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H∞ OPTIMAL APPROXIMATION FOR CAUSAL SPLINE

INTERPOLATION

MASAAKI NAGAHARA AND YUTAKA YAMAMOTO

Abstract. In this paper, we give a causal solution to the problem of spline
interpolation using H

∞ optimal approximation. Generally speaking, spline
interpolation requires filtering the whole sampled data, the past and the future,
to reconstruct the inter-sample values. This leads to non-causality of the filter,
and this becomes a critical issue for real-time applications. Our objective here
is to derive a causal system which approximates spline interpolation by H

∞

optimization for the filter. The advantage of H∞ optimization is that it can
address uncertainty in the input signals to be interpolated in design, and hence
the optimized system has robustness property against signal uncertainty. We
give a closed-form solution to the H

∞ optimization in the case of the cubic
splines. For higher-order splines, the optimal filter can be effectively solved by
a numerical computation. We also show that the optimal FIR (Finite Impulse
Response) filter can be designed by an LMI (Linear Matrix Inequality), which
can also be effectively solved numerically. A design example is presented to
illustrate the result.

1. Introduction

Splines are widely used in image processing due to their simple mathematical
structure, in particular, linearity and low complexity in computation. Interpolation
with these splines, called spline interpolation, provides smoothness, that is, the
interpolated function can be continuous and several times differentiable. By these
advantages, polynomial splines are very popular in image processing such as curve
fitting [11], image interpolation (zooming) [9], rotation [19], compression [6], and
super resolution [1].

Theoretically, spline interpolation provides perfect fitting for given sampled data
when the original analog signal is in the spline space [10, 14, 15]. This ideal spline
interpolant is however obtained by filtering the whole sampled data. This leads
to non-causality of the interpolation process. Although this non-causality is not a
restriction for image processing, spline interpolation cannot be used for real-time
processing such as instrumentation or audio/speech processing. When spline inter-
polation is used in AD (Analog-to-Digital) and DA (Digital-to-Analog) converters
[13], and when it is used in a feedback loop, the reconstruction delay degrades the
stability and the performance of the system. In this case, the real-time processing
is crucial.

For this non-causality problem, various approximation methods have been pro-
posed to obtain a causal system which approximates the ideal (non-causal) spline in-
terpolation, by the constrained least square design [18], the Kaiser window method
[20], and the maximum order minimum support (MOMS) function method [3].
These methods are based on minimizing the squared approximation error in the
time domain. This optimization can be generalized to H2 optimization [24].
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H2 optimization minimizes the ℓ2 norm of the impulse response. Hence it works
basically for this particular signal only, and its performance against other input
signals is not a priori guaranteed. In other words, it can happen that the recon-
struction error will be significantly large for other unknown signals. In real systems,
input signals are unknown, or only partially known (e.g., the input signals contain
their frequencies mostly within 1.5 rad/sec), and hence there are uncertainty in in-
put signals. To model such uncertainty, we assume a certain class of input function
spaces, and consider a neighborhood (e.g., a unit ball) of such a function space.
We then consider that signal uncertainty as nominal signal plus unknown signals
that belongs to such a ball. By controlling the induced norm of a pertinent op-
erator, one can attenuate the response against such uncertainty, and this provides
a contrasting viewpoint of robustness, not in a probabilistic sense, but in a deter-
ministic treatment. This has the advantage of minimizing the worst-case errors
in contrast to probabilist models. Robustness against such uncertainty is achieved
by H∞ optimization [24] which aims at minimizing or maintaining the error level
below a certain prescribed performance level against all input signals, and possess
much higher robustness against lack of a priori knowledge about input signals to
be processed.
H∞ optimization was first proposed and developed in control theory [23], and

then applied to signal processing [5, 22, 7]. Since the H∞ norm gives the ℓ2-induced
norm or the maximum energy gain, minimizing the H∞ norm of the error system
gives the optimality for the worst case. This property leads to robustness of the
system against uncertainty of the input signal. That is, the H∞ design guaran-
tees an error level γ for all ℓ2 signals. Moreover, the H∞ method can naturally
take a frequency weight in the design. The weight can control the shape of the
frequency response of the error system, according to given knowledge on the fre-
quency characteristic of the input signals. From the computation viewpoint, the
H∞ optimization can be executed numerically via the state-space formulation, and
is easily done by standard softwares, as MATLAB.

We propose a new approximation method for causal spline interpolation by H∞

optimization. The design is formulated as obtaining the H∞-sub-optimal stable
inverse filter of a system with unstable zeros. In particular, for the cubic spline
(3rd order spline), the H∞ optimal filter can be obtained in a closed form. For a
spline with arbitrary order, the H∞ sub-optimal IIR (Infinite Impulse Response)
filter is easily obtained by numerical computation. Moreover, by confining the
desired sub-optimal filter to be FIR (Finite Impulse Response), the optimization is
reducible to an LMI (Linear Matrix Inequality), which can be effectively solved by,
for example, standard MATLAB routines. A design example is presented to show
effectiveness of our method.

The paper is organized as follows. In Section 2, we introduce spline interpola-
tion. In Section 3, we formulate our problem by H∞ optimization, and derive the
solution. Performance analysis of our spline interpolation system is discussed in
Section 4. Section 5 shows a design example and Section 6 concludes our result.

Notation. Throughout this paper, we use the following notation.

Z, Z+: : the sets of integers and non-negative integers, respectively.
R, R+: : the sets of real numbers and non-negative real numbers, respectively.
C: the complex plane.
D: the open unit disc in C.
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CN : the set of continuous functions with continuous derivatives up to order
N .

PN : the set of polynomial functions whose order is equal or less than N .
SN : the set of CN functions whose restriction on [n, n+ 1), n ∈ Z is in PN ,

that is, on each interval [n, n + 1) the SN function is a polynomial whose
order is equal or less than N .

L2(X): the Lebesgue space consisting of all square integrable real functions
on X . L2(R+) is abbreviated to L2.

ℓ2(X): the set of all real-valued square summable sequences on X . ℓ2(Z+) is
abbreviated to ℓ2.

δ: the discrete-time impulse or the Kronecker delta, that is, δ(n) = 1, if n = 0,
and 0, otherwise.

φ ∗ ψ: convolution of a sequence {φ(n)}n∈Z and {ψ(n)}n∈Z, that is,

(φ ∗ ψ)(n) =
∑

n∈Z

φ(n− k) ∗ ψ(k), n ∈ Z.

σ, σ−1: the forward and backward shift operator, respectively. That is, for a
sequence {x(n)}n∈Z, (σ ∗ x)(n) = x(n+ 1) and (σ−1 ∗ x)(n) = x(n− 1).

z, z−1: the Z-transform of σ and σ−1, respectively. For a sequence {x(n)}n∈Z,
the Z-transform x̂ of x is defined by

x̂(z) :=

∞∑

n=−∞

x(n)z−n.

A⊤: the transpose of a matrix A.
IM , 0M×N : the M ×M identity matrix and the M ×N zero matrix, respec-

tively.

2. Spline interpolation

We here discuss polynomial spline interpolation. In this paper, we consider the
cardinal interpolation problem [10]:

Problem 1. Given a sequence {x(n)}n∈Z, construct a function y(t), t ∈ R satis-
fying the relation

y(n) = x(n), n ∈ Z.

Needless to say, this problem is ill-posed because there are infinitely many so-
lutions. To obtain a unique solution, one should specify the space to which the
original signal {x(t)}t∈R belongs. Assume that the space is

V =
{
x ∈ L2(R) : supp(x̂) ⊆ [−π, π]

}
,

where L2(R) is the Lebesgue space of all square integrable functions on R, and x̂ is
the Fourier transform of x. Then, we have the well known solution called cardinal
sinc series [10, 14],

y(t) =
∑

n∈Z

x(n)
sinπ(t− n)

π(t− n)
, t ∈ R.

That is, for any x ∈ V , we have y(t) = x(t) for all t ∈ R.
On the other hand, assume that the space is

SN =
{
x ∈ CN : x|[n,n+1) ∈ PN , n ∈ Z

}
, (1)
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Figure 1. Polynomial spline of order N = 0, 1, 2, 3

where CN is the set of continuous functions with continuous derivatives up to order
N . Then the solution is given by [10],

y(t) =
∑

n∈Z

c(n)φ(t− n), t ∈ R, (2)

where φ is the polynomial B-spline basis defined by [10, 15],

φ(t) = (β0 ∗ · · · ∗ β0

︸ ︷︷ ︸
N+1

)(t), β0(t) =

{
1, 0 ≤ t ≤ 1,

0, otherwise,

where ‘∗’ denotes convolution. Figure 1 shows the polynomial splines φ(t) of or-
der N = 0, 1, 2, 3. In this formulation, the coefficients are given by the following
convolution formula [15]:

c(n) = (ψ ∗ x)(n), n ∈ Z, (3)

where ψ is the direct B-spline filter satisfying ψ ∗ φ = δ, or in Z-transform,

ψ(z)φ(z) = 1. (4)

This is for the perfect reconstruction without any delay. If we allow a delay d > 0
for reconstruction, the condition becomes ψ ∗ φ = σ−d, where σ−d is the d-step
delay, or the inverse Z-transform of z−d, that is,

ψ(z)φ(z) = z−d. (5)
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Figure 2. Impulse response of non-causal filter ψ(z) = 6/(z + 4 + z−1)

3. Causal spline interpolation by H∞ optimization

3.1. Standard non-causal interpolation. Since theNth-order spline φ(t) is sup-
ported in [0, N+1), the sampled signal φ(n) is represented as an FIR (finite impulse
response) filter. For example, in the case of N = 3 (cubic spline), we have

φ(z) =
1

6
+

2

3
z−1 +

1

6
z−2. (6)

By (4), the desired filter ψ(z) is given by the inverse ψ = φ−1 and it is seen that

ψ(z) =
6

z−2 + 4z−1 + 1
.

One of the poles of ψ(z) lies out of the open unit disc D := {z ∈ C : |z| < 1},
and hence the filter ψ(z) becomes unstable. The same can be said of the other
Nth-order splines [16]. A practical way to implement this filter is to decompose
ψ(z) into a cascade of causal and anti-causal filters [16]. In the case of the cubic
spline, we first shift the impulse response of (6) as

zφ(z) =
1

6
z +

2

3
+

1

6
z−1,

and then decompose ψ(z) = [zφ(z)]−1 as

ψ(z) = − 6α

1− α2

(
1

1− αz−1
+

1

1− αz
− 1

)
, (7)

where α = −2 +
√
3. Since |α| < 1, this is a stable and non-causal IIR (infinite

impulse response) filter. Figure 2 shows the impulse response of this non-causal
filter.
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[
z−dw(z) −φ(z)w(z)

1 0

]
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Figure 3. Block diagram for H∞ optimization

3.2. Causal interpolation by H∞ optimization. In image processing, causality
is often of secondary importance, and non-causal filters as above are used widely
in that field, by suitably reversing the part of time axis as above. However, for
real-time processing this is not quite appropriate, for example, in instrumentation
or audio/speech processing. To process such a signal, it takes infinite time or at
least time propotional to the length of the signal since the non-causal filter ψ(z) in
(7) has infinite taps. We propose a design of a causal filter ψ(z) which approximates
the condition (5) of delayed perfect reconstruction, allowing a (small) time delay.
Our problem is the following:

Problem 2. Given a stable transfer function φ(z), a stable weighting transfer
function w(z), and delay d ≥ 0, find a causal and stable filter ψ(z) which minimizes

J(ψ) =
∥∥{z−d − ψ(z)φ(z)

}
w(z)

∥∥
∞

= max
θ∈[0,2π)

∣∣{e−jdθ − ψ(ejθ)φ(ejθ)
}
w(ejθ)

∣∣ . (8)

This is a standard H∞ optimization problem, and it can be effectively solved by
standard MATLAB routines (e.g., dhfsyn in MATLAB robust control toolbox
[2]) by using the block diagram shown in Figure 3. The MATLAB code for solving
Problem 2 is available in [25].

3.3. H∞ optimal cubic spline. The cubic spline (N = 3) is widely used because
of its simple structure; for example, the cubic spline is the lowest-order spline for
which the knot-discontinuity is not visible to the human eye [8]. Moreover, the cubic
spline has minimum curvature property [13], that is, the cubic spline minimizes

∫

R

|y′′(t)|2 dt,

the L2 norm of the curvature of the interpolated signal y(t) in (2). While the H∞

filter above can be effectively computed via various numerical methods, it is even
possible to give a closed-form formula for the case of the cubic spline which is widely
used in digital signal processing.

Assume w(z) = 1 and define

E(z) := z−d − ψ(z)φ(z).
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Substituting (6) into this equation, we have

E(z) = z−d − ψ(z)
(z − α1)(z − α2)

6z2
,

α1 := −2−
√
3, α2 := −2 +

√
3.

This equation gives

ψ(z) =
6z2(z−d − E(z))

(z − α1)(z − α2)
.

Since |α1| > 1, the filter ψ(z) may have a pole outside the open unit disc D. It is
easily shown that the filter ψ(z) is stable (i.e., all poles of ψ(z) lie in D) if and only
if

E(α1) = α−d
1 . (9)

Then our problem is to find a stable E(z) of minimum H∞ norm under the inter-
polation constraint (9). This is a Nevanlinna-Pick interpolation problem [21]. By
the maximum modulus principle, we have

‖E‖∞ = sup
|z|=1

|E(z)| = sup
|z|≥1

|E(z)| ≥ |E(α1)| = |α−d
1 |.

The interpolating function of minimum H∞ norm is therefore the constant function
E(z) = α−d

1 . By this, we obtain the optimal ψ(z) as follows:

ψ(z) =
6z2

(z − α1)(z − α2)
(z−d − α−d

1 )

= − 6z2

αd1z
d(z − α2)

d−1∑

k=0

αd−1−k
1 zk.

(10)

We summarize the result as a proposition.

Proposition 1. For given d ≥ 0 and the cubic spline function φ(z) in (6), the H∞

optimal ψ(z) which minimizes J(ψ) = ‖E‖∞ is given by

ψ(z) = − 6z2

αd1z
d(z − α2)

d−1∑

k=0

αd−1−k
1 zk, (11)

and the optimal value minψ J(ψ) = |α−d
1 |.

Remark 1. For higher-order splines (i.e., N ≥ 4), the optimal filter can be ob-
tained by the Nevanlinna algorithm [21]. A closed-form solution is however very
complicated when N ≥ 4. In that case, the numerical computation shown in 3.2 or
3.4 is available.

3.4. FIR filter design via LMI. The H∞-optimal filter is generally an IIR one.
We here propose a design of theH∞-suboptimal FIR filter (with arbitrarily specified
performance close to optimality). Assume that the direct filter ψ(z) is FIR, that
is,

ψ(z) =

M∑

m=0

amz
−m.

We here represent systems in a state space. By the state-space formalism, we can
reduce the computation of H∞ optimization to a linear matrix inequality (LMI).
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A state-space representation of the FIR filter ψ(z) is given by

ψ(z) =




0 1 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 0

...
. . . 1 0

0 . . . . . . . . . 0 1
aM . . . . . . . . . a1 a0




(z)

=:

[
Aψ Bψ

Cψ(a) Dψ(a)

]
(z),

where a :=
[
aM . . . a1 a0

]⊤
, and we use the notation by Doyle [24]:

[
A B
C D

]
(z) := C(zI −A)−1B +D.

Note that the parameter vector a to be designed is linearly dependent only on the
matrices Cψ(a) and Dψ(a), that is, Cψ(a) = a

⊤VC and Dψ(a) = a
⊤VD, where

VC =

[
IM

01×M

]
, VD =

[
0M×1

1

]
.

Set state-space representations of φ(z)w(z) and z−dw(z) respectively by

φ(z)w(z) =:

[
Aφ Bφ
Cφ Dφ

]
(z),

z−dw(z) =:

[
Ad Bd
Cd 0

]
(z).

Then, a state-space representation of the error system

Ew(z) :=
{
z−d − ψ(z)φ(z)

}
w(z)

is given by

Ew(z) =




Aψ BψCφ 0 −BψDφ

0 Aφ 0 −Bφ
0 0 Ad Bd

Cψ(a) Dψ(a)Cφ Cd −Dψ(a)Dφ


 (z)

=:

[
A B

C(a) D(a)

]
(z).

By this, the parameter a to be designed is affinely dependent only on the matrices
C(a) and D(a), that is,

C(a) = a
⊤
[
VC VDCφ 01×d

]
+
[
01×(M+N−1) Cd

]
,

D(a) = −a
⊤VDDφ,

where N is the order of the B-spline basis φ. By using the bounded real lemma or
Kalman-Yakubovic-Popov (KYP) lemma, we can describe our design problem as
an LMI [22].
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HφψS
x(t) x(n) y(t)

Figure 4. Signal Interpolation System

Proposition 2. Let γ be a positive number. Then the inequality ‖Ew(z)‖∞ < γ
holds if and only if there exist a positive definite matrix P > 0 such that



A⊤PA− P A⊤PB C(a)⊤

B⊤PA −γI +B⊤PB D(a)⊤

C(a) D(a) −γI


 < 0. (12)

Remark 2. In some applications, the error system Ew(z) is required to have speci-
fied zeros zi ∈ C, i = 1, 2, . . . , L. In particular, zero-bias constraint (i.e., Ew(1) = 0
) is used for perfect reconstruction of DC (direct current) signals [18]. In such cases,
zeros of Ew(z) can be set by

C(a)(ziI −A)−1B +D(a) = 0, i = 1, 2, . . . , L.

These are linear matrix equations with respect to the design parameter a. The
LMI (12) combined with these linear constraints is also easily solvable via standard
MATLAB routines.

Remark 3. To obtain the optimal a, minimize γ subject to the LMI (12). This
minimization is also easily executed by MATLAB. The MATLAB code for this
optimization is available in [25].

4. Performance analysis

In the previous section, we have proposed the H∞ optimization design of the
filter φ(z) which approximates the delayed perfect reconstruction condition (5). In
this section, we analyze the overall performance of the interpolation system shown
in Figure 4. In Figure 4, S is the ideal sampler defined by

S : {x(t)}t∈R+
7→ {x(n)}n∈Z+

,

and Hφ is a hold defined by

Hφ : {c(n)}n∈Z+
7→

{
∞∑

n=0

c(n)φ(t − n)

}

t∈R+

.

For simplicity, we set w(z) = 1 in this section. Then we show that the approxima-
tion of the equation (5) is proper for decreasing the NSR (noise-to-signal ratio) of
the interpolation system.

Proposition 3. Assume that φ and ψ are causal and stable. Let x be in SN ∩ L2

and y be the reconstructed signal by the direct B-spline transform ψ, that is,

y(t) =
∞∑

n=0

(ψ ∗ x)(n)φ(t − n), t ∈ R+.

Then there exists a real number λ > 0 which depends only on φ such that for any
non-negative integer d,

‖x(· − d)− y‖L2

‖x‖L2

≤ λJ(ψ).
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Proof. Since x ∈ SN , there exists a sequence {c(n)}n∈Z+
such that

x(t) =

∞∑

n=0

c(n)φ(t − n).

We define c(n) = 0 for n < 0. Then, for arbitrary fixed integer d ≥ 0, we have

x(t− d)− y(t)

=

∞∑

n=0

{c(n)φ(t− d− n)− (ψ ∗ x)(n)φ(t − n)}

=
∞∑

n=0

{c(n− d)− (ψ ∗ x)(n)} φ(t− n)

=

∞∑

n=0

{c(n− d)− (ψ ∗ φ ∗ c)(n)}φ(t− n)

=

∞∑

n=0

{
(σ−d − ψ ∗ φ) ∗ c

}
(n)φ(t − n)

=

∞∑

n=0

(e ∗ c)(n)φ(t − n),

where e := σ−d − ψ ∗ φ. Then, since φ is a Riesz basis [12], there exist a > 0 and
b > 0 such that for any c ∈ ℓ2,

a‖c‖ℓ2 ≤
∥∥∥∥∥

∞∑

n=0

c(n)φ(t − n)

∥∥∥∥∥
L2

≤ b‖c‖ℓ2.

By using this inequality, we have

‖x(· − d)− y‖L2 =

∥∥∥∥∥

∞∑

n=0

(e ∗ c)(n)φ(· − n)

∥∥∥∥∥
L2

≤ b‖e ∗ c‖ℓ2
≤ b‖z−d − ψ(z)φ(z)‖∞‖c‖ℓ2

≤ b

a
‖z−d − ψ(z)φ(z)‖∞‖x‖L2 .

Since J(ψ) = ‖z−d − ψ(z)φ(z)‖∞, we have

‖x(· − d)− y‖L2

‖x‖L2

≤ λJ(ψ),

where λ = b/a > 0, which depends only on φ. ✷

We thus conclude that if the H∞ norm of the error system z−d − φ(z)ψ(z) is
adequately small, the NSR of the interpolator can be decreased, and hence H∞

optimization provides a good approximation of the ideal (i.e., non-causal) spline
interpolation.

We next consider a relation between our causal approximation and the ideal
noncausal interpolation. The following corollary to Proposition 3 guarantees that
our approximation recovers the ideal interpolation (i.e., perfect fitting) when the
delay d goes to infinity.
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Table 1. Coefficient ak of FIR filter ψ(z)
k H∞ optimal CLSD [18] KWA [20]
0 0.1152359 0.0991561 0.06049527
1 -0.4614954 -0.4599156 -0.37739071
2 1.7307475 1.7215190 1.63379087
3 -0.4614951 -0.4599156 -0.37739071
4 0.1152352 0.0991561 0.06049527

Corollary 1. Let RH∞ be the set of all real, stable and causal IIR filters. Then,
for any x ∈ SN ∩ L2 we have

inf
ψ∈RH∞

‖x(· − d)− y‖L2

‖x‖L2

→ 0, as d→ ∞ (13)

Proof. Let Jopt(d) be the optimal value of J(ψ), that is,

Jopt(d) := inf
ψ∈RH∞

‖z−d − ψ(z)φ(z)‖∞.

Then we have [5],

lim
d→∞

Jopt(d) = 0.

By this and Proposition 3, we have (13). ✷

The point of this proposition is that if we take sufficiently large delay d, the
worst-case approximation error is sufficiently small.

5. Design Example

We here present a design example of causal spline interpolation. We consider the
spline of order N = 3 (cubic spline), take the reconstruction delay d = 3, assume
w(z) = 1, and design the H∞ optimal IIR filter by (10) and an FIR one with
prespecified degree of 5 taps using the linear matrix inequality (12). In the case of
the cubic spline, the H∞ optimal IIR filter (10) with d = 3 is given by

ψ(z) =
−6z2 − 6α1z − 6α2

1

α3
1z(z − α2)

, (14)

where α1 = −2 −
√
3 and α2 = −2 +

√
3. Figure 5 shows the impulse response of

this filter. For comparison, we also design a 5-tap FIR filter by the constrained least
square design (CLSD) [18] and the Kaiser windowed approximation (KWA) [20].
Table 1 shows the coefficients of the H∞ optimal FIR filter, the filters by CLSD
and by KWA. Figure 6 shows the magnitude of the frequency response of the error
system E(z) = z−3 − φ(z)ψ(z). From this figure, we see that the H∞ optimal IIR
filter given by (14) has the allpass characteristic. The H∞ optimal FIR filter shows
almost the same characteristic as the CLSD filter except at the zero frequency.
This is because CLSD aims at exact inversion for DC signals. At the price of that,
the CLSD filter exhibits larger errors in the high frequency range. The KWA filter
shows the same nature. Table 2 shows the H∞ norm of the error system E(z).
By Figure 6 and Table 2, we can see that the H∞ optimal IIR filter is superior to
CLSD by about 9 dB and KWA by about 19 dB at the worst case frequencies. In
general, the purpose of H∞ design is to minimize the error in the worst case. This
means that the H∞ design is against uncertainties in input signals, and this is an
advantage of the H∞ design. While CLSD may perform better when the inputs
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Table 2. H∞ norm of E(z)
Method ‖E‖∞ ‖E‖∞ in dB

H∞ optimal IIR 0.019238 -34.3168
H∞ optimal FIR 0.038597 -28.2689

CLSD [18] 0.053446 -25.4417
KWA [20] 0.16348 -15.7307

can be predicted with certainty (e.g., the inputs are all DC signals), the H∞ design
(worst case optimization) performs better when we do not have much information
on the frequency characteristic of input signals. To see this robustness property
of the H∞ method, we simulate spline interpolation by H∞ method and CLSD.
The original analog signal is set to be the rectangular wave with the frequency
1 (rad/sec) filtered by the 8-th order Butterworth lowpass filter with the cut-off
frequency 1.5 (rad/sec). Figure 7 shows the Bode magnitude plot of this lowpass
filter, and Figure 8 shows the analog signal filtered by the Butterworth filter and
its sampled-data. Note that this input signal is not exactly in the spline space SN
defined in (1). This situation assumes that we have a priori knowledge on the input
analog signal that the signal contains frequencies mostly in [0, 1.5] (rad/sec). To
bring this knowledge into our design, we adopt the following frequency weight:

w(z) =
1

2
(1 + z−1).
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Figure 6. Magnitude plot of E(z): H∞ optimal IIR (solid), H∞

optimal FIR (dash), CLSD [18] (dash-dots), and KWA [20] (dots).

The Bode magnitude plot of w(z) is shown in Figure 7. With this weight, we design
5-tap FIR filter by the LMI in Proposition 2. Figure 9 shows the reconstruction
errors of the spline interpolation by this FIR filter, the H∞ optimal IIR filter given
by (14), and the CLSD filter given in Table 1. Note that the errors in Figure
9 do not vanish at the sampling instants since the original signal x(t) does not
in the spline space SN . The local minima in the errors are points at which the
original signal and the reconstructed one cross. The L2 norms of these errors
are 1.9181 (CLSD), 1.2289 (unweighted H∞ optimal), and 0.7993 (weighted H∞

optimal). The weighted H∞ optimal FIR filter shows the best performance since
this is designed with a priori knowledge on the signal frequency distribution. On
the other hand, the CLSD filter is designed to achieve perfect fit for DC signals,
but does not take other signals into account. As a result it exhibits larger errors
for unexpected signals as shown in Figure 6.

There is also a design method for causal spline interpolation, the maximum order
minimum support (MOMS) function method by Blu et al. [3]. In contrast to the
methods examined in this section, the MOMS method optimizes the base functions.
To investigate robustness of the MOMS method by using the H∞ norm and to
compare it with our method, the optimality should be measured in sampled-data
H∞ norm [4]. This is a theme for future study.

6. Conclusion

In this paper, we have proposed a design of causal interpolation with polynomial
splines. The design is formulated as an H∞ optimization problem. In the case
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Figure 7. Bode magnitude plot of 8-th order Butterworth lowpass
filter (solid) and weighting function w(z) = (1 + z−1)/2.

of the cubic spline, the optimal solution is given in a closed form. Higher-order
optimal filters can effectively be solved by using MATLAB. We have also shown
that the H∞ optimal FIR filter can be designed by an LMI. A design example have
been shown to illustrate the result.

A future topic is the H∞ design when d is not an integer, and also the order
of the spline is fractional [17]. This can be formulated by H∞ optimization for
non-rational transfer functions (or infinite-dimensional systems).
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[3] T. Blu, P. Thévenaz and M. Unser, High-quality causal interpolation for online unidimensional
signal processing, Proc. of the 12th EUSIPCO, pp. 1417–1420, 2004.

[4] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Springer, 1995.
[5] T. Chen and B. A. Francis, Design of multirate filter banks by H∞ optimization, IEEE

Trans. Signal Processing, vol. 43, no. 12, pp. 2822–2830, 1995.
[6] L. Demaret, N. Dyn, and A. Iske, Image compression by linear splines over adaptive trian-

gulations, Signal Processing, vol. 86, pp. 1604–1616, 2006.

[7] B. Hassibi, A. T. Erdogan, and T. Kailath, MIMO linear equalization with an H
∞ criterion,

IEEE Trans. Signal Processing, vol. 54, no. 2, pp. 499–511, 2006.
[8] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer,

2001.



H∞ OPTIMAL APPROXIMATION FOR CAUSAL SPLINE INTERPOLATION 15

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

Input signal and sampled−data

Figure 8. The original analog signal and its sampled-data

[9] H. Hou and H. C. Andrews, Cubic splines for image interpolation and digital filtering, IEEE
Trans. Acoust., Speech, Signal Processing, vol. 26, no. 6, pp. 508–517, 1978.

[10] I. J. Schoenberg, On spline interpolation at all integer points of the real axis, Delange-Pisot-

Poitou. Theorie des nombres, vol. 9, no. 1, pp. 1–18, 1967.
[11] B. W. Silverman, Some aspects of the spline smoothing approach to non-parametric regression

curve fitting, Journal of the Royal Statistical Society, Series B, vol. 47, no. 1, pp. 1–52, 1985.
[12] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.
[13] M. Unser, Splines: A perfect fit for signal and image processing, IEEE Signal Processing

Magazine, Vol. 16, No. 6, pp. 22–38, 1999.
[14] M. Unser, Sampling — 50 years after Shannon, Proceedings of the IEEE, vol. 88, no. 4,

pp. 569–587, 2000.
[15] M. Unser, A. Aldroubi and M. Eden, B-Spline signal processing: Part-I — Theory, IEEE

Trans. Signal Processing, vol. 41, no. 2, pp. 821–833, 1993.
[16] M. Unser, A. Aldroubi and M. Eden, B-Spline signal processing: Part-II — Efficient design

and applications, IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 834–848, 1993.
[17] M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev., vol. 42, no. 1, pp. 43–67,

2000.
[18] M. Unser and M. Eden, FIR approximations of inverse filters and perfect reconstruction filter

banks, Signal Processing, vol. 36, pp. 163–174, 1994.
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