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Abstract

Adaptive filtering has been an enabling technology and has found ever-increasing applications in various state-of-the-art

communication systems. Traditionally, adaptive filtering has been developed based on the Wiener or minimum mean

square error (MMSE) approach, and the famous least mean square algorithm with its low computational complexity

readily meets the fast real-time computational constraint of modern high-speed communication systems. For a

communication system, however, it is the system’s bit error rate (BER), not the mean square error (MSE), that really

matters. It has been recognised that minimising the MSE criterion does not necessarily produce the minimum BER

(MBER) performance. The introduction of the novel MBER design has opened up a whole new chapter in the

optimisation of communication systems, and its design trade-offs have to be documented in contrast to those of the classic

but actually still unexhausted MMSE and other often-used optimisation criteria. This contribution continues this theme,

and we provide a generic framework for adaptive minimum error-probability filter design suitable for the employment in a

variety of communication systems. Advantages and disadvantages of the adaptive minimum error-probability filter design

are analysed extensively, in comparison with the classic Wiener filter design.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive signal processing has been an enabling
technology for the contemporary information so-
ciety, and adaptive filtering has found wide-ranging
applications in modern communication systems. A
generic communication system typically includes an
inner Modem part and an outer Codec part [1,2]. A

variety of adaptive filters can be found in commu-
nication Modems to act as receiver filters or
detectors. The state-of-the-art adaptive filtering
design for communication applications has tradi-
tionally been developed based on the Wiener, also
known as the minimum mean square error
(MMSE), framework [3,4], and adaptive implemen-
tation of the MMSE design can readily be achieved
with the low-complexity least mean square (LMS)
algorithm which readily meets the real-time
computational constraint of modern high-speed
communication systems. The Wiener filtering
design has its root in other applications of ada-
ptive filtering, such as radar and sonar. For
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communication applications, however, what really
matters is the system’s bit error rate (BER), not the
achievable mean square error (MSE). This has
motivated the research for the alternative approach
to the MMSE filtering that aims to directly
minimise the system’s BER.

In the past decade, significant advances have been
made in the design of adaptive minimum BER
(MBER) filtering for a variety of communication
applications, including classical single-user channel
equalisation [5–20], multiuser detection in code-
division multiple-access (CDMA) systems [21–30],
adaptive beamforming assisted receiver for multi-
ple-antenna aided systems [31–39], space-time
equalisation assisted multiuser detection for space-
division multiple-access (SDMA) induced multiple-
input multiple-output (MIMO) systems [40–44],
and orthogonal frequency division multiplexing
(OFDM) and other multi-carrier systems [45–50].
The MBER filtering design has also been incorpo-
rated into turbo iterative detection [51–53]. Other
applications include the MBER transmission
schemes [54–56], the MBER rake receiver [57,58],
the MBER-based optical receiver [59–62], and the
power control or allocation based on the MBER
criterion [63–66]. It can be seen that the introduc-
tion of the novel MBER design has opened up a
new research direction and has stimulated wide
interests in the communication research community.
The purpose of this contribution is to provide a
unified framework for the adaptive MBER filtering
design and to document its design trade-offs in
comparison to the standard yet still often consid-
ered MMSE design.

We begin our discussion with an introduction of
the generic signal and filter model. Such a filter can
be a pure temporal filter as in the classical single-
user channel equalisation [1], a pure spatial filter as
in the adaptive beamforming assisted receiver for
narrow-band channels [67–72], or a combined
spatial and temporal filter as in the case of space-
time equalisation assisted multiuser detection for
SDMA induced MIMO systems [73–75]. This signal
and filter model is in fact valid for all the state-of-
the-art communication systems. The classical Wi-
ener filter design is then reviewed, and the condition
for the Wiener solution to be the optimal MBER
solution is discussed. Using the example of the well
known matched filter solution for the ideal additive
white Gaussian noise (AWGN) channel, it is
demonstrated that the MMSE design is also the
optimal MBER design only if the conditional

probability density function (PDF) of the filter
output for a given transmitted data symbol value is
Gaussian. Since this conditional PDF is generally a
mixture of Gaussian distributions, and hence non-
Gaussian, the MMSE design is inherently sub-
optimal with respect to the achievable system’s
BER.

Based on the generic signal and filter model, the
BER expression as the function of the filter’s weight
vector is derived, and this naturally leads to the
MBER design. Adaptive implementation of the
optimal MBER filtering design is discussed in full
details, and emphasis is placed on the sample-by-
sample adaptive algorithm referred to as the least
bit error rate (LBER) method [76]. Comparisons are
drawn with the adaptive LMS algorithm. Examples
are used to highlight the basic concepts and essential
properties, as well as to draw insights into how the
two designs, the MMSE and MBER, behave
differently. Unlike the Wiener filtering whose
optimality is linked to the Gaussian assumption,
the MBER design, by contrast, can cleverly exploit
the non-Gaussian distribution, leading to substan-
tial performance improvements over the sub-opti-
mal MMSE design. Thus, compared with the
standard MMSE filtering design which is still
often regarded as a state of the art in communica-
tion applications, the adaptive MBER filtering
design can better combat hostile multipath propa-
gation environments and better suppress multiple
access interference, resulting in higher system
throughput or user capacity. The penalty to
pay for this enhanced system performance is an
increase in complexity for the adaptive MBER filter
design.

Although the traditional adaptive MMSE
filtering design and the novel adaptive MBER
filtering design are based on the two very different
optimisation criteria, it is interesting to draw
some analogy between the two approaches.
The MSE is the second-order statistics, while the
BER can be viewed as a higher-order statistics, of
the underlying filter output’s PDF. The second-
order statistics required to compute the Wiener
solution can be estimated using a block of
samples, and by considering a single-sample ‘‘esti-
mate’’ of this second-order statistics, a stochastic
gradient adaptive MMSE algorithm, namely
the LMS, is derived. The PDF required to
determine the BER can be approximated with a
Parzen window estimate [77–79] based on a block
of samples, and by considering a single-sample
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density ‘‘estimate’’, a stochastic gradient adaptive
MBER algorithm is formulated, which is referred
to as the LBER algorithm in [76]. For the sake
of clearly highlighting the basic concepts, we start
our discussion assuming a binary phase shift
keying (BPSK) modulation scheme, i.e. data sym-
bols being binary. The approach is then generalised
to the minimum symbol error rate (MSER)
design for the bandwidth-efficient, high-throughput
quadrature amplitude modulation (QAM) scheme.
The adaptive filtering model considered in this
article is linear. Extension of the adaptive
MBER design to nonlinear filtering is discussed at
the end.

2. Signal and filter model

The schematic diagram for the Modem part of a
generic communication system is depicted in Fig. 1.
The system or channel model is represented by

xðkÞ ¼ HsðkÞ þ nðkÞ, (1)

where sðkÞ ¼ ½s1ðkÞ s2ðkÞ � � � sM ðkÞ�
T is the trans-

mitted data symbol vector at kth symbol index with
the uncorrelated BPSK data symbols

siðkÞ 2 f�1g; 1pipM, (2)

xðkÞ ¼ ½x1ðkÞ x2ðkÞ � � � xLðkÞ�
T denotes the com-

plex-valued received signal vector, H the L�M

complex-valued channel convolution matrix, and

nðkÞ ¼ ½n1ðkÞ n2ðkÞ � � � nLðkÞ�
T is the complex-va-

lued channel AWGN vector with E½nðkÞnHðkÞ� ¼

2s2nIL and IL denoting the L� L identity matrix.
For the time being, we assume that the transmitted
data symbols are binary. Later we will extend the
results to the case of QAM data symbols.

The receiver consists of a linear filter charac-
terised by

yðkÞ ¼ wHxðkÞ, (3)

where w ¼ ½w1 w2 � � � wL�
T is the complex-valued

filter’s coefficient vector. The filter’s output yðkÞ is
passed to the decision device to provide an estimate
for the desired user’s data symbol sdðkÞ, where
1pdpM, and the decision is made according to

ŝdðkÞ ¼ sgnðyRðkÞÞ ¼
þ1 yRðkÞX0;

�1 yRðkÞo0;

(
(4)

where yRðkÞ ¼ R½yðkÞ� is the real-part of yðkÞ. For
notational simplification, we avoid using the index d

in yðkÞ.
The system and filter models (1) and (3) is

very general and is in fact valid for all the state-
of-the-art communication systems. We now illus-
trate the generality of this model using a few
examples of the practical communication systems
encountered.

2.1. Channel equalisation

Consider the classical single-antenna single-user
channel equalisation [1], as depicted in Fig. 2. The
multipath distorting channel is characterised by

xðkÞ ¼
Xnc�1

i¼0

hisðk � iÞ þ nðkÞ, (5)

where nðkÞ is the channel AWGN, nc is known as
the channel order, and hi are the channel impulse
response (CIR) taps. The equaliser yðkÞ ¼ wHxðkÞ of
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Fig. 1. Schematic diagram of generic communication system.

Fig. 2. Multipath channel of single-antenna single-user system (a), and channel equalisation based on a temporal filter (b), where D
denotes the symbol-spaced delay.
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(3) is a pure temporal filter with an order L and a
decision delay d. That is, at symbol index k, it
detects the transmitted symbol sðk � dÞ. It is
straightforward to verify that the signal model for
xðkÞ is given by (1) with

xðkÞ ¼ ½xðkÞ xðk � 1Þ � � � xðk � Lþ 1Þ�T,

sðkÞ ¼ ½sðkÞ sðk � 1Þ � � � sðk � L� nc þ 2Þ�T,

M ¼ Lþ nc � 1, and the L�M channel convolu-
tion matrix has the following Toeplitz form

H ¼

h0 h1 � � � hnc�1 0 � � � 0

0 h0 h1 � � � hnc�1
. .
. ..

.

..

. . .
. . .

. . .
.

� � � . .
.

0

0 � � � 0 h0 h1 � � � hnc�1

2
6666664

3
7777775
.

(6)

Note that for the decision feedback equaliser
(DFE), the decision feedback can be interpreted as
a space translation and, on the translated signal
space, the DFE takes the same form of a linear
equaliser (3) (see, for example, [8,20]).

2.2. Beamforming aided receiver

Consider a communication system that supports
M users, where each user transmits on the same
carrier frequency of o ¼ 2pf , as illustrated in
Fig. 3(a). For such a system, user separation can
be achieved in the spatial or angular domain
[73–75], and the receiver is equipped with a linear
antenna array consisting of L uniformly spaced
elements. The geometric structure of the receiver
antenna array with respect to the user’s direction or
angle of arrival (AOA) is depicted in Fig. 3(b).
Further assume that the channel is non-dispersive
and hence it does not induce intersymbol inter-

ference. Then the received signal vector of the
antenna array

xðkÞ ¼ ½x1ðkÞ x2ðkÞ � � � xLðkÞ�
T,

is modelled as (1), and the L�M system matrix H

is given by [67,72]

H ¼ ½A1h1 A2h2 � � � AMhM �, (7)

where Am denotes the mth narrowband complex-
valued channel coefficient, and hm the steering
vector for user m, which is expressed as

hm ¼ ½e
jot1ðymÞ ejot2ðymÞ � � � ejotLðymÞ�T (8)

with tlðymÞ denoting the relative time delay at array
element l for source m, and ym being the AOA for
source m. The beamformer for detecting the
transmitted data symbol of desired user m; smðkÞ,
is a pure spatial filter expressed as [67,72]

ymðkÞ ¼ wH
mxðkÞ, (9)

where wm is the mth beamformer’s complex-valued
weight vector.

2.3. MIMO space-time equalisation

Consider the SDMA induced MIMO system
[73–75], as is depicted in Fig. 4, where each of the
Q users is equipped with a single transmit antenna
and the receiver is assisted by a P-element antenna
array. A bank of the Q space-time equalisers, as
shown in Fig. 5, constitutes the multiuser detector.
Each space-time equaliser is a combined spatial and
temporal filter, with the order of temporal filter
being D. It can be shown that the space-time
equaliser for user q, where 1pqpQ, is given by the
form of yqðkÞ ¼ wH

q xðkÞ with the signal model for
xðkÞ expressed in the form of (1), see for example
[43]. The output of the qth combined spatial and
temporal filter, yqðkÞ, is used to detect the trans-
mitted symbol sqðk � tÞ, where t is the decision
delay of the space-time equaliser. In fact, the signal
vector xðkÞ is defined as

xðkÞ ¼ ½xT1 ðkÞ x
T
2 ðkÞ � � � xTPðkÞ�

T (10)

with

xpðkÞ ¼ ½xpðkÞ xpðk � 1Þ; xpðk �Dþ 1Þ�T,

1pppP, (11)

and the filter coefficient vector for the qth space-
time equaliser is given by

wq ¼ ½w
T
1;q wT

2;q � � � wT
P;q�

T (12)

ARTICLE IN PRESS

Fig. 3. Beamforming assisted receiver that employs L-element

antenna array to support M users: (a) system illustration, and (b)

geometric structure of receiver antenna array, where ym is the

angle of arrival of user m.

S. Chen et al. / Signal Processing 88 (2008) 1671–16971674



Author's personal copy

with

wp;q ¼ ½w0;p;q w1;p;q � � � wD�1;p;q�
T; 1pppP.

(13)

Let the CIR connecting the qth user to the
pth receive antenna be h0;p;q; h1;p;q; . . . ; hnc�1;p;q.
Then the D� ðDþ nc � 1Þ CIR convolution
matrix associated with the user q and the receive

ARTICLE IN PRESS

Fig. 5. Space-time equaliser assisted multiuser detector for user q, where D denotes the symbol-spaced delay, P is the number of receive

antennas, D denotes the length of temporal filer, and 1pqpQ.

Fig. 4. SDMA induced MIMO system, where each of the Q users is equipped with a single transmit antenna and the receiver is assisted by

a P-element antenna array.

S. Chen et al. / Signal Processing 88 (2008) 1671–1697 1675
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antenna p is

Hp;q ¼

h0;p;q h1;p;q � � � hnc�1;p;q 0 � � � 0

0 h0;p;q h1;p;q � � � hnc�1;p;q
. .
. ..

.

..

. . .
. . .

. . .
.

� � � . .
.

0

0 � � � 0 h0;p;q h1;p;q � � � hnc�1;p;q

2
6666664

3
7777775

(14)

and the overall L�M system matrix, where L ¼

P �D and M ¼ Q � ðDþ nc � 1Þ, is expressed as

H ¼

H1;1 H1;2 � � � H1;Q

H2;1 H2;2 � � � H2;Q

..

. ..
.
� � � ..

.

HP;1 HP;2 � � � HP;Q

2
666664

3
777775. (15)

Similarly, the symbol vector sðkÞ is given by

sðkÞ ¼ ½sT1 ðkÞ s
T
2 ðkÞ � � � sTQðkÞ�

T (16)

with

sqðkÞ ¼ ½sqðkÞ sqðk � 1Þ � � � sqðk �D� nc þ 2Þ�T,

1pqpQ. (17)

Again, using the space translation property of
decision feedback, the space-time DFE can be
translated into the space-time equaliser in the
translated observation space [44], and the dis-
cussion here is equally applicable to the space-time
DFE.

2.4. Conventional filtering design

The above discussion clearly confirms that the
signal and filter models (1) and (3) is a generic
representation for various communication systems.
The classical Wiener filter design is based on
minimising the MSE criterion1

JðwÞ ¼ E½jsdðkÞ � yðkÞj2�. (18)

Minimising JðwÞ with respect to the filter’s weight
vector w gives rise to the well-known MMSE

solution [4]

wMMSE ¼ HHH þ
2s2n
s2s

IL

� ��1
hd , (19)

where s2s ¼ E½jsdðkÞj
2� is the energy of the desired

output sd ðkÞ and hd denotes the dth column of H.
The MMSE filtering is attractive, since it is given in
a closed-form solution based on the second-order
statistics of the underlying system.

When the required second-order statistics are
unknown, adaptive implementation of the Wiener
filter is particularly simple. Given a block of
training samples fsd ðkÞ;xðkÞg

K
k¼1, the MSE (18) can

be approximated by the following sample-average

ĴK ðwÞ ¼
1

K

XK

k¼1

jsdðkÞ � yðkÞj2, (20)

where yðkÞ ¼ wHxðkÞ. Minimising the approximate
MSE (20) with respect to w leads to an approximate
MMSE solution. In particular, consider a single-
sample ‘‘estimate’’ of the MSE, namely, jsdðkÞ�

yðkÞj2. Minimising this instantaneous squared error
leads to the stochastic-gradient adaptive algorithm
commonly referred to as the LMS [4]

yðkÞ ¼ ~wHðk � 1ÞxðkÞ;

~wðkÞ ¼ ~wðk � 1Þ þ mðsdðkÞ � yðkÞÞ�xðkÞ;

(
(21)

where m is the step size. The LMS algorithm has a
very low computational complexity and is particu-
larly suitable for real-time adaptive applications of
high-speed communication systems. Convergence
properties of the LMS algorithm are also well
understood [4].

The Wiener filtering is optimal with respect to the
MSE criterion. As pointed out previously, the true
performance indicator is the error probability of the
decision process (4), i.e. the achievable system’s
BER. A natural question to ask is under what
condition is the MMSE filter also the MBER filter?
Let us consider the simplest system, namely, the
single-user BPSK communication system over an
ideal AWGN channel. The optimal receiver filter for
such a system is well known to be the matched filter
that maximises the receive signal-to-noise ratio
(SNR) [1]. The matched filter’s output for such a
simple system is expressed as2

yRðkÞ ¼ AsðkÞ þ nRðkÞ, (22)

ARTICLE IN PRESS

1It is known that, for the case of the real-valued desired output

sd ðkÞ, a better performance in terms of the achievable system’s

BER can be obtained if the MSE criterion (18) is replaced by

JrealðwÞ ¼ E½ðsd ðkÞ � yRðkÞÞ
2
�, see [80–85]. However, the MBER

design is still superior over this real-valued MMSE design, see

[85]. We will only consider the MSE criterion (18) here, since later

we will extend the discussion to the case of complex-valued

symbols.

2For this ideal AWGN case, the signal model (1) is a scalar xðkÞ

and the filter model (3) constitutes a scalar weighting yðkÞ ¼ w�1xðkÞ.

S. Chen et al. / Signal Processing 88 (2008) 1671–16971676
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where A is positive and A2 represents the receive
signal power, and nRðkÞ denotes the real part of the
channel noise at the receiver output and it is
Gaussian distributed with a zero mean and a
variance of s2n. The conditional PDFs of yRðkÞ

given sðkÞ ¼ �1 are

pðyRjsðkÞ ¼ �1Þ ¼
1ffiffiffiffiffiffi
2p
p

sn

e�jyR�ð�AÞj2=2s2n . (23)

Assuming ProbfsðkÞ ¼ 1g ¼ ProbfsðkÞ ¼ �1g ¼ 1
2
,

the error probability of the decision process (4) or
BER in this case is well known to be

PE ¼

Z 0

�1

pðyRjsðkÞ ¼ þ1ÞdyR

¼ Q
A

sn

� �
¼ Qð

ffiffiffiffiffiffiffiffiffiffiffi
SNR
p

Þ, (24)

which is also illustrated in Fig. 6, where the Q-
function is define by

QðxÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
x

e�u2=2 du. (25)

The match filter that maximises the receive SNR
also minimises the error probability PE. Note that
the conditional PDF of yRðkÞ given a particular
class of symbol value is Gaussian. In this case,
clearly the MMSE solution is identical to the
MBER solution.3

In general, the MMSE design is also the optimal
MBER design only if the conditional PDF of the
filter output for a given transmitted data symbol
value is Gaussian. This is because if this conditional
PDF is Gaussian, i.e. the conditional PDF of yðkÞ ¼

wHxðkÞ takes the form of (23), minimising the MSE

is equivalent to minimising the error probability
(24). In certain systems, the conditional PDF of the
filter output may be approximated accurately by a
Gaussian distribution, and in such cases the MMSE
design is preferred over the more complicated
MBER design. However, since this conditional
PDF is generally a mixture of Gaussian distribu-
tions and hence non-Gaussian, as will be shown in
the next section, the MMSE design is inherently
sub-optimal, in terms of the achievable system’s
BER.

3. MBER filtering design

Let us revisit the receive signal model (1) and
express it as

xðkÞ ¼ HsðkÞ þ nðkÞ ¼ x̄ðkÞ þ nðkÞ, (26)

where x̄ðkÞ represents the noise-free part of xðkÞ.
Denote the Ns ¼ 2M legitimate sequences of sðkÞ as
si, 1pipNs, and further denote the dth element of
si, corresponding to the desired symbol sdðkÞ, as sd;i.
The noise-free part of the received signal, x̄ðkÞ, takes
values from the complex-valued vector set

x̄ðkÞ 2 X ¼ fx̄i ¼ Hsi; 1pipNsg. (27)

X can be divided into two subsets corresponding to
the two values of sdðkÞ as follows

Xð�Þ ¼ fx̄
ð�Þ

i 2 X; 1pipNsb : sd ðkÞ ¼ �1g, (28)

where Nsb ¼ Ns=2. Similarly rewrite the filter model
(3) as4

yðkÞ ¼ wHxðkÞ ¼ ȳðkÞ þ eðkÞ, (29)

where eðkÞ ¼ wHnðkÞ is Gaussian distributed with
zero mean and E½jeðkÞj2� ¼ 2wHws2n. The noise-free
part of the filter output, namely ȳðkÞ, takes values
from the complex-valued scalar set

ȳðkÞ 2 Y ¼ fȳi ¼ wHx̄i; x̄i 2 Xg. (30)

The real part of the filter output yðkÞ is
yRðkÞ ¼ ȳRðkÞ þ eRðkÞ, and ȳRðkÞ takes values from
the real-valued scalar set

ȳRðkÞ 2 YR ¼ fȳRi
¼ R½ȳi�; ȳi 2 Yg. (31)

The set YR can be divided into the two subsets
conditioned on the value of sdðkÞ, each having a size
of the Nsb constellation points

Y
ð�Þ

R ¼ fȳ
ð�Þ

Ri
2 YR : sdðkÞ ¼ �1g. (32)

ARTICLE IN PRESS
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σn
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Fig. 6. Error probability of the BPSK communication system

over the ideal AWGN channel.

3Noting that the signal power A2 ¼ s2s is fixed, minimising the

MSE in this ideal case is equivalent to maximising the receive

SNR and, therefore, equivalent to minimising the BER. Indeed,

the optimisation to achieve maximising the receive SNR is

actually carried out by fixing the signal power to constant and

minimising the receive noise power, i.e. the MSE in this case

(see [1]).

4The filter is for detecting the desired symbol sd ðkÞ. As before,

we avoid using index d in yðkÞ for notational simplification.

S. Chen et al. / Signal Processing 88 (2008) 1671–1697 1677



Author's personal copy

Definition 1. The system (1) is said to be linearly
separable, if there exists a weight vector w such that
the two real-valued scalar subsets, Y

ðþÞ

R and Y
ð�Þ

R ,
can completely be separated by the decision thresh-
old yR ¼ 0.

3.1. BER expression

It is readily seen that the conditional PDF of
yRðkÞ given sdðkÞ ¼ þ1 is a Gaussian mixture,
expressed as

pðyRjsdðkÞ ¼ þ1Þ

¼
1

Nsb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pwHws2n

p X
ȳ
ðþÞ

Ri
2Y
ðþÞ

R

e
�ðjyR�ȳ

ðþÞ

Ri
j2Þ=2wHws2n .

(33)

Noting the decision process (4), the error prob-
ability or BER of the filter (3) with the weight vector
w is defined by

PEðwÞ ¼

Z 0

�1

pðyRjsdðkÞ ¼ þ1ÞdyR

¼
1

Nsb

XNsb

i¼1

Qðg
ðþÞ

i ðwÞÞ, (34)

which is also illustrated in Fig. 7, where

g
ðþÞ

i ðwÞ ¼
sgnðsd;iÞȳ

ðþÞ

Ri

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p . (35)

The BER can alternatively be calculated using the
other subset Y

ð�Þ

R , and the length of the filter weight
vector, wHw, does not affect the BER value (except
for zero length).

3.2. MBER solution

The MBER solution for the filter’s weight vector
is defined as

wMBER ¼ argmin
w

PEðwÞ. (36)

Unlike the MMSE design, there exists no closed-
form solution for the MBER design, and the
optimisation problem (36) must be solved numeri-
cally using for example a gradient-based algorithm.
The gradient of PEðwÞ with respect to w can be
shown to be

rPEðwÞ ¼
1

2Nsb

ffiffiffiffiffiffi
2p
p

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p

XNsb

i¼1

e
�ðjȳ
ðþÞ

Ri
j2Þ=2s2nw

Hw

�sgnðsd;iÞ
ȳ
ðþÞ

Ri
w

wHw
� x̄

ðþÞ

i

 !
, (37)

where x̄
ðþÞ

i 2 XðþÞ. The simplified conjugate gradient
algorithm [26,86] provides an efficient means of
obtaining an MBER solution.

Proposition 1. For linearly separable systems, any

local minimiser of the BER cost function (34) is a

global minimiser.

Proof. Since the system is linearly separable, there
exist weight vectors w such that

wHx
ðþÞ

i 40; 8xðþÞi 2 XðþÞ.

The proof then follows similar arguments to those
outlined in the proof of Proposition 1 in [87]. &

Proposition 2. There exist infinitely many global

MBER solutions, which form an infinite half line in

the filter weight space. There exists a unique unit-

length global MBER solution.

Proof. Let wMBER be a global MBER solution.
Since the BER is invariant to the length of w, weight
vectors a � wMBER, a40, are all global MBER
solutions, which form an infinite half line in the
filter weight space. Setting a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wH
MBERwMBER

p
yields the unique unit-length global MBER solu-
tion.

Some comments can be made for the MMSE and
MBER designs by examining their respective cost
functions. The MSE surface (18) is quadratic and
has a single global minimum solution. In contrast,
the BER surface (34) is much more complex. A
comparsion of the MSE and BER surfaces is given
in Fig. 8, using the simple two-user CDMA system
considered in [26,29]. Note that the BER is invariant
to a positive scaling of w. Thus, as can be seen from
Fig. 8(b), the BER surface has an infinitely long
valley, and any point at the bottom of this valley is a
true global MBER solution. It can also be seen from
Fig. 8(b) that if we restrict to the unit-length w, the
MBER solution becomes unique. At least for
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Fig. 7. Derivation of the error probability of the linear filter (3)

for the communication system (1) with BPSK symbols.
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linearly separable systems, there exists no local
minimum problem for the optimisation process (36).
However, the BER surface may have very small-
gradient regions, as can be seen in Fig. 8(b). This
indicates that convergence speed of the optimisation

process may depend on the initial choice of the
weight vector, particularly when the steepest-des-
cent gradient algorithm is used. By adopting the
conjugate gradient-based algorithm, we observe in
practice that this problem is alleviated. &
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Fig. 8. The MSE surface (a) and the BER surface (b) of a simple two-user CDMA system, taken from [29].
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Before turning to discuss adaptive implementa-
tion of the MBER design, we point out that the
PDF of yRðkÞ is explicitly given by the Gaussian
mixture

pðyRÞ ¼
1

Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pwHws2n

p X
ȳRi
2YR

e�jyR�ȳRi
j2=2wHws2n ,

(38)

where the summation is over all the constellation
points of YR, and the BER can be computed using

PEðwÞ ¼
1

Ns

XNs

i¼1

QðgiðwÞÞ, (39)

with

giðwÞ ¼
sgnðsd ;iÞȳRi

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p . (40)

3.3. Adaptive MBER filtering

The key to adaptive implementation of the
MBER filtering design is an effective estimate of
the PDF (38). Parzen window estimate [77–79],
also known as the kernel density estimate, is a
well-known method for estimating a probability
distribution. Parzen window method estimates a
PDF using a window or block of yðkÞ by placing
a symmetric unimodal kernel function on each
yðkÞ with an equal weighting. Kernel density
estimation is capable of producing reliable PDF
estimates with relatively short data records
and in particular is extremely natural when dealing
with Gaussian mixtures, such as the one given
in (38).

Given a training data set fsdðkÞ;xðkÞg
K
k¼1, the PDF

of the filter’s output yRðkÞ can be accurately
estimated using the following Parzen window
estimate

~pðyRÞ ¼
1

K
ffiffiffiffiffiffi
2p
p

rn

XK

k¼1

e�jyR�yRðkÞj
2=2r2n , (41)

where rn is called the kernel width. Based on this
PDF estimate, a BER estimate is given by

~PEðwÞ ¼
1

K

XK

k¼1

Qð ~gkðwÞÞ (42)

with

~gkðwÞ ¼
sgnðsdðkÞÞyRðkÞ

rn

. (43)

Providing that the kernel width rn is chosen
appropriately, the kernel density estimate (41) is
an accurate estimate of the true PDF pðyRÞ and the
BER estimate (42) is an accurate estimate of the true
BER PEðwÞ. Given the gradient of ~PEðwÞ

r ~PEðwÞ ¼ �
1

2K
ffiffiffiffiffiffi
2p
p

rn

�
XK

k¼1

e�jyRðkÞj
2=2r2nsgnðsd ðkÞÞxðkÞ, (44)

an approximated MBER solution can be obtained
iteratively using a gradient-based algorithm, such as
the simplified conjugate gradient algorithm [26,86].

In order to derive a sample-by-sample adaptive
algorithm, let us adopt a single-sample ‘‘estimate’’
of the PDF pðyRÞ, namely,

~pðyR; kÞ ¼
1ffiffiffiffiffiffi
2p
p

rn

e�jyR�yRðkÞj
2=2r2n . (45)

From this one-sample PDF ‘‘estimate’’, concep-
tually we have an instantaneous BER ‘‘estimate’’
~PEðw; kÞ ¼ Qð ~gkðwÞÞ. Using the instantaneous sto-
chastic gradient of

r ~PEðw; kÞ ¼ �
sgnðsdðkÞÞ

2
ffiffiffiffiffiffi
2p
p

rn

e�jyRðkÞj
2=2r2nxðkÞ (46)

gives rise to the following LBER algorithm:

yðkÞ ¼ ~wHðk � 1ÞxðkÞ;

~wðkÞ ¼ ~wðk � 1Þ þ m
sgnðsdðkÞÞ

2
ffiffiffiffiffiffi
2p
p

rn

e�jyRðkÞj
2=2r2nxðkÞ;

8><
>:

(47)

where the step size m and the kernel width rn are the
two algorithmic parameters that have to be set
appropriately to ensure a fast convergence rate and
small steady-state BER misadjustment.

Comment: The factor 1=ð2
ffiffiffiffiffiffi
2p
p

rnÞ is a constant
that can be absorbed into the step size m whereas the
term sgnðsdðkÞÞe

�jyRðkÞj
2=2r2n can be regarded as an

‘‘error signal’’. In this sense, the LBER algorithm
(47) has a similar form to the LMS algorithm (21).

It is interesting to point out that our development
of the adaptive MBER filtering design follows a
similar path to that of the adaptive MMSE filtering.
The BER of the adaptive filter is a higher-order
statistics of the underlying filter output’s PDF. By
estimating this PDF using Parzen window estimate,
we are able to estimate the BER using a relatively
short block of samples. Further considering a
single-sample density ‘‘estimate’’, we arrive at the
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above stochastic-gradient adaptive LBER algo-
rithm. Computational complexity of this LBER
algorithm is similar to that of the LMS algorithm.
Tuning the LBER algorithm, however, is more
complicated than adjusting the LMS algorithm,
since the former has two algorithmic parameters, m
and rn, while the latter has only one algorithmic
parameter, the step size m. Convergence properties
of the LMS algorithm are well understood and there
exist analytical results to predict the steady-state
MSE misadjustment. Convergence properties of the
LBER algorithm by contrast are less well under-
stood, although extensive simulation experience has
suggested that it is not too difficult for tuning the
algorithm to achieve fast convergence. Further-
more, at the time of writing there exists no
theoretical result for analysing the steady-state
BER misadjustment of the LBER algorithm, but
in practice we have observed that the steady-state
BER misadjustment can often be made very small
by carefully tuning the two algorithmic parameters.
Convergence behaviour and steady-state BER mis-
adjustment of the LBER algorithm have been
extensively investigated in the previous publications
[11,14,18,20,25,26,29,31,35,36,38,39,41–44].

3.4. Illustrative examples

Beamforming: The simulation system was illu-
strated in Fig. 3, where the receiver employed a
four-element linear antenna array with a half-
wavelength element spacing. The system was first
used to support M ¼ 3 BPSK users, and the
locations of the users in terms of AOA is
summarised in Table 1. The simulated channel
conditions were Ai ¼ 1þ j0 for 1pip3, and all the
users had an equal power. The user one was the
desired user. Fig. 9 compares the BER performance
of the two beamformer designs for the desired user
one. In order to draw some insights as to how the
MBER design behaves differently from the MMSE
design, and hence to explain the BER performance
difference of the two beamformers as shown in

Fig. 9, we examined the conditional PDF of the
beamformer’s output yðkÞ, which is defined by

pðyjsdðkÞ ¼ þ1Þ

¼
1

Nsb2pwHws2n

X
ȳ
ðþÞ

i
2YðþÞ

e�jy�ȳ
ðþÞ

i
j2=2wHws2n , (48)

where the signal subset YðþÞ is defined as

YðþÞ ¼ fȳ
ðþÞ

i 2 Y : sdðkÞ ¼ þ1g, (49)

and its marginal conditional PDF, pðyRjsdðkÞ ¼

þ1Þ, which is defined in (33). Fig. 10 depicts the
conditional PDFs pðyjsdðkÞ ¼ þ1Þ, the marginal
PDFs pðyRjsdðkÞ ¼ þ1Þ, the signal subsets YðþÞ

and Y
ðþÞ

R for the two beamforming designs given
SNR ¼ 6 dB, where the beamformer’s weight vector
w was normalised to a unit length. It can be seen
that the distribution pðyjsdðkÞ ¼ þ1Þ is symmetric
with respect to the R½y� and I½y� axes for the
MMSE design, and this was a direct consequence of
the minimisation of the MSE criterion (18). By
contrast, the MBER design appeared to be more
intelligent and was able to shape pðyjsdðkÞ ¼ þ1Þ in
such a way that the distance between the decision
threshold yR ¼ 0 and the signal subset Y

ðþÞ

R

was maximised. From the BER expression (34),
this is optimal as it ensures the minimisation of the
BER. Convergence behaviour and steady-state BER
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Table 1

Locations of the users in terms of angle of arrival for the

simulated beamforming system that employs a four-element

antenna array to support three BPSK users

User i 1 2 3

AOA yi (
�) 0 10 �5
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Fig. 9. Desired user’s bit error rate comparison of two

beamforming designs for the four-element array system sup-

portng three BPSK users as given in Table 1.
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misadjustment of the two adaptive algorithms, the
LMS and LBER, were next investigated. Given
SNR ¼ 4 dB, Fig. 11 depicts the learning curves of
the two adaptive algorithms, averaged over 100
independent runs. The step size of the LMS was set
to m ¼ 0:006, while for the LBER algorithm we had
the step size m ¼ 0:06 and the kernel variance
r2n ¼ 2s2n. Fig. 11(a) shows the training perfor-
mance, while Fig. 11(b) illustrates the decision-
directed (DD) adaptation, started at k ¼ 30, using
the beamformer’s decision ŝ1ðkÞ to substitute for

s1ðkÞ. It can be seen from Fig. 11(b) that the steady-
state BER of the LMS algorithm for the given SNR
was not sufficiently small for the algorithm to switch
to the DD adaptation. By contrast, the LBER
algorithm was seen to operate successfully in the
DD adaptation. This is a significant advantage of
the LBER algorithm, which enables the algorithm
to adopt DD updating during data transmission in
order to track time-varying channel conditions.

The system was next used to support M ¼ 8
BPSK users, and the locations of the users are listed

ARTICLE IN PRESS

Fig. 10. Conditional PDFs pðyjsd ðkÞ ¼ þ1Þ (surfaces), marginal conditional PDFs pðyRjsd ðkÞ ¼ þ1Þ (curves), signal subsets Y
ðþÞ and YðþÞR

(points) for the four-element array system supporting three BPSK users of Table 1 with SNR ¼ 6dB: (a) MMSE design, and (b) MBER

design. The beamformer’s weight vector is normalised to a unit length.
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in Table 2. The user one still remained to be the
desired user, all the users had an equal power, and
the simulated channel conditions were Ai ¼ 1þ j0
for 1pip8. Fig. 12 depicts the BER performance of
the two beamformer designs for the desired user

one, while Fig. 13 shows the conditional PDFs
pðyjsdðkÞ ¼ 1Þ, the marginal PDFs pðyRjsd ðkÞ ¼ þ1Þ,
the signal subsets YðþÞ and Y

ðþÞ

R for the two designs,
given SNR ¼ 8 dB. It can be seen from Fig. 13(a)
that for the MMSE beamformer several points of
Y
ðþÞ

R were in the wrong side of the decision threshold
yR ¼ 0, resulting in the high BER floor as shown in
Fig. 12. By contrast, the MBER beamformer was
capable of ensuring a reasonable distance between
yR ¼ 0 and the signal subset Y

ðþÞ

R as can be seen
from Fig. 13(b) and, therefore, maintained an
adequate BER performance.

In general, it can be demonstrated that the
MBER design can better combat channel distortion
and interference and offers a larger system user
capacity, compared with the suboptimal MMSE
design. Extensive investigations [36,38] have also
shown that the MBER beamformer is much more
robust to the near-far effect. More specifically, when
facing strong interfering sources, the MMSE
beamforming receiver may exhibit a high BER floor
as the underlying signal classes or subsets become
linearly inseparable, while the MBER beamforming
can often maintain the desired linear separability
and hence avoids such a BER floor.

Space-time equalisation: The simulation system
was illustrated in Figs. 4 and 5. The MIMO receiver
employed P ¼ 4 receive antennas to support Q ¼ 3
BPSK users. Each of the Q � P ¼ 12 dispersive
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Fig. 11. Learning curves of the two adaptive algorithms averaged

over 100 runs for the four-element array system supporting three

BPSK users of Table 1 with SNR ¼ 4dB: (a) training, and (b)

decision-directed adaptation starting from k ¼ 30 with the

beamformer’s decision ŝ1ðkÞ substituting for s1ðkÞ, where

~wð0Þ ¼ ½0:1þ j0:1 0:0þ j0:0 0:0þ j0:0 0:0þ j0:0�T.

Table 2

Locations of the users in terms of angle of arrival for the

simulated beamforming system that employs a four-element

antenna array to support eight BPSK users
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AOA yi (
�) 0 10 �15 30 �45 50 60 �55

-6

-5

-4

-3

-2

-1

0

0 5 10 15 20 25 30
lo

g 1
0(

B
it 

E
rr

or
 R

at
e)

SNR (dB)

MMSE
MBER

Fig. 12. Desired user’s bit error rate comparison of two

beamforming designs for the four-element array system support-

ing eight BPSK users as given in Table 2.
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channels had a length nc ¼ 3. The magnitudes of the
CIR taps were Rayleigh processes, and each CIR
tap had the root mean power of

ffiffiffiffiffiffiffi
0:5
p

þ j
ffiffiffiffiffiffiffi
0:5
p

. The
normalised Doppler frequency for the simulated
system was 10�5, which for a carrier of 900MHz
and a symbol rate of 3Msymbols/s corresponded to
a user velocity of 10m/s (36 km/h). Continuously
fluctuating fading was used, which provided a

different fading magnitude and phase of each CIR
tap for each transmitted symbol. The transmission
frame structure consisted of 50 training symbols
followed by 450 data symbols. Each temporal filter
of the space-time equaliser had an order D ¼ 5, and
the equaliser decision delay was set to t ¼ 2.

The adaptive LMS and LBER based space-time
equalisers were investigated. The step size of the
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Fig. 13. Conditional PDFs pðyjsd ðkÞ ¼ þ1Þ (surfaces), marginal conditional PDFs pðyRjsd ðkÞ ¼ þ1Þ (curves), signal subsets Y
ðþÞ and YðþÞR

(points) for the four-element array system supporting eight BPSK users of Table 2 with SNR ¼ 8 dB: (a) MMSE design, and (b) MBER

design. The beamformer’s weight vector is normalised to a unit length.
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LMS algorithm was chosen as m ¼ 0:005, while for
the LBER algorithm the step size m ¼ 0:1 and the
kernel variance r2n ¼ 16s2n were found empirically to
be appropriate. The BER of an adaptive space-time
equaliser was calculated on the 450 data symbols of
the frame using Monte Carlo simulation averaging

over 106 frames. Fig. 14 compares the BERs of the
LBER space-time equaliser based multiuser detec-
tors for the three users with those of the LMS based
multiuser detectors. It can be seen from Fig. 14 that
the LBER space-time equaliser consistently out-
performed the LMS space-time equaliser.
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4. Extension to QAM

For high-order m-QAM systems [2], it is compu-
tationally more attractive to consider the MSER
design, rather than the MBER design [39]. For the
signal model (1), the data symbols siðkÞ for 1pipM

now take values from the m-QAM symbol set

S ¼ fsl;q ¼ ul þ juq; 1pl; qp
ffiffiffiffi
m
p
g, (50)

where the real-part symbol R½sl;q� ¼ ul ¼ 2l�
ffiffiffiffi
m
p
� 1

and the imaginary-part symbol I½sl;q� ¼ uq ¼ 2q�ffiffiffiffi
m
p
� 1. The combined filter and system impulse

response is defined by

wHH ¼ wH½h1 h2 � � � hM � ¼ ½c1 c2 � � � cM �. (51)

Thus, the filter’s output can alternatively be express-
ed as

yðkÞ ¼ cdsdðkÞ þ
X
iad

cisiðkÞ þ eðkÞ. (52)

Provided that the desired main tap cd ¼ cRd
þ jcId

satisfies cRd
40 and cId ¼ 0, the decision rule for

estimating the desired symbol sdðkÞ is ŝdðkÞ ¼

ŝRd
ðkÞ þ jŝId ðkÞ, with

ŝRd
ðkÞ ¼

u1 if yRðkÞpcRd
ðu1 þ 1Þ;

ul if cRd
ðul � 1ÞoyRðkÞpcRd

ðul þ 1Þ

for 2plp
ffiffiffiffi
m
p
� 1;

u ffiffiffi
m
p if yRðkÞ4cRd

ðu ffiffiffi
m
p � 1Þ;

8>>>><
>>>>:

(53)

and

ŝId ðkÞ ¼

u1 if yIðkÞpcRd
ðu1 þ 1Þ;

uq if cRd
ðuq � 1ÞoyIðkÞpcRd

ðuq þ 1Þ

for 2pqp
ffiffiffiffi
m
p
� 1;

u ffiffiffi
m
p if yIðkÞ4cRd

ðu ffiffiffi
m
p � 1Þ:

8>>>><
>>>>:

(54)

Note that the main tap cd must be known in any
receiver, i.e. the dth column of the system matrix H

must be known in the receiver. If this fact is
overlooked, the decision will be biased [88]. In
general, cd is complex-valued and the rotating
operation

wðnewÞ ¼
c
ðoldÞ
d

jc
ðoldÞ
d j

wðoldÞ (55)

can be used to make cd real and positive. This
rotation is a linear operation and it does not alter
the system’s symbol error rate (SER).

4.1. Conventional filtering design

The classic Wiener filtering is still given by the
closed-form MMSE solution (19), and the LMS
based adaptive filtering (21) can be modified to

yðkÞ ¼ ~wHðk � 1ÞxðkÞ;

ŵðkÞ ¼ ~wðk � 1Þ þ mðsdðkÞ � yðkÞÞ�xðkÞ;

ĉdðkÞ ¼ ŵHðkÞ~hd ;

~wðkÞ ¼
ĉd ðkÞ

jĉd ðkÞj
ŵðkÞ;

8>>>>>><
>>>>>>:

(56)

where ~hd denotes an estimate of hd . Given a block of
training samples fsdðkÞ;xðkÞg

K
k¼1, a block-based

estimate of hd is given by

~hd ¼
1

K

XK

k¼1

xðkÞ

sdðkÞ
. (57)

Alternatively, the receiver can track hd using the
simple moving average

~hdðkÞ ¼ ð1� aÞ~hdðk � 1Þ þ a
xðkÞ

sdðkÞ
, (58)

where 0oao1 is a positive step size. Note that
~cdðkÞ ¼ ~wHðkÞ~hdðkÞ is real-valued and positive.

4.2. SER expression

The complex-valued signal vector set X now
contains Ns ¼ mM points, and it can be divided into
the m subsets, each having Nsb ¼ Ns=m points

Xl;q ¼ fx̄
ðl;qÞ
i 2 X; 1pipNsb : sdðkÞ ¼ sl;qg,

1pl; qp
ffiffiffiffi
m
p

. (59)

Similarly, the complex-valued scalar set Y can be
divided into the m subsets

Yl;q ¼ fȳ
ðl;qÞ
i 2 Y; 1pipNsb : sdðkÞ ¼ sl;qg,

1pl; qp
ffiffiffiffi
m
p

. (60)

The following two propositions [39] summarise the
properties of the signal subsets Yl;q, 1pl; qp

ffiffiffiffi
m
p

,
which are useful in the derivation of the SER
expression for the linear filter (3).

Proposition 3. The subsets Yl;q, 1pl; qp
ffiffiffiffi
m
p

, satisfy

the shifting properties

Ylþ1;q ¼ Yl;q þ 2cd ; 1plp
ffiffiffiffi
m
p
� 1;

Yl;qþ1 ¼ Yl;q þ j2cd ; 1pqp
ffiffiffiffi
m
p
� 1;

Ylþ1;qþ1 ¼ Yl;q þ ð2þ j2Þcd ; 1pl; qp
ffiffiffiffi
m
p
� 1:

8><
>:

(61)

ARTICLE IN PRESS
S. Chen et al. / Signal Processing 88 (2008) 1671–16971686



Author's personal copy

Proposition 4. The points of Yl;q are distributed

symmetrically around the symbol point cdsl;q.

Fig. 15 depicts the decision thresholds associated
with the decision rule (53) and (54) as well as
illustrates Proposition 4. For the filter with the
weight vector w, denote

PEðwÞ ¼ ProbfŝdðkÞasdðkÞg;

PER
ðwÞ ¼ ProbfŝRd

ðkÞasRd
ðkÞg;

PEI
ðwÞ ¼ ProbfŝId ðkÞasId ðkÞg:

8><
>: (62)

PEðwÞ is the total SER, while PER
ðwÞ and PEI

ðwÞ are
the real-part and imaginary-part SERs, respectively.
It is then easy to see that the SER is given by

PEðwÞ ¼ PER
ðwÞ þ PEI

ðwÞ � PER
ðwÞPEI

ðwÞ. (63)

The conditional PDF of yðkÞ given sd ðkÞ ¼ sl;q is a
Gaussian mixture defined by

pðyjsdðkÞ ¼ sl;qÞ ¼
1

Nsb2ps2nwHw

XNsb

i¼1

e
�jy�ȳ

ðl;qÞ
i
j2=2s2nw

Hw
,

(64)

where ȳ
ðl;qÞ
i ¼ ȳ

ðl;qÞ
Ri
þ jȳ

ðl;qÞ
Ii
2 Yl;q. Noting that cd

is real-valued and positive and taking into account
the symmetric distribution of Yl;q (Proposition 4),
for 2plp

ffiffiffiffi
m
p
� 1, the conditional error probability

of ŝRd
ðkÞaul given sRd

ðkÞ ¼ ul can be shown to
be [39]

PER;l
ðwÞ ¼

2

Nsb

XNsb

i¼1

Qðg
ðl;qÞ
Ri
ðwÞÞ, (65)

with

g
ðl;qÞ
Ri
ðwÞ ¼

ȳ
ðl;qÞ
Ri
� cRd

ðul � 1Þ

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p . (66)

Further taking into account the shifting property
(Proposition 3), it can be shown that

PER
ðwÞ ¼ g

1

Nsb

XNsb

i¼1

Qðg
ðl;qÞ
Ri
ðwÞÞ, (67)

where g ¼ ð2
ffiffiffiffi
m
p
� 2Þ=

ffiffiffiffi
m
p

. It is seen that PER
can

be evaluated using (real part of) any single subset
Yl;q. Similarly, PEI

can be evaluated using (imagin-
ary part of) any single subset Yl;q as

PEI
ðwÞ ¼ g

1

Nsb

XNsb

i¼1

Qðg
ðl;qÞ
Ii
ðwÞÞ (68)

with

g
ðl;qÞ
Ii
ðwÞ ¼

ȳ
ðl;qÞ
Ii
� cRd

ðuq � 1Þ

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p . (69)

Note that the SER is invariant to a positive scaling
of w.

4.3. MSER filtering

The MSER solution wMSER is defined as the
weight vector that minimises the upper bound of the
SER given by

PEB
ðwÞ ¼ PER

ðwÞ þ PEI
ðwÞ, (70)

that is,

wMSER ¼ argmin
w

PEB
ðwÞ. (71)

The solution obtained by minimising the upper
bound (70) is practically equivalent to that of
minimising PEðwÞ, since the bound PEðwÞoPEB

ðwÞ

is very tight, that is, PEB
ðwÞ is very close to the

true SER PEðwÞ. The gradients of PER
ðwÞ and

PEI
ðwÞ with respect to w can be shown to be,

respectively,

rPER
ðwÞ

¼
g

2Nsb

ffiffiffiffiffiffi
2p
p

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p

XNsb

i¼1

e
�jȳ
ðl;qÞ
Ri
�cRd

ðul�1Þj
2=2s2nw

Hw

�
ȳ
ðl;qÞ
Ri
� cRd

ðul � 1Þ

wHw
w� x̄

ðl;qÞ
i þ ðul � 1Þhd

 !

(72)

ARTICLE IN PRESS

Fig. 15. Decision thresholds associated with symbol point cd sl;q

assuming cRd
40 and cId ¼ 0, and illustration of symmetric

distribution of Yl;q around cd sl;q.
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and

rPEI
ðwÞ

¼
g

2Nsb

ffiffiffiffiffiffi
2p
p

sn

ffiffiffiffiffiffiffiffiffiffi
wHw
p

XNsb

i¼1

e
�jȳ
ðl;qÞ
Ii
�cRd

ðuq�1Þj
2=2s2nw

Hw

�
ȳ
ðl;qÞ
Ii
� cRd

ðuq � 1Þ

wHw
wþ jx̄

ðl;qÞ
i þ ðuq � 1Þhd

 !
,

(73)

where x̄
ðl;qÞ
i 2 Xl;q. With the gradient rPEB

ðwÞ ¼

rPER
ðwÞ þ rPEI

ðwÞ, the optimisation problem (71)
can be solved iteratively using a gradient-based
algorithm, such as the simplified conjugate gradient
algorithm.

Using the same kernel density estimation ap-
proach for deriving the adaptive LBER algorithm,
the following adaptive least SER (LSER) algorithm
can be obtained [39]

yðkÞ ¼ ~wHðk � 1ÞxðkÞ;

ŵðkÞ ¼ ~wðk � 1Þ þ mð�r ~PEB
ð ~wðk � 1Þ; kÞÞ;

ĉdðkÞ ¼ ŵHðkÞ~hd ;

~wðkÞ ¼
ĉdðkÞ

ĉdðkÞj
ŵðkÞ;

8>>>>>><
>>>>>>:

(74)

where the stochastic gradient r ~PEB
ðw; kÞ ¼ r ~PER

ðw; kÞ þ r ~PEI
ðw; kÞ with

r ~PER
ðw; kÞ ¼

g

2
ffiffiffiffiffiffi
2p
p

rn

e�jyRðkÞ�~cRd
ðk�1ÞðsRd

ðkÞ�1Þj2=2r2n

�ð�xðkÞ þ ðsRd
ðkÞ � 1Þ~hd Þ (75)

and

r ~PEI
ðw; kÞ ¼

g

2
ffiffiffiffiffiffi
2p
p

rn

e�jyIðkÞ� ~cRd
ðk�1ÞðsId

ðkÞ�1Þj2=2r2n

�ðjxðkÞ þ ðsId ðkÞ � 1Þ~hd Þ. (76)

4.4. Illustrative examples

The simulated beamforming system consisted of
four m-QAM user sources and a three-element
antenna array. Fig. 16 shows the locations of the
desired user and the interfering users graphically,
where the minimum angular separation between the
desired user and the interfering user 4 was yo65�.
In the simulation study, a perfect hd was assumed at
the receiver. Hence, our attention was focused on
the performance of the adaptive MMSE and MSER
beamforming designs, rather than on the adaptive
estimator for hd .

Stationary system: The modulation scheme was
16-QAM and all the channels Ai; 1pip4, were
time-invariant. Fig. 17 compares the SER perfor-
mance of the MSER beamforming solution to that
of the MMSE beamforming solution, under the
conditions that the minimum angular separation
between the desired user and the interfering user 4
was y ¼ 30�, and all the four users had an equal
signal power. The adaptive performance of the LMS
and LSER beamformers are also depicted in Fig. 17,
in comparison with their respective theoretic SER
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Fig. 16. Locations of the four m-QAM user sources with respect

to the three-element array having l=2 element spacing, where l is

the wavelength and the minimum angular separation yo60�.
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Fig. 17. Desired user’s symbol error rate comparsion of two

beamforming designs and their adaptive implementations for the

non-fading system employing the three-element array with a

minimum angular separation of y ¼ 30� to support four equal-

power 16-QAM users.
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performance. The superiority of the adaptive LSER
beamformer over the adaptive LMS beamformer is
clearly demonstrated in Fig. 17, where it can be seen
that the performance of the LMS beamformer was
notably deviated from its theoretic MMSE solution
at high SNR values.

The MSER solution is defined as the weight
vector that minimises the upper bound SER PEB

ðwÞ

of (70). The true SER PEðwÞ is given by the sum of
the inphase and quadrature components’ error rates
minus the appropriate correction term used for
preventing the ‘‘double-counting’’ error-events, as
seen in (63). The probability of simultaneous
inphase and quadrature errors, which is represented
by the term PER

ðwÞPEI
ðwÞ tends to be very small,

unless the SNR is extremely low. More explicitly,
this term is typically orders of magnitude lower than
the first two terms of PEðwÞ and, therefore, is
negligible. Hence the bound PEðwÞoPEB

ðwÞ is very
tight. In fact, PEB

ðwÞ is almost indistinguishable
from PEðwÞ. This is confirmed by the results of
Fig. 18, where both the true SER PEðwÞ and its
upper bound PEB

ðwÞ are plotted for the MMSE and
MSER solutions under the same conditions of
Fig. 17.

Fading system: The antenna array structure was
as illustrated in Fig. 16, but the modulation scheme was 64-QAM. All the four users had an equal

power. Fading channels were simulated, where the
magnitudes of Ai for 1pip4 were Rayleigh
processes with the normalised Doppler frequence
f̄ D and each Ai had the root mean power offfiffiffiffiffiffiffi
0:5
p

þ j
ffiffiffiffiffiffiffi
0:5
p

. Continuously fluctuating fading was
used, providing a different fading magnitude and
phase for each transmitted symbol. The transmis-
sion frame structure consisted of 50 training
symbols followed by 450 data symbols. Decision-
directed adaptation was employed during data
transmission, in which the adaptive beamforming
detector’s decision ŝdðkÞ was used to substitute for
sdðkÞ. The SER of an adaptive beamforming
detector was calculated using the 450 data symbols
of the frame based on Monte Carlo simulation
averaging over at least 2� 105 frames, depending
on the value of f̄ D.

Given the minimum angular separation y ¼ 27�,
Fig. 19 compares the SER of the adaptive LSER
beamformer with that of the LMS-based one, for
the two normalised Doppler frequencies f̄ D ¼ 10�4

and 10�3. It can be seen from Fig. 19 that the SER
performance of the adaptive LSER beamformer
degraded only slightly when the fading rate in-
creased from f̄ D ¼ 10�4 to 10�3. This demonstrates
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Fig. 18. Comparison of the true symbol error rate and its upper

bound for the non-fading system employing the three-element

array with a minimum angular separation of y ¼ 30� to support

four equal-power 16-QAM users.
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Fig. 19. Desired user’s symbol error rate performance compar-

ison for the fading systems of the two normalised Doppler

frequencies f̄ D ¼ 10�4 and 10�3 employing the three-element

array with a minimum angular separation of y ¼ 27� to support

four 64-QAM users. The LMS algorithm has a step size

m ¼ 0:0002, while the LSER algorithm has a step size m ¼
0:00005 and a kernel width rn ¼ 4sn.
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that the LSER algorithm has an excellent tracking
ability, capable of operating in fast fading condi-
tions. The influence of the adaptive algorithm’s
parameters, the step size m for the LMS algorithm,
and the step size m and kernel width rn for the LSER
algorithm, were next investigated. Given f̄ D ¼ 10�4,
Fig. 20(a) shows the influence of the adaptive

algorithm’s parameters, m for the LMS algorithm,
and m and rn for the LSER algorithm, on the SER
performance for a low average SNR value of 15 dB5,
while Fig. 20(b) depicts the results for a high
average SNR value of 30 dB. These results also
explain why m ¼ 0:0002 for the LMS algorithm and
m ¼ 0:00005 and rn ¼ 4sn for the LSER algorithm
were used in the simulation of Fig. 19.

5. Extension to nonlinear filtering

Our discussion so far restricts to the linear filter
model (3), which is most widely used in various
communication applications. For notational simpli-
city in this section we again concentrate on the
BPSK modulation scheme (2). For the linear filter
(3) to work satisfactorily, an implicit assumption is
that the two complex-valued vector subsets, Xð�Þ,
corresponding to the two values of sd ðkÞ, are linearly
separable. That is, there exists a weight vector w

such that the two real-valued scalar subsets, Y
ðþÞ

R

and Y
ð�Þ

R , can completely be separated by the
decision threshold yR ¼ 0. Otherwise, nonlinear
filtering is required in order to achieve an adequate
performance. Examples of such nonlinear filtering
include nonlinear single-user channel equalisation
[89–101], nonlinear CDMA multiuser detection
[102], nonlinear beamforming assisted detection
[103–106], and nonlinear space-time equalisation
[107]. Let us consider the generic nonlinear filter of
the form

yRðkÞ ¼ f ðxðkÞ;wÞ, (77)

where f ð	; 	Þ is a real-valued nonlinear mapping,
and the parameter vector w contains all the
adjustable parameters of the nonlinear filter. Such
a nonlinear filter for example may be realised by a
neural network. The real-valued filter output yRðkÞ

is used to estimate the desired data symbol sd ðkÞ

according to the decision rule (4).

5.1. Nonlinear LMS error filtering

Most of the training algorithms for the nonlinear
filter (77) adopt the nonlinear MSE criterion

JðwÞ ¼ E½jsdðkÞ � f ðxðkÞ;wÞj2�. (78)

In particular, adaptive training of the nonlinear
filter can be carried out using an extension of the
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Fig. 20. Influence of the adaptive algorithm’s parameters to the

SER performance for the fading system of the normalised

Doppler frequency f̄ D ¼ 10�4 employing the three-element array

with a minimum angular separation of y ¼ 27� to support four

64-QAM users: (a) average SNR ¼ 15 dB, and (b) average

SNR ¼ 30 dB.

5Note that this was a 64-QAM system, and a SNR of 15 dB was

relatively small.
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LMS approach, which we refer to as the nonlinear
LMS (NLMS) algorithm. The NLMS algorithm
takes the following simple form

yRðkÞ ¼ f ðxðkÞ; ~wðk � 1ÞÞ;

~wðkÞ ¼ ~wðk � 1Þ þ mðsdðkÞ

�yRðkÞÞ
qf ðxðkÞ; ~wðk � 1ÞÞ

qw
;

8>>><
>>>:

(79)

where m is the step size. However, for communica-
tion applications, this nonlinear MMSE (NMMSE)
approach generally leads to a suboptimal perfor-
mance, in terms of the achievable system’s BER.
In fact, it is easy to see that multiplying the
output of the nonlinear filter (77) by a positive
scalar will change its MSE value JðwÞ but not its
BER.

5.2. Nonlinear least BER filtering

It is highly desired for communication applica-
tions to directly minimise the BER of the nonlinear
filter (77). Let us define the following signed
decision variable

ysðkÞ ¼ sgnðsdðkÞÞyRðkÞ (80)

and denote the PDF of ysðkÞ as psðysÞ. Then the
error probability or BER of the nonlinear filter (77)
is given by

PEðwÞ ¼ ProbfysðkÞo0g ¼

Z 0

�1

psðysÞdys. (81)

The nonlinear MBER (NMBER) solution for the
filter’s parameter vector w is defined as

wNMBER ¼ argmin
w

PEðwÞ. (82)

The problem associated with this approach is that
the PDF of ysðkÞ is generally unknown. However, it
may be sufficiently accurately estimated using the
Parzen window method [77–79]. Given a block of
training data fsdðkÞ;xðkÞg

K
k¼1, a Parzen window

estimate of psðysÞ is readily given as

~psðysÞ ¼
1

K
ffiffiffiffiffiffi
2p
p

rn

XK

k¼1

e�ðys�sgnðsd ðkÞÞyRðkÞÞ
2=2r2n , (83)

where r2n is the chosen kernel variance. With this
estimated PDF, the estimated or approximate BER
for the nonlinear filter (77) is given by

~PEðwÞ ¼

Z 0

�1

~psðysÞdys ¼
1

K

XK

k¼1

Qð ~gkðwÞÞ, (84)

with

~gkðwÞ ¼
sgnðsdðkÞÞyRðkÞ

rn

. (85)

An approximate NMBER solution for w can be
obtained by minimising ~PEðwÞ using a gradient-
based optimisation algorithm.

In particular, consider a single-sample PDF
‘‘estimate’’ of psðysÞ given by

~psðys; kÞ ¼
1ffiffiffiffiffiffi
2p
p

rn

e�ðys�sgnðsd ðkÞÞyRðkÞÞ
2=2r2n . (86)

With this instantaneous PDF ‘‘estimate’’, we have a
single-sample or instantaneous BER ‘‘estimate’’
~PEðw; kÞ ¼ Qð ~gkðwÞÞ. Using the instantaneous gra-
dient of

r ~PEðw; kÞ ¼�
1ffiffiffiffiffiffi
2p
p

rn

e�y2
R
ðkÞ=2r2nsgnðsdðkÞÞ

qf ðxðkÞ;wÞ

qw

(87)

gives rise to the following stochastic adaptive
algorithm:

yRðkÞ ¼ f ðxðkÞ; ~wðk � 1ÞÞ;

~wðkÞ ¼ ~wðk � 1Þ þ
mffiffiffiffiffiffi
2p
p

rn

e�y2
R
ðkÞ=2r2n

�sgnðsdðkÞÞ
qf ðxðkÞ; ~wðk � 1ÞÞ

qw
;

8>>>>><
>>>>>:

(88)

which we refer to as the nonlinear LBER (NLBER)
algorithm. The step size m and kernel variance
r2n should be chosen appropriately to achieve a
desired convergence performance, both in terms
of convergence speed and steady-state BER mis-
adjustment.

5.3. Illustrative example

We will use the beamforming assisted receiver,
depicted in Fig. 3, as an example to illustrate the
above NLBER filtering. The optimal nonlinear
filtering for beamforming detection is known to be
the Bayesian detector [103–106], which requires
the complete knowledge of the underlying system
(1). The Bayesian beamforming detector has
an inherently odd symmetry property [105,106].
Thus, the optimal Bayesian solution is specified by
the complex-valued vector subset XðþÞ, which
contains Nsb states, and the distribution of the
noise nðkÞ.
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We consider the following radial basis function
(RBF) based nonlinear filter for beamforming

yRðkÞ ¼ f ðxðkÞ;wÞ ¼
XN̂sb

i¼1

aifiðxðkÞÞ, (89)

where ai is the ith real-valued RBF weight, fið	Þ

denotes the response of the ith RBF node, N̂sb is the
number of RBF nodes used, and w denotes the
vector of all the adjustable parameters of the RBF
filter. We adopt the following symmetric RBF node
[105,106]

fiðxÞ ¼ jðx; ci;s2i Þ � jðx;�ci; s2i Þ, (90)

where ci 2 CL is the ith complex-valued RBF centre,
s2i the ith real-valued and positive RBF variance,
and jð	Þ is the RBF function. The parameter vector
w of this symmetric RBF filter (89) therefore
consists of all the RBF weights ai, RBF centre
vectors ci as well as RBF variances s2i . In the
following simulation we adopt the Gaussian RBF
function of

jðx; ci;s2Þ ¼ e�kx�cik
2=s2 . (91)

Note that the RBF filter (89) with the node structure
defined in (90) has an inherently odd symmetry, just
as the optimal Bayesian solution [105,106]. For the
symmetric RBF filter (89) using the Gaussian
function (91), the derivatives of the RBF filter’s
output with respect to the RBF filter’s parameters
are given by

qf

qai

¼ e�kxðkÞ�cik
2=s2

i � e�kxðkÞþcik
2=s2

i ;

qf

qs2i
¼ ai e�kxðkÞ�cik

2=s2
i
kxðkÞ � cik

2

ðs2i Þ
2

 

�e�kxðkÞþcik
2=s2

i
kxðkÞ þ cik

2

ðs2i Þ
2

!
;

qf

qci

¼ ai e�kxðkÞ�cik
2=s2

i
xðkÞ � ci

s2i

�

þe�kxðkÞþcik
2=s2

i
xðkÞ þ ci

s2i

�
;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(92)

for 1pipN̂sb.
A two-element antenna array with half wave-

length spacing was designed to support four BPSK
signal sources. The users’ angular positions are
summarised in Table 3.The simulated narrowband
channels were Ai ¼ 1þ j0, 1pip4. The user one
was the desired user, and all the users had an equal
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Table 3

Locations of the users in terms of angle of arrival for the

simulated beamforming system that employs a two-element

antenna array to support four BPSK users
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Fig. 21. Desired user’s bit error rate comparison of three

beamforming designs for the two-element array system support-

ing four BPSK users as given in Table 3.
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Fig. 22. Learning curve of the NLBER RBF detector averaged

over 10 runs for the two-element antenna array supporting four

BPSK users at the angular positions of Table 3, where SNR ¼

7dB and the RBF detector has N̂sb ¼ 8 symmetric RBF nodes.
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power. Fig. 21 depicts the BER performance of both
the theoretical linear MBER (L-MBER) beamfor-
mer and the optimal nonlinear Bayesian detector for
the desired user. For this example, the size of the
Bayesian detector was specified by the number of
symmetric signal states Nsb ¼ 8.

The convergence performance of the NLBER
algorithm was first investigated. Given a SNR value
of 7 dB and a RBF filter size of N̂sb ¼ 8, Fig. 22
shows the learning curve of the NLBER algorithm
averaged over 10 independent simulation runs. The
step size and kernel variance of the NLBER
algorithm (88) were chosen to be m ¼ 0:4 and
r2n ¼ 10s2n. In fact, m in the range of 0.3–0.5 and
r2n in the range of 9s2n to 11s2n were found
empirically to be appropriate for this example.
The learning curve (dashed curve) was the estimated
BER ~PEð ~wðkÞÞ, calculated using Eq. (84) for each
~wðkÞ in conjunction with a block size of K ¼ 400
and a kernel variance of ~r2n ¼ s2n. Note that ~r2n was
not the kernel variance of the NLBER algorithm
and was only used to approximate the BER. In
order to check that the estimated BER ~PEð ~wðkÞÞ gave
the correct convergence trend, we also calculated
the true BER PEð ~wðkÞÞ using Monte Carlo simula-
tion for a number of points, shown in Fig. 22 by the
triangles. The results of Fig. 22 confirm that the
estimated BER correctly indicated the convergence
trend.

The influence of the number of RBF centres N̂sb

on the performance of the NLBER-based sym-
metric RBF detector was studied next. Given

SNR ¼ 7 dB, Fig. 23 illustrates the performance of
the NLBER-based detector as a function of the
number of RBF centres N̂sb. It can be seen from
Fig. 23 that for N̂sbXNsb the symmetric RBF
detector trained by the stochastic NLBER algo-
rithm becomes capable of closely approaching the
optimal Bayesian performance. It is also interesting
to observe in Fig. 23 that using a single symmetric
RBF node the RBF detector achieves the same
performance as the L-MBER solution, since the
RBF detector of a single symmetric RBF node is
only capable of constructing a linear decision
boundary. For each SNR value, the BER perfor-
mance of the NLBER-based symmetric RBF
detector having N̂sb ¼ 8 RBF nodes is depicted in
Fig. 21, in comparison to the optimal Bayesian
performance.

6. Conclusions

A unified framework has been presented for the
adaptive linear filtering design based on directly
minimising the system’s BER. Our motivation has
been the well-known fact that the traditional Wiener
design is far from optimal for applications in
various communication systems. The MMSE filter-
ing corresponds to the MBER solution only if the
conditional PDF of the filter’s output is Gaussian
distributed. Since this conditional PDF is generally
a mixture of Gaussian distributions, and hence non-
Gaussian, the MMSE solution does not achieve the
MBER performance. It has been demonstrated that
the MBER design is more intelligent and it better
exploits the non-Gaussian nature of the filter’s
output, leading to significant performance enhance-
ment, in terms of better combating hostile multipath
propagation environments and better suppressing
multiple access interference as well as achieving
higher system throughput or user capacity. Inter-
esting analogy has been drawn between the tradi-
tional adaptive filtering approach based on the
MMSE criterion and the adaptive MBER filtering
approach. In particular, adaptive implementation of
the MBER filtering design has been proposed based
on a stochastic-gradient algorithm referred to as the
LBER method. Extension to adaptive MSER
filtering has also been presented, which is suitable
for communication systems that employ high
throughput QAM modulation schemes. Finally, a
novel nonlinear adaptive MBER filtering approach
has been proposed for BPSK communication
systems.
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