity matrix� Since

W and � are unknown� we propose to estimate � in an iterative manner as follows�

�i� Find an initial estimate of the system parameter vector� denoted by ��� through computing

the generalized eigenvector corresponding to the minimum generalized eigenvalue of the pair

�YTY���� which is the unbiased unit�norm LS solution�

�ii� Use the estimated �� to construct �W as well as ��� which represent the estimates of W and ��

respectively� based on ��� and �����

�iii� Compute the generalized eigenvector corresponding to the minimum generalized eigenvalue of

the pair �YT �WY���� which is the updated parameter estimate ���

�iv� Repeat Steps �ii� and �iii� for a few iterations until parameter convergence� Then divide the

eigenvector by �a� to get the IIR coe�cient estimates�

We refer this algorithm to as the unit�norm WLS estimator� Although there is no guarantee of

convergence for the above relaxation algorithm ����� our simulation studies in Section � demonstrate

that the unit�norm WLS estimator is able to achieve global convergence with optimum estimates for

su�ciently large SNRs and�or data lengths�

��� Weighted Least Squares with Monic Constraint

In the literature� another commonly used constraint for linear system identi�cation is the monic

constraint ���������� ���������� In the following� the WLS algorithm with monic constraint of �a� � � for

�



IIR estimation is developed based on ���� First� we partition �� and Y as

�� � �� ��T �T ����

where

�� � ��a�� �a�� � � � � �aL� � � � ��b���b�� � � � ��bL�
T

and

Y � �Y� Y�� ����

where

Y� �

�
��������

rN��

rN��

���

rL

�
��������

and

Y� �

�
��������

rN�� rN�� � � � rN�L�� xN�� xN�� � � � xN�L��

rN�� rN�� � � � rN�L�� xN�� xN�� � � � xN�L��

���
���

���
���

���
���

���
���

rL�� rL�� � � � r� xL xL�� � � � x�

�
��������

Substituting ���� and ���� into ��� yields the monic WLS cost function

Jmonic���� � �Y� �Y����
TW�Y� �Y���� ����

where �a� � � in W as well� It can be shown that the minimum of ���� corresponds to the ML

estimate of � � �a�� a�� � � � � aL� � � � � b�� b�� � � � � bL�T in white Gaussian noise� However� ML estimation

will involve extensive computation as W is a function of �� as well� In our study� we substitute �W

for W so that Jmonic���� is now a quadratic function in ��� Di�erentiating the approximate version of

Jmonic���� with respect to �� and then setting the resultant expression to zero� we obtain our monic

WLS solution�

�� � ��Y�
T �WY��

��Y�
T �WY� ����

It is expected that the WLS estimator with the monic constraint will attain nearly optimum perfor�

mance when �W�W� As in the unit�norm WLS algorithm� �W is not available at the beginning and

we propose the following iterative estimation procedure�

	



�i� Use the unbiased unit�norm LS solution as the initial estimate of the system parameter vector

��� Normalize the �rst element of �� to be unity� Note that it is possible to substitute �W

with the identity matrix in ���� for parameter initialization ����� However� the corresponding

solution is biased because Y� is correlated with Y� ���� which may increase the possibility of

local convergence and subsequently results in a smaller SNR operation range than that of the

unit�norm LS solution�

�ii� Use the estimated �� to construct �W based on ����

�iii� Compute an improved �� using �����

�iv� Repeat Steps �ii� and �iii� for a few iterations until parameter convergence� It is worthy to men�

tion that the iterative reweighting procedure can eliminate the estimator bias upon convergence�

even though the initial parameter estimates may be biased�

We refer this algorithm to as the monic WLS algorithm� Again� we are not aware ���� of the exis�

tence of a proof of global convergence for the above relaxation algorithm but its excellent estimation

performance has been demonstrated via computer simulations in Section ��

��� Modi�cations for Output�Noise�Only Systems

In this Section� we modify the unit�norm WLS algorithm for the output�noise�only case and the results

can be straightforwardly applied to the input�noise�only case as well as to the monic WLS algorithm�

In fact� system identi�cation with only output noise is also frequently addressed in the literature ����

���� and commercial available algorithms ���� for this problem including the OE and PE methods�

where the former is optimum only for white Gaussian distributed data while the optimality of the

latter holds for general Gaussian processes ���� As a result� the following development also allows us

to compare the proposed WLS approach with the OE and PE algorithms�

The weighting matrix W is now

W�� � GTG ����

where

GT �

�
��������

�aL �aL�� � � ��a� 
 
 � � � 



 �aL � � ��a� �a� 
 � � � 

���

���
���

���
���

���
���


 
 � � � � � � � � � �a� �a�

�
��������

which does not involve the unknown parameter ��n� Following Section ���� the generalized unit�norm

�



constraint becomes

��aT �bT �

�
� ��� �

� �

�
�
�
� �a

�b

�
� � � ��	�

where �a � ��a�� �a�� � � � � �aL�
T � �b � ��b���b�� � � � ��bL�

T � � represents a zero matrix of dimension �L � �� �

�L� ��� and ��� is also of dimension �L� ��� �L� �� and has the form

��� �

�
��������

D� D� � � � DL�� DL

D� D� � � � DL DL��

���
���

���
���

���

DL DL�� � � � D� D�

�
��������

����

Using the technique of Lagrange multipliers� the Lagrangian to be minimized is

L��a� �b� �� � ��aT �bT �

�
� Z�� Z��

Z�� Z��

�
�
�
� �a

�b

�
�� �



��� ��aT �bT �

�
� ��� �

� �

�
�
�
� �a

�b

�
�
�
A

� �aTZ���a� ��aTZ���b� �b
TZ���b� �


�� �aT����a

�
����

where Z��� Z��� Z�� and Z�� are partitioned matrices of YTWY with Z�� � Z��
T � and � is the La�

grange multiplier� Di�erentiating L��a� �b� �� with respect to �a and then setting the resultant expression

to zero yields

�Z���a� �Z���b � �����a � � ��
�

where �a and �b are the estimates of a and b� respectively� Similarly� we di�erentiate L��a� �b� �� with

respect to �b and set the resultant expression to zero to obtain

�b � �Z��
��Z��

T�a ����

Substituting ���� into ��
�� we have


Z�� � Z��Z��

��Z��
T
�
�a � �����a ����

That is� �a is determined as the generalized eigenvector corresponding to the minimum generalized

eigenvalue of the pair �Z�� � Z��Z��
��Z��

T ������ Once we have found �a� �b is then obtained from

����� As a result� the relaxation algorithm of the unit�norm WLS estimator for output�noise�only

systems is given as follows�

�i� Find initial estimates of the system parameters by computing the generalized eigenvector corre�

sponding to the minimum generalized eigenvalue of the pair �Z�� � Z��Z��
��Z��

T ����� with

��� equal to the identity matrix� which are the unit�norm solution proposed in �����

�ii� Use the estimated �� to construct �W as well as ���� based on ���� and ����� respectively�

�



�iii� Compute the generalized eigenvector corresponding to the minimum generalized eigenvalue of

the pair �Z�� � Z��Z��
��Z��

T � ������

�iv� Repeat Steps �ii� and �iii� for a few iterations until parameter convergence�

�v� Normalize �a with �a� � � and then compute �b using �����

� Numerical Examples

Computer simulations using MATLAB had been performed to evaluate the performance of the two

proposed algorithms for estimating IIR system parameters� The noise�free input sk was a sequence

of zero�mean� independent identically distributed Gaussian random variables with unity power while

mk and nk were also independent white Gaussian processes� The noisy input�output� and noisy

output only cases were considered� In the former� we assigned �� � �
 and comparison was made

with the unit�norm LS� SVD�based KL ��������� and STLS ��� methods as well as asymptotic CRLB

for Gaussian input and white Gaussian disturbances ��
�� While for the latter� we contrasted the

developed estimators with several optimum output�noise�only system identi�cation methods� namely�

the OE� PE ������� using ���� as well as the STLS scheme� The unknown system had the form

H�z� �
�

�� z�� � 
��z��

which was second order with parameters a� � ��� a� � 
�� and b� � ��� For the iterative procedures

of the unit�norm WLS and monic WLS algorithms� we stopped after three iterations because it was

found that the algorithms almost converged with this termination criterion� The standard performance

measures of mean and mean square error �MSE� were used and all results were obtained from �



independent runs�

Figures � to � show the MSEs for a�� a� and b�� respectively� of the unit�norm LS� unit�norm

WLS� monic WLS� KL and STLS methods in estimating the noisy input�output system at output

noise power ranging from ��
 dB to �
 dB with N � �
� When the output noise power was smaller

than �� dB� the two WLS techniques had MSEs whose values were close to the CRLB� and their

improvement over the unit�norm LS and KL methods was around � to � dB� As expected� we do not

observe any di�erences between the unit�norm LS and KL methods although the �rst used eigenvalue

decomposition while the second employed SVD realization� The WLS methods were also superior

to the STLS scheme because the latter could attain optimum performance only for very high SNRs�

Furthermore� the threshold performance of the monic WLS scheme was better than that of the unit�

norm WLS method which may be due to the numerical instability in performing the generalized

eigenvalue decomposition at larger noise conditions�

The corresponding biases� which were obtained by subtracting the true values from the mean

estimates� are plotted in Figures � to �� It is seen that all methods except the STLS scheme were

�




approximately unbiased when the output noise level was less than 
 dB� The results suggest that the

STLS method is only suitable for use in very small noise conditions�

Figures 	 to �� plot the MSEs and mean errors for a�� a� and b�� respectively� of the unit�norm LS�

unit�norm WLS� monic WLS� OE� PE and STLS methods when the system consisted of output noise

only at N � �
� It is observed that the unit�norm WLS and monic WLS schemes were comparable

with the two realizable optimum benchmarks� namely� the OE and PE methods� particularly when

the noise level was less than 
 dB� As expected� the unit�norm LS approach performed the worst

among all other algorithms� We also observe that the two WLS methods were more robust than the

STLS scheme at larger noise conditions� although the monic scheme again had a better threshold

performance�

The above two tests were repeated for a larger sample size of N � �

 and the results are shown in

Figures �� to ��� Again� the optimality of the unit�norm WLS and monic WLS estimators� in terms

of mean and mean square error performance� was illustrated for su�ciently small noise conditions�

Furthermore� we see that the MSEs of the WLS methods could reach the CRLB for larger noise levels

when N was increased from �
 to �

�

� Concluding Remarks

The problem of unbiased system identi�cation in the presence of white Gaussian input and output

noise� assuming that the noise power ratio is known� has been addressed� The relationship between

the unit�norm constraint approach and the Koopmans�Levin method for impulse response estimation

has been illustrated via the development of a unit�norm least squares algorithm� This algorithm is

then improved by using the technique of weighted least squares �WLS�� and the resultant parameter

estimates are obtained via the minimization of a WLS cost function subject to a generalized unit�norm

constraint� The weighting matrix is the Markov estimate� We also derive another WLS method for

system identi�cation based on the monic constraint� which is in fact a relaxation algorithm for solving

the maximum likelihood estimate� Computer simulations show that the estimation performance of the

two proposed algorithms is very similar and attains optimum performance in terms of mean square

errors for both noisy input�output and output�noise�only systems at su�ciently large signal�to�noise

ratio condition� Apparently� a challenging extension of this work is to study the convergence issues of

the iterative WLS algorithms�

In case of unknown noise power ratio� suitable candidates for the problem are joint output and

Frisch methods� The former can achieve maximum likelihood estimation performance but involves

extensive computations while the latter is relatively computationally attractive with suboptimum

performance �	�� For known ratio of white input and output noise powers� the monic and unit�

norm WLS methods outperform Koopmans�Levin �KL� and structured total least squares �STLS�

��



approaches in terms of mean square error and threshold SNR performance� respectively� although the

KL technique is the simplest while the computational complexities of proposed and STLS methods

are comparable� When there is either input or output noise� the proposed methods will be the proper

choices over the prediction error and output error approaches only when the data length is su�ciently

small because the computational load of the latter does not increase signi�cantly with the number of

received samples while the WLS solutions do�

References

��� S�Haykin� Adaptive Filter Theory� Upper Saddle River� NJ� Prentice�Hall� �

�

��� L�Ljung� System Identi�cation � Theory for the User� Englewood Cli�s� NJ� Prentice�Hall� ���	

��� T�Soderstrom and P�Stoica� System Identi�cation� Englewood Cli�s� NJ� Prentice�Hall� ����

��� R�Pintelon and J�Schoukens� System Identi�cation� A Frequency Domain Approach� IEEE� �

�

��� T�Soderstrom� �Identi�cation of stochastic linear systems in presence of input noise�� Automatica�

vol��	� pp�	���	��� ����

��� S�Beghelli� R�Guidorzi and U�Soverini� �The Frisch scheme in dynamic system identi�cation��

Automatica� vol���� pp��	���	�� ���


�	� T�Soderstrom� �Accuracy analysis of the Frisch estimates for identifying errors�in�variables sys�

tem�� Proc� IEEE Conference on Decision and Control� pp����������� Dec� �

�� Seville� Spain�

��� B�De Moor� �Structured total least squares and L� approximation�� Lin� Alg� and its Appl��

vol��������� pp������
�� ����

��� P�Lemmerling� N�Mastronardi and S�Van Hu�el� �Fast algorithm for solving the Hankel�Toeplitz

structured total least squares problem�� Numerical Algorithms� vol���� pp��	������ �




��
� S�Van Hu�el and J�Vandewalle� �Analysis and properties of the generalized total least squares

problem Ax � B when some or all columns in A are subject to error�� SIAM J� Matrix Anal��

vol��
� no��� pp��������� ����

���� T�J�Koopmans� Linear Regression Analysis of Economic Time Series� N�V�Haarlem� The Nether�

lands� De Erven F� Bohn� ���	

���� M�J�Levin� �Estimation of a system pulse transfer function in the presence of noise�� IEEE Trans�

Automatic Contr�� vol��� pp��������� July ����

��



���� K�V�Fernando and H�Nicholson� �Identi�cation of linear systems with input and output noise�

the Koopmans�Levin method�� IEE Proc� Pt�D� vol����� no��� pp��
���� Jan� ����

���� W�X�Zheng� �Noisy input�output system identi�cation � the Koopmans�Levin method revisited��

Proc� ��st IEEE Conf� Decision and Control� pp�������	� Las Vegas� Nevada USA� Dec� �

�

���� P�A�Regalia� Adaptive IIR Filtering in Signal Processing and Control� New York � M� Dekker�

����

���� R�A�Regalia� �An unbiased equation error identi�er and reduced�order approximations�� IEEE

Trans� Signal Processing� vol���� no��� pp����	������ June ����

��	� B�E�Dunne and G�A�Williamson� �QR�based TLS and mixed LS�TLS algorithms with applica�

tions to adaptive IIR �ltering�� IEEE Trans� Signal Processing� vol���� no��� pp��������� Feb�

�

�

���� B�E�Dunne and G�A�Williamson� �Analysis of gradient algorithms for TLS�based adaptive IIR

�lters�� to appear in IEEE Trans� Signal Processing

���� M�Aoki and P�C�Yue� �On a priori error estimates of some identi�cation methods�� IEEE Trans�

Automatic Contr�� vol���� no��� pp��������� Oct� ��	


��
� E�Karlsson� T�Soderstrom and P�Stoica� �The Cramer�Rao lower bound for noisy input�output

systems�� Signal Processing� vol��
� pp���������	� �




���� G�C�Goodwin and R�L�Payne� Dynamic System Identi�cation� Experiment Design and Data

Analysis� New York� Academic Press� ��		

���� H�N�Kim and W�J�Song� �Unbiased equation�error adaptive IIR �ltering based on monic normal�

ization�� IEEE Signal Processing Letters� vol��� no��� pp�����	� Feb� ����

���� R�Lopez�Valcarce and S�Dasgupta� �A new proof for the stability of equation�error models�� IEEE

Signal Processing Letters� vol��� no��� pp�������
� June ����

���� L�Ljung� MATLAB System Identi�cation Toolbox� Version �� The Math Works� Inc�� ����

��



−30 −20 −10 0 10 20
−60

−40

−20

0

20

40

60

output noise power (dB)

m
ea

n 
sq

ua
re

 e
rr

or
 (

dB
)

 

 
unit−norm LS
unit−norm WLS
monic WLS
STLS
KL
asympt. CRLB

Figure �� Mean square errors of a� for noisy input�output system at N � �


−30 −20 −10 0 10 20
−60

−40

−20

0

20

40

60

output noise power (dB)

m
ea

n 
sq

ua
re

 e
rr

or
 (

dB
)

 

 
unit−norm LS
unit−norm WLS
monic WLS
STLS
KL
asympt. CRLB

Figure �� Mean square errors of a� for noisy input�output system at N � �


��



−30 −20 −10 0 10 20
−60

−40

−20

0

20

40

60

output noise power (dB)

m
ea

n 
sq

ua
re

 e
rr

or
 (

dB
)

 

 
unit−norm LS
unit−norm WLS
monic WLS
STLS
KL
asympt. CRLB

Figure �� Mean square errors of b� for noisy input�output system at N � �


−30 −20 −10 0 10 20
−0.5

0

0.5

1

1.5

output noise power (dB)

m
ea

n 
er

ro
r

 

 

unit−norm LS
unit−norm WLS
monic WLS
STLS
KL

Figure �� Mean errors of a� for noisy input�output system at N � �


��



−30 −20 −10 0 10 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

output noise power (dB)

m
ea

n 
er

ro
r

 

 

unit−norm LS
unit−norm WLS
monic WLS
STLS
KL

Figure �� Mean errors of a� for noisy input�output system at N � �


−30 −20 −10 0 10 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

output noise power (dB)

m
ea

n 
er

ro
r

 

 

unit−norm LS
unit−norm WLS
monic WLS
STLS
KL

Figure �� Mean errors of b� for noisy input�output system at N � �


��



−30 −20 −10 0 10 20
−60

−50

−40

−30

−20

−10

0

10

20

30

40

output noise power (dB)

m
ea

n 
sq

ua
re

 e
rr

or
 (

dB
)

 

 

unit−norm LS
unit−norm WLS
monic WLS
STLS
OE
PE
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