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Adaptive Reduced-Rank LCMV Beamforming Algorithms Based omtJoi
Iterative Optimization of Filters: Design and Analysis

R. C. de Lamare, L. Wang and R. Fa

Abstract—This  paper presents reduced-rank linearly properties of adaptive filters depend on the number of sensor
constrained  minimum  variance  (LCMV) beamforming elements\/ [3] and on the eigenvalue spread of the input data

algorithms based on joint iterative optimization of filters. .4y ariance matrix. Given this dependency on the number of
The proposed reduced-rank scheme is based on a constrained | ta/ it is thus intuitive t ducel/ whil
joint iterative optimization of filters according to the minimum Sensor elements4, 1t 1S thus intuiive to reduc while

variance criterion. The proposed optimization procedure ajusts Simultaneously extracting the key features of the original
the parameters of a projection matrix and an adaptive reduce- signal via an appropriate transformation.

rank filter that operates at the output of the bank of filters. A cost-effective technique in short-data record scenarios
We describe LCMV expressions for the design of the projectio and, in particular, with systems containing a large number

matrix and the reduced-rank filter. We then describe stochasc f ¢ . duced K si | . The ad
gradient and develop recursive least-squares adaptive algthms Of parameters 1S reduced-rank signal processing. fhe advan

for their efficient implementation along with automatic rank tages are their superior convergence properties and eathanc
selection techniques. An analysis of the stability and the tracking performance when compared with full-rank schemes

convergence properties of the proposed algorithms is preseed operating with a large number of parameters, and theirtabili
and semi-analytical expressions are derived for predictig 14 exploit the low-rank nature of the signals encountered in

their mean squared error (MSE) performance. Simulations fo . L
a beamforming application show that the proposed scheme beamforming applications. Several reduced-rank methads h

and algorithms outperform in convergence and tracking the been proposed to generate the signal subspace [8]-[17}: The
existing full-rank and reduced-rank algorithms while requiring  range from computationally expensive eigen-decompasitio

comparable complexity. techniques [[10]5[12] to alternative approaches such as the
auxiliary-vector filter (AVF) [13][14], [19], the multistge
Wiener filter (MSWF) [14], [[15], [[17], [[18] which are based
on the Krylov subspace, and joint optimization approaches
[16], [20]. Despite the improved convergence and tracking
|. INTRODUCTION performance achieved with Krylov methods [18][15], [[17]-

In recent years, adaptive beamforming techniques h lg] they are relatively complex to implement and can suffer

attracted considerable interest and found applicatiomadar, rom ”‘jj'”f‘epl‘jf’" [pzrgblems. fThe ]ﬁ'm _opurrgzatlon tet_:f_;l:gue
wireless communications and sonai [1]] [2]. The adapti\;gporte in[[16],12D] outperform the eigen-decomposit

beamforming techniques are used in systems equipped W) lov-based methods and are amenable to efficient adaptive

antenna arrays and usually have a trade-off between perfgpplementatlons. However, the design and 5!”?"3’3'5 (.)f adﬁpt
mance and computational complexity which depends on t MV reduced-rank algorithms .based on joint optimization
designer’s choice of the adaptation algorittim [3], [7],. [Bhe apprr]gachei have not begn consd|der(3d sokfarl. ithms based
optimal linearly constrained minimum variance (LCMV) This WOrK propps_esl__ M\./ reduced-ran agorlt_ms ase
beamformer is designed in such a way that it attempts oy constrained joint |te_rat|ve optimization of filters for
minimize the array output power while maintaining a conStaﬁ‘r_‘t_enna'a”ay beamformmg_. T‘he p‘ropo_sej\d SChe_m?' whose
response in the direction of a signal of interest (Sal) [2], [ |n|t|gl r_esults were reported in_[21]. [‘2.2]’ jointly optiaes a

[3]. However, this technique requires the computation &f gproection matrix .and_ a reduged-rank filter that operatebat
inverse of the input data covariance matrix and the knowded utput of t_he projection matrix. The essence of th‘? proposed
of the cross-correlation vector, rendering the method ve proach is to change the role of adaptive LCMV filters. The

complex for practical applications when the system is larg ank of adaptive filters is responsible for performing dimen

Adaptive versions of the LCMV beamformer were Subs(?!s_ionality reduction, whereas the reduced-rank filter ¢ffety

quently reported with stochastic gradient (SG) [4], [5]] [67°"™S the beam in the direction of the Sol. We describe LCMV
and recursive least squares (RLS) [9], [5] algorithms. expressions for the design of the projection matrix and the

These algorithms require estimates of the input data covd duced-rank filter and present SG and RLS algorithms for

ance matrix, which is a task that may become challengir‘? iciently impleme_nting the me_zthod. We also_ introduce an

in large systems and in highly dynamic situations such tomatic rank estimation algorithm for.determlnlng thesnjo

those found in wireless communications and radar applic c_iequatg. rank for the proposed algorlthms. An analysis of

tions. This is because the convergence speed and trac s.tab|l|ty. and the convergence_properges of the prapose
algorithms is presented and semi-analytical expressioas a
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Section IV is dedicated to the proposed method, where@sluction. This mapping is carried out byl& x D projection
Section V is devoted to the derivation of the adaptive SG amckatrix Sp on the received data as given by

RLS algorithms and the rank adaptation technique. Section V o I

focuses on the analysis of the proposed algorithms. Se¢tion (i) = Spr(i) (6)
presents and discusses the simulation results and Seditibn

gives the concluding remarks \v/vhere, in what follows, allD-dimensional quantities are

denoted with a "bar”. The resulting projected received oect
r(i) is the input to a filter represented by the vector

II. SysTEM MODEL w = [w, Wy ... wp]T. The filter output is
Let us consider a smart antenna system equipped with a

uniform linear array (ULA) ofM elements, as shown in Fig. 2(i) = w7 (i) )
1. Assuming that the sources are in the far field of the arr
the signals of K narrowband sources impinge on the arr
(K < M) with unknown directions of arrival (DOAY, for

;[X’ order to design the reduced-rank filter we consider the
yollowing optimization problem

I=12... K. o minimize E[|w"#(i)]*] = w"” Rw @©
The input data from the antenna array can be organized in subject tow" a(6y) = 1
an M x 1 vector expressed by
r(i) = A(0)s(i) + n(i) (1) The solution to the above problem is
5—1_
where Wopt = E_a E?k) 9)
A(0) = [a(6r),...,a(0Kk)] a’(0,)R “a(0)

is the M x K matrix of signal steering vectors. The x 1 where the reduced-rank covariance matrix B =
signal steering vector is defined as E[#(i)7" (i)] = SBRSp and the reduced-rank steering vec-

Corids eos oM e s, 1T tor is a(0x) = Sha(fy). The associated minimum variance
a() = |1,e ?xe st oM "l} (2) (MV) for a LCMV filter with rank D is

for a signal impinging at anglé, ! = 1,2, ..., K, whereds; = MV — 1

Ac/2 is the inter-element spacing,. is the wavelength and o a(@k)HSD(SgRSD)—lsga(Hk)
(.)* denotes the transpose operation. The ver{@) denotes ) ,
the complex vector of sensor noise, which is assumed to hgé above development shows that the main problem is

zero-mean and Gaussian with covariance matfig. how to cost-effectively desig¥p to perform dimensionality
reduction onw(i), resulting in improved convergence and

I1l. PROBLEM STATEMENT tracking performance over the fuII-r_ankfiIter. In_t_he Appleq
In thi . f late th bl £ full K we provide a necessary and sufficient condition 835 to
n this section, we tformulate the problems of Tull-ran angreserve the MV of optimal full-rank filter and discuss the

reduced-rank LCMYV filters. In order to perform beamformin xistence of multiple solutions. In the following, we détai
our proposed reduced-rank method.

(10)

with a full-rank LCMV filter, we linearly combine the data

vector r(i) = [rgi) rgi) rg\?]T with the full-rank filter
w=[w; wy ... wy,|T to yield
IV. PROPOSEDREDUCED-RANK METHOD
z(i) = wr(i) 3)

In this section, we introduce the principles of the proposed
The optimal LCMV filter is theM x 1 vectorw, which is  reduced-rank scheme. The proposed scheme, depicted in Fig.
designed to solve the following optimization problem 2, employs a matrixS p (i) with dimensions\/ x D to perform
dimensionality reduction on a data vectdi) with dimensions
(4) M x 1. The reduced-rank filtetw () with dimensionsD x 1
processes the reduced-rank data vee{@j in order to yield
The solution to the problem if(4) is given by [3]) [4] a scalar estimat&(i). The projection matrixSp (i) and the
R reduced-rank filteww () are jointly optimized in the proposed
Wopt = — — (5) scheme according to the MV criterion subject to a c_onstralnt
a'(0x) R a(ek)) that ensures that the reduced-rank array response is exual t
where a(f,) is the steering vector of the Sok(i) is the unity in the direction of the Sol.
received data, the covariance matrix (i) is described by In order to describe the proposed method, let us first
R = E[r(i)rH(i)], ()" denotes Hermitian transpose affl] consider the structure of th&/ x D projection matrix
stands for expected value. The filtei(i) can be estimated via

minimize E[|wr(i)|?] = w Rw

subject to wfa(fy) =1

SG or RLS algorithms[3]. However, the laws that govern their Sp(i) =[s1(i) [ s2(i) | ... |sp(i) ] (11)
convergence ant_:i tracking behaviors imply that they depend@nere the columns,(i) ford = 1, ..., D constitute a bank
M and on the eigenvalue spread Bf of D full-rank filters with dimensions\/ x 1 as given by

A reduced-rank algorithm must extract the most important
features of the processed data by performing dimensignalit 84(1) = [s1.a(i) s2.4(i) ... sara(i)]”



The outputz (i) of the proposed reduced-rank scheme can Bé&ategy lies in the joint optimization of the filters. ThekaD
expressed as a function of the input veat(r), the projection must be set by the designer to ensure appropriate perfoenanc
matrix Sp(¢) and the reduced-rank filtew (:): or can be estimated via another algorithm. In the next sectio
we seek iterative solutions via adaptive algorithms for the
design of Sp(i) and w(i), and automatic rank adaptation
algorithms.

(i) = w" (1)Sp (i)r(i) = w" (i)r (i) (12)

It is interesting to note that fob = 1, the proposed scheme

becomes a conventional full-rank LCMYV filtering scheme with

an addition weight parameterp, that provides an amplitude V. ADAPTIVE ALGORITHMS

gain. ForD > 1, the signal processing tasks are changed andjn this section we present adaptive SG and RLS versions

the full-rank LCMV filters compute a subspace projection angf the proposed scheme for efficient implementation. We also

the reduced-rank filter provides a unity gain in the direttd consider the important issue of automatically determirtirey

the Sol. This rationale is fundamental to the exploitatibt‘ne rank of the scheme via the proposa| of an adaptation tecbniqu

low-rank nature of signals in typical beamforming scemario we then provide the computational complexity in arithmetic
The LCMV expressions for the filtetSp (i) andw(i) can  operations of the proposed reduced-rank algorithms.

be computed via the proposed optimization problem

minimize E[|w® ()8 (i)r(i)]*] = w™ ()8 (i) RSp(i)w(i) A. Sochastic Gradient Algorithm

subject tow™ (1)S (i)a(8)) = 1
(13)

In order to solve the above problem, we resort to the methB&°

In this part, we present a low-complexity SG adaptive
reduced-rank algorithm for efficient implementation of the
posed method. These algorithms were reportéd in [22], [2

of Lagrange multipliers[[3] and transform the constraine?ind are reproduced here for convenience. By computing the

optimization into an unconstrained one expressed by t

Lagrangian

L(Sp(i), w(i)) = Eflw™ ()SF(i)r(i)]*] + 2R\ (w" (1)S7 (i

(14)

)a(@Y)CMY)}’,B(i) =z (Z)T‘(Z)@H(l) + 2/\*3(9k)@H(i)

istantaneous gradient terms[of](14) with resped&igi) and
w*(i), we get

8
VLMY () = 2 (1)S1 (D)r(i) + 2A*SP (i)a(0k) 49

where ) is a scalar Lagrange multipliet, denotes complex By introducing the positive step sizes and ., using the
conjugate and the operatét|-] selects the real part of thegradient rulesSp(i+1) = SD(i)—usVKMvsg(i) andw (i +

argument. By fixingw(i), minimizing (14) with respect to 1) =

Sp(i) and solving for), we get
R 'a(6)w" ()R,

w! ()R, w(i)a? (0;,)R " a(6))
where R = E[r(i)r?(i)] and R; = E[w(i)w" (i)]. By
fixing Sp(i), minimizing (I4) with respect tow(:) and
solving for A\, we arrive at the expression
R (i)a(6:)
bR (i)a(6))

Spl(i) = (15)

(16)

w(i) = af(
where R(i) = E[SE(i)r(i)r(i)Sp(i)] = E[#@)7F(i)],
a(fy) = SE(i)a(6;). The associated MV is

1

MV = —
a' (0x)R " (i)a(0)

(17)

w(i) — pw VLMV g+ (), €nforcing the constraint and
solving the resulting equations, we obtain

Sp(i4+1) = Sp(i)—psz* (i) [r(i)ﬁ;H(z‘)—(aH(ok)a(ek))”a(ek)ﬁ)ﬂ(i)‘
(19)

W(i+1) = (i)~ () [T (@™ (0x)a(6r)) " a(0r)a (6x)]7(0),
(20)

wherez (i) = w' (i)S% (i)r(i). The proposed scheme trades-

off a full-rank filter against one projection matri&, () and

one reduced-rank adaptive filter(i) operating simultaneously

and exchanging information.

B. Recursive Least Squares Algorithms

Here we derive an RLS adaptive reduced-rank algorithm for
efficient implementation of the proposed method. To this,end
let us first consider the Lagrangian

Note that the filter expressions in_{15) ahdl(16) are not dose i . ) .
form solutions forw (i) and S (i) since [I5) is a function of Lus(Sp(i), w(i)) = > o' '@ (i)ST ())r(1)|” + 2R\ (w" (i)S7 (i)
=1

w(:) and [16) depends o p(i). Thus, it is necessary to
iterate [I5) and[{16) with initial values to obtain a solatio

(21)

An analysis of the optimization problem ii_{13) is given ifwhereq is the forgetting factor chosen as a positive constant
Appendix Il. Unlike existing approaches based on the MSWgfose to, but less than.

[17] and the AVF[19] methods, the proposed scheme providesrixing w(i), computing the gradient of (21) with respect to
an iterative exchange of information between the reduead-r Sp(i), equating the gradient to a null vector and solving for
filter and the projection matrix and leads to a much simpler we obtain

adaptive implementation. The projection matrix reduces th
dimension of the input data, whereas the reduced-rank filter

1?-1<z'>a<ek>mH<z'>R;1<z'>

-1

Sp(i) = (22)

yields a unity response in the direction of the Sol. The key wH ()R, (i)w(i)at (6;) R (i)a(6y)



where R(i) = Zle o~lr(l)rH (1) is the input covariance (as we will see later) then the additional complexity can be
matrix, and R (i) = w(i)w' (i) is the reduced-rank weight acceptable provided the gains in performance justify them.
matrix at time instant. The computation of(22) includes theln the case of the proposed reduced-rank RLS algorithm the
inversion of R(i) and R (i), which may increase significantly complexity is quadratic with\/? and D?. This corresponds
the complexity and create numerical problems. However, the a complexity slightly higher than the one observed for the
expression in(22) can be further simplified using the caimstr full-rank RLS algorithm, provided is significantly smaller

w" (1)S%(i)a(f,) = 1. The details of the derivation of thethan M, and comparable to the cost of the MSWF-RLS] [17]
proposed RLS algorithms and the simplification are given end the AVF [19].

Appendix Ill. The simplified expression f& (i) is given by In order to illustrate the main trends in what concerns
the complexity of the proposed and analyzed algorithms, we

: =H
Sp(i) = P}Sz)ea(eli)q (zk) (23) show in Fig. 3 the complexity in terms of additions and
a’(0r)P(i)a(0) multiplications versus the number of input samples The
where we defined the inverse covariance matkXi) = curves indicate that the proposed reduced-rank RLS algorit
R™'(i) for convenience of presentation. Employing the matrikas a complexity lower than the MSWF-RLS algoritim![17]
inversion lemmal[3], we obtain and the AVF [19], whereas it remains at the same level of
“1p(i _ : the full-rank RLS algorithm. The proposed reduced-rank SG
. a tP(i—1)r(i) - ) B
k(i) = . . (24) algorithm has a complexity that is situated between the full

14 a lrHG) P> - 1)r(i)
P@i)=a'Pli—1)—a 'k@)rf()PGi—-1) (25)

wherek(i) is the M x 1 Kalman gain vector. We séP(0) = D. Automatic Rank Selection
6Iy to start the recursion of (25), where is a positive  The performance of the algorithms described in the previ-
constant and s is an M x M identity matrix. ous subsections depends on the rdnk This motivates the
AssumingSp (i) is known and taking the gradient df {21)development of methods to automatically adjuston the
with respect tow(i), equating the terms to a null vector ancbasis of the cost function. Unlike prior methods for rank
solving for A, we obtain theD x 1 reduced-rank filter selection which utilize MSWF-based algorithris][17] or AVF-
B P(i)a(y) based recursions [19], we focus on an approach that jointly
w(i) = - 0P (a0 (26) determinesD based on the LS criterion computed by the filters
a” (0r) P(i)a(0y) Sp(i) andwp(i), where the subscripD denotes the rank
where P(i) = R~ '(i) and R(i) = S_, & l#()FH (1) is  used for the adaptation. In particular, we present a method f
the reduced-rank input covariance matrix. In order to estiim automatically selecting the ranks of the algorithms based o
P(i), we use the matrix inversion lemma [3] as follows  the exponentially weighted posteriori least-squares type cost
1P . function described by
- a”P(i—1)7(i)

M) = T Pl = ()

rank RLS and the full-rank SG algorithms.

(27) i
C(Sp(i—1),wp(i-1)) =Y o' |wi (i-1)Sp(i-1)r(l),

= | ] (29)

wherek(i) is the D x 1 reduced-rank gain vector afd(i) =  wherea is the forgetting factor anerp (i — 1) is the reduced-
R (i) is referred to as the reduced-rank inverse covarianggnk filter with rankD. For each time interval, we can select
matrix. Hence, the covariance matrix inversidifl(i) is  the rankD,,; which minimizesC(Sp(i—1),wp(:—1)) and
replaced at each step by the recursive proceEsés (27) and (B8 exponential weighting factar is required as the optimal
for reducing the complexity. The recursion bf128) is ifiied  rank varies as a function of the data record. The key quastiti
by choosingP(0) = 01 p, whereJ is a positive constant andto be updated are the projection mat$x, (i), the reduced-
Ipis aD x D identity matrix. rank filter wp (), the associated reduced-rank steering vector

The proposed RLS algorithm trade-off a full-rank filter witha(6,,) and the inverse of the reduced-rank covariance matrix
M coefficients against one projection mat$, (i), given in  P(i) (for the proposed RLS algorithm). To this end, we
(23)-(25) and oneD x 1 reduced-rank adaptive filteiw (i), define the following extended projection matS (i) and the
given in [26){28), operating simultaneously and exchaggi extended reduced-rank filter weight vector, (i) as follows:
information.

iy=a 'P(i—1)—a k@) ()P —1) (28) =1

C. Complexity of Proposed Algorithms $11 812 -+ S1.Dmin -+  S1.Dpax

Here, we evaluate the computational complexity of thgp (i) = : : : : : and wp (i)
proposed and analyzed LCMV algorithms. The complexity
expressed in terms of additions and multiplications is ctepi
in Table I. We can verify that the proposed reduced-rank SG
algorithm has a complexity that grows linearly witha7, (30)
which is aboutD times higher than the full-rank SG algorithmThe extended projection matri§ (i) and the extended
and significantly lower than the MSWF-SG [17].F << M reduced-rank filter weight vectow (i) are updated along

SM,1 SM,2 ««+  SM,Duin «ev SM,Dpmax



with the associated quantities(d,) and P(i) (only for the of stability for the proposed SG algorithms. We then assume
RLS) for the maximum allowed ranlD,., and then the that the algorithms will converge and carry out the MSE
proposed rank adaptation algorithm determines the rark tlsanvergence analysis in order to semi-analytically deirgem
is best for each time instamtusing the cost function if(29). the MSE upon convergence. The RLS algorithms are expected
The proposed rank adaptation algorithm is then given by to converge to the optimal LCMV filter and this has been
. . . verified in our studies. A discussion on the preservatiorhef t
Dope = arg Dmmg}ilgDmxc(SD(l —Dwp(i=1) @Dy performance, the existence of multiple solutions and an
whered is an integer Dy, and Doy are the minimum and analysis of the optimizaiion of_th.e propos_ed scheme vaiid fo
. ) both SG and RLS algorithms is included in the Appendices |
maximum ranks allowed for the reduced-rank filter, respec. |
tively. Note that a smaller rank may provide faster adaptati '
during the initial stages of the estimation procedure and a
greater ra_mk usually yields a better steady-s_tate perfocma Sability Analysis
Our studies reveal that the range for which the rabk
of the proposed a|g0rithms have a positive impact on theln order to establish conditions for the stability of the
performance of the algorithms is limited, being frdm,;, = 3 Proposed SG algorithms, we define the error matrices at time
to Dy = 8 for the reduced-rank filter recursions. Thesé as
values are rather insensitive to the system load (number of es, (i) = Sp(i) — Sp.opt
users), to the number of array elements and work very well
for all scenarios and algorithms examined. The additionahd
complexity of the proposed rank adaptation algorithm ig tha ew(i) = W(i) — Wopt,
it requires the update of all involved quantities with the
maximum allowed rankD.,,.x and the computation of the costwherew,,; andSp ., are the optimal parameter estimators.
function in [29). This procedure can significantly improhe t Since we are dealing with a joint optimization procedure,
convergence performance and can be relaxed (the rank carbbth filters have to be considered jointly. By substituting t
made fixed) once the algorithm reaches steady state. ClyposiRpressions of s, (i) andey (i) in (I9) and[(2D), respectively,
an inadequate rank for adaptation may lead to performarmed rearranging the terms we obtain
degradation, which gradually increases as the adaptadiok r
deviates from the optimal rank. A mechanism for automates,, (i + 1) = {I — us[I — (a’ (6)a(0x)) ' a(0x)a™ (6x)]r(i)r™ (i) }e;
cally adjusting D,,;, and Dy, based on a figure of merit — ps[I — (a®( 1 (
and the processed data would be an important technique to be H
. . : ! : : + ps[I — (a™ (0
investigated. For example, this mechanism could in priecip
adjust D,;, and Dy, in order to address the needs of the
model and the performance requirements. This remains a topi

for future investigation. ew(i+1) = {I — py,[I — (@™ (0r)a(0k)) " a(0k)a (0x))7 (i) (i) } ew

One can also argue that the proposed rank adaptation may — I — (@™ (0)a(0k)) " a(0r)a™ (0k)]7 (i)r" (i)es, (i)
not be u_niversally applied to si_gnal proce_ssing problemane + uo[I — (@ (01)a(0r)) " a(0n)a™ (65))SH (i) (i)7 (i),
though it has been proven highly effective to the problems (33)

we dealt with. Another possibility for rank adaptation i®th
use of the cross-validation (CV) method reported [inl [19]. Taking expectations and simplifying the terms, we obtain
This approach selects the lengths of the filters that mirémiz ’
a cost function that is estimated on the basis of data that i Eles, (i +1)] i B Pi Eles, (i)]
have not been used in the process of building the filters Eleg(i+1)] | Eleg(i)]
themselves. This approach based on the concept of "leave one

out” can be used to determine the rank without requiring ayhere

prior knowledge or the setting of a range of values| [19]. A i {I — [T = (@™ (61)a(6r)) a6

i +T  (34)

a” (6,)]r (D) ()} il

. . ) A : B k)a (
drawback of this method is that it may significantly increas’ = [l — (@7 (00)a(00)) '@ (00)a" (0,)]7(i)r" (i) (I~ I

the length of the filters, resulting in higher complexityhét
possible approaches for rank selection may rely on some prio
knowledge about the environment and the system for infgrrir — i
the required rank for operation. The development of cost-
effective methods for rank selection remains an intergstea
for investigation.

r )|
polI = (@™ (0r)a(0r)) ' a(0x)a’ (0x)) ST (0)]7 (1) (i) (Sp (i) (I —

The previous equations imply that the stability of the algo-
rithms depends on the spectral radiuskaf For convergence,
the step sizes should be chosen such the eigenvaluBé @
VI. ANALYSIS OF ALGORITHMS are less than one. Unlike the stability analysis of most tidap
In this section, we present the stability and the MSE conveaalgorithms [3], in the proposed approach the terms are more
gence analyses of the proposed SG algorithms. Specifieadly, involved and depend on each other as evidenced by the
consider the joint optimization approach and derive céolt equations inP andT'.



B. MSE Convergence Analysis ol R, (i)®. Rewriting [38) in terms of the above trans-

Let us consider in this part an analysis of the MSE in steac]cﬁ)/rmed quantities we have:

state. This follows the general steps of the MSE convergence (i) = tr E[Aq>HR D)

analysis of [[8] even though novel elements will be introdiice e ~ H 39
in the proposed framework. These novel elements in the Emin + tdE[e w(]a” (0x) + a0 Ele, ()] (39)
analysis are the joint optimization of the two adaptive fite + AR, (i)]

w(i) and Sp(i) of the proposed scheme and a strategy i§ince Jim, , Eléw(i)] = 0, then lim; o £(i) = Emin +
incorporate the effect of the step size of the recursion®) ( 4-[AR,_]. Thus, it is evident that to assess the evolution of
and [20). £(i) it is sufficient to studyRg,, (7).

Let us define the MSE at time+ 1 using the relations Using es,, (i) and e (i) and combining them to compute

’U).a t
cwli 4 1) = w(i + 1) — wor ew(i), we ge

ew(i) = w(i) — wopt
and = Sp(i)w(i) — Sp. optWopt (40)
&(i) = Elw™ (i)r(i)r (i)w(i)), =es, ()ew(i) + Sp.optew(i) + esp (i) Wopt

where the filterw(i) = Sp(i)w(i) with M coefficients is the Substituting the expressions feg,, (i + 1) andeg (i + 1) in
D-rank approximation of a full-rank filter obtained with an(32) and [3B), respectively, to computg, (i + 1), we get
inverse mapping performed b§p (7). . N . N
The MSE of the proposed scheme can be expressed bye“’(l +1) = ew(t) = puZ™ (D) Sp()7p(1) — ps2™ () Sy, (1w (D)
+ tspns (T (1))* S, (D)7 (i) + Sp optew(i) + es, (1) Wopt

MSE(i) = E[|d(i) — w" (i)r(i)|?] (41)
= €min + &(1) — Emin — Eleit (i)]a(0k) — aH(ok)E[e"vm%re
= €min + &ea (1) — E[eg(i)]a(@k) - aH(ek)E[e'(ué(é))] z(i) = "I’H(Z)Sg(l)r(l) = wH(Z)T(Z)

i) = (I —(a a “la a” r(i)w (i
where d(i) corresponds to the desired sign@l(') = Sr,(0) = (I = (@ (01)a(00) " a(Br)a™ (00)r @™ ()

E[w! (i)r(i)r? (i)w(i)], émin = Blld(i) —wg,r(i)?is the  7,(i) = (I-(Sp(i)a™ (0x)Sp(i)a(6r)) " Sp(i)a(br)a™ (0x) ST (i)Sp
MSE with
We can further rewrite the expressions above in order tambta

_¢ . p-l
Wopt = Emin " a(0h), (36) a more compact and convenient representation as

where &nin = 1/(a”(6,)R™"a(6y)) is the minimum ew(i+1)=(I—-A)ey(i)+ BC+ usuw(i*(i))25,.p (i)7p(i) + es,, (7)
variance, andé..(i) = £(i) — &nin IS the excess MSE (42)
due to the adaptation process at the time instanince
lim; o0 Eleqw ()] = 0 we have where

lim MSE(i) = €min + lim & (i) @37) A= #So@rp@)r” (i) + S, (w(D)r" (i) = Sp.opt

11— 00

B = —11,Sp(i)7,(i)r 1s Sy (V)w(i)r (i
where thet.,. (oo) term in [37) is the steady-state excess MSE p(OF(i)r™ (1) - (=)
resulting from the adaptation process. The main difference C = eg,, (i)Wopt + Sp,optw (i) + €5, (1) Wopt-
here from prior work lies in the fact that this refers to the

excess MSE produced bya-rank approximation filtews(;). ~ NOW, we need to computB,, (i+1) = Eleqw (i+1)ey (i+
In order to analyze the trajectory i), let us rewrite it as 1)} Py using the result ir(42), which yields
() = [’wH(Z)’P(Z)’PH( Jw(i)] R, (i+1)=(I—-A)R., ()T - A)H + I - A)ew(i)CHBH
= Bl@" (i)SH (i)r(i)r" (i)Sp(i)w(i)]  (38) + st (2(0)*(T = A)ew (i) (7 (1) 87 (1))
= tr E[Ruw(i)R] + (I = A)ew ()W ST ope + BCey ()((I — A
+ BCCY B + 1, (2(1)) BCF (i) Sy, (i)
h R,(i) = Elw@wi(@ = optw } e
VEV[::? )]w (t )+ wop Elel) [u(]()])fR(el](i) B " + BCOwpes, (i) + st (@ (0))* S, (i)rp (i) e (i) (T -
To proceed with the analysis, we must define the quantities + prsth (27 (1)) 8, ()7 (1)) CTT AT
R = ®A®", where the columns o are the eigenvectors + (pspi)? 2 ()| S (i)?p(i)v‘“f(i)s,.p (i)

of the symmetric and positive semi-definite matdk and

A is the diagonal matrix of the corresponding eigenval- o oo
ues, R, (i) = Elew(i)ell(i)], the rotated tap error vector —es, (D) Wopreg ()T — A)T + es,, ()0, C' B
€ (i) = ®" e, (i), the rotated signal vectoigi) = ®"r(i), + es, () Wopwiel (i)

a(6) = ®%a(6y) and Re, (i) = Elew(i)eg()] = (43)

+ Ms:“w(i( )) eSD( )w0pt"'p(2)s7‘p (2)



SinceEle,,(i)] = 0 and Eles, (¢)] = 0, we can simplify the A. MSE Analytical Performance

previous expression and obtain In this part of the section, we verify that the results[inl (43)
Re,(i+1)=(I - A)Re, (i) and [45%) of the section on MSE convergence analysis of the
Cw proposed reduced-rank SG algorithms can provide a means

A)
H pH H /.
+ BCCY" B + 1,1, (2(i))* BCT (i) Sy, (i) of estimating the MSE upon convergence. The steady state
+ phspte (2% (1))? Sy, (0)7p (i ot A" MSE betV\_/een the d_esired and the _estimated symbol obtained
o) 2|Z(0)|1S S, (i through simulation is compared with the steady state MSE
* (ot )DL S, (D7, ()7 p (D) () computed via the expressions derived in Section VI. In order
+es, () WoptWepeg,, (i) to illustrate the usefulness of our analysis we have carried

(44)  out some experiments. To semi-analytically compute the MSE
for the SG recursion, we have usdd]1(36) and assumed the
knowledge of the data covariance mati We considers

MSE(i + 1) = €min + tr[ARe,, (7)] interferers { = 6 users in total - the Sol and the interferers)
= emin + tF[A®R., (1)®"] (45)  at —60°, _—3_00, _00, 450, 60° wi_th powers foIIowing a log-
* normal distribution with associated standard deviatiodB

It should be remarked that the expression Ry, (i) is quite around the Sol's power level, which impinges on the array at

involved and requires a semi-analytical approach with fde al5°.

of computer simulations for its computation. This is beeaus We compare the results obtained via simulations with those

the terms resulting from the joint adaptation create numeroobtained by the semi-analytical approach presented iriddect

extra terms in the expression d®, (i), which are very VL. In particular, we consider two sets of parameters in orde
difficult to isolate. We found that using computer simulato to check the validity of our approach. One of the sets has
to pre-compute the terms d@®. (i) as a function of the step larger step sizesy = 0.0025 and p,, = 0.01), whereas
sizes was more practical and resulted in good match betwdba other set employs smaller step sizeg;(= 0.001 and

the semi-analytical and simulated curves. In the following,, = 0.001) for the recursions. The results shown in Fig.

section, we will demonstrate that it is able to predict thé indicate that the curves obtained with the semi-analltica

performance of the proposed SG algorithm. approach agrees with those obtained via simulations fdr bot
sets of parameters, verifying the validity of our analyblste

that the algorithms with smaller step sizes converge slower

than the algorithms equipped with larger step sizes. Howeve

In this section we evaluate the performance of the proposié¢ proposed algorithms with smaller step sizes converge to
and the analyzed beamforming algorithms via computer sifiie same level of MSE as the optimal LCMV, whereas the
ulations. We also verify the validity of the MSE convergenceroposed algorithms with larger step sizes exhibit a higher
analysis of the previous section. A smart antenna systemawitlevel of misadjustment. In what follows, we will consideeth

ULA containingM sensor elements is considered for assessifgnvergence rate of the proposed reduced-rank algorithms i

the beamforming algorithms. In particular, the perforneant comparison with existing algorithms.

the proposed scheme and SG and RLS algorithms is compared

with existing techniques, namely, the full-rank LCMV-SQ [45. g NR Performance

and LCMV-RLS [9], and the reduced-rank algorithms with In the first t . i iderinterf t

Sp(i) designed according to the MSWE [17], the AVF[[19] no € 'ZS Wg expeorlmoen SO Weo considerinterierers a

and the optimal linear beamformer that assumes the knowwledg60 —45%, =307, —157, 0%, 457, 60° with powers following

of the covariance matriX[2]. In particular, the algorithae a log- normal dlstrlbuuon Wlth assomated standard dewie}

around the Sol's power level. The Sol impinges on the

compared in terms of the mean-squared error (MSE) a 5 ; .

the signal-to-interference-plus-noise ratio (SINR), othiis 22 at30°. The parameters of the algorithms are optimized.

defined for the reduced-rank schemes as Wg first eva!uate the SINR’_ performgnce of the analyzed

algorithms against the ranR using optimized parameterg,

! (1)SH (i) RS p(i)w(i) 1, and forgetting factors\) for all schemes andv = 250

0 ()ST (VR Sp()w(i)’ (46) snapshots. The results in Fig. 5 indicate that the best rank
for the proposed scheme B = 4 (which will be used in

where R, is the autocorrelation matrix of the desired signahe second scenario) and it is very close to the optimal full-

and R; is the cross-correlation matrix of the interference angink LcmV filter. Our studies with systems with different

noise in the environment. Note that for the full-rank schemgjzes show that is relatively invariant to the system size,

the SINR(i) assumesS, (i) = Iy, whereI )y is an identity \hich brings considerable computational savings. In fragt

matrix with dimensionality}/. For each scenari@00 runs the rankD can be adapted in order to obtain fast convergence

are used to obtain the curves. In all simulations, the desirgng ensure good steady-state performance and tracking afte

signal power iso% = L, and the signal-to-noise ratio (SNR)convergence.

is defined a$NR = Z¢. The filters are initialized as(0) = We show another scenario in Fig. 6 where the adaptive

[10 ... 0] andSp(0) = [IF ng(MfD)]’ whereOpxr—p LCMV filters are set to converge to the same level of SINR.

is aD x (M — D) matrix with zeros in all experiments. The parameters used to obtain these curves are also shown.

Solving for R, the MSE can be computed by

VII. SIMULATIONS

SINR/(i) =



The SG version of the MSWF is known to have problems in APPENDIX

these situations since it does not tridiagonalize its davnae , . . . .
matrix 171 being unable to aoproach the optimal LCMV. Th In this Appendix we discuss the conditions for which the
LL7], 9 PP P ' V obtained for the full-rank filter is preserved and the

curves show an excellent performance for the proposed EheerQistence of multible solutions in the proposed optimizati
which converges much faster than the full-rank-SG algorjth P prop P

and is also better than the more complex MSWF-RLS a@etZOdMGI;?Q I\E/Jllgwig aDchriJ(re(\)/]ee ;tli(f)narr?datg)r(fl)igz, :/Ivvrr:irhe
AVF schemes. = ' y

In the next experiment, we consider the design of thrren?rl]mlzez (4) belongs E[o(;haaggel{st%(l)}’ €. w(la] lies
proposed adaptive reduced-rank LCMV algorithms equippér(]j e subspace generated By, (i). In this case, we have
with the automatic rank selection method described in Becti MV (@(i)) = (a” (6,) R 'a(6;,)) " (47)
V.D. We consider5 interferers at—60°, —30°, 0°, 45°, 60°

with equal powers to the Sol, which impinges on the arrdyor a generalSp(i), we have

at 15°. Specifically, we evaluate the proposed rank selection . H 1 .
algorithms against the use of fixed ranks, namély= 3 and MV(w(i)) = (a™ (9x) R "a(6r)) " (48)

D = 8 for both SG and.RLS aIgonthms. The resul_ts show thT'Hrom the above relations, we can conclude that there exists
the proposed automatic rank selection method is capablenqlfmime solutions to the proposed optimization problem.

ensuring an excellent trade-off between convergence speed | 41ic appendix, we carry out an analysis of the proposed

steady-state perform_ance, as |Ilustrated m[E.'g 7 In Qaldr, reduced-rank method and its optimization. Our approach is
the proposed algorithm can achieve a 5|gn|f|.cantlly faStB sed on expressing the output of the proposed scheme and the
convergence performa}nce than the scheme with fixed r posed constraint in a convenient form that renderd itsel

D = 8, whereas it atfains the same steady state performangﬁalysis_ Let us rewrite the proposed constrained optiioiza

In the last experiment, we consu_jer anon-stationary S@Nnaf, o jn [(IB) using the method of Lagrange multipliers and
where the system ha6 users with equal power and the

i . _ express it by the Lagrangian
environment experiences a sudden change at iime 800.
The 5 interferers impinge on the ULA at-60°, —30°, 0°, £ = E[|@™(i)S](i)r(i)[*] + 2R\ (@ (1)S ] ()a(0k) — 1)],
45°, 60° with equal powers to the Sol, which impinges on the (49)
array at15°. At time instanti = 800 we have3 interferers . .
with 5 dB above the Sol's power level entering the system witly Order to proceed, let us expresgi) in an alternative and
DoAs —45°, —15° and30°, whereas one interferer with DoA More convenient form as
45° and a power level equal to the Sol exits the system. The D
proposed and analyzed adaptive beamforming algorithms aréi) = w™ (i)S5 (i) (i) = w™ (i) Z st (@)r(i)g,

equipped with automatic rank adaptation techniques and hav d=1

to adjust their parameters in order to suppress the inader r(@) 0 0 ... 0 T st (i)

We optimize the step sizes and the forgetting factors ofhall t 0 =@ 0 ... 0 s3(1)

algorithms in order to ensure that they converge as fasteas th = w' (i)

can to the same value of SINR. The results of this experiment : : :

are depicted in Figl]8. The curves show that the proposed 0 ... 0 0 @) sp(i)

reduced-rank algorithms have a superior performance to the = ﬂ:H(z')éRT(z')sj(z‘)

existing algorithms. (50)
VIIl. CONCLUSIONS whereR (i) is aDM x D block diagonal matrix with the input

We proposed reduced-rank LCMV beamforming algorithnfit@ vectorr(i), g, is a D x 1 vector with al in the d-th
based on joint iterative optimization of filters. The propos POSition ands; (i) is a DM x 1 vector with the columns of
reduced-rank scheme is based on a constrained joint vieratp »(?) Stacked on top of each other. o
optimization of filters according to the minimum variance [N order to analyze the proposed joint optimization proce-
criterion. We derived LCMV expressions for the design of thduUre, we can rearrange the termsaifi) and define a single
projection matrix and the reduced-rank filter and developdd(}M + 1) x 1 parameter vectof (i) = [w™ (i) s{ (i)]". We
SG and RLS adaptive algorithms for their efficient impleS@n therefore further expressi) as
mentation along with an automatic rank selection technique

. ~| 0 0 , .
An analysis of the stability and the convergence properties (i) = fH(Z) oY Db J (@)
) ) . R(i) Opmxpm (51)
of the proposed algorithms was presented and semi-argdlytic H. o
expressions were derived for predicting the MSE perforraanc = fROG0)f)

The numerical results for a digital beamforming app”C‘aftiowhereG(z') is aD(M +1) x D(M + 1) matrix which contains
with a ULA showed that the proposed scheme and algorithig ;) Now let us perform a similar linear algebra transforma-

outperform in convergence and tracking the existing fatik 15 with the proposed constraimH(z‘)Sg(z‘)a(ek) —1and
and reduced-rank algorithms at comparable complexity. TBQpress it as

proposed algorithms can be extended to other array ge@setri
and applications . @™ ())SH(i)a(0r) = £F7(1)A0r) f(3) (52)



where theD(M + 1) x D(M + 1) matrix A(6y) is structured multi-dimensional surface. This remains as an interesifpen

as problem.
A(6y) = Opxp Opxpm In this appendix, we detail the derivation of the filter
Ra,) OpmxDM Sp(i) and the simplification shown in(23) for reducing the

and theDM x D block diagonal matrid®, g, (i) with the computational complexity. Let us consider the derivatidn o
steering vector(6;,) constructed as a(8%) Sp(i) obtained from the minimization of the Lagrangian

a(gk) (% ) 8 8 L(Sp(i), w(i)) = Z0/”vaH(i)S’E(i)r(l)|2 + 2R\ (@™ (0)ST (D) a(0)
al\Ug N —
Rao,) = : : .o : (53) - (57)
6 . ) 0 0' a(ék) Taking the gradient terms of the above expression with &spe

to ST, (i), we get
At this point, we can alternatively express the Lagrangian i

&) as VL(Sp (i), (i), i) = Zoﬂ l )Sp ()@@ (i) + 27a (0
L =E[fT ()G fE)[°] + 2RNF (1) AOx) £(i) — 1)).
(54) = < )Sp (i) R (i) + 20a(fr)w™ (i).

. . . (58)
We can examine the convexity of the above Lagrangian by _ _
computing the HessianH)with respect tof(i) using the Making the above gradient terms equal to zero yields
expression (23] o o) Sp(i) = R™'()(-2Na@)w” OR,'.  (59)
af (i )8f( af (i) (55) Using the proposed constraini’ (i)S% (i)a(6y) = 1
o o ~and substituting  the  above  filter  expression,
and testing if the terms are positive semi-definite. Sp&ific e  optain the Lagrange multiplier A _

His posmve semi-definite ib” Hv > 0 for all nonzerov _1/2 R, 0 Na(0.))~!. Substitutin
CcPM+DXDMFY) ) Therefore, the optimization problem 2@ () Ry w(i)a (B)R™(D)a(6r)) " g
A into (B9), we get

is convex if the HessialH is positive semi-definite. » o

Evaluating the partial differentiation in the expressiiveg Sp(i) = R™'(i)a(0r)w (i)R, (i) (60)
in (58) yields ! (i) Ry (i)W (i)aH (0x) R~ (i)a(6))
H = E[fH(i)G(i)f(z')G(z')—i-G(z')f(z)fH(z)G(z) The above expression for the matrix_filtéi‘p(z') can be.

+ GO FEHGE) ) + £ )GH)GE) F(i) + 27 A6 )}smpllﬁed by observing the quantmes involved and making

(56) use of the proposed constramlH( )SH (i)a(6y) = 1. Let us
consider the termw® (i) R, w( ) in the denominator of (60)

By examiningH, we verify that the second and fourth terms&nd multiply it by the proposed constraint as follows:

are positive semi-definite, whereas the first and the thimdse ., - _1 |

are indefinite. The fifth term depends on the constraint, whic w ()R, w(i) = w" ()R, w( Jw' (i) ST ()a(0x) (61)

is typically positive in the proposed scheme as verified in ou = w' (i)SH(i)a(0x) = 1.

studies, yielding a positive semi-definite matrix. Therefo

the optimization problem can not be classified as convex.

is however important to remark that our studies indicaté tha _ _

there are no local minima and there exists multiple solstio®(0x)@w" ()R (i) = a(0x)w"™ (i)Ry (i)w" (i)ST(i)a(0k)

(which are possibly identical). . = a(0p)a (0, )

In order to support this claim, we have checked the impact
on the proposed algorithms of different initializations hi§
study confirmed that the algorithms are not subject to perfor
mance degradation due to the initialization although weehiav Using the relations obtained ih (61) adl(62) into the expres
bear in mind that the initializatio§ 5 (0) = 0, p annihilates sion in [60), we can get a simpler expression for the prajecti
the signal and must be avoided. We have also studied a pRAtrix as given by

Now let us consider the terna’? (0, )w! (i) R
rewrlte it as follows:

= a(@k)aH (Gk

ticular case of the proposed scheme wiién=1 andD =1, a
which yields the Lagrangiar(w,Sp) = E[|wSpr|?] + L L e
2R [A(wSpa(fx)—1)]. ChoosingSp (the "scalar” projection) S (i) = R (a(@x)w™ ()R, (i) _ R (i) a(bk)
fixed with D equal tol, it is evident that the resulting function ﬁ,H@R;l(i)@(i)aH(ok)Rfl(i)a(ok) @H(i)Rgl(i)@(i) .

L(w,Sp = 1,r) = |w* r]*> + 2R[A(wa(fy) — 1)] is a

convex one. In contrast to that, for a time-varying projacti

Sp the plots of the function indicate that the function is no =
longer convex but it also does not exhibit local minima. This at(0x) R~
problem can be generalized to the vector case, however, we

can no longer verify the existence of local minima due to thEhis completes the derivation and the simplification.

(63)
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Fig. 1. Schematic of a linear antenna array system with farers.
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Fig. 2. Schematic of the proposed reduced-rank scheme.

TABLE |

COMPUTATIONAL COMPLEXITY OF LCMV ALGORITHMS.

Algorithm Additions Multiplications
Full-rank-SG [4] 3M+1 3M +2
Full-rank-RLS [9] 3M? —2M +3 6M? +2M + 2
Proposed-SG[22] 3DM +2M 3DM + M
+2D -2 +5D + 2
Proposed-RLS 3M?% —2M +3 TM? 4 2M
+3D? -8D +3 +7D* +9D
MSWF-SG [17] DM? — M? DM? — M?
+3D -2 +2DM +4D + 1
MSWF-RLS [17] DM? 4+ M? + 6D? DM? + M?
—8D +2 +2DM + 3D +2

AVF [19]

D((M)?+3(M -1 -1
+D(5(M — 1)+ 1)+ 2M

D(4M? +4M +1)
+4M +2

a)D=6 b) D=6

Number of additions

Full-rank-SG
—<— Full-rank-RLS
—=— Proposed-SG
) Proposed-RLS|
—#*— MSWF-SG
—8&— MSWF-RLS

£— AVF

o
20 40 60 80 100 120

o
20 40 60 80 100 120

D. P. BertsekasNonlinear Programming, Athena Scientific, 2nd Ed., Fig. 3. Complexity in tefms of arithmetic operations agaifs.

1999.
G. H. Golub and C. F. van LoanMatrix Computations, 3rd ed., The
Johns Hopkins University Press, Baltimore, Md, 1996.
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