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Abstract 

In this work, two ECG compression schemes are presented using two types of filter banks to decompose the incoming 
signal: wavelet packets (WP) and nearly-perfect reconstruction cosine modulated filter banks. The conventional embedded 
zerotree wavelet (EZW) algorithm takes advantage of the hierarchical relationship among subband coefficients of the 
pyramidal wavelet decomposition. Nevertheless, it performs worse when used with WP as the hierarchy becomes more 
complex. In order to address this problem, we propose a new technique that considers no relationship among coefficients, 
and is therefore suitable for use with WP. Furthermore, this new approximation makes it possible to apply the 
quantization method to M-channel maximally decimated filter banks. In this fashion, the proposed algorithm provides two 
efficient and effective ECG compressors that show better ECG compression performance than the conventional EZW 
algorithm. 
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1. Introduction 

The electrocardiogram (ECG) depicts the elec­
trical activity of the heart. E C G processing is a topic 
of great interest within the scientific community 
because of two reasons: (1) E C G is collected by non 
invasive means, which allows easy and wide avail­
ability and (2) the E C G contains very much 
information, which is highly valuable for diagnos­
ing. In 1961, Holter introduced the long term 

recording E C G in ambulatory patients as a new tool 
for certain pathologies. These type of records are 
commonly used and they are typically collected over 
24 h, which increases the volume of data. Besides, 
E C G is also essential to monitoring patients at 
home advancing telemedical applications . For 
these cases, compression is needed to provide either 
transmission or storage solutions for reducing the 
original bit rate. Therefore, the design of E C G 
compression techniques has been widely studied in 
the last few years . A classification in three 
categories of the most common techniques was 
proposed : direct methods, transform methods 
and other compression methods. 



The use of wavelets in ECG analysis was first 
introduced . From this initial effort, a wide 
variety of ECG wavelet-based compressors have 
been proposed where compression schemes are 
carried out utilizing the discrete wavelet transform 
(DWT) . The embedded zerotree wavelet 
(EZW) algorithm was specifically designed to use 
the DWT [13] in image coding applications. This 
method demonstrated good performance and 
was quickly applied to other types of signals, such 
as ECG and myoelectric signals. 
The embedded property of the EZW algorithm 
allows the bits in the bit stream to be arranged in 
'order of importance' so that the encoding process 
can be stopped at any point once the target is 
achieved. 

In the DWT decomposition algorithm, every 
coefficient at any scale is related with two other 
coefficients at the immediate lower scale. This 
correspondence is iterated through scale, giving 
the temporal orientation tree. An example is 
illustrated in Fig. 1. The set of a coefficient and its 
descendents are called zerotree. In the encoding 
process, the whole set of coefficients of a zerotree 
can be referenced by its root, which is the first 
coefficient of the temporal orientation tree at the 
lower scale. Also, a coefficient is called significant 
if its magnitude is greater than a given threshold 
value s. Therefore, depending on the magnitude of a 
coefficient related to s, i.e., its significance, it can be 
encoded as a symbol of a reduced alphabet to 
obtain a significance map. The EZW algorithm 
takes into account the hierarchy of the DWT 
coefficients among different subbands to efficiently 
encodes the significance map and use an alphabet of 
four symbols: {POS, NEG, IZ , ZTR} .Symbols 
{POS} and {NEG} indicate the sign of a significant 
coefficient. A non-significant coefficient is encoded 
with the symbol {ZTR} if it is the root of a zerotree 
where all its coefficients are non-significant. Con­

versely, a non-significant coefficient is encode as an 
isolate zero with the symbol {IZ}. 

In the ECG compression cases, the EZW algo­
rithm is reported using wavelet packets (WP). 
The performance of this approach is worse than the 
DWT-based algorithm. The reason for the poor 
performance in the WP case is that the best basis 
decomposition often splits the signal into a number 
of smaller hierarchies that cannot be efficiently 
encoded by zerotrees. 

The first motivation of this work has been the 
development of an EZW-based algorithm to be used 
with WP, improving the performance of the 
previously reported methods. So, the hierarchical 
relationships among coefficients is not taken into 
consideration. The consequence of this is that the 
{ZTR} symbol that identifies the root of a 
zerotree can be withdrawn from the alphabet so that 
only three symbols ({POS, NEG, IZ}) are needed 
to encode the significance map. 

The second goal of this work is to use a 
modulated M-channel maximally decimated filter 
bank in the encoder, since it reported good 
performance in ECG compression. For example, a 
low computational complexity algorithm applied 
with nearly-perfect reconstruction cosine modulated 
filter banks (N-PR CMFB) is proposed in [11]. An 
important contribution of this work is that the 
proposed algorithm can also be used with these 
types of filter banks as a result of its versatility 
based on the non-use of hierarchical relationships 
among subbands. To our knowledge, the N-PR 
CMFB were used for the first time , where 

good results are reported in the comparison against 
the DWT. 

Therefore, in this paper we present two versatile 
embedded encoding schemes: (1) the embedded 
wavelet packets (EWP) algorithm to be used 
with WP and (2) the embedded filter banks 
(EFBs) algorithm to be used with N-PR CMFB. 
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Fig. 1. Algorithm for the computation of DWT. Both ho[n] and f0[n] are low-pass filters, while h\[ri\ and f^n] are high-pass filters. 
A temporal orientation tree scheme is depicted showing the relationships among coefficients through scale. 



Simulations results are provided demonstrating the 
improvement of the proposed encoders over the 
original EZW DWT-based algorithm. Finally, it 
should be emphasized that although this work 
focuses on ECG, other signals, such as myoelectric 
signals or images (processed using linear-phase filter 
banks), can also be compressed with the proposed 
algorithms. 

The remainder of this paper is structured as 
follows. In Section 2 the decomposition methods 
used in this work are presented. In Section 3, the 
compression algorithms are detailed. The results 
and discussion are shown in Section 4 and finally, 
the conclusions are given in Section 5. 

2. Review of decomposition methods 

2.1. Wavelets packets 

The DWT decomposes a signal f(t) as a 
successive approximation in several scales as 
follows [15]: 

OO 

/(o = E ch(^<PjBjc(t)+J2J2 w W ) , (i) 
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where bases functions are dilated and translated 
versions of the wavelet \j/(t) and the scaling q>(t) 
functions: 

i/,jJC(t) = 2!/2iK2/t-k), 

cphk(t) = 2J/2cp(2Jt-k). 

(2) 

(3) 

The coarse details of f(t) are represented by the 
scaling coefficients Cj0(k) while the finer details are 
represented by the wavelets coefficients dj(k). The 
DWT is efficiently computed by 2-channel perfect 
reconstruction (PR) filter banks iteratively applied 
to the low-pass channel as shown in Fig. 1, where 
the number of layers or levels of the resulting filter 
bank depends on the desired resolution scale. The 
set of DWT coefficients are given at the outputs of 
the direct transform side when the incoming 
samples are the scaling coefficients of f(t) at a 
higher scale. The inverse transform is carried out 
with the corresponding synthesis filter bank. 

WP theory is a generalization of DWT. The input 
signal is decomposed applying the 2-channel PR 
filter bank at both the low and high-pass branch. 
The resulting binary tree is considered as a library of 
bases of which only one would be needed to 
represent the incoming signal. The number of bases 
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Fig. 2. Example of WP for a depth of four layers. The broken 
lines correspond with the pruned branches. 

An for an «-layers WP can be recursively calculated 
as 

An = \+A2
n_x, (4) 

where An-\ is the number of bases of an (n — 1)-
layers WP. Therefore, WP can be adaptively utilized 
by selecting the best base, which consists of pruning 
the tree according to a cost function. The best base 
selection algorithm used in this work is that 
proposed . An example of best base selection 
for a 4-layer WP is shown in Fig. 2. Basically, the 
whole binary tree is first obtained and subsequently 
pruned according to the Shannon entropy as 
proposed . The broken lines in Fig. 2 
correspond to the rejected branches, while the 
others give the filter bank for processing the 
incoming signal. Accordingly, different filter 
banks are used when the input signal is split into 
blocks. 

2.2. Nearly-perfect reconstruction cosine modulated 
filter banks 

An N-PR CMFB is a subclass of modulated 
M-channel maximally decimated filter bank whose 
structure is shown in Fig. 3. All the analysis 
hk[n] and synthesis fk[n] filters, 0^n^(L — 1), 
0^k^(M — 1), can be obtained through the 
modulation of a low-pass prototype filter p[n] as 
follows: 

hk[n] = 2 •/>[«]-cos (2k + 1) 
2M 
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Fig. 3. M-channel maximally decimated filter bank. 

fk[n] = 2 .p[n]- cos ( 2 f c + l ) 
2M • ( - I f 

(5) 

In this work, the prototype filter is designed with the 
technique proposed . This technique offers 
almost, but not true, PR, and controls the position 
of the 3 dB cutoff frequency of the prototype filter, 
setting it approximately at frequency co — %J2M. 
The problem can be stated several ways, but the 
goal is minimizing 

\P(^I(2M^)\ - 1/V2|, (6) 

where />(e>,l/(2*f)) is the frequency response of the 
prototype filter 7>(e>c0) for co — %/(2M). When using 
an appropriate FIR filter design technique (by 
windowing or by means of the Parks-McClellan 
algorithm), it is guaranteed that the frequency 
response of the prototype filter approximately 
satisfies the power complementary property. In this 
way, it is possible to reduce the amplitude distortion 
and the aliasing error introduced in the filter bank. 

The interest of using CMFB is based on the fact 
that it can be efficiently implemented by means of 
polyphase structures that considerably reduce the 
computational complexity . , we 

present a detailed study of the computational 
complexity for N-PR CMFB applied to ECG 
compression. Furthermore, the use of N-PR instead 
of PR systems is inspired by the fact that, for a 
previously fixed filter length, higher selectivity and 
discrimination systems can be obtained designing 
the former one (N-PR). 

3. Proposed algorithms 

In this section, we present two compression 
schemes that differ in the decomposition techniques 
used to represent the incoming signal. Here, the 
details of the encoding scheme are explained given 
that the incoming signal has been decomposed. 
These compressors do not need any signal pre­
processing such as QRS complex detection and no a 
priori signal knowledge is required. Both methods 
work over non-overlapped blocks of N samples of 
the incoming signal. 

3.1. Embedded wavelet packets (EWP) algorithm 

The WP-based method consists of the following 
steps: 

(1) Every input block of N samples is decom­
posed using WP. For this purpose, the best 
base of every block is obtained by means of 
the pruning algorithm proposed in the prior 
section. 

(2) The coefficients are encoded with an EZW-
based embedded algorithm. 

(3) The significance map is entropy encoded. 

The embedded algorithm is carried out as successive 
approximations that are applied to each group of N 
coefficients obtained from the corresponding N 
incoming samples. Successive thresholds £,- — 2P~\ 
; e Z , i — 0 , 1 , . . . , L, are iteratively applied to 
obtain significance maps associated to each thresh­
old. Let {ct}, V/= l,...,N be the set of WP 



coefficients; the first threshold value is set as 

log2(max{|c;|} (7) 

where |_-J denotes rounding to the next smaller 
integer. Two lists must be maintained while the 
encoding (decoding) process proceeds: The domi­
nant list (DL) contains all the coefficients found not 
significant to the current and prior thresholds, and 
the subordinate list (SL) contains the magnitudes of 
the coefficients found significant. Initially, DL 
equals the coefficients resulting of the transform of 
the corresponding incoming block, and SL is empty. 
These lists are updated at every iteration. 

The dominant pass and the subordinate pass are 
accomplished for every threshold. During the 
dominant pass, coefficients in DL are compared 
with the threshold, e.g., EQ — IF for the first 
iteration. Then, the significance map is encoded as 
is explained in Fig. 4, with a three symbols alphabet: 
{POS, NEG, Iz} . The magnitude of the significant 
coefficients (encoded either as {POS} or {NEG}) is 
included in SL. Subsequently, the significant coeffi­
cients are zeroed in DL to avoid being significant at 
the following iteration. The reconstructed magni­
tude of a significant coefficient, for the threshold 2P 

case, on the decoder side is |c,| — IP + 2P~X. The sign 

Input 
coefficient 

IZ POS 

Fig. 4. Alphabet for the significance map. 

is taken from the corresponding code in the 
significance map. 

The subordinate pass runs after the dominant 
pass has finished. The aim is to make all the 
previous significant coefficients (those included in 
SL) one bit more accurate. For instance, Fig. 5 
shows the subordinate pass applied three consecu­
tive times to a coefficient, which is significant to the 
threshold of the second iteration (for p — 1). Its 
initial value is |c,;i| — 2P~X + 2P~2. There is an 
uncertainty interval associated with the current 
threshold whose width is 2P~2. The actual coefficient 
value is within the upper half of the uncertainty 
interval, so a ' 1 ' is assigned as refinement bit and the 
reconstructed coefficient value is \?iij\ — |c,,i | + 2P~2. 
In Fig. 5, the updated value, the first time that the 
subordinate pass is applied, is designated by the 
curved solid line arrow. In the following iteration 
(for p — 2), the uncertainty interval width is 2P~3 

and a '0' is the assigned refinement bit that indicates 
that the actual coefficient value is in the lower half, 
yielding the reconstructed coefficient |cy| — 
1̂1,21 + 2P~3. Once again, for the following iteration, 
the refinement bit is '0' so the coefficient takes value 
\ci>4\ — |cy| + 2P~4. All the coefficients found in the 
SL are refined as above in each iteration. To do so, 
the encoder generates the refinement list (RL), 
which contains the refinement bits to be used by 
the decoder. 

The encoding and decoding processes are sum­
marized as follows. From the encoder side, let 
{d}, Wi— 1 , . . . , N be the set of WP coefficients, the 
encoding algorithm works as follows: 

Step 1. Output/? = Llog2(maxce{C!){|c;|})J. 
Step 2. Initialization of lists: 

(&)DL = {Ci}, Vi=l,...,N. 
(b) SL = {<£}. 

Value initially assigned 

0 2P"4 2P"3 
2 P- . 2P-I 

2P-I+2P-

Coefficient value 

Fig. 5. Example of successive refinement of a coefficient. The curved solid line arrows point at the final values once the refinement bit is 
successively assigned. 



Step 3. Dominant pass: 
(a) DL(i), Vz — 1 , . . . , N, is encoded as in Fig. 4. 
(b) IfDL(i) is significant, its magnitude is included 

in SL and DL(i) — 0. 
Step 4. Subordinate pass: the refinement list is 
generated. 
Step 5. p — p — 1 and go to Step 3. 

Conversely, the decoder performs as follows: 

Step 1. Initialization of lists: 
(&)DL = {Ci}, c,- = 0, Vi=l,...,N. 
(b) SL = {<£}. 

Step 2. Initial threshold p is received. 
Step 3. Dominant pass: 

(a) {POS}: DL(i) — IF + 2p~l and its magnitude is 
included in SL. 

(b) {NEG}: DL(i) — -(2P + 2P~V) and its magnitude 
is included in SL. 

(c) {IZ}: nothing is done. 
Step 4. Subordinate pass: coefficients in SL are 
refined after receiving RL. 
Step 5. p — p — 1 and go to Step 3. 

The encoding-decoding process stops when some 
target is reached, such as the quality of the retrieved 
signal, the compression ratio (CR), or a specific 
number of iterations. 

Giving the above, the stream for every incoming 
block consists of a header of B bits followed by 
groups of bit sets equal to the number of 
approximations made for the corresponding seg­
ment, as is shown in Fig. 6, where a number of L 
iterations have been achieved. For every iteration, 
the significance map and the refinement bits must be 
enclosed. The B bits header includes the initial 
threshold value, i.e., p, and a word indicating the 
corresponding base. The integer/? is encoded with a 
fixed number of bits equal to the resolution of the 
samples of the database. Relating to the wavelet 

base, by maintaining a table with the decomposition 
bases, the length of the word will depend on the 
amount of possible bases An given by Eq. (4). Thus, 
the number of bits H to represent the word that 
indicates the WP filter bank can be calculated as 

H= riog2G4„)l, (8) 

where ["•] denotes rounding to the next larger 
integer. 

3.2. Embedded filter bank (EFB) algorithm 

The basic idea of the above algorithm is to encode 
a significant map without considering any zerotree, 
i.e., without taking into account the hierarchies in 
the WP transform. Thus, the resulting alphabet that 
encodes the significance map consists of three 
symbols (Fig. 4). This simplification allows us to 
use the quantization algorithm with N-PR CMFB, 
thereby giving another compression scheme. The 
N-PR CMFB-based quantization algorithm is ex­
actly the same as that above for the WP decom­
position case. Only two things must be taken into 
account so as to properly reinterpret the complete 
algorithm: 

• The {ct}, Vz' — l,...,N are now the set of the TV 
samples of the subband signals Xk[n] given by the 
N-PR CMFB. 

• The header of the bit stream in Fig. 6 only 
includes the initial threshold. 

4. Experimental studies 

In this section, simulations are provided to show 
the performance of the proposed algorithm. First, 
we compare it against the conventional EZW 
compression algorithm [7,13]. Subsequently, we 
carry out new experiments to show the performance 
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of the proposed methods compared to approaches 
reported in other works. 

All the signals used in the examples are from the 
MIT-BIH Arrhythmia Database . Every file in 
the database consists of two lead recordings 
sampled at 360 Hz with 11 bits per sample of 
resolution. A baseline of 1024 has been added to 
each ECG for storage purposes that is removed 
before processing. 

4.1. Specifications of decomposition methods 

WP and N-PR CMFB were studied for the design 
of a thresholding-based ECG compressor 
Both decomposition structures, which are imple­
mented as filter banks, were designed to be 
equivalent. Therefore, to accomplish the evaluation 
of the method proposed in this work, the design of 
the decomposition methods is based on that 
reported in [11], which is as follows: 

• The number of layers for DWT and WP are up to 4. 
• The N-PR CMFB chosen is a 191-order 16-channel 

filter bank, using the Blackman window for 
designing the prototype filter. 

• Based on the good results reported by other 
authors [7,8], we utilize the Cohen-Daubechies-
Feauveau 9/7 (bior9.7). 

• The number of samples TV per block of incoming 
signal is 1024 which is the size most commonly 
used by other authors [7,8,10]. 

4.2. Performance measurement 

Physicians analyze the ECG by visual inspection 
looking for specific patterns that can be related to 
pathologies. Therefore, the quality of the recon­
structed ECG after compressing relies on visual 
features. When dealing with the reconstructed ECG, 
signal morphology and waveform have to be as 
close as possible to the original so that all the 
pathological information remains and no additional 
distortion that could misunderstand a correct 
diagnosis is included. Therefore, the quality in 
ECG compression is assessed as the degree of 
similarity between the original signal and the 
retrieved signal. This is carried out using an 
objective parameter. The percentage root-mean-
square difference (PRD) is an accepted criterion 
for the performance measurement of an ECG 
compressor . Accordingly, let x and x be the 

TV-dimensional vectors representing the original and 
reconstructed signals, respectively. The PRD is 
denned as 

PRD = ( | |x-x | | / | |x | | ) .100, (9) 

where || • || denotes the Euclidean or /2-norm. This 
parameter depends on the mean value of the 
original signal. Even if the 1024-baseline is removed 
from ECGs of the MIT-BIH Arrhythmia Database, 
a dc level remains. It is thus strongly recommended 
that the following criteria be used : 

PRDl = ( | | x -x | | / | | x - Jc | | ) -100 , (10) 

where x is the mean value of the signal. It was 
established in [21] for the MIT database a classifica­
tion of 'very good and 'good for reconstructed 
ECGs when PRD1 is within the ranges 0-2 and 2-9, 
respectively. As a result, PRD1 values under 9 
correspond to good, or very good, results. 

As the incoming signal is split into segments of 
1024 samples (N — 1024), the CR can be calculated 
as 

CR = ^ i i . ,1.) 

where S is the bit stream length for every input 
block (Fig. 6). 

4.3. Comparison against the conventional EZW 
algorithm 

4.3.1. Entropy coding 
Here, a run-length code is designed to entropy 

encode the significance map (Fig. 6). For both 
methods proposed in this work, a bit T marks a 
significant coefficient so that the following indicates 
the sign: '11' is used for {POS} and TO' for {NEG}. 
Non-significant coefficients corresponding to the 
symbol {IZ} are marked by '0' and are run-length 
encoded. Every time {IZ} appears, the next B\ bits 
are used to encode the number of consecutive {IZ} 
symbols. In case of overflow, E>2 more bits are used. 
Therefore, a run-length of 2Bl + 2Bl — 1 consecutive 
symbols can be encoded. In this work, B\ — 5 and 
B2 — log2 N, where N is the total number of samples 
in the block. 

To encode the significance map of the conven­
tional EZW algorithm, note that the alphabet of the 
significance map has four symbols, and 2 bits are 
used for each symbol. Both {ZTR} and {IZ} symbols 
are run-length encoded as explained above, where 
B\ and B2 are 2 and 8, respectively. The bit stream 



for every incoming block is as in Fig. 6, but as EZW 
algorithm utilizes the DWT, no word indicating the 
base has to be included in the header. 

4.3.2. Simulations 
The experiment is carried out over both 10-min 

long leads extracted from records 100,101,102, 
103,107,109,111,115,117,118 and 119 from the 
MIT-BIH Arrhythmia Database. This data set was 
proposed and it consists of a variety of signals 
with different rhythms, QRS complex morphologies 
and ectopic beats. Fig. 7 shows the performance of 
the proposed compressors compared with the 
conventional EZW. The CR is in the horizontal 
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Fig. 7. Results from the first experiment showing PRD1 against CR. 

axis because it is the target parameter and can be 
considered as the independent variable. Both the 
WP and N-PR CMFB-based compressors (referred 
to as EWP and EFB, respectively, in Fig. 7) yields 
improved performance over the conventional EZW 
technique in the full range of CR values. On the 
other hand, both proposed compression methods 
perform similar, though for PRD1 values under 
9%, the method with N-PR CMFB yields better 
results. It is important to emphasize that although 
N-PR CMFB does not fulfill the PR constraint, it 
performs better in the range of the high quality 
values. The main reason for this performance is that 
the niters of the N-PR CMFB have higher 
discrimination and selectivity to keep every subband 
signal more independent of each other. Thus any 
processing accomplished at any subband signal has 
lower influence to the others. 

4.4. Comparison with other works 

For the purpose of comparison against other 
approaches, Huffman coding is used as entropy 
coder instead of the run-length coding since the 
former gives higher CR. Both the significance map 
and the RL are Huffman encoded [22]. The 
comparison is depicted in Fig. 8 over the first 
1-min long lead of the records 117 and 232. The 
results reported from other representative works for 
those signals are included in the graphics. In this 
case, we do not consider any target parameter such 
as the CR or the PRD, so the compression finishes 
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Fig. 8. Comparison against results reported by other representative works, (a) Record 117. (b) Record 232. 



after a specific number of iterations. Accordingly, 
our algorithm has been successively run to provide 
the results achieved after iterations ranging from 5 
to 10. The evaluation of PRD against CR is shown. 

In Fig. 8(a), the vertical axis gives the PRD 
obtained with Eq. (9) after removing the 1024-
baseline while in Fig. 8(b), the PRD (called here 
PRDcc) obtained with Eq. (9) but with the 
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Fig. 9. Compression waveform of record 117 for CR = 7.7 and PRD = 0.9437. 
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Fig. 10. Compression waveform of record 232 for CR = 8.55 and PRDcc = 0.2141. 
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Fig. 11. Error signal for 1-min long of record 117 (CR = 7.7). 

corresponding baseline included is shown. As can be 
seen, the proposed method with N-PR CMFB yields 
comparable CRs. 

4.5. Visual study 

The waveforms given by the proposed compres­
sion scheme visually evaluated in Figs. 9 and 10 
where depicted are the first 2048 samples of the 
original signal, the reconstructed signal and the 
error signal (from top to bottom) of the records 117 
and 232 whose compression values are those of 
Fig. 8. The waveforms are obtained with the N-PR 
CMFB-based compressor. In both cases, the recon­
structed signals remain close to the original signals 
and the error signals are equally distributed along 
the horizontal axis. 

The isolated high local error value around n — 
1000 in Fig. 9 is considered as the distortion 
between consecutive blocks of incoming signals. 
However, Fig. 11 depicts the error over the full 
range of samples and, as remarked above, the error 
is equally distributed along the axis with only 
isolated large samples. 

5. Conclusions 

In this paper, a new approach for the design of 
embedded ECG compressors based on filter banks 
is given. In the quantization stage, zerotrees are not 
encoded reducing thus the alphabet of the signifi­
cance map to three symbols. The new approach has 
two main advantages over the traditional EZW 
algorithm: (1) it is a simpler algorithm and (2) it can 
be utilized with many other kind of filter banks than 
the corresponding to DWT. 

Two compressors are proposed with this quanti­
zation algorithm: 

(1) The embedded wavelet packets (EWP) algo­
rithm that makes use of WP to decompose the 
incoming ECG. 

(2) The embedded filter bank (EFB) algorithm that 
utilizes N-PR CMFB to represent the original 
ECG. 

Simulations show that: (a) both compressors per­
form better than the traditional EZW applied in the 
DWT domain and (b) the EFB algorithm yields 
better performance than the EWP within the high 
quality range for the retrieved ECG, i.e., the range 
of PRD1 below 9%. When compared to other 
authors, both schemes provide compression results 
comparable to those of the state of the art. Again, 
the EFB method outperforms the EWP method. 

The proposed methods show an efficient perfor­
mance and are computationally simple 

. The N-PR 
CMFB-based scheme demonstrates better perfor­
mance than the WP-based scheme. Other compres­
sion schemes with N-PR CMFB have previously 
reported good performance . Therefore, given 
that N-PR CMFB admits efficient real-time im­
plementation [11] and that the N-PR CMFB-based 
scheme outperforms the WP-based scheme, it can 
be considered as an appropriate tool for ECG 
compression. 
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