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1 Introduction

The problem of audio source separation involves recovering individual audio
sources from a number of observed mixtures of those audio source signals.
When both the signals and mixing process are unknown, this problem is known
as blind audio source separation (BASS).

Many different approaches to audio source separation have been investigated.
For example, computational auditory scene analysis [5] aims to model the ways
by which the human auditory system perceives individual sounds in mixtures.
Beamforming [27] observes the mixtures with an array of sensors (commonly
microphones) and takes advantage of time delays between those sensors to
determine the spatial direction from which a desired source is arriving—it
increases the gain in that direction while decreasing the gains of all unwanted
sources. Frameworks based on independent component analysis (ICA) [14] try
to find a linear transformation, by maximising some function that measures
statistical independence, so that the recovered sources are as independent as
possible. Time-frequency masking [30,23,1] transforms the sources and forms
(possibly weighted) clusters of transform coefficients corresponding to each
source.

In this article, we investigate audio source separation using different time-
frequency transforms as part of the time-frequency masking method. We con-
centrate on separating instantaneous stereo mixtures (pan-potted stereo) where
the mixing parameters are known (i.e. non-blind) or have been estimated by
an earlier identification process within a blind algorithm. We perform source
separation using a signal-adaptive local cosine transform in the form of a co-
sine packet tree. To adapt the local cosine transform we introduce two cost
functions that attempt to represent the sources sparsely, and hence to attempt
to improve source separation performance.

1.1 The instantaneous, two-channel mixing model

The number of sources present in any system of observed mixtures, and the
number of observed mixtures, is one fundamental constraint on the applica-
bility of the various source separation frameworks. Cases in which the num-
ber of mixtures is equal to the number of sources are called overdetermined,
and those in which the numbers of sources and mixtures are equal are called
determined. These situations have been well studied, commonly through the
application of ICA [14]. If delays between sensors are present, then beamform-
ing [27] or time-frequency masking [30,1] are possible methods. In contrast to
the overdetermined case, underdetermined blind source separation considers
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cases in which there are more sources than mixtures.

In this work, we deal with underdetermined, instantaneous, two-channel mix-
tures of n > 2 time-domain audio sources:

x1

x2

 =

 a11 · · · a1n

a21 · · · a2n




s1

...

sn

 (1)

where sj is the jth source, xi is the ith mixture, aij is the positive real ampli-
tude (mixing parameter) of the jth source in the ith mixture (observation),
and 1 ≤ j ≤ n and i = 1, 2.

The model given by Equation (1) describes mixtures in which each source has
only a relative amplitude difference between the two channels. Neither relative
delays nor reverberant recording conditions are considered. This means that
the model may represent, for example, an approximation of an audio signal
mixed with a pan-potted stereo method. In this representation, we assume that
each source corresponds exactly to one (mono) input channel on a physical
mixing desk, mixed down directly to stereo with no extra processing (such
as compression or reverberation) applied to the mix. This is a very simple
model, but it is nevertheless applicable to some real musical recordings. Our
experiments will concentrate on music signal mixtures created by simulated
pan-potted stereo.

The blind source separation problem may be split conceptually into two suc-
cessive subproblems [29]. Estimation of the aij constitutes the identification
phase, while extraction of the sj, to yield estimated sources ŝj is the called
filtering phase. In this article, we are concentrating primarily on the filtering
phase. We assume that the mixing parameters have been determined already
by some other method, such as forming a histogram of mixing parameter es-
timates [30] or clustering in high-dimensional spaces [12]. This means that
our methods are equally applicable to other non-blind scenarios, in which the
mixing parameters are known or have already have determined.

The structure of this article is as follows: in Section 2 we introduce the method
of source separation by time-frequency masking, including an overview of the
DUET method and a discussion of alternative transforms. In Section 3 we in-
troduce the cosine packet (CP) tree approach, together with our proposed cost
functions for its use in source separation. In Section 4 the proposed method is
evaluated and compared to the short-time Fourier transform (STFT) and the
modified discrete cosine transform (MDCT), and is followed by a discussion
of further work and conclusions.
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2 Source separation by time-frequency masking

Time-frequency masking is a powerful technique for separating underdeter-
mined mixtures [29]. One of the requirements of most types of time-frequency
masking systems, is that the sources have a disjoint representation. It is well-
known that time-domain representations of audio signals are not, in gen-
eral, disjoint. Therefore, time-frequency masking methods transform the mix-
tures to produce (approximately) disjoint representations. One commonly used
transform is the short-time Fourier transform (STFT). The STFT is suitable
for representing anechoic mixtures of speech signals disjointly, and is com-
monly used in time-frequency masking algorithms such as DUET [30].

DUET is one method which may be applied to mixtures in the form of Equa-
tion (1). It was originally developed for blind source separation of anechoic
mixtures, in which the mixture may include relative delays as well as relative
amplitude gains, but may be applied to instantaneous mixtures by setting all
relative delays to zero.

2.1 Representing mixtures by short-time Fourier transform

The DUET algorithm uses the STFT to represent the mixtures before mask-
ing. Let x̃i represent the STFT of the ith mixture of length N :

x̃i(k, l) =
N−1∑
r=0

xi(r)w(r − k) exp

(
−i2πlk

N

)
(2)

where w is a suitably chosen window function which satisfies the overlap-add
condition for resynthesis [16].

The STFT is a linear operation. This means that after transforming both
mixtures, the following holds:

 x̃1

x̃2

 =

 a11 · · · a1n

a21 · · · a2n




s̃1

...

s̃n

 (3)

where x̃i and s̃i are the respective transforms of the signals xi and si. The mix-
ing parameters aij are the same as in Equation (1) and s̃j is the transformed
jth source.

If the STFT has successfully transformed the mixtures so that the sources have
disjoint representations, then at any given time-frequency point, the contri-
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bution from at most one source will dominate. If source sj dominates at time-
frequency index pair (k, l) then Equation (3) reduces to the following simple
linear system:  x̃1(k, l)

x̃2(k, l)

 ≈

 a1,j

a2,j

 s̃j(k, l). (4)

This means that we can estimate the mixing parameters of each source by
forming ratios of the transformed mixtures, since x̃2(k,l)

x̃2(k,l)
≈ a1,j

a2,j
where j is the

index of the dominant source.

2.2 Identification of mixing parameters

Recall that for each source, we assume that the ratio of its mixing coefficients
a2,j

a1,j
is unique to that source. That is, a2,j

a1,j
6= a2,j′

a1,j′
whenever j 6= j′. This means

the ratio |x̃2(k,l)|
|x̃1(k,l)| at each time-frequency point is an estimate of the ratio of

the mixing parameters for some, as yet unknown, source. Each estimate is
likely to be close to the true mixing parameters of some source, so by forming
clusters of these points, we can estimate the mixing parameters. In the DUET
algorithm we form a histogram of these ratios, with each peak in the histogram
corresponding to one source. Note that it is only possible to estimate the
ratio of the mixing parameters for each source, not the mixing parameters
themselves. Nevertheless, this information is sufficient to extract the sources,
relative to some unknown scaling factor.

In this article, we are concentrating on the filtering phase, so we will assume
that the mixing parameters are known, or have already been estimated.

2.3 Filtering by time-frequency masking

We assume that the mixtures have been transformed into an approximately
disjoint representation of the sources. The sources may therefore be extracted
by a conceptually simple clustering technique called binary time-frequency
masking. Each cluster has a centre given by the ratios of mixing parameters
which are given or have already been estimated. The mixtures’ time-frequency
coefficients are partitioned into these clusters, thus extracting the sources. Fi-
nally, an inverse STFT transforms the source estimates back into the time do-
main, giving the separated source estimates. Typically the overlap-add method
is used to invert the STFT [16].
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2.4 Alternative transforms

DUET uses the STFT to yield disjoint representations, to which the time-
frequency masking is applied. Its properties are well understood and it is
simple to implement, and has been shown to perform well on speech signals.
Furthermore, the STFT gives extra information about the relative phase of the
signals, allowing separation of anechoic mixtures. This means that in addition
to relative amplitude differences between sources, sources which have relative
delays between mixtures can be separated. However, since we are working with
instantaneous mixtures, in which no delays are present, we do not necessarily
need this extra information.

Even though the STFT is a popular choice in many time-frequency masking
techniques [4,1], its use is not ubiquitous. The designers of the DUET algo-
rithm recognise that any transform which satisfies certain properties 2 will suit
a time-frequency masking framework [30]. An initial study of the performance
effects of different transforms appears in [25], and time-frequency masking has
been successfully applied to instantaneous mixtures of speech in the modified
discrete cosine transform (MDCT) domain [9,25].

Our motivation for exploring different transforms is to give a representation
which represents the sources more disjointly than the STFT and hence might
give better separation. When block transforms, such as the STFT, are com-
puted with discontinuous rectangular windows, artefacts occur around the
block boundaries. This is because the truncated basis functions cause discon-
tinuities in the reconstruction of the signal. Smooth, compactly supported
windows help avoid these artefacts, but it can be shown that a Fourier basis
resulting from such windowing cannot be orthonormal, and is, in fact, over-
complete. An overcomplete transform contains redundant information which
will reduce the sparsity of the representation.

To try to overcome these limitations, lapped transforms [18] were developed.
The main idea is to construct an orthogonal basis such that each windowed
cosine basis function has a smooth transition from and to zero at its start
and end. The commonly used MDCT [22,21] can also be classified as a lapped
transform. The MDCT is linear, critically sampled, has well-known energy
compaction (sparsifying) properties, and allows perfect reconstruction through
overlap-add synthesis. These properties make it a suitable candidate for dis-
joint representation of sources, and so we compare it to other transforms (Sec-
tion 4).

2 These properties are invertibility, disjoint representations and linearity. In the case
of anechoic mixtures with delays, the narrowband assumption for array processing
is also assumed.
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Let us generalise the concept of time-frequency masking to other linear trans-
forms. The first step in time-frequency masking is to choose an appropriate
representation for the mixtures. We apply a real- or complex-valued linear
transform T to the mixtures x1 and x2 to give a pair of transformed mixtures
x̃1 = Tx1 and x̃2 = Tx2, forming the mixing structure given by Equation (3).
In Equation (1) T was the STFT.

We have already established that we want the transform to give a disjoint rep-
resentation of the sources. Now we address the question of how to obtain such
a representation, through the use of sparse transforms [20,25]. A sparse trans-
form has most coefficients very close to zero and only a few large coefficients.
The probability that two sources are active at any given time-frequency index
is very small. This means that a sparse transform will represent the mixtures
in such a way that the sources have approximately disjoint support in the
transform domain.

Sparse transforms which we will evaluate (Section 4) include the STFT and
the modified discrete cosine transform (MDCT) [21,22], each of which has a
fixed basis set. In this article, we will also evaluate adaptive transforms whose
basis functions are localised cosines, in which the basis functions are adapted
to match the signal structures (Section 3.1).

Individual sources can be estimated from x̃1 and x̃2 by constructing binary
time-frequency masks. This assumes that at each point in the transform do-
main, energy from at most one source dominates, that is, it assumes a sparse
transform which represents the sources disjointly. Then, the mask can be used
to filter (extract) the coefficients belonging to a particular source.

Given that we have the ratios of mixing coefficients, or estimates of these, for
example using the methods proposed in [12] or [30], the masks are constructed
as follows. Given the linear system described by Equation (3), the ratio of
mixing coefficients for the jth source can be associated with an angle

θj = arctan

(
a2j

a1j

)
(5)

where the inverse tangent is computed in the first quadrant of the plane.
If the transform Tsj = s̃j of the jth source is sparse and real-valued, then
its coefficients tend to cluster along the line defined by θj. A binary time-
frequency mask Mθj ,u captures the coefficients which fall ‘close’ to the line
corresponding to θj and discards all others.

For simplicity we will consider manually-defined masks based on symmetric
thresholds on the ratio angle θ̂ = arctan (x̃2/x̃1). This allows us to set the
thresholds in such a way that we can test the sparsity of the transform. For
example, setting a very small threshold allows us to evaluate easily whether
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or not the transform coefficients for a particular source are close to the radial
line described by its mixing coefficients. Secondly, it enables us to compare
different transforms given the same binary mask. We therefore use the mask

Mθj ,u =


1 if θj −

u

2
< arctan

(
x̃2

x̃1

)
< θj +

u

2

0 otherwise.
(6)

This mask Mθj ,u estimates the mixture coefficients carrying most of the energy
for source j, for the given symmetric threshold u.

Once the masks have been constructed, they can be used to determine ˆ̃sj, an
estimation of the transformed jth source:

ˆ̃sj = Mθj ,u · (x̃1 cos θj + x̃2 sin θj). (7)

Finally, we need to apply the inverse transform to recover the time-domain
sources sj. In the case of a complete, invertible transform, we simply use the
inverse transform sj = T−1s̃j. For overcomplete transforms, a pseudo-inverse
or other dimension reduction is also involved. For the STFT, which is normally
an overcomplete transform, the overlap-add procedure is one way to perform
the required ‘pseudo-inverse’ transform back to the time domain.

3 Adapting the representation using the Cosine Packet Tree

Transforms such as the STFT and MDCT have constant-length analysis win-
dows and fixed bases for the entire duration of the signal, giving fixed time-
frequency resolution. In order to better match the time-varying characteristics
of the mixtures and sources, some researchers have used adaptive transforms
[16], whose bases and window lengths are adapted to the input signals, to
try to represent signals more sparsely. Examples include ICA-like approaches
which use local cosine bases (Section 3.1) and wavelet packets to represent
the signals [13], and clustering of wavelet transform and wavelet packet coef-
ficients [15].

In the following sections, we describe two local cosine packet transforms in
which the transform adapts to the input mixtures, giving longer windows
over intervals requiring fine frequency resolution, at the expense of coarser
time resolution, and shorter windows over intervals with broadband frequency
content, giving finer time resolution. If a signal is decomposed in such a basis,
then we anticipate that the resulting transform may be sparser than transforms
which decompose the signal in a fixed basis.
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3.1 Trees of local cosine bases

The basis functions of the cosine packet transform [16] are defined over dyadic-
length (powers of 2) intervals [cpd, cp+1,d]. The endpoints are given by

cpd = 2−dNp − 1

2
(8)

where N is the length of the (time-domain) signal, and these define a binary
tree structure where the depth of a node is given by d up to a maximum
depth D (0 ≤ d ≤ D), and the position of a node at level d is given by p
(0 ≤ p < 2d). A pair of indices (p, d) corresponds to a node in the tree, and
identifies a signal space Wp

d spanned by an orthogonal local cosine basis :

wpd[n]

√
2

2−dN
cos

[
π
(
k +

1

2

)
n − cpd

2−dN

] (9)

where 0 ≤ k < 2−dN indexes the functions in the basis. The smooth window
wpd localises the basis functions over a dyadic interval [cpd, cp+1,d] and partly
overlaps with its immediately adjacent windows wp−1,d and wp+1,d. Further-
more, the window must satisfy special properties [16].

Each signal space Wp
d is orthogonal to Wq

d whenever p 6= q, and Wp
j =

W2p
j+1 ⊕W2p+1

j+1 . This means that the union of the bases corresponding to the
children of any node is an orthogonal basis of the space corresponding to that
(parent) node. The length-N signal being analysed is in the signal space W0

0.
Bases occurring deeper in the tree correspond to shorter time intervals and
so are better for representing sections of the signal with highly time-varying
characteristics; bases occurring higher in the tree are better for representing
sections which need better frequency resolution at the cost of coarser time
resolution. We attempt to use this framework to our advantage to represent the
sources more disjointly. Moreover, this tree structure offers a computationally
efficient method for computing a good basis.

3.2 Selecting the best basis

A tree of local cosine bases describes many possible orthogonal bases for rep-
resenting a signal. A complete binary tree provides a dictionary of more than
one orthogonal basis from which the optimal basis can be adaptively chosen
to represent the signal. This is in contrast to transforms such as the STFT
or MDCT, whose dictionaries include exactly one basis set. The l1 cost of
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Fig. 1. Recording of a glockenspiel. Upper plot is a local cosine best basis tree
computed by minimising the l1 norm to a maximum depth D = 10. Lower plot
is the time-domain signal partitioned into intervals; the width of each interval is
determined by the depth of the corresponding basis in the tree.

representing a length-N signal x in the basis B = {bm} is given by

C(x, B) =
N∑

m=1

|〈x, bm〉|
‖x‖

(10)

and provides a convenient measure of sparsity [6]. We choose the best basis
as the one which minimises this cost. The computationally efficient Coifman-
Wickerhauser algorithm takes advantage of the binary structure and deter-
mines the best basis in O(N log2 N) time [7].

Figure 1 depicts a tree of local cosine bases adapted to an audio recording of
a glockenspiel showing the original time-domain signal partitioned into dyadic
intervals, each of which correspond to a basis in the tree. The bars of the
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glockenspiel are struck in the first half of the signal and so relatively short
basis functions have been adapted to capture the transients. The notes all
ring out and decay in the second half of the signal; here, long basis functions
have been chosen because the signal varies relatively slowly over time.

3.3 Adapting to the input

We consider two natural ways by which the local cosine basis may be adapted.
The first method attempts to maximise the sparsity of the average of the two
mixtures x̃1 and x̃2

xa =
1

2
(x1 + x2) (11)

by minimising the l1 cost described in Section 3.2. This method will be referred
to as CP1. Results for CP1, are given in Section 4.

3.4 Adapting to a single source

One issue with the CP1 method is that it models mixtures of the sources rather
than the sources themselves. For example, in a music signal, if a percussive
note with broadband frequency content and a tonal note with fine frequency
content occur at same time, then the basis selected to cover that time interval
may not be particularly well adapted to either. Furthermore, the basis may
not adapt to transients well as tonal content tends to have more energy.

To overcome this possible limitation, we propose to adapt one basis to the
expected output of the time-frequency mask for each source. This will select a
basis for each source with the intention that each such basis will capture the
time-frequency structures of that source better than the basis determined by
CP1.

We propose a heuristically motivated cost function based on this intuitive
reasoning. Whereas the CP1 method minimises the l1 cost of expressing a
signal in some basis, here we maximise the energy of the local cosine coefficients
associated with a particular source angle θj. The mixing parameters for a
given source are known; the representation which has greatest sparsity for this
source has local cosine coefficients clustered around these mixing parameters.
By selecting a basis which maximises the energy of coefficients that cluster
around θj we would expect that a sparse representation will be generated.
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Therefore we use the following cost function:

C(x1, x2, B, θj, u) = −
N∑

m=1

Λθj ,u〈(x1 cos θj + x2 sin θj) , bm〉2 (12)

where

Λθj ,u =


1 if θj −

u

2
< arctan

(
〈x2, bm〉
〈x1, bm〉

)
< θj +

u

2

0 otherwise

(13)

and B = {bm} is a basis from the dictionary of bases derived from the complete
local cosine tree. The binary mask Λθj ,u has a similar form to Equation (6),
but instead of masking a transformed mixture x̃1 or x̃2, it masks local cosine
coefficients in the basis B. Again, the fast tree-searching algorithm of Coifman
and Wickerhauser [7] finds the best basis corresponding to this cost function.
For the rest of this article, this method will be referred to as CP2.

This method learns an overcomplete dictionary of bases adapted to different
sources. In this sense, it may be considered to be equivalent to techniques
based on, for example, the matching pursuit algorithm [17]. However, the
advantage of this method stems from the representation of local cosine bases
as tree structures which allows us to apply the fast tree-searching algorithm
to determine the best basis.

4 Evaluation

We obtained eight pieces of multitracked music by several artists, released
under Creative Commons licenses, with access to the original multitracked
digital audio data [24,3,10,2,19,8,26,11]. This provided us with sources from
which to synthesize instantaneous mixtures. For each mixture, the pitched
sources were harmonically related and so overlapping partial frequencies were
expected. Each source had a sample rate of 22.05 kHz at a resolution of 16 bits
per sample. An extract of 218 samples was taken from each source, giving
approximately 11.9 s of audio.

For each experiment, the mixtures x1 and x2 were generated by instanta-
neously mixing, with the same mixing parameters in each case:

x1

x2

 =

 0.83 0.60 0.40 0.83

0.17 0.40 0.60 0.17




s1

s2

s3

s4


. (14)
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The resulting mixtures are simulations of pan-potted stereo mixes, which we
have found to be relatively challenging for standard signal extraction methods.

This mixing matrix ensures that all sources are evenly spaced in the first
quadrant of the plane. The motivation behind this choice of mixing matrix
is so that we can test the same set of symmetric threshold constants u over
all mixtures. The values of u that we tested were 0.1, 0.2, 0.3, and 0.39. It
is clear from Equation (6) that u′ > u implies Mθj ,u′ ≥ Mθj ,u, so the set of
time-frequency points covered by the masks form a sequence of supersets.

For the STFT and MDCT methods, block sizes K = 2m with m = 6, 7, . . . , 15
were tested, i.e. K = 64 up to K = 32768 in powers of two. For the CP1 and
CP2 methods, we tested maximum tree search depths D = 3, 4, . . . , 12.

4.1 Measuring performance

To measure the performance of the source separation methods, we used the
criteria discussed in [28]. For each estimated source, we wish to make numer-
ical evaluations of the contribution of unwanted sources (interference) and
the distortion due solely to the separation process (artefacts). We do this by
measuring the Source to Interference Ratio (SIR) and the Source to Artefacts
Ratio (SAR). Furthermore, in order to simplify direct comparisons, the Source
to Distortion Ratio (SDR) is computed; this combines both the SIR and SAR
into a single numerical measure of total relative distortion. Methods for com-
puting these measurement criteria are explained in detail in [28]. Whenever
these measures are used, they will be stated in units of decibels (dB).

4.2 Experiments

Time-frequency masks were constructed and applied to the mixture channels
x1 and x2 represented by the following transforms:

• STFT at block sizes K, Hamming-windowed, and with K/2 overlap on con-
secutive blocks. This is essentially the filtering component of DUET [30].
The STFT is a complex-valued transform, so the binary masks were deter-
mined based on the magnitude of the STFT.

• MDCT critically sampled, with various block sizes K
• CP1 at various maximum tree search depths D
• CP2 at various maximum tree search depths D

The lengths of the CP1 and CP2 basis functions at each D correspond to block
sizes K = 2M−D, where M = 18 because the length of the input signal is 218
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transform SDR SIR SAR total

STFT 24 (75%) 18 (56%) 22 (69%) 64 (67%)

MDCT 2 (6%) 5 (16%) 1 (3%) 8 (8%)

CP1 0 (0%) 6 (19%) 0 (0%) 6 (6%)

CP2 6 (19%) 3 (9%) 9 (28%) 18 (19%)

total 32 (100%) 32 (100%) 32 (100%) 96 (100%)
Table 1
Performance of the various transforms. Each cell in the table indicates the number
of times the transform scored best for that performance measure.

samples. This allows us to compare methods based on the lengths of their
analysis windows. The depth d of a node in a local cosine tree corresponds
to basis functions of length 218−d (the example mixture has length 218). The
maximum tree depths tested were D = 12, so that the smallest basis functions
have length 64 (equal to the smallest K).

The results are presented in Tables A.1,A.2 and A.3. They indicate that the ef-
fects of the artefacts dominate interference, since the SAR values are typically
significantly lower than SIR. This is not too surprising, since these methods
are based on binary masking, and we would expect the masking process to
introduce some artefacts.

The number of ‘best’ results for each transform are shown in Table 1. Overall,
the STFT showed best separation performance for the majority of sources and
pieces, with our proposed CP2 showing best performance on most of the re-
mainder. The MDCT and our proposed CP1 method performed best on only
a few sources. Nevertheless, since our proposed CP2 method is a complete, or-
thogonal transform while the STFT is an overcomplete, non-orthogonal trans-
form, with double the representation size of CP2, we consider these results to
represent competitive performance for our proposed CP2 method. We could
find no immediately apparent relationship between the nature of an extracted
source and the performances of the various transforms.

We noticed that some pieces tended to be separated better with short frames
or deep trees, while others were separated better with long frames or shallow
trees. For example, Blue [24] (more steady-state content) was separated best
with long frame sizes (shallow trees) while Carol [3] (more transient content)
was separated best with short frame sizes (deep trees). These observations
generally reflect what we might expect from this type of music, although this
is by no means consistent across all methods.

Informal listening tests indicate that in general our proposed CP2 method,
when giving reasonable performance, appears to produce less audible ‘pipe
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noise’ when compared to the STFT. These also suggest that the noise is least
objectionable for mid-range tree depths (around D = 6, K = 4096), with more
pipe noise for deeper trees (large D, small K), while shallower trees (small D,
large K) are associated with pre-echo and apparent note timing jitter. We
intend to carry out other listening tests in future to further investigate these
effects.

5 Further work

Results have shown that adapting a local cosine basis to the output can give
good results. However, the energy-based cost function (Equation (12)) is de-
rived from heuristic reasoning. It may be the case that a more subtle cost
function is required to represent the estimated source more sparsely. In par-
ticular, the current energy-based cost function considers only coefficients of
the estimated source without regarding the coefficients of the other sources.
Therefore, the next step is to manually examine the basis functions which are
adapted to a particular source direction and determine the most suitable cost
function for this sort of joint adaptation of local cosine bases. Similarly, the
CP1 technique (Section 3.3) minimises the l1 cost of x̃a, the average of the
input mixtures. Alternatively, one could minimise the average l1 cost of both
x̃1 and x̃2.

The tree structure described in Section 3 is not necessarily tied to local cosine
bases. It should be possible to apply a tree-like framework to other trans-
forms, such as the STFT. This would give access to phase information so the
framework could be used to separate anechoic mixtures.

All techniques in this article assume the mixing parameters are already known
(the non-blind case). In practical situations this information may not be avail-
able and so the mixing structure would need to be identified. It would be in-
teresting to study the sensitivity of the sparse representations to the accuracy
of the mixing parameter estimates.

Finally, the performance measures, SIR, SAR and SDR, may not correspond
well to a subjective human assessment of separation performance. Informal
listening tests show that each representation imparts a noticeably different
timbre to the extracted sources. Therefore, we believe that listening tests
would give a more meaningful, practical measure of separation performance.

15



6 Conclusions

We have described a time-frequency masking approach to stereo audio source
separation using local cosine packet representations. We proposed two ver-
sions, one (CP1) with a cost function calculated from the mean of the obser-
vation, and another (CP2) which adapts the basis set to the time-frequency
mask used for separating each separate source. Searching a tree of local cosine
bases is fast and gives promising results.

We compared the performance of our proposed time-frequency methods to
the short-time Fourier transform (STFT) and modified discrete cosine trans-
form (MDCT) on a set of instantaneous stereo musical audio mixtures (‘pan-
potted stereo’). The STFT gives the best performance for separation of most
sources from most mixtures. Nevertheless, our results indicate that the perfor-
mance our proposed CP2 method is competitive, and exhibits better perfor-
mance than the MDCT. Informal listening tests suggest that the cosine packet
method can exhibit less objectionable noise than the STFT. We consider the
cosine packet method to be an interesting method for time-frequency source
separation, and we will continue to investigate this in future work.

Acknowledgements

The authors would like to thank Emmanuel Vincent for many suggestions and
discussions during this work.

References

[1] Parham Aarabi, Guangji Shi, and Jahromi Omid. Robust speech separation
using time-frequency masking. In Proceedings of the 2003 IEEE Conference on
Multimedia and Expo (ICME 2003), Baltimore, MD, USA, 6–9 July 2003.

[2] AlexQ. Jiggly (2000 version). Multitrack audio recording. Accessed online
at http://www.archive.org/details/alexqjiglive subject to the Creative
Commons Attribution-NonCommercial-ShareAlike 2.0 license.

[3] AlexQ. Carol of the Bells. Multitrack audio recording, 2003. Accessed online at
http://www.archive.org/details/alexqcaroltrax subject to the Creative
Commons Attribution-NonCommercial-ShareAlike 2.0 license.

[4] Dan Barry, Bob Lawlor, and Eugene Coyle. Real-time sound source separation:
Azimuth discrimination and resynthesis. In Proceedings of the AES 117th
Convention, San Francisco, CA, USA, 28–31 October 2004.

16



[5] Albert S. Bregman. Auditory Scene Analysis. MIT Press, 1994.

[6] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic
decomposition by basis pursuit. SIAM Review, 43(1):129–159, 2001.

[7] R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for best basis
selection. IEEE Transactions on Information Theory, 38(2):713–718, March
1992.

[8] Apple Computer. Apple Loops for Soundtrack. Collection of audio loops
bundled with computer software, 2004.

[9] M. Davies and N. Mitianoudis. Simple mixture model for sparse overcomplete
ICA. IEE Proceedings on Vision, Image and Signal Processing, 151(1):35–43,
February 2004.

[10] Another Dreamer. Dreams. Multitrack audio recording, 2004. Accessed
online at http://www.anotherdreamer.net subject to the Creative Commons
Attribution-NonCommercial 1.0 license.

[11] Another Dreamer. We Weren’t There. Multitrack audio recording, 2004.
Accessed online at http://www.anotherdreamer.net subject to the Creative
Commons Attribution-NonCommercial 1.0 license.

[12] Pando Georgiev, Fabian Theis, and Andrzej Cichocki. Sparse component
analysis and blind source separation of underdetermined mixtures. IEEE
Transactions on Neural Networks, 16(4):992–996, July 2005.
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