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Type-IV DCT, DST, and MDCT algorithms
with reduced numbers of arithmetic operations

Xuancheng Shao and Steven G. Johnson*

Abstract— We present algorithms for the type-IV discrete
cosine transform (DCT-IV) and discrete sine transform (DST-
IV), as well as for the modified discrete cosine transform (MDCT)
and its inverse, that achieve a lower count of real multiplications
and additions than previously published algorithms, without
sacrificing numerical accuracy. Asymptotically, the operation
count is reduced from2N log2 N +O(N) to 17

9
N log2 N +O(N)

for a power-of-two transform size N , and the exact count is
strictly lowered for all N ≥ 8. These results are derived by
considering the DCT to be a special case of a DFT of length8N ,
with certain symmetries, and then pruning redundant operations
from a recent improved fast Fourier transform algorithm (ba sed
on a recursive rescaling of the conjugate-pair split-radixalgo-
rithm). The improved algorithms for DST-IV and MDCT follow
immediately from the improved count for the DCT-IV.

Index Terms— discrete cosine transform; lapped transform;
fast Fourier transform; arithmetic complexity

I. I NTRODUCTION

In this paper, we present recursive algorithms for type-IV
discrete cosine and sine transforms (DCT-IV and DST-IV)
and modified discrete cosine transforms (MDCTs), of power-
of-two sizesN , that require fewer total real additions and
multiplications (herein calledflops) than previously published
algorithms (with an asymptotic reduction of about 6%), with-
out sacrificing numerical accuracy. This work, extending our
previous results for small fixedN [1], appears to be the
first time in over 20 years that flop counts for the DCT-
IV and MDCT have been reduced—although computation
times are no longer generally determined by arithmetic counts
[2], the question of the minimum number of flops remains
of fundamental theoretical interest. Our fast algorithms are
based on one of two recently published fast Fourier trans-
form (FFT) algorithms [1], [3], which reduced the operation
count for the discrete Fourier transform (DFT) of sizeN to
34
9 N log2 N + O(N) compared to the (previous best) split-

radix algorithm’s4N log2 N + O(N) [4]–[8]. Given the new
FFT, we treat a DCT as an FFT of real-symmetric inputs and
eliminate redundant operations to derive the new algorithm; in
other work, we applied the same approach to derive improved
algorithms for the type-II and type-III DCT and DST [9].

The algorithm for DCT-IV that we present has the same
recursive structure as some previous DCT-IV algorithms, but
the subtransforms are recursively rescaled in order to eliminate
some of the multiplications. This approach reduces the flop
count for the DCT-IV from the previous best of2N log2 N+N
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N previous DCT-IV New algorithm

8 56 54
16 144 140
32 352 338
64 832 800
128 1920 1838
256 4352 4164
512 9728 9290
1024 21504 20520
2048 47104 44902
4096 102400 97548

TABLE I

FLOP COUNTS(REAL ADDS + MULTS) OF PREVIOUS BESTDCT-IV AND

OUR NEW ALGORITHM

[10]–[16] to:

17

9
N log2 N +

31

27
N +

2

9
(−1)log2 N log2 N − 4

27
(−1)log2 N .

(1)
The first savings occur forN = 8, and are summarized in
Table. I. In order to derive a DCT-IV algorithm from the new
FFT algorithm, we simply consider the DCT-IV to be a special
case of a DFT with real input of a certain symmetry, and
discard the redundant operations. [This should not be confused
with algorithms that employ anunmodifiedFFT combined
with O(N) pre/post-processing steps to obtain the DCT.] This
well-known technique [1], [2], [7]–[9], [17], [18] allows any
improvements in the DFT to be immediately translated to the
DCT-IV, is simple to derive, avoids cumbersome re-invention
of the “same” algorithm for each new trigonometric transform,
and (starting with a split-radix FFT) matches the best previous
flop counts for every type of DCT and DST. The connection
to a DFT of symmetric data can also be viewed as the basic
reason why DCT flop counts had not improved for so long: as
we review below, the old DCT flop counts can be derived from
a split-radix algorithm [15], and the 1968 flop count of split
radix was only recently improved upon [1], [3]. There have
been many previously published DCT-IV algorithms derived
by a variety of techniques, some achieving2N log2 N + N
flops [10]–[16] and others obtaining larger or unreported flop
counts [19]–[22]. Furthermore, exactly the same flop count
(1) is now obtained for the type-IV discrete sine transform
(DST-IV), since a DST-IV can be obtained from a DCT-IV via
flipping the sign of every other input (zero flops, since the sign
changes can be absorbed by converting subsequent additions
into subtractions or vice versa) and a permutation of the output
(zero flops) [12]. Also, in many practical circumstances the
output can be scaled by an arbitrary factor (since any scaling

http://arxiv.org/abs/0708.4399v2


2

can be absorbed into a subsequent computation); in this case,
similar to the well-known savings for a scaled-output size-
8 DCT-II in JPEG compression [1], [9], [23], [24], we show
that an additionalN multiplications can be saved for a scaled-
output (or scaled-input) DCT-IV.

Indeed, if we only wished to show that the asymptotic flop
count for DCT-IV could be reduced to179 N log2 N + O(N),
we could simply apply known algorithms to express a DCT-IV
in terms of a real-input DFT (e.g. by reducing it to the DCT-
III [10] and thence to a real-input DFT [25]) to immediately
apply the17

9 N log2 N +O(N) flop count for a real-input DFT
from our previous paper [1]. However, with FFT and DCT
algorithms, there is great interest in obtaining not only the best
possible asymptotic constant factor, but also the best possible
exactcount of arithmetic operations. Our result (1) is intended
as a new upper bound on this (still unknown) minimum exact
count, and therefore we have done our best with theO(N)
terms as well as the asymptotic constant.

An important transform closely related to the DCT-IV is an
MDCT, which takes2N inputs and producesN outputs, and
is designed to be applied to 50%-overlapped blocks of data
[26], [27]. Such a “lapped” transform reduces artifacts from
block boundaries and is widely used in audio compression
[28]. In fact, an MDCT isexactlyequivalent to a DCT-IV of
size N , where the2N inputs have been preprocessed with
N additions/subtractions [29]–[32]. This means that the flop
count for an MDCT is at most that of a DCT-IV plusN
flops. Precisely this technique led to the best previous flop
count for an MDCT,2N log2 N + 2N [29]–[32]. (There have
also been several MDCT algorithms published with larger
or unreported flop counts [33]–[42].) It also means that our
improved DCT-IV immediately produces an improved MDCT,
with a flop count of eq. (1) plusN . Similarly for the inverse
MDCT (IMDCT), which takesN inputs to2N outputs and
is equivalent to a DCT-IV of sizeN plus N negations
(which should not, we argue, be counted in the flops because
they can be absorbed by converting subsequent additions into
subtractions).

In the following sections, we first briefly review the new
FFT algorithm, previously described in detail [1]. Then, we
review how a DCT-IV may be expressed as a special case of a
real DFT, and how the new DCT-IV algorithm may be derived
by applying the new FFT algorithm and pruning the redundant
operations. In doing so, we find it necessary to develop a
algorithm for a DCT-III with scaled output. (Previously, we
had derived a fast algorithm for a DCT-III based on the
new FFT, but only for the case of scaled or unscaledinput
[9].) This DCT-III algorithm follows the same approach of
eliminating redundant operations from our new scaled-output
FFT (a subtransform of the new FFT) applied to appropriate
real-symmetric inputs. We then analyze the flop counts for
the DCT-III and DCT-IV algorithms. Finally, we show that
this improved DCT-IV immediately leads to improved DST-
IV, MDCT, and IMDCT algorithms. We close with some
concluding remarks about future directions.

II. REVIEW OF THE NEW FFT

To obtain the new FFT, we used as our starting point a
variation called theconjugate-pair FFTof the well-known
split-radix algorithm. Here, we first review the conjugate-pair
FFT, and then briefly summarize how this was modified to
reduce the number of flops.

A. Conjugate-pair FFT

The discrete Fourier transform of sizeN is defined by

Xk =

N−1
∑

n=0

xnωnk
N , (2)

where ωN = e−
2πi
N is an N th primitive root of unity and

k = 0, . . . , N − 1.
Starting with this equation, the decimation-in-time

conjugate-pair FFT [1], [43], a variation on the well-known
split-radix algorithm [4]–[7], splits it into three smaller DFTs:
one of sizeN/2 of the even-indexed inputs, and two of size
N/4:

Xk =

N/2−1
∑

n2=0

ωn2k
N/2x2n2

+ ωk
N

N/4−1
∑

n4=0

ωn4k
N/4x4n4+1

+ ω−k
N

N/4−1
∑

n4=0

ωn4k
N/4x4n4−1. (3)

[In contrast, the ordinary split-radix FFT usesx4n4+3 for the
third sum (a cyclic shift ofx4n4−1), with a corresponding
multiplicative “twiddle” factor ofω3k

N .] This decomposition is
repeated recursively until base cases of sizeN = 1 or N = 2
are reached. The number of flops required by this algorithm,
after certain simplifications (common subexpression elimina-
tion and constant folding) and not counting data-independent
operations like the computation ofωk

N , is 4N log2 N−6N+8,
identical to ordinary split radix [1], [44]–[46].

B. New FFT

Based on the conjugate-pair split-radix FFT from sec-
tion II-A, a new FFT algorithm with a reduced number of
flops can be derived by scaling the subtransforms [1]. We will
not reproduce the derivation here, but will simply summarize
the results. In particular, the original conjugate-pair split-radix
algorithm is split into four mutually recursive algorithms,
newfftS

ℓ
N (x) for ℓ = 0, 1, 2, 4, each of which has the same

split-radix structure but computes a DFT scaled by a factor
of 1/sℓN,k (defined below), respectively. These algorithms
are shown in Algorithm 1, in which the scaling factors are
combined with the twiddle factorsωk

N to reduce the total num-
ber of multiplications. In particular, all of the savings occur
in newfftS

1
N (x), while newfftS

4
N (x) is factorized into a

special form to minimize the number of extra multiplications it
requires. Here, althoughℓ = 0, 1, 2 are presented in a compact
form by a single subroutinenewfftS

ℓ
N (x), in practice they

would have to be implemented as three separate subroutines in
order to exploit the special cases of the multiplicative constants
sN,k/sℓN,k, as described in Ref. [1]. For simplicity, we have
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Algorithm 1 New FFT algorithm of lengthN (divisible by
4). The sub-transformsnewfftS

ℓ
N (x) for ℓ 6= 0 are scaled

by sℓN,k, respectively, whileℓ = 0 is the final unscaled DFT
(s0,k = 1).

function Xk=0..N−1 ← newfftS
ℓ
N (xn):

{computes DFT /sℓN,k, ℓ = 0, 1, 2}
Uk2=0...N/2−1 ← newfftS

2ℓ
N/2 (x2n2

)

Zk4=0...N/4−1 ← newfftS
1
N/4 (x4n4+1)

Z ′
k4=0...N/4−1 ← newfftS

1
N/4 (x4n4−1)

for k = 0 to N/4− 1 do
Xk ← Uk +

(

tN,kZk + t∗N,kZ ′
k

)

· (sN,k/sℓN,k)

Xk+N/2 ← Uk −
(

tN,kZk + t∗N,kZ ′
k

)

· (sN,k/sℓN,k)

Xk+N/4 ← Uk+N/4

− i
(

tN,kZk − t∗N,kZ ′
k

)

· (sN,k/sℓN,k+N/4)

Xk+3N/4 ← Uk+N/4

+ i
(

tN,kZk − t∗N,kZ ′
k

)

· (sN,k/sℓN,k+N/4)

end for

function Xk=0..N−1 ← newfftS
4
N (xn):

{computes DFT /s4N,k}
Uk2=0...N/2−1 ← newfftS

2
N/2 (x2n2

)

Zk4=0...N/4−1 ← newfftS
1
N/4 (x4n4+1)

Z ′
k4=0...N/4−1 ← newfftS

1
N/4 (x4n4−1)

for k = 0 to N/4− 1 do
Xk ←

[

Uk +
(

tN,kZk + t∗N,kZ ′
k

)]

· (sN,k/s4N,k)

Xk+N/2 ←
[

Uk −
(

tN,kZk + t∗N,kZ ′
k

)]

· (sN,k/s4N,k+N/2)

Xk+N/4 ←
[

Uk+N/4 − i
(

tN,kZk − t∗N,kZ ′
k

)]

· (sN,k/s4N,k+N/4)

Xk+3N/4 ←
[

Uk+N/4 + i
(

tN,kZk − t∗N,kZ ′
k

)]

· (sN,k/s4N,k+3N/4)
end for

omitted the base cases of the recursion (N = 1 and 2) and
have not eliminated common subexpressions.

The key aspect of these algorithms is the scale factorsN,k,
where the subtransforms compute the DFT scaled by1/sℓN,k

for ℓ = 1, 2, 4. This scale factor is defined forN = 2m by the
following recurrence, wherek4 = k mod N

4 :

sN=2m,k =







1 for N ≤ 4
sN/4,k4

cos(2πk4/N) for k4 ≤ N/8
sN/4,k4

sin(2πk4/N) otherwise
. (4)

This definition has the properties:sN,0 = 1, sN,k+N/4 = sN,k,
and sN,N/4−k = sN,k. Also, sN,k > 0 and decays rather
slowly with N : sN,k is Ω(N log4 cos(π/5)) asymptotically [1].
When these scale factors are combined with the twiddle factors
ωk

N , we obtain terms of the form

tN,k = ωk
N

sN/4,k

sN,k
, (5)

which is always a complex number of the form±1±i tan 2πk
N

or± cot 2πk
N ±i and can therefore be multiplied with two fewer

real multiplications than are required to multiply byωk
N . We

denote the complex conjuate oftN,k by t∗N,k. The resulting
flop count, for arbitrary complex dataxn, is then reduced from
4N log2 N − 6N + 8 for split radix to 34

9 N log2 N + O(N)
[1].

III. FAST DCT-IV FROM NEW FFT

Various forms of discrete cosine transform have been de-
fined, corresponding to different boundary conditions on the
transform. The type-IV DCT is defined as a real, linear
transformation by the formula:

CIV
k =

N−1
∑

n=0

xn cos

[

π

N

(

n +
1

2

)(

k +
1

2

)]

, (6)

for N inputs xn and N outputsCIV
k . The transform can be

made orthogonal (unitary) by multiplying with a normalization
factor

√

2/N , but for our purposes the unnormalized form
is more convenient (and has no effect on the number of
operations). We will now derive an algorithm, starting from
the new FFT of the previous section, to compute the DCT-
IV in terms of a scaled DCT-III and DST-III. These type-III
transforms are then treated in following section by a similar
method, and lead to our new flop count for the DCT-IV.

In particular, we wish to emphasize in this paper that the
DCT-IV (and, indeed, all types of DCT) can be viewed as
special cases of the discrete Fourier transform (DFT) with
real inputs of a certain symmetry. This viewpoint is fruitful
because it means that any FFT algorithm for the DFT leads
immediately to a corresponding fast algorithm for the DCT-
IV simply by discarding the redundant operations, rather
than rederiving a “new” algorithm from scratch. A similar
viewpoint has been used to derive fast algorithms for the DCT-
II [1], [2], [7], [8], [17], [18], as well as in automatic code-
generation for the DCT-IV [1], [2], and has been observed to
lead to the minimum known flop count starting from the best
known DFT algorithm. Furthermore, because the algorithm
is equivalent to an FFT algorithm with certain inputs, it
should have the same floating-point error characteristics as that
FFT—in this case, the underlying FFT algorithm is simply a
rescaling of split radix [1], and therefore inherits the favorable
O(
√

log N) mean error growth andO(log N) error bounds
of the Cooley-Tukey algorithm [47]–[49], unlike at least one
other DCT-IV algorithm [12] that has been observed to display
O(
√

N) error growth [2].

A. DCT-IV in terms of DFT

Recall that the discrete Fourier transform of sizeN
is defined by eq. (2). In order to deriveCIV

k from
the DFT formula, one can use the identitycos πℓ

N =
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Fig. 1. A DCT-IV of lengthN = 4 (open dotsx0, x1, x2, x3) is equivalent
to a size8N = 32 DFT via interleaving with zeros (black dots) and extending
to an odd-even-odd (square dots) periodic (gray dots) sequence.

1
4

(

ω4ℓ
8N − ω4N−4ℓ

8N − ω4N+4ℓ
8N + ω8N−4ℓ

8N

)

to write:

CIV
k =

N−1
∑

n=0

xn cos

[

π

N

(

n +
1

2

)(

k +
1

2

)]

=

N−1
∑

n=0

xn

4

[

ω
(2n+1)(2k+1)
8N − ω

(4N−2n−1)(2k+1)
8N

−ω
(4N+2n+1)(2k+1)
8N + ω

(8N−2n−1)(2k+1)
8N

]

=

8N−1
∑

n=0

x̃nω
n(2k+1)
8N , (7)

wherex̃n is a real-even sequence of length̃N = 8N , defined
as follows for0 ≤ n < N :

x̃2n+1 = x̃8N−2n−1 =
1

4
xn (8)

x̃4N−2n−1 = x̃4N+2n+1 = −1

4
xn (9)

Furthermore, the even-indexed inputs are zeros:x̃2n = 0 for
all 0 ≤ n < 4N . (The factors of1/4 will disappear in the end
because they cancel equivalent factors in the subtransforms.)

This is illustrated by an example, forN = 4, in Fig. 1. The
original four inputs of the DCT-IV are shown as open dots,
which are interleaved with zeros (black dots) and extended to
an odd-even-odd (square dots) periodic (gray dots) sequence
of length 8N = 32 for the corresponding DFT. Referring to
eq. (7), the output of the DCT-IV is given by the firstN odd-
index outputs of the corresponding DFT (with a scale factor
of 1/4). (The type-IV DCT is distinguished from the other
types by the fact that it is even around the left boundary of
the original data while it is odd around the right boundary,
and the symmetry points fall halfway in between pairs of the
original data points.) We will refer, below, to this figure in
order to illustrate what happens when an FFT algorithm is
applied to this real-symmetirc zero-interleaved data.

B. DCT-IV from DCT/DST-III

For a DCT-IV of sizeN , our strategy is to directly apply the
new FFT algorithm to the equivalent DFT of sizẽN = 8N ,
and to discard the redundant operations from each stage. As it

turns out, the sub-transforms after one step of this algorithm
are actually scaled-output type-III DCTs and DSTs. This is
closely related to a well-known algorithm to express a DCT-
IV in terms of a half-size DCT-III and DST-III [10]. In this
section, we derive this reduction to a DCT-III for the new FFT
algorithm, and then in Sec. IV we derive a new algorithm
for the scaled-output DCT-III. The scaled output DST-III
algorithm can be easily re-expressed in terms of the DCT-
III, as is presented in Sec. IV-C. Here, we define the DCT-III
and DST-III, respectively, by the (unnormalized) equations:

CIII
k =

N−1
∑

n=0

xn cos

[

π

N
n

(

k +
1

2

)]

, (10)

SIII
k =

N
∑

n=1

xn sin

[

π

N
n

(

k +
1

2

)]

. (11)

Starting with the DFT of lengthÑ in eq. (2), the new
split-radix FFT algorithm splits it into three smaller DFTs:
Uk = dft(x̃2n2

) of sizeÑ/2, as well as the scaled transforms
Zk = 1

sÑ/4,k
dft(2x̃4n4+1) and Z ′

k = 1
sÑ/4,k

dft(2x̃4n4−1) of

sizeÑ/4 (including a factor of 2 for convenience). These are
combined via:

Xk = Uk + ωk
Ñ

sÑ/4,kZk/2 + ω−k

Ñ
sÑ/4,kZ ′

k/2. (12)

Here, wherex̃n comes from the DCT-IV as in Sec. III-A,
the even-indexed elements iñxn are all zero, soUk = 0.
Furthermore, by the even symmetry ofx̃n, we haveZ ′

k = Z∗
k

(complex conjugate ofZk). Thus, we haveCIV
k = X2k+1 =

Re(ω2k+1
8N s2N,2k+1Z2k+1). We will now show thatZk is given

by combining a DCT-III and a DST-III.
In order to calculateZk, we denote for simplicity the inputs

of this subtransform byzk = 2x̃4k+1 for 0 ≤ k < 2N .
Since Zk is the output of a real-input DFT of size2N ,
we have Z2N−k = Z∗

k . Thus, for any0 ≤ k < N/2,
Z2(N−1−k)+1 = Z2N−(2k+1) = Z∗

2k+1. However, there is an
additional redundancy in this transform that we must exploit:
by inspection of the construction of̃xn and by reference to
Fig. 2, we see that the inputszk are actually a realanti-periodic
sequence of lengthN (which becomes periodic when it is
extended to length2N ). We must exploit this symmetry in
order to avoid wasting operations.

In particular, by using the anti-periodic symmetry ofzk, we
can write the DFT of length2N as a single summation of
lengthN :

Z2k+1 =
1

s2N,2k+1

2N−1
∑

n=0

ω
n(2k+1)
2N zn

=
1

s2N,2k+1

(

N−1
∑

n=0

ω
n(2k+1)
2N zn

+

N−1
∑

n=0

ω
(n+N)(2k+1)
2N zn+N

)

=
2

s2N,2k+1

N−1
∑

n=0

ω
n(2k+1)
2N zn,
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Fig. 2. The DCT-IV of size 4 (open dots) is computed, in a split-radix
conjugate-pair FFT of thẽN = 32 extended datãxn from Fig. 1, via the
DFT Zk of the circled points̃x4n+1, which is an anti-periodic sequence of
length2N = 8.

using the facts thatωN(2k+1)
2N = ω

(2k+1)
2 = −1 and that

zn+N = −zn. Then, if we take the real and imaginary parts of
the third line above, we obtain precisely a DCT-III and a DST-
III, respectively, with outputs scaled by1/s2N,2k+1. However,
these sub-transforms are actually of sizeN/2, because the
symmetryω

(N−n)(2k+1)
2N = −ω

−n(2k+1)
2N means that thezn

andzN−n terms merely add or subtract in the input:

Re Z2k+1 =
2

s2N,2k+1

N−1
∑

n=0

cos

[

π

N/2
n

(

k +
1

2

)]

zn

=

2z0 +
∑N/2−1

n=1 cos

[

πn(k+ 1
2 )

N/2

]

· 2(zn − zN−n)

s2N,2k+1
(13)

Im Z2k+1 = − 2

s2N,2k+1

N−1
∑

n=0

sin

[

π

N/2
n

(

k +
1

2

)]

zn

=

(−1)k2zN/2 +
∑N/2−1

n=1 sin

[

πn(k+ 1
2 )

N/2

]

· 2(zn + zN−n)

−s2N,2k+1

(14)

for any 0 ≤ k < N/2. We can define two new sequenceswn

(0 ≤ n < N/2) andvn (1 ≤ n ≤ N/2) of lengthN/2 to be
the inputs of this DCT-III and DST-III, respectively:

w0 = 2z0, wn>0 = 2(zn − zN−n) (15)

vn<N/2 = −2(zn + zN−n), vN/2 = −2zN/2. (16)

With this definition of wn and vn, we can conclude from
eqs. (13–14), and the definition of DCT-III and DST-III, that
the real part ofZ2k+1 is exactly a scaled-output DCT-III of
wn, while the imaginary part ofZ2k+1 is exactly a scaled-
output DST-III of vn. (The scale factors of±2 will disappear
in the end: they combine with the 2 inzn = 2x̃4n+1 to cancel
the 1/4 in the definition ofx̃n.)

Algorithm 2 Fast DCT-IV algorithm in terms of scaled-output
DCT-III and DST-III, derived from Algorithm 1 by discarding
redundant operations.

function CIV
k=0..N−1 ← newdctIVN (xn):

{computes DCT-IV}
w0 ← x0

vN/2 ← xN−1

for k = 1 to N/2− 1 do
wk ← x2k + x2k−1

vk ← x2k−1 − x2k

end for
Wk=0...N/2−1 ← newdctIII

1
N/2 (wn)

Vk=0...N/2−1 ← newdstIII
1
N/2 (vn)

for k = 0 to N/2− 1 do
Z2k+1 ←Wk + iVk

Z2(N−1−k)+1 ←Wk − iVk

end for
for k = 0 to N − 1 do

CIV
k ← Re

(

ω2k+1
8N s2N,2k+1Z2k+1

)

end for

Thus, we have shown that the first half of the sequence
Z2k+1(0 ≤ k < N) can be found from a scaled-output DCT-
III and DST-III of lengthN/2. The second half of the sequence
Z2k+1 can be derived by the relationZ2(N−1−k)+1 = Z∗

2k+1

obtained earlier. GivenZ2k+1, the output of the original
DCT-IV, CIV

k , can be obtained by the formulaCIV
k =

Re(ω2k+1
8N s2N,2k+1Z2k+1). This algorithm, in which the com-

putation ofzk has been folded into the computation ofwk and
vk, is presented in Algorithm 2.

In Algorithm 2,newdctIII
ℓ
N (u) calculates the DCT-III of

{wn} scaled by a factor of1/s4ℓN,2k+1 for ℓ = 0, 1, 2, 4, and
will be presented in Sec. IV. Similarly,newdstIII

ℓ
N (v) cal-

culates the DST-III of{vn} scaled by a factor of1/s4ℓN,2k+1

for ℓ = 0, 1, 2, 4, and will be presented in Sec. IV-C in terms
of newdctIII

ℓ
N (u).

If the scale factorss2N,2k+1 are removed (set to 1) in
Algorithm 2, we recover a decomposition of the DCT-IV
in terms of an ordinary (unscaled) DCT-III and DST-III
that was first described by Wang [10]. This well-known
algorithm yields a flop count exactly the same as previous
results: 2N log2 N + N . (Wang obtained a slightly larger
count, apparently due to an error in adding his DCT-III and
DST-III counts.) The introduction of the scaling factors in
Algorithm 2 reduces the flop count by simplifying some of
the multiplications in the scaled DCT-III/DST-III compared
to their unscaled versions, as will be derived in Sec. IV.
Note that, in Algorithm 2, multiplying byω2k+1

8N s2N,2k+1

does not require any more operations than multiplying by
ω2k+1

8N , because the constant productω2k+1
8N s2N,2k+1 can be

precomputed. LetMS(N) denote the number of flops saved
in newdctIII

1
N (u) compared to the best-known unscaled

DCT-III. We shall prove in Sec. IV-C that the same number
of operations,MS(N), can be saved innewdstIII

1
N (u).

Thus, the total number of flops required by Alg. 2 will be
2N log2 N + N − 2MS(N/2). The formula forMS(N) will
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be derived in Sec. IV, leading to the final DCT-IV flop count
formula given by eq. (1).

IV. DCT-III FROM NEW FFT

The type-III DCT (for a convenient choice of normalization)
is defined by eq. (10) forN inputs xn and N outputsCIII

k .
We will now follow a process similar to that in the previous
section for the DCT-IV: we first expressCIII

k in terms of a
larger DFT of length4N , then apply the new FFT algorithm
of Sec. II-B, and finally discard the redundant operations to
yield an efficient DCT-III algorithm. The resulting algorithm
matches the DCT-III flop count of our previous publication
[9], which improved upon classic algorithms by about 6%
asymptotically. Unlike our previous DCT-III algorithm, how-
ever, the algorithm presented here also gives us an efficient
scaled-outputDCT-III, which savesMS(N) operations over
the classic DCT-III algorithms.

A. DCT-III in terms of DFT

In order to derive CIII
k from the DFT

formula, one can use the identitycos πℓ
N =

1
4

(

ω2ℓ
4N − ω2N−2ℓ

4N − ω2N+2ℓ
4N + ω4N−2ℓ

4N

)

to write:

CIII
k =

N−1
∑

n=0

xn cos

[

π

N
n

(

k +
1

2

)]

= x0 +

N−1
∑

n=1

xn

4

[

ω
n(2k+1)
4N − ω

(2N−n)(2k+1)
4N

−ω
(2N+n)(2k+1)
4N + ω

(4N−n)(2k+1)
4N

]

=

4N−1
∑

n=0

x̃nω
n(2k+1)
4N (17)

wherex̃n is a real-even sequence of length̃N = 4N , defined
as follows for0 < n < N :

x̃n = x̃4N−n =
1

4
xn (18)

x̃2N−n = x̃2N+n = −1

4
xn, (19)

with x̃0 = x0/2, x̃N = 0, x̃2N = −x0/2, and x̃3N = 0.
(Notice that the definitions of̃N and x̃n here are different
from those in Sec. III-A.)

This is illustrated by an example, forN = 4, in Fig. 3.
This figure is very similar to Fig. 1: both of them are even
around the pointsn = 0 and n = Ñ/2, and are odd around
the pointsn = Ñ/4 andn = 3Ñ/4. The difference from the
DCT-IV is that these points of symmetry/anti-symmetry are
now data points of the original sequence, and so the data is
not interleaved with zeros as it was for the DCT-IV. We will
refer, below, to this figure in order to illustrate what happens
when an FFT algorithm is applied to this real-symmetirc data.
.

Fig. 3. A DCT-III of lengthN = 4 (open dotsx0, x1, x2, x3) is equivalent
to a DFT of size4N = 16 (scaled by a factor of1/4), via extending to an
odd-even-odd (square dots) periodic (gray dots) sequence and doubling the
x0 term.

B. New (scaled) DCT-III algorithm

In this subsection, we will apply the new FFT algorithm
(Alg. 1) to the corresponding DFT for a DCT-III of sizeN
as obtained in Sec. IV-A. This process is similar to what
we did in Sec. III-B. We will see that a DCT-III of size
N can be calculated by three subtransforms: a DCT-III of
size N/2, a DCT-III of size N/4, and a DST-III of size
N/4. The resulting algorithm for the DCT-III will have the
same recursive structure as in Alg. 1: four mutually recursive
subroutines that compute the DCT-III with output scaled
by different factors. For use in the DCT-IV algorithm from
Sec. III-B, we will actually use only three of these subroutines,
because we will only need a scaled-output DCT-III and not the
original DCT-III.

When the new FFT algorithm is applied to the sequence
x̃n of length Ñ = 4N defined by eqs. (18–19), we get
three subtransforms: of the sequencesx̃2n2

, x̃4n4+1, and
x̃4n4−1. The DFT of the sequencẽx2n2

is equivalent to a
size-N/2 DCT-III of the original even-indexed datax2n , as
can be seen from Fig. 3. The subtransforms ofx̃4n4+1 and
x̃4n4−1 have exactly the same properties as the corresponding
subtransforms of the DCT-IV as described in Sec. III-B (except
that the length of the subtransform̃x4n4+1 here isN instead
of 2N as in the DCT-IV case). That is, we denote the DFT
of 2x̃4n4+1 by Zk, and this combines with the DFTZ

′

k = Z∗
k

of 2x̃4n4−1 to yield aRe(ω2k+1
4N Z2k+1) term in the output as

before. And, as before, the inputs ofx̃4n4+1 are anti-periodic
with length N/2. In consequence, we can apply the result
derived in Sec. III-B to conclude that these two subtransforms
can be found from a DCT-III of sizeN/4 and a DST-III of
sizeN/4. The corresponding inputs of the DCT-III and DST-
III, wn (0 ≤ n < N/4) and vn (1 ≤ n ≤ N/4), are defined
as follows [compare to eqs. (15–16)]:

w0 = 2z0, wn>0 = 2(zn − zN/2−n) (20)

vn<N/4 = −2(zn + zN/2−n), vN/4 = −2zN/4, (21)

wherezn = 2x̃4n+1 for 0 ≤ n < N/4. (Again, the factors
of 2 will cancel the factor of1/4 in the definition ofx̃4n+1.)
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Therefore, the real part ofZ2k+1 is the DCT-III of wn, while
the imaginary part is the DST-III ofvn. In summary, a DCT-
III of size N can be calculated by a DCT-III of sizeN/2, a
DCT-III of size N/4, and a DST-III of sizeN/4. Without the
scaling factorss, this is equivalent to a decomposition derived
by Wang of a DCT-III of sizeN into a DCT-III and a DCT-IV
of size N/2 [19], in which the DCT-IV is then decomposed
into a DCT-III and a DST-III of sizeN/4 [10].

The above discussion is independent of the scaling factor
applied to the output of the transform. So, for the various scale
factors in the different subroutines of Alg. 1, we simply scale
the DCT-III and DST-III subtransforms in the same way to
obtain similar savings in the multiplications (as quantified in
the next section). This results in the new DCT-III algorithm
presented in Algorithm 3. (The base cases, forN = 1 and
N = 2, are omitted for simplicity.)

Just as in Sec. II-B, althoughℓ = 0, 1, 2 are presented here
in a compact form by a single subroutinenewdctIII

ℓ
N (x),

in practice they would have to be implemented as separate
subroutines in order to exploit the special cases of the mul-
tiplicative constantss4N,2k+1/s4ℓN,2k+1, similar to our FFT
[1].

C. DST-III from DCT-III

The DST-III and DCT-III are closely related. In particular,a
DST-III can be obtained from a DCT-III, with the same number
of flops, by reversing the inputs and multiplying every other
output by−1 [9], [12], [50], [51]:

SIII
k =

N
∑

n=1

xn sin

[

π

N

(

k +
1

2

)

n

]

= (−1)k
N−1
∑

n=0

xN−n cos

[

π

N

(

k +
1

2

)

n

]

. (22)

Similarly, one can derive a DST-III in terms of a DCT-
III algorithm for any scaling factor. Here, we present the
algorithmnewdstIII

ℓ
N (v) in terms ofnewdctIII

ℓ
N (u) for

ℓ = 0, 1, 2, 4. As we can see from Alg. 4, the new DST-III
algorithm (with scaled output) has exactly the same operation
count as the corresponding DCT-III algorithm (unary negations
are not counted in the flops, because they can be absorbed
by converting additions into subtractions or vice versa in the
preceding DCT computation). This proves our previous asser-
tion that the numbers of operations saved innewdctIII

1
N (u)

andnewdstIII
1
N (v), compared to the known unscaled algo-

rithms, are both the same numberMS(N).

V. FLOP COUNTS FORDCT-III/IV

First, we will show that Alg. 3 gives the best previous flop
count T (N) = 2N log2 N − N + 1 for the DCT-III if the
scaling factors is set to 1. Inspection of Algorithm 2 yields a
flop count4N−2+2T (N/2) for the DCT-IV, and substituting
T (N) gives the previous best flop count of2N log2 N + N
for the DCT-IV. Then, we will analyze how many operations
aresavedwhen the scaling factors are included.

If s = 1, we can see from Alg. 3 that a DCT-III of sizeN
is decomposed into a DCT-III of sizeN/2, a DCT-III of size

Algorithm 3 New DCT-III algorithm of length N . The
sub-transformsnewdctIII

ℓ
N (x) for ℓ 6= 0 are scaled by

s4ℓN,2k+1, respectively, whileℓ = 0 is the final unscaled DFT
(s0,2k+1 = 1).

function CIII
k=0..N−1 ← newdctIII

ℓ
N (xn):

{computes DCT-III /s4ℓN,2k+1 for ℓ = 0, 1, 2}
w0 ← x1

vN/4 ← xN−1

for k = 1 to N/4− 1 do
wk ← x4k+1 + x4k−1

vk ← x4k−1 − x4k+1

end for
Uk2=0...N/2−1 ← newdctIII

2ℓ
N/2 (x2n2

)

Wk4=0...N/4−1 ← newdctIII
1
N/4 (wn4

)

Vk4=0...N/4−1 ← newdstIII
1
N/4 (vn4

)
for k = 0 to N/4− 1 do

Z2k+1 ←Wk + iVk

ZN−2k−1 ←Wk − iVk

end for
for k = 0 to N/2− 1 do

CIII
k ← Uk + Re (t4N,2k+1Z2k+1)

s4N,2k+1

s4ℓN,2k+1)

CIII
N−k−1 ← Uk − Re (t4N,2k+1Z2k+1)

s4N,2k+1

s4ℓN,2k+1

end for

function CIII
k=0..N−1 ← newdctIII

4
N (xn):

{computes DCT-III /s16N,2k+1}
w0 ← x1

vN/4 ← xN−1

for k = 1 to N/4− 1 do
wk ← x4k+1 + x4k−1

vk ← x4k−1 − x4k+1

end for
Uk2=0...N/2−1 ← newdctIII

2
N/2 (x2n2

)

Wk4=0...N/4−1 ← newdctIII
1
N/4 (wn4

)

Vk4=0...N/4−1 ← newdstIII
1
N/4 (vn4

)
for k = 0 to N/4− 1 do

Z2k+1 ←Wk + iVk

ZN−2k−1 ←Wk − iVk

end for
for k = 0 to N/2− 1 do

CIII
k ← [Uk + Re (t4N,2k+1Z2k+1)]

s4N,2k+1

s16N,2k+1

CIII
N−k−1 ← [Uk − Re (t4N,2k+1Z2k+1)]

s4N,2k+1

s16N,2N+2k+1

end for

Algorithm 4 scaled-output DST-III algorithm of sizeN , based
on the scaled-output DCT-III algorithm which is presented in
Sec. IV, with the same operation count.

function SIII
k=0..N−1 ← newdstIII

ℓ
N (xn):

{computes DST-III/s4ℓN,2k+1}
for k = 0 to N − 1 do

wk ← xN−k

end for
CIII

k=0...N−1 ← newdctIII
ℓ
N (wn)

for k = 0 to N − 1 do
SIII

k ← (−1)kCIII
k

end for
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N/4 and a DST-III of sizeN/4, and all four of our recursive
subroutines are identical (they only differed bys factors). In
addition,2(N/4−1) flops are required to obtain the sequences
wk andvk, and5N/2 flops are required to obtain the output of
the DCT-III from the outputs of the subtransforms. Therefore,
we obtain the recurrence relation forT (N):

T (N) = T (N/2) + 2T (N/4) + 3N − 2. (23)

The initial conditions forT (N) can be determined easily. If
N = 1, y0 = x0. Therefore,T (1) = 0. If N = 2, y0 =
x0 + x1/

√
2 and y1 = x0 − x1/

√
2. Therefore,T (2) = 3.

Solving eq. (23) with these initial conditions, we immediately
obtain the following result:

T (N) = 2N log2 N −N + 1. (24)

This flop count is the same as the previous best flop count for
DCT-III algorithms [7], [10]–[13], [17], [21], [51]–[56] prior
to our work [1], [9].

Since our DCT-III algorithm without scaling factors (i.e.
with s = 1) obtains the same number of flops as the best
previous DCT-III algorithms, it only remains to determine
how many operations aresavedby including the scale fac-
tors. We now analyze this count of saved flops by solving
the appropriate recurrence relations. In particular, letM(N),
MS(N), MS2(N) and MS4(N) (whereN is a power of2)
denote the number of operation saved (or spent, if negative)
in newdctIII

ℓ
N (x) for ℓ = 0, 1, 2, 4, respectively, compared

to the corresponding unscaled DCT-III algorithm.
First, let us derive the recurrence relations forM(N) and

so on, similar to the analysis of Alg. 1 [1]. The number of
flops saved innewdctIII

ℓ
N (x) is the sum of the flops saved

in the subtransforms and the number of flops saved in the loop
to calculate the final resultsCIII

k . In newdctIII
0
N (x), 5 · N

2
flops are required in the loop, as in the old unscaled algorithm.
In newdctIII

1
N (x), only 4 · N

2 flops are needed since either
the real part or the imaginary part oft4N,2k+1is 1. Thus,N/2
flops in the loop are saved forℓ = 1. In newdctIII

2
N (x),

5 · N
2 flops are again required in the loop. (In contrast, for

Alg. 1 the ℓ = 2 case required two more multiplications than
the ℓ = 0 case because of thek = 0 term [1], which is not
present here because2k + 1 6= 0.) In newdctIII

4
N (x), 6 · N

2
flops are required in the loop sinces16N,2k+1 6= s16N,2k+1+2N

and hence we must multiply the two scale factors separately.
This means that wespendN/2 extra multiplications in the
ℓ = 4 case, which is counted as a negative term inMS4.
Thus, we have the following relations:

M(N) = M(N/2) + 2MS(N/4)

MS(N) = MS2(N/2) + 2MS(N/4) + N/2

MS2(N) = MS4(N/2) + 2MS(N/4)

MS4(N) = MS2(N/2) + 2MS(N/4)−N/2. (25)

We next determine the number of flops saved (if any) for
the base cases,N = 1 and N = 2. When N = 1, the
unscaled algorithm computes the outputy0 = x0, while
the algorithmsnewdctIII

ℓ
N (x) calculatey0 = (1/s4ℓ,1)x0

which requires the same number of flops forℓ < 2 and one
more multiplication forℓ ≥ 2:

M(1) = MS(1) = 0,

MS1(1) = MS4(1) = −1. (26)

When N = 2, we obtain scale factorss4ℓN,2k+1 = s8ℓ,2k+1.
For ℓ < 4, s8ℓ,1 = s8ℓ,3, while s8ℓ,1 6= s8ℓ,3 for ℓ = 4. The
unscaled algorithm calculates the outputy0,1 = x0±

√

1/2x1,
where 3 flops are required. Forℓ = 0, 1, 2, the algorithms
newdctIII

ℓ
N (x) calculatesy0,1 = (x0 ±

√

1/2x1)/s8ℓ,1,
which requires 3 flops forℓ = 0 (wheres = 1), 3 flops for
ℓ = 1 (wheres = 1/

√
2 and cancels one of the constants),

and 4 flops forℓ = 2. For ℓ = 4, newdctIII
4
N (x) calculates

y0 = (x0 + 1√
2
x1)/s32,1 andy1 = (x0 − 1√

2
x1)/s32,3, where

5 flops are required. Thus, we have

M(2) = MS(2) = 0,

MS2(2) = −1,

MS4(2) = −2. (27)

With these base cases, one can solve the recurrences (25) by
standard generating-function methods [57] to obtain:

MS(N) =
1

9
N log2 N− 1

27
N+

1

9
(−1)log2 N log2 N+

1

27
(−1)log2 N .

(28)
Recall from Sec. III-B that2MS(N/2) flops can be saved
in the new DCT-IV algorithm compared to the best previous
algorithms, resulting in a total flop count of2N log2 N +N−
2MS(N/2). This gives the DCT-IV flop count in eq. (1) for
Algorithm 2. This expression for the flop count of the new
DCT-IV algorithm matches the results that were derived by
automatic code generation for smallN [1], as expected.

In general, as was discussed in our other work on the DCT-
II/III [9], the number of multiplications may change depending
upon the normalization chosen. For the DCT-IV, a common
normalization choice is to multiply by

√

2/N , which makes
the transform unitary, but this does not change the number
of flops because the normalization can be absorbed into the
ω2k+1

8N s2N,2k+1 factor (which is 6= 1 for all k). On the other
hand, if one is able to scale every output of the DCT-IV
individually, for example if the scale factor can be absorbed
into a subsequent computational step, then the best choice in
the present algorithm seems to be to scale by1/s8N,2k+1.
This choice of scale factor will transformω2k+1

8N s2N,2k+1 into
t8N,2k+1 in Algorithm 2, which can be multiplied in one fewer
multiplication, savingN multiplications overall. Similarly, one
can saveN multiplications for a scaled-input, unscaled-output
DCT-IV, since the scaled-output DCT-IV can be transformed
into a scaled-input DCT-IV by network transposition [58]
without changing the number of flops [9].

VI. DST-IV FROM DCT-IV

The (unnormalized) DST-IV is defined as:

SIV
k =

N−1
∑

n=0

xn sin

[

π

N

(

n +
1

2

)(

k +
1

2

)]

(29)

for k = 0, . . . , N−1. Although we could derive fast algorithms
for SIV

k directly by treating it as a DFT of length8N with odd
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symmetry, interleaved with zeros, and discarding redundant
operations similar to above, it turns out there is a simpler
technique. The DST-IV isexactly equivalent to a DCT-IV
in which the outputs are reversed and every other input is
multiplied by−1 (or vice versa) [12]:

SN−1−k = 2
N−1
∑

n=0

(−1)nxn cos

[

π

N

(

n +
1

2

)(

k +
1

2

)]

(30)
for k = 0, . . . , N − 1. It therefore follows that a DST-IV can
be computed with the same number of flops as a DCT-IV of
the same size, assuming that multiplications by−1 are free—
the reason for this is that sign flips can be absorbed at no cost
by converting additions into subtractions or vice versa in the
subsequent algorithmic steps. Therefore, our new flop count
(1) immediately applies to the DST-IV.

VII. MDCT FROM DCT-IV

In this section, we will present a new modified DCT
(MDCT) algorithm in terms of our new DCT-IV algorithm
with an improved flop count compared to the best previously
published counts. The key fact is that the best previous flop
count for an MDCT of2N = 2m inputs andN outputs
was obtained by reducing the problem to a DCT-IV plusN
extra additions [29]–[32]. Therefore, our improved DCT-IV
algorithm immediately gives an improved MDCT. Similarly
for the inverse MDCT, except that in that case no extra
additions are required.

An MDCT of length “N ” has2N inputsxn (0 ≤ n < 2N )
andN outputsCM

k (0 ≤ k < N ) defined by the formula (not
including normalization factors):

CM
k =

2N−1
∑

n=0

xn cos

[

π

N

(

n +
1

2
+

N

2

)(

k +
1

2

)]

. (31)

This is “inverted” by the inverse MDCT (IMDCT), which takes
N inputsCM

k and gives2N outputsyn, defined by (again not
including normalization):

yn =

N−1
∑

k=0

CM
k cos

[

π

N

(

n +
1

2
+

N

2

)(

k +
1

2

)]

. (32)

These transforms are designed to operate on consecutive
50%-overlapping blocks of data, and when the IMDCTs of
subsequent blocks are added in their overlapping halves the
resulting “time-domain aliasing cancellation” (TDAC) yields
the original dataxn [26], [27]. The MDCT is widely used
in audio compression, where the overlapping reduces artifacts
from the block boundaries [28].

The MDCT and IMDCT can be trivially re-expressed in
terms of a DCT-IV of sizeN [29]–[32]. Let us define

Ξn = cos

[

π

N

(

n +
1

2

)(

k +
1

2

)]

,

which has the symmetryΞ2N+n = Ξ2N−1−n = −Ξn. In

terms ofΞn, the MDCT becomes

CM
k =

2N−1
∑

n=0

ΞN
2

+nxn

=

N
2
−1
∑

n=0

(

ΞN
2

+nxn + Ξ 3N
2

−1−nxN−1−n

+ Ξ2N−1−nx 3N
2

−1−n + Ξ2N+nx 3N
2

+n

)

=

N
2
−1
∑

n=0

ΞN
2

+n (xn − xN−1−n)

−
N
2
−1
∑

n=0

Ξn

(

x 3N
2

−1−n + x 3N
2

+n

)

=

N−1
∑

n=N/2

Ξn

(

xn−N/2 − x 3N
2

−1−n

)

−
N/2−1
∑

n=0

Ξn

(

x 3N
2

−1−n + x 3N
2

+n

)

.

But the final summation is simply a DCT-IV of the sequence
x̃n defined byx̃n = −(x 3N

2
−1−n + x 3N

2
+n) for 0 ≤ n <

N
2 and x̃n = xn−N/2 − x 3N

2
−1−n for N

2 ≤ n < N .
Therefore, given any algorithm for a DCT-IV, the MDCT can
be computed with at mostN extra additions. (Here, we are
not counting multiplication by−1, because negations can be
absorbed by converting additions into subtractions and vice
versa in subsequent computational steps.) Since the previous
best flop count for the DCT-IV was2N log2 N +N flops, this
led to a flop count of2N log2 N + 2N for the MDCT [29]–
[32]. Instead, we can use our new algorithm for the DCT-
IV to immediately reduce this flop count for the MDCT to
eq. (1)+N :
17

9
N log2 N +

58

27
N +

2

9
(−1)log2 N log2 N − 4

27
(−1)log2 N .

(33)
The IMDCT requires almost no manipulation: it is already

in the form of a DCT-IV, except that we are evaluating the
DCT-IV beyond the “end” of the inputs. Since a DCT-IV
corresponds to anti-symmetric data as in Fig. 1, this just means
that we compute the DCT-IV and obtain the IMDCT by storing
the outputs and their mirror image (multiplied by−1), shifted
by N/2. So, the flop count for the IMDCT is exactly the same
as the flop count for the DCT-IV, not counting negations. Any
overall negation of an output can be eliminated by converting
a preceding addition to a subtraction (or changing the sign of
a preceding constant), but some of the (redundant) IMDCT
outputs are needed with both signs, which seems to imply
that an explicit negation is required. The latter negationsare
easily eliminated in practice, however: an IMDCT is always
followed in practice by adding overlapping IMDCT blocks to
achieve TDAC, so the negations simply mean that some of
these additions are converted into subtractions.

VIII. C ONCLUDING REMARKS

We have derived new algorithms for the DCT-IV, DST-
IV, MDCT, and IMDCT that reduce the flops for a size
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N = 2m from 2N log2 N + O(N) to 17
9 N log2 N + O(N),

representing the first improvement in their flop counts for
many years and stemming from similar developments for the
DFT [1], [3]. We do not claim that these flop counts are
the best possible, although we are not currently aware of
any way to obtain further reductions in either the leading
coefficient or in ourO(N) terms. It is possible that further
gains could be made by extending our recursive rescaling
technique to greater generality, for example. However, we
believe that such investigations will be most easily carried out
in the context of the DFT, since FFT algorithms (in terms of
complex exponentials) are typically much easier to work with
than fast DCT algorithms (in terms of real trigonometry), and
any improved FFT algorithm will immediately lead to similar
gains for DCTs (and vice versa: any improved DCT leads to
an improved FFT) [8]. Another open question is whether these
new algorithms will lead to practical gains in performance on
real computers. This is a complicated and somewhat ill-defined
question, because performance characteristics vary between
machines and depend strongly on many factors besides flop
counts—any simple algorithms like the ones presented here
require extensive restructuring to make them efficient on
real computers, just as classic split-radix does not perform
well without modification [2]. On the other hand, for small
fixed N where straight-line (unrolled) hard-coded kernels are
often employed in audio and image processing (where the
block size is commonly fixed), we have demonstrated that
automatic code-generation techniques (given only the new
FFT) can produce efficient DCT-IV (and MDCT, etc.) kernels
attaining the new operation counts, and that the performance
is sometimes improved at least slightly [1].
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