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In the paper, a new method is proposed for the design of variable fractional-order (VFO)

FIR differintegrators. Comparing with the existing methods, the elements of relevant

matrices can be determined just by the given specification, which makes the method

easier. An iterative technique is also incorporated to adjust the weighting function, such

that the peak absolute error of variable frequency response can be reduced drastically.

Several design examples, including a VFO differintegrator, two VFO differentiators and a

VFO integrator, are presented to demonstrate the effectiveness and flexibility of the

proposed method.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Fractional calculus, which deals with derivatives and
integrals of arbitrary order [1–4], is an important topic in
mathematical analysis. The theory of fractional-order
derivatives and integrals was developed in the seven-
teenth century. However, just during the last three
decades, the concept of fractional calculus has been
investigated in different areas of engineering applications
such as electromagnetic theory, fluid flow, automatic
control, electrical networks and signal processing [5–10].

Recently, several methods have been developed to
design digital fractional-order differentiators and integra-
tors including filtering technique, discretization method,
frequency-domain approximation, fractional sample delay
technique and factorization process [11–19]. Also, there is
a branch of trend concerns the design of variable digital
ll rights reserved.
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filters which are applied to where the frequency char-
acteristics need to be adjustable. The variable digital
filters are generally classified into two categories. One is
the filters with adjustable magnitude response such as the
filters with variable cut-off frequencies and the variable
fractional-order (VFO) differentiators [20–24]. The other is
the filters with variable fractional-delay response [25–29]
which are used in music instrument modeling, sampling
rate conversion, discrete time signal interpolation and
time delay estimation.

In the paper, an iterative method is proposed for the
design of VFO FIR differintegrators. The method is
originally used to design 2-D FIR digital filters in least-
squares sense, including quadrantally symmetric/anti-
symmetric 2-D FIR filters and complex coefficient 2-D
filters [30–32]. However, in the paper we do not intend to
derive the closed forms as in [30–32], and the method is
modified by incorporating weighting functions such that
it can design VFO FIR differintegrators in weighted-least-
squares sense. Moreover, by applying proper iterative
technique [33], the peak absolute error of variable
frequency response can be reduced drastically. Comparing
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with the existing methods [21,22], the values of relevant
matrices can be obtained just from the given specification,
also there is no need of closed-form formulation as
the design of variable fractional-delay filters [28,29]. The
paper is organized as follows. Section 2 deals with the
problem formulation, in which the used transfer function
is characterized such that the Farrow structure [26] can be
applied. To demonstrate the effectiveness of the proposed
method, several examples, including a VFO differintegra-
tor, two pure VFO differentiators and a pure VFO
integrator, are given in Section 3, in which the weighting
function is adjusted by an iterative technique such that
the peak absolute error of variable frequency response can
be reduced as much as possible. Finally, the conclusions
are given in Section 4.
2. Problem formulation

For designing a VFO differintegrator, the desired
response is given by

Dðo; pÞ ¼ e�jIoðjoÞp; psppppf ; ospjojpof , (1)

where I is a prescribed delay and p is the variable order of
the designed differintegrator. If a pure VFO differentiator
is designed, psX0 and osX0, while pfp0 and os40 for
designing a pure VFO integrator, and pso0opf, os40 for
the VFO differintegrator design. Let

D̂ðo; pÞ ¼ ðjoÞp

¼ jojp cos
pp
2

� �
þ j sgnðoÞ sin

pp
2

� �h i
, (2)

where sgn( � ) is a sign function, then Eq. (1) can be
represented by

Dðo; pÞ ¼ e�jIoD̂ðo; pÞ. (3)

For approximating the desired response, the used transfer
function is characterized by

Hðz; pÞ ¼
XN

n¼0

hnðpÞz
�n, (4)

where the coefficients hn(p) are expressed as the poly-
nomials of p

hnðpÞ ¼
XM
m¼0

hðn;mÞpm, (5)

hence Eq. (4) becomes

Hðz; pÞ ¼
XN

n¼0

XM
m¼0

hðn;mÞpmz�n. (6)

For simplicity, only even N is used in this section and the
case for odd N will be given in Section 3. According to the
symmetric and antisymmetric characteristics for the real
part and imaginary part of (2), respectively, with respec-
tive to o, the coefficients h(n,m) in (6) are divided into
even part and odd part by

hðn;mÞ ¼ heðn;mÞ þ hoðn;mÞ, (7)
where

he
N

2
þ n;m

� �
¼

1

2
h

N

2
þ n;m

� �
þ h

N

2
� n;m

� �� �
,

�
N

2
pnp

N

2
; 0pmpM (8a)

and

ho
N

2
þ n;m

� �
¼

1

2
h

N

2
þ n;m

� �
� h

N

2
� n;m

� �� �
,

�
N

2
pnp

N

2
; 0pmpM. (8b)

So, the frequency response of the designed filter can be
formulated into

Hðejo; pÞ ¼ e�jðN=2Þo
XN=2

n¼0

XM
m¼0

aðn;mÞpm cosðnoÞ
"

þj
XN=2

n¼1

XM
m¼0

bðn;mÞpm sinðnoÞ
#

¼ e�jðN=2ÞoĤðo; pÞ, (9)

where

aðn;mÞ ¼

he
N

2
;m

� �
; n ¼ 0; 0pmpM;

2he
N

2
� n;m

� �
; 1pnp

N

2
; 0pmpM;

8>>><
>>>:

(10a)

bðn;mÞ ¼ 2ho
N

2
� n;m

� �
; 1pnp

N

2
; 0pmpM (10b)

and

Ĥðo; pÞ ¼
XN=2

n¼0

XM
m¼0

aðn;mÞpm cosðnoÞ

þ j
XN=2

n¼1

XM
m¼0

bðn;mÞpm sinðnoÞ. (11)

Obviously, I ¼ N/2 in (1) and (3).
Let A and B be ðN=2þ 1Þ � ðM þ 1Þ and N=2� ðM þ 1Þ

matrices defined by

A ¼ aðn;mÞ; 0pnp
N

2
; 0pmpM

� �
(12a)

and

B ¼ bðn;mÞ; 1pnp
N

2
; 0pmpM

� �
, (12b)

respectively; the following objective error function is used
in the paper:

eðA;BÞ ¼
XKo

i¼0

XKp

l¼0

WðoiÞjDðoi; plÞ � Hðejoi ; plÞj
2

¼
XKo

i¼0

XKp

l¼0

WðoiÞjD̂ðoi; plÞ � Ĥðoi; plÞj
2,

oi ¼ os þ
iðof �osÞ

Ko
; pl ¼ ps þ

lðpf � psÞ

Kp
, (13)

where a (Ko+1)� (Kp+1) grid is chosen for the error
evaluation, and W(o) is a positive weighting function. In
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the paper, Ko ¼ Kp ¼ 200 is used. By Pythagorean law,

eðA;BÞ

¼
XKo

i¼0

XKp

l¼0

WðoiÞ o
pl

i cos
plp
2

� �
�
XN=2

n¼0

XM
m¼0

aðn;mÞpm
l cosðnoiÞ

" #2

þ
XKo

i¼0

XKp

l¼0

WðoiÞ o
pl

i sin
plp
2

� �
�
XN=2

n¼1

XM
m¼0

bðn;mÞpm
l

"
.

� sinðnoiÞ

#2

.

(14)

Eq. (14) can be expressed in matrix form as

eðA;BÞ ¼ tr½ðDA � CAPT
Þ
T
ðDA � CAPT

Þ�

þ tr½ðDB � SBPT
Þ
T
ðDB � SBPT

Þ�

¼ eðAÞ þ eðBÞ, (15)

where tr( � ) denotes a trace operator, the superscript T
denotes a transpose operator,

DA ¼ W1=2
ðoiÞo

pl

i cos
plp
2

� �
; 0pipKo; 0plpKp

h i
, (16a)

DB ¼ W1=2
ðoiÞo

pl

i sin
plp
2

� �
; 0pipKo; 0plpKp

h i
, (16b)

C ¼ W1=2
ðoiÞ cosðnoiÞ; 0pipKo; 0pnp

N

2

� �
, (16c)

S ¼ W1=2
ðoiÞ sinðnoiÞ; 0pipKo; 1pnp

N

2

� �
, (16d)

P ¼ ½pm
l ; 0plpKp; 0pmpM� (16e)

and

eðAÞ ¼ tr½ðDA � CAPT
Þ
T
ðDA � CAPT

Þ�

¼ tr½DT
ADA �DT

ACAPT
� ðCAPT

Þ
TDA þ ðCAPT

Þ
T
ðCAPT

Þ�,

(17)

eðBÞ ¼ tr½ðDB � SBPT
Þ
T
ðDB � SBPT

Þ�

¼ tr½DT
BDB � DT

BSBPT
� ðSBPT

Þ
TDB þ ðSBPT

Þ
T
ðSBPT

Þ�.

(18)

Differentiating e(A,B) with respect to A [35],

qeðA;BÞ

qA
¼

qeðAÞ

qA
¼ �ðDT

ACÞTðPT
Þ
T
� CTDAP

þ ðPATCTCÞTðPT
Þ
T
þ CTCAPTP, (19)

which is then set to zero, and the coefficient matrix A can
be obtained as

A ¼ ðCTCÞ�1CTDAPðPTPÞ�1. (20)

Similarly, the coefficient matrix B can be achieved by
differentiating e(A,B) with respect to B and setting the
result to zero, which yields

B ¼ ðSTSÞ�1STDBPðPTPÞ�1. (21)

Notice that the weighting function W(o) has been
incorporated in the relevant matrices, so that the peak
absolute error of variable frequency response can be
reduced by a proper iterative method, which will be
shown in Section 3.

3. Numerical examples and discussions

To demonstrate the effectiveness and flexibility of the
proposed method, several examples including a VFO
differintegrator, two pure VFO differentiators and a pure
VFO integrator are presented in this section. To evaluate
the performance, the normalized root-mean-squared error
of variable frequency response and the maximum abso-
lute error of variable frequency response are defined by

�rms ¼

R pf

ps

Rof

os
jDðo; pÞ � Hðejo; pÞj2 dodpR pf

ps

Rof

os
jDðo; pÞj2 dodp

" #1=2

� 100%

(22a)

and

�m ¼maxfjDðo; pÞ � Hðejo;pÞj; ospopop; psppppf g,

(22b)

respectively. To compute the error erms, the general
trapezoidal rule is used [34] with step sizes (of�os)/200
and (pf�ps)/200 for o-axis and p-axis, respectively. Also,
the error em is computed with the same sampling sizes as
above.

Example 1. This example deals with the least-squares
design of a VFO differintegrator with N ¼ 40, M ¼ 5,
os ¼ (0.05)p, of ¼ (0.95)p, ps ¼ �0.5, pf ¼ 0.5 and
W(o) ¼ 1. Fig. 1(a) and (b) present the obtained magni-
tude response and the absolute error of variable frequency
response, respectively, and the errors ermsE0.60277728%
and em ¼ 0.1369375.

It is noted that the phase difference between o ¼ p and

o ¼ �p is pp, which is not an integer multiple of 2p for all

p in the range [ps, pf], so it is not recommended to set

of ¼ p. However, for comparing with the results of [22],

the differintegrator is designed again with os ¼ (0.01)p,

of ¼ p. If the computation of integration in [22] is

implemented by using the trapezoidal rule with step sizes

(of�os)/200 and (pf�ps)/200 for o-axis and p-axis,

respectively, both the method of [22] and the pro-

posed method induce the exactly same results:

ermsE10.01497046% and em ¼ 3.11763459.

Example 2. For designing a pure VFO differentiator,
0ppsopf. For example, a VFO differentiator is designed
with N ¼ 30, M ¼ 6, os ¼ 0, of ¼ 0.9p, ps ¼ 1, pf ¼ 2 and
W(o) ¼ 1, the variable magnitude response and the
absolute error of variable frequency response are shown
in Fig. 2(a) and (b), respectively, and the errors
ermsE0.166372% and em ¼ 0.03382684 which are better
than ermsE1.17212338% and em ¼ 0.11866149 obtained
with the method of [22] where the ill-conditioned
problem will occur for the relevant matrix.

To further reduce the maximum absolute error of
variable frequency response, em, the iterative method in
[32,33] is modified and applied as follows. Before
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Fig. 1. Design of a VFO differintegrator with N ¼ 40, M ¼ 5, os ¼ (0.05)p,

of ¼ (0.95)p, ps ¼ �0.5 and pf ¼ 0.5. (a) Variable magnitude response.

(b) Absolute error of variable frequency response.
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describing the modified algorithm, some notations are
defined as below:

E(o,p): the absolute error function defined by
E(o,p) ¼ |D(o,p)�H(ejo,p)|,

pm: the variable p where the maximum of E(o,p)
occurs for the first iteration,
gi: the ith absolute error ripple of E(o,pm) with ripple
interval ðôi�1; ôi� (except that the first ripple interval is
½os; ô1�),
d: max{gi},
r: min{gi}.

The proposed iterative method is described in detail as
below.

Step 1: Initiate the weighting function

WðoÞ ¼ 1; ospopof . (23)

Step 2: Find the coefficient matrices A and B by (20) and
(21), respectively.

Step 3: Find pm for the first iteration only, and search
for gi, d and r for all iterations.

Step 4: Check whether the error E(o,pm) is nearly
equiripple by

dr ¼
d� r
d

p�, (24)
where dr is the relative peak error ratio and e is a
preassigned very small positive constant. If the condition
is satisfied, stop the process; otherwise go to the next step.

Step 5: Compute the unnormalized weighting function

ŴðoÞ ¼
WðoÞg2

i ; i ¼ 1; ospopô1

WðoÞg2
i ; 2pipÎ; ôi�1oopôi

(
, (25)

where Î is the number of ripples in [os,of], and find its
maximum value

dW ¼ maxfŴðoÞ; ospopof g. (26)

Then update the weighting function by

WðoÞ ¼ ŴðoÞ
dW

; ospopof (27)

and go to Step 2.
For example, if the specification of the designed VFO

differentiator is the same as that stated above, and
e ¼ 0.01 is used, the design takes seven iterations; the
absolute error of variable frequency responses is shown in
Fig. 2(c) and ermsE0.27842619%, em ¼ 0.01215898. To
clearly show the difference between the results of the
first and the seventh iterations, the error curves E(o,pm)
are illustrated in Fig. 2(d). Also, the final weighting
function is illustrated in Fig. 2(e).

Example 3. A pure VFO integrator is designed with
N ¼ 60, M ¼ 6, os ¼ (0.05)p, of ¼ (0.9)p, ps ¼ �1.5, and
pf ¼ �0.5 in this example. First, a least-squares design is
presented, and the variable magnitude response and the
absolute error of variable frequency response are shown in
Fig. 3(a) and (b), respectively, where ermsE1.3779794%
and em ¼ 0.33681498. By using the method in [22], it
yields ermsE3.29702665% and em ¼ 0.34745782, which
shows that the proposed method is better for the design.
Also, the iterative method shown in Example 2 can be
applied here; the absolute error of variable frequency
response after five iterations is shown in Fig. 3(c) if
e ¼ 0.01 is used where ermsE3.05425137% and
em ¼ 0.13889478 and the error curves E(o,pm) in the first
and last iterations are presented in Fig. 3(d).

Example 4. As to the design for odd N, the transfer
function becomes

Hðz; pÞ ¼
XN

n¼0

XM
m¼0

hðn;mÞpmz�n

¼
XM
m¼0

XN

n¼0

½heðn;mÞ þ hoðn;mÞ�z
�n

( )
pm; (28)

where

he
N þ 1

2
� n;m

� �
¼ he

N � 1

2
þ n;m

� �

¼
1

2
h

N þ 1

2
� n;m

� �
þ h

N � 1

2
þ n;m

� �� �
,

1pnp
N þ 1

2
; 0pmpM

(29a)
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Fig. 2. Design of a VFO differentiator with N ¼ 30, M ¼ 6, os ¼ 0, of ¼ (0.9)p, ps ¼ 1 and pf ¼ 2. (a) Variable magnitude response. (b) Absolute error of

variable frequency response (least-squares design). (c) Absolute error of variable frequency response (iterative design). (d) Absolute errors E(o,pm) (solid

line: first iteration, dotted line: seventh iteration). (e) Final weighting function.
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and

ho
N þ 1

2
� n;m

� �
¼ �ho

N � 1

2
þ n;m

� �

¼
1

2
h

N þ 1

2
� n;m

� �
� h

N � 1

2
þ n;m

� �� �
,

1pnp
N þ 1

2
; 0pmpM,

(29b)

and its frequency response can be formulated into

Hðejo; pÞ ¼ e�jðN=2Þo
XðNþ1Þ=2

n¼1

XM
m¼0

aðn;mÞpm cos n�
1

2

� �
o

� �"

þj
XðNþ1Þ=2

n¼1

XM
m¼0

bðn;mÞpm sin n�
1

2

� �
o

� �#
, (30)
where

aðn;mÞ ¼ 2he
N þ 1

2
� n;m

� �
; 1pnp

N þ 1

2
; 0pmpM

(31a)

and

bðn;mÞ ¼ 2ho
N þ 1

2
� n;m

� �
; 1pnp

N þ 1

2
; 0pmpM.

(31b)

So the technique described in Section 2 can also be
applied to design VFO FIR differintegrators with odd N. For
example, when N ¼ 31, M ¼ 6, os ¼ 0, of ¼ 0.9p, ps ¼ 1,
pf ¼ 2 and W(o) ¼ 1, the absolute error of variable
frequency response is shown in Fig. 4(a), and
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Fig. 3. Design of a VFO integrator with N ¼ 60, M ¼ 6, os ¼ (0.05)p, of ¼ (0.9)p, ps ¼ �1.5 and pf ¼ �0.5. (a) Variable magnitude response. (b) Absolute

error of variable frequency response (least-squares design). (c) Absolute error of variable frequency response (iterative design). (d) Absolute error E(o,pm)

(solid line: first iteration, dotted line: fifth iteration).

Fig. 4. Design of a VFO differentiator with N ¼ 31, M ¼ 6, os ¼ 0, of ¼ (0.9)p, ps ¼ 1 and pf ¼ 2. (a) Absolute error of variable frequency response (least-

squares design). (b) Absolute error of variable frequency response (iterative design).
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ermsE0.21197558%, em ¼ 0.06927072 which are also smal-
ler than those obtained with the method of [22] where
ermsE1.16104267% and em ¼ 0.16102323. Also, if the
iterative process in Example 2 is applied here with
e ¼ 0.01, the process stops after the ninth iteration and
the absolute error of variable frequency response is
presented in Fig. 4(b) where ermsE0.36685739% and
em ¼ 0.02494169.

Basing on the presented examples above, there are

some issues which can be further discussed.
a.
 During the iterative process, the relative peak
error ratio dr will reduce gradually, and the
process can stop when it is small enough which
means the specified error curve is almost equi-
ripple. For example, the trace of the relative peak
error ratio in Example 3 is illustrated in Fig. 5 in
which the ratio reduces to 0.00142864 in the
eighth iteration and then varies between 0.001 and
0.002.
b.
 Comparing with the existing weighted-least-squares
approach such as the method in [22] which is also
widely used to design variable fractional-delay FIR
digital filters, the proposed method generally can get
better results for the design of pure VFO differentiators
and pure VFO integrators as shown in Examples 2–4
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Fig. 5. Trace of the relative peak error ratio in Example 3.
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due to the ill-conditioned problem may occur for the
former method.
c.
 Generally, a 2-D weighting function W(o1,o2) can be
used for the weighted-least-squares design of 2-D
digital filters. But for the design of VFO differintegra-
tors, there is no an explicit way so far to find a
proper 2-D weighting function W(o,p) to adjust
effectively the related error, especially for the p-axis.
The analogous case also occurs for the design of
variable fractional-delay FIR filters [28]. From several
experiments, when the weighting function is updated
dependent on the parameter p as well as o. It gene-
rally does not yield better result. So, we only use the
1-D weighting function in the paper. Although the
minimax design for all p cannot be obtained, but
the peak absolute error of variable frequency res-
ponse has been minimized effectively as shown in
Examples 2–4.
d.
 In the paper, a (Ko+1)� (Kp+1) ¼ 201�201 grid is used
for the error evaluation in (13) and the obtained
results are satisfactory throughout our experiments.
Although higher density of grid points can be used, but
it does not guarantee a better result. For example,
when Ko ¼ 400 is used in Example 3, the design
stops after nine iterations and ermsE3.08547182%,
em ¼ 0.14133676 which are not so good as the results
in Example 3.

4. Conclusions

In the paper, a new method has been proposed for the
design of VFO FIR differintegrators in weighted-least-
squares sense. Also, an iterative method is presented, so
that the weighting function can be adjusted and the peak
absolute error of variable frequency response can be
reduced as much as possible. Several experiments show
that the convergence of the iterative process is satisfac-
tory. To demonstrate the effectiveness of the proposed
method, several design examples, including a VFO
differintegrator, two pure VFO differentiators and a pure
VFO integrator, are presented. Obviously, the method
can also be extended for the design of other variable
digital filters.
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