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a b s t r a c t

Extracting binary strings from real-valued biometric templates is a fundamental step in

template compression and protection systems, such as fuzzy commitment, fuzzy

extractor, secure sketch and helper data systems. Quantization and coding are the

straightforward way to extract binary representations from arbitrary real-valued

biometric modalities. Afterwards, the binary strings can be compared by means of a

Hamming distance classifier (HDC). One of the problems of the binary biometric

representations is the allocation of quantization bits to the features. In this paper, we first

give a theoretical model of the HDC, based on the features’ bit error probabilities after the

quantization. This model predicts the false acceptance rate (FAR) and the false rejection

rate (FRR) as a function of the Hamming distance threshold. Additionally, we propose the

area under the FRR curve optimized bit allocation (AUF-OBA) principle. Given the

features’ bit error probabilities, AUF-OBA assigns variable numbers of quantization bits to

features, in such way that the analytical area under the FRR curve for the HDC is

minimized. Experiments of AUF-OBA on the FVC2000 fingerprint database and the FRGC

face database yield good verification performances. AUF-OBA is applicable to arbitrary

biometric modalities, such as fingerprint texture, iris, signature and face.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Binary representations for biometrics have drawn
considerable interest for their merits in template com-
pression, and particularly template protection [1,2].
Unprotected storage and transfer of biometric information
allow direct steal-and-use impersonation, leading to
identity theft, since biometric data are closely linked to
individuals and cannot be replaced.

Several biometric template protection concepts have
been published, such as biohashing [3–7], cancelable
biometrics [8,9], biometric key generation [10–16], and
biometric key binding [17–28]. Biohashing transforms
biometric features according to a user-specific secret key.
ll rights reserved.
Cancelable biometrics distort the image of a face or a
fingerprint by using a computationally non-invertible
geometric distortion function. Biometric key generation
schemes directly generate a crypto key from the biometric
features. Biometric key binding schemes, including fuzzy
commitment, helper data, fuzzy vault, secure sketch, use
biometric template to bind a crypto key. In the key
generation and key binding schemes, biometric templates
are represented as binary strings.

In this paper, we focus on extracting binary biometric
strings for a key binding verification scheme [20]. Thus,
before being used for template protection purpose, the
biometric features need to be transformed into a binary
string. Therefore, as shown in Fig. 1, a template protected
biometric verification system with binary representations
can be generalized into three modules.

Feature extraction: This module aims to extract inde-
pendent, reliable and discriminative real-valued features
from raw measurements. Independent features are highly
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desirable for template protection. Independent features
are a condition for achieving that the extracted bits in the
next secure bit extraction module are independent, which
is a requirement considering template security. In this
paper we apply classical techniques such as principle
component analysis (PCA) and linear discriminant analy-
sis (LDA) [29] as an example, in order to achieve
independent features, but other more advanced feature
extraction methods can also be used. In a standard
biometric system, the extracted features are compared
through a real-valued classifier.

Secure bit extraction: This module aims to transform
the real-valued features into a fixed-length binary string,
which is used to bind a crypto key. Biometric information
is well known for its uniqueness. Unfortunately, due to
sensor and user behavior, it is inevitably noisy, which
leads to intra-class variations. Therefore, it is desirable to
extract binary strings that are not only discriminative, but
also have low intra-class variations. Such requirements
translate to low false acceptance rate (FAR) and false
rejection rate (FRR), respectively. Additionally, in order to
maximize the attacker’s efforts in guessing the target
template, the bits should be statistically independent and
identically distributed (i.i.d.). The straightforward way to
extract bits is by quantization and coding.

Secure key binding verification: This module, as pre-
sented in [20], aims to provide verification when the
target biometric string is protected and bound to a cypto
key. In the enrollment stage, a random crypto key K is
encoded by an error-correcting encoder into a codeword
C. This codeword is further bound to the genuine binary
biometric string S through W ¼ S� C. In the verification
stage, a noisy version Cu is released by the operation
Cu¼W � Su of W and the query biometric string Su.
Afterwards, Cu is decoded into K u through error-correcting
decoding. The final ‘Yes/No’ decision is made by compar-
ing K u and the original K. Essentially, the key binding
verification process functions as a Hamming distance
classifier (HDC) to the binary biometric strings. That is,
the access is granted if and only if the number of bit errors
between the target and the query strings is below a
Hamming distance threshold.
In this paper we focus on the secure bit extraction
module by quantizing and coding every feature individu-
ally. To extract bits from every feature involves two tasks:
designing the quantization intervals and determining the
number of quantization bits. The final binary string is then
the concatenation of the output bits from all the features.

First we give an overview of some bits extraction
methods. As illustrated in Fig. 2, designing a quantizer
relies on two probability density functions (PDFs) that are
analyzed for each feature: the background PDF and the
genuine user PDF, representing the probability densities
of the imposters and the genuine user, respectively. The
PDFs are estimated from training or enrollment samples,
sometimes under Gaussian assumptions. So far, a number
of one-dimensional quantizers have been proposed
[19–21,14,30,15,31]. Quantizers in [19–21] are user-
independent, constructed merely from the background
PDF, whereas quantizers in [14,30,15,31] are user-specific,
constructed from both the genuine user PDF and the
background PDF. Theoretically, user-specific quantizers
provide better FAR and FRR performances. Particularly,
the likelihood-ratio based quantizer [31], which is optimal
in the Neyman–Pearson sense. Quantizers in [19,14,30,15]
have equal-width intervals. Unfortunately, this leads to
potential threats. Features obtain higher probabilities in
certain quantization intervals than others, thus attackers
can more easily find the genuine interval by continuously
guessing the one with the highest probability. To avoid
this problem, quantizers in [20,21,31] have equal-prob-
ability intervals, which meets the i.i.d. bit requirements
mentioned above.

Once the quantizer type has been determined, a bit
allocation principle is desired to determine the number of
quantization bits for every single feature. So far, a fixed bit
allocation (FBA) principle [20,21,31] and a detection rate
optimized bit allocation (DROBA) principle [32] have been
proposed. The FBA principle assigns a fixed number of bits
to every feature. As seen in Fig. 2, in order to obtain a low
overall error probability, it is efficient to extract more bits
for a distinctive feature and fewer bits for a non-
distinctive feature [33]. The DROBA principle solves this
problem by assigning a variable number of bits based on
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Fig. 2. Two examples of quantizer, given the background PDF (solid), the genuine user PDF (dot), and the quantization intervals (dash). (a) The distinctive

genuine user PDF can be quantized into 3 bits. (b) The non-distinctive genuine user PDF is only quantized into 1 bit.
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the statistical properties of every feature, so that the
theoretical overall detection rate at the zero Hamming
distance threshold is maximized. It is worth mentioning
that binary biometrics are also used outside the context of
template protection, such as the iris code [34,35]
quantized by the iris features. Iris code uses a fixed bit
allocation method based on the approximation that the
features are equally distinctive.

Although DROBA yields reasonably good perfor-
mances, in Fig. 3 we illustrate that in principle it only
minimizes the FRR performance at zero Hamming
distance threshold. Thus it does not provide the optimal
solution at the commonly used operational points with a
FAR between 10�4 and 10�2. Furthermore, as mentioned
before, it is important to extract binary strings that
provide good performances for the Hamming distance
classifier, since it models the secure classification that
allows a certain number of errors. Therefore, in this paper,
we propose an area under the FRR curve optimized bit
allocation (AUF-OBA) principle for the Hamming distance
classifier.

We first show that given the features’ bit error
probabilities after the quantization, we can predict the
analytical area under the FRR curve for the Hamming
distance classifier (HDC). Then we define the AUF-OBA
problem and present a dynamic programming approach
to search for the solution.

This paper is organized as follows. In Section 2 we give
the analytical performance of a HDC, given the features’
bit error probability. In Section 3 we present the AUF-OBA
principle. Simulation results are illustrated in Section 4. In
Section 5, we give some experimental results of AUF-OBA
on the FVC2000 fingerprint database and the FRGC face
database. In Section 6 the results are discussed and
conclusions are drawn in Section 7.
2. Hamming distance classifier (HDC)

A HDC compares the target string and the query string
by computing their Hamming distance. As a result, the
query string is accepted if and only if the Hamming
distance is smaller than a threshold. Consequently, by
varying the threshold, the trade-off between FAR and FRR
can be varied. In this section, we show that for a biometric
verification problem, the FAR and FRR performance of a
HDC can be analytically computed, once the bit error
probabilities for both the genuine user and the imposters
are known.

We begin by defining the bit error probabilities for the
binary strings. Suppose a sequence of L bits is extracted
from D independent real-valued features, i.e.

PD
j ¼ 1 bj ¼ L,

where bj bits are extracted from the jth feature.
During the enrollment, let sg,j denote the string of bj

bits generated by the genuine user for the jth feature.
The entire L-bit string for the genuine user sg is then the
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concatenation of the bits extracted from every single
feature, i.e. sg ¼ sg,1 . . . sg,D. Similarly, during the verifica-
tion, let sug,j and sui,j be the bits generated by the genuine
user and the imposters, respectively, for the jth feature,
and sug and sui be their corresponding entire L-bit string. We
know that during the verification, due to the intra-class
variation, the genuine user might not extract the same
string as the enrollment template, i.e. sug,jasg,j. Contrarily,
the imposter might end up with the same string as that of
the genuine user in the enrollment, i.e. sui,j ¼ sg,j. Therefore,
we introduce the following definitions.

Definition 1. For the jth feature, we define the bit error
probabilities for sug,j and sui,j when compared to sg,j:

Pg,jðkj; bjÞ ¼ PfdHðsg,j,sug,jÞ ¼ kjg, kj 2 0, . . . ,bj, ð1Þ

Pi,jðkj; bjÞ ¼ PfdHðsg,j,sui,jÞ ¼ kjg, kj 2 0, . . . ,bj, ð2Þ

where dH is the Hamming distance between two input bit
strings. Hence Pg,j and Pi,j represent – for the genuine user
and the imposters, respectively – the probability of having
kj bits error in the bj bits extracted for the jth feature
during the verification.

Definition 2. Regarding a total of D features, we define
the bit error probabilities for sug and sui when compared to
sg:

fgðk; fbjg
D
j ¼ 1Þ ¼ PfdHðsg,sugÞ ¼ kg, k 2 0, . . . ,L, ð3Þ

fiðk; fbjg
D
j ¼ 1Þ ¼ PfdHðsg,sui Þ ¼ kg, k 2 0, . . . ,L, ð4Þ

where fgðkÞ and fiðkÞ represent – for the genuine user and
the imposters, respectively – the probability of having k

bits error in the entire L bits extracted during the
verification.

Note that the bit assignment {bj}j =1
D determines the

binary strings. Consequently the bit error probabilities
(e.g. Pg,j, Pi,j, fg, fi) depend on the bit assignment as well.
Assuming that the features are statistically independent,
their bit errors will also be independent. The total number
of bit errors will be the sum of the bit errors of the
individual, independent features. Therefore, according to
the sum rule for independent random variables [36], the
error probability of the whole feature set equals the
convolution of the individual probabilities of the features.
Thus fg and fi can be computed from the convolution of
Pg,j and Pi,j:

fgðk; fbjg
D
j ¼ 1Þ ¼ ðPg,1 � Pg,2 � � � � � Pg,DÞðk; fbjg

D
j ¼ 1Þ, ð5Þ

fiðk; fbjg
D
j ¼ 1Þ ¼ ðPi,1 � Pi,2 � � � � � Pi,DÞðk; fbjg

D
j ¼ 1Þ: ð6Þ

Expressions in (5) and (6) are the bit error probabilities
of the binary string for the genuine user and the
imposters. Based on these, we can further compute the
analytical FAR and FRR performances of the HDC.

Definition 3. The FAR (a) at the Hamming distance
threshold t, (0rtrL), is defined as

aðt; fbjg
D
j ¼ 1Þ ¼ PfdHðsg,sui Þrtg: ð7Þ
Given (4), we have

aðt; fbjg
D
j ¼ 1Þ ¼

Xt

k ¼ 0

fiðk; fbjg
D
j ¼ 1Þ: ð8Þ

Furthermore, to obtain i.i.d. bits, an equal-probability
quantizer [20,21,31], with 2�bj probability mass for every
interval, is required for the quantization of every feature.
Thus, for the jth feature, when assigned with 2bj code
words, the Pi,j(kj;bj), as defined in (2), becomes

Pi,jðkj; bjÞ ¼ 2�bj
bj

kj

 !
: ð9Þ

Subject to
PD

j ¼ 1 bj ¼ L, the FAR in (7) becomes

aðt; fbjg
D
j ¼ 1Þ ¼

Xt

k ¼ 0

fiðk; fbjg
D
j ¼ 1Þ ¼ 2�L

Xt

k ¼ 0

L

k

� �
: ð10Þ

The proof of (10) is given in Appendix A. This expression
shows that when quantized by an equal-probability
quantizer, the FAR only depends on the string length L

and becomes independent of the bit assignment {bj}j =1
D .

Definition 4. Similarly, we define the FRR (b) at the
Hamming distance threshold t, (0rtrL), as

bðt; fbjg
D
j ¼ 1Þ ¼ PfdHðsg,sugÞ4tg: ð11Þ

Given (3), we have

bðt; fbjg
D
j ¼ 1Þ ¼

XL

k ¼ tþ1

fgðk; fbjg
D
j ¼ 1Þ: ð12Þ
3. Area under the FRR curve optimized bit allocation
(AUF-OBA)

Given the analytical FRR performance in (11), we
compute the area under the FRR curve as a criterion for
the overall HDC performance. Furthermore, the perfor-
mance relies on the features’ bit error probability Pg,j(kj;bj)
after quantization, more precisely the bit assign-
ment {bj}j = 1

D . Therefore, in this section, we give the
{bj}j =1

D solution that optimizes the area under the
FRR curve.
3.1. Problem formulation

The optimization problem is defined for every genuine
user. Suppose we need to extract L bits from
D independent real-valued features. For every feature,
the background PDF and the genuine user PDF are
assumed to be known, usually estimated from the training
or enrollment samples. Moreover, a quantizer is employed
to quantize the jth feature into bj bits, j=1,y,D,
bj 2 f0, . . . ,bmaxg.

To minimize the area under the FRR curve, the
optimization problem is formulated as

fb�j g
D
i ¼ 1 ¼ arg minPD

j ¼ 1
bj ¼ L

AFRR
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¼ arg minPD

j ¼ 1
bj ¼ L

XL

t ¼ 0

bðt; fbjg
D
j ¼ 1Þ: ð13Þ
Fig. 4. An example of computing Pg,j(kj;bj) for the jth feature, assigned

with bj=2 bits Gray code. The genuine user PDF pg,j (black curve); Q(0;2)

with the genuine code ‘11’ (gray); Q(1;2) with 1-bit error (blue); and

Q(2;2) with 2-bit error (white). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of

this article.)
3.2. AUF-OBA solution

We first reformulate the FRR in (12) into the following
expression:

bðt; fbjg
D
j ¼ 1Þ ¼

XL

l ¼ 0

uðl�ðtþ1ÞÞfgðl; fbjg
D
j ¼ 1Þ ð14Þ

with

uðlÞ ¼
1, lZ0,

0, lo0:

(
ð15Þ

The newly introduced function u allows us to enlarge the
summation index range from [k+1,L] to [0,L], which
simplifies the computation. Therefore the area under the
FRR curve becomes

AFRR ¼
XL

t ¼ 0

bðt; fbjg
D
j ¼ 1Þ

¼
XL

t ¼ 0

XL

l ¼ 0

½uðl�ðtþ1ÞÞfgðl; fbjg
D
j ¼ 1Þ�

¼
XL

l ¼ 0

fgðl; fbjg
D
j ¼ 1Þ

XL

t ¼ 0

uðl�ðtþ1ÞÞ

" #

¼
XL

l ¼ 0

lfgðl; fbjg
D
j ¼ 1Þ: ð16Þ

Expression (16) is the expected value of the number of bit
errors k, which we denote by E[k;{bj}j = 1

D ]. Hence, AFRR

equals E[k;{bj}j =1
D ].

AFRR ¼ E½k; fbjg
D
j ¼ 1�: ð17Þ

Furthermore, we know that the k-bit error of a L-bit
binary string come from D real-valued features. Thus with
kj (j=1,y,D) bits error per feature. Furthermore, we have
that the expected value of a sum equals the sum of the
expected values. Therefore,

AFRR ¼ E½k; fbjg
D
j ¼ 1� ¼

XD

j ¼ 1

E½kj; bj�, ð18Þ

where E[kj;bj] is the expected value of the number of
errors kj for the jth feature:

E½kj;bj� ¼
Xbj

l ¼ 0

lPg,jðl; bjÞ: ð19Þ

We can now reformulate the AUF-OBA problem as

fb�j g
D
j ¼ 1 ¼ arg minPD

j ¼ 1
bj ¼ L

XD

j ¼ 1

E½kj; bj�: ð20Þ

Furthermore, let Gj(bj) be a gain factor, defined as

GjðbjÞ ¼�E½kj;bj�: ð21Þ
The AUF-OBA then becomes a maximization problem:

fb�j g
D
j ¼ 1 ¼ arg minPD

j ¼ 1
bj ¼ L

XD

j ¼ 1

E½kj;bj�,

¼ arg maxPD

j ¼ 1
bj ¼ L

XD

j ¼ 1

GjðbjÞ: ð22Þ

With the gain factor defined in (21), the problem in (22)
has the same form as the DROBA optimization problem
presented in [32]. Therefore, solving (22) involves two
steps: (1) computing Gj(bj) for every feature j; (2) finding
the optimal {b*j}j = 1

D through the same dynamic program-
ming procedure as proposed in DROBA [32].

3.3. Computing Gj(bj)

To compute Gj(bj), the genuine user bit error prob-
ability Pg,j(kj;bj) is required. As defined in (1), given the
feature’s genuine user PDF pg,j, the quantizer and the
number of quantization bits bj, we can compute Pg,j(kj;bj)
as

Pg,jðkj; bjÞ ¼

Z
Q ðkj ;bjÞ

pg,jðvÞ dv, ð23Þ

where Q(kj;bj) indicates the quantization intervals with
kj-bit error as compared to the genuine code sg,j. An
example of these intervals encoded by a Gray code [37] is
illustrated in Fig. 4.

3.4. Dynamic programming approach

The optimization problem in (22) has the same form as
DROBA [32]. Therefore, once the Gj(bj) is computed, (22)
can be solved by a common recursive dynamic program-
ming approach, as described in Appendix B. As explained
in [32], the essential concept is that the optimal bits
assignment for j features can be computed directly from
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the optimal bits assignment for j�1 features. Therefore,
the final optimal bits assignment can be computed
through an iterative procedure. The number of operations
per iteration step is about Oððj�1Þ � b2

maxÞ, leading to a
total number of operations of OðD2 � b2

maxÞ, which is
significantly less than a brute force search.

4. Simulations on synthetic data

In this section we test the HDC performances of the bit
strings extracted with AUF-OBA, on randomly generated
independent features. The background PDF of every
feature is generated as a Gaussian density with zero-
mean and unit-variance, i.e. pb,j=N(v,0,1). Additionally,
the genuine user PDF of every feature is generated as a
Gaussian density with user-specific mean and standard
deviation, i.e. pg,j ¼Nðv,mj,sjÞ. The quantizer that we
employed to compute Pg,j(kj;bj) in (23) is the user-
independent equal-probability quantizer [20,21,31],
defined as

B0 ¼�1, ð24Þ

Bm ¼ arg
B

Z Bm

Bm�1

pb,j dv¼ 2�bj

� �
, m¼ 1, . . . ,2bj , ð25Þ

where (Bm�1,Bm] represents the mth quantization inter-
val. The quantization symbols are assigned with Gray
code, and we set bmax=3. Thus, given D features and a
predetermined length L, we search for the {bj}j = 1

D through
the DP process in Appendix B. Afterwards, we compute
the corresponding FAR and FRR performances for HDC
according to (10) and (11).

Fig. 5 shows the FAR vs. FRR performances by
increasing the binary string length (L=31, 63, 127), given
a fixed set of features (D=50). Results show that there
exist a number of bits (e.g. close to L=63) that gives the
optimal trade-off in terms of FAR and FRR.

Fig. 6 shows the FAR vs. FRR performances by increasing
the input features (D=50, 100, 150), at a predetermined
string length (L=127). The FAR performance merely
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features, when the output L=31, 63 and 127, at D=50.
depends on L and thus is fixed. While increasing the
number of features, the FRR performances always improve.
This result suggests that AUF-OBA tends to extract
distinctive bits as the number of input features increases.

In Fig. 7, we further compare the FAR vs. FRR
performances between AUF-OBA and DROBA, at D=50,
L=127. Although DROBA minimizes the highest FRR at
zero Hamming distance threshold, AUF-OBA obtains
lower FRR at the operational area where FAR is between
10�4 and 10�2.

In the simulations, both the background PDF and the
genuine user PDF are assumed to be Gaussian. In Section
5.2.4 we tested this Gaussian assumption on real data.
5. Real data experiments

In this section we conduct the experiments with AUF-OBA
on real data. We first investigate the verification perfor-
mances while varying the input feature dimensionality D and
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the output binary string length L. From the best D–L settings
we analyze the bits capacity of the features. Afterwards, we
compare AUF-OBA with DROBA. Finally, we discuss the
independent Gaussian hypothesis by comparing the empiri-
cal results with the predicted FAR and FRR performances.

5.1. Experimental setup

We tested the AUF-OBA on three datasets, derived
from the FVC2000(DB2) fingerprint database [38] and the
FRGC(version 1) face database [39]. One important
consideration for biometric protection system is that it
is not allowed to conduct the user-specific image align-
ment, since the reference image, as a template, is
encrypted. Therefore, we could only rely on absolute
alignment methods or alignment-free measurements. In
this paper, we applied basic absolute alignment methods.
�
 FVC2000: This is the FVC2000(DB2) fingerprint dataset,
containing eight images of 110 users. Images are
aligned to an automatically detected standard core
point position through translation. As illustrated in
Fig. 8, the raw measurements contain two categories:
the squared directional field in both x and y directions,
and the Gabor response in four orientations (0, p=4,
Fig. 8. (a) Fingerprint image, (b) directional field, (c)–(f) the absolute

Fig. 9. (a) Controlled image, (b) uncontrolled image, (c) lan
p=2, 3p=4). Determined by a regular grid of 16 by 16
points with spacing of eight pixels, measurements are
taken at 256 positions, leading to a total of 1536
elements [20].

�
 FRGCH: This is a subset of FRGC(version 1), containing

275 users with various numbers of high quality
images, taken under controlled conditions. The num-
ber of samples n per user ranges from 4 to 36. As
illustrated in Fig. 9, a set of four standard landmarks,
i.e. eyes, nose and mouth, is used to align the faces to a
standard reference face. The measurements with 8762
elements are the gray pixel values, picked from a
region of interest (ROI) with size 128�128.

�
 FRGCL: This is a subset of FRGC(version 1), containing

198 users with low quality images (n from 4 to 16),
taken under uncontrolled conditions. The alignment
and measurements are the same as FRGCH.
We randomly selected different users for training and
testing and repeated our experiment with a number of
trials. The data division is described in Table 1.

Our experiments involved three steps: training, enroll-
ment and verification. According to the requirement for
the feature extraction module, independent features are
necessary. Thus, any method that extracts independent
values of Gabor responses for different orientations y.

dmarks and (d) the region of interest (ROI).
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features can be applied. During the training step in our
experiment, we applied a common PCA/LDA [40] method
on the training set. That is, we first applied PCA to obtain
the projections on the eigenvectors at a reduced dimen-
sionality. Based on which we further applied LDA to pick
the eigenvectors that yield the largest within and between
class scatters. The obtained transformation was then
applied to both the enrollment and verification sets. We
assume that the measurements are with Gaussian density,
Table 1
Data division: number of users�number of samples per user (n), and the

number of trials for FVC2000, FRGCH and FRGCL.

Training Enrollment Verification Trials

FVC2000 80�n 30�3n/4 30�n/4 20

FRGCH 210�n 65�3n/4 65�n/4 5

FRGCL 150�n 48�2n/3 48�n/3 5
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Fig. 10. The FAR vs. FRR performances for FVC2000 extracted with AUF-OBA, fr

(d) L=255.
thus after the PCA transformation, the extracted features
are statistically independent. Additionally, the LDA
method we applied assumes user-independent intra-class
variance, so that the extracted features are statistically
independent for every genuine user as well. In the
enrollment step, for the jth feature, we first have to
estimate both the background PDF pb,j and the genuine
user PDF pg,j. In [32], it is shown that modeling every
feature as Gaussian density gives reasonably good
performances. Therefore, we model both PDFs as Gaussian
density pb,j=N(v,0,1), pg,j ¼Nðv,mj,sjÞ. Additionally, we set
bmax=3, and the gain factor Gj was computed from the
fixed quantizer in (25). Afterwards, we applied the
AUF-OBA for every genuine user. Based on the output
bit assignment {b*j}j = 1

D , the features were coded with Gray
code. In the verification step, the features of the query
user were quantized and coded according to the {b*j}j =1

D of
the target user, resulting in a query binary string. Finally
the query binary string was compared with the target
binary string by using a HDC.
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5.2. Experimental results

5.2.1. Verification performance

We tested the binary strings at length L=31, 63, 127
and 255, extracted from various numbers of features D.
The FAR vs. FRR performances for FVC2000, FRGCH and
FRGCL are shown in Figs. 10–12, where the FAR is plotted
as a log scale. Since the Hamming distance threshold is an
integer, the FAR and FRR performances are discrete.

We first investigate the performances at fixed L by
increasing D. For FVC2000, we first applied both PCA and
LDA transformation, given L, when the number of features
D increases, the performance improves, yet still not
satisfying. The reason might be the dimensionality limit
(Dmax=number of training user�1=79) from LDA. To
solve this problem, we relax the independency constraint
for the genuine user by only applying the PCA transfor-
mation, and the performance improves. Fig. 11 suggests
that for the high quality data FRGCH, given L, when the
number of features D increases, the overall FAR vs. FRR
performance improves and becomes stable. These results
are consistent to the synthetic data performances in Fig. 6
and prove that AUF-OBA can effectively extract distinctive
bits when the feature dimensionality is high. Contrarily,
Fig. 12 suggests that for the low quality data FRGCL, given
L, when the number of features D increases, the overall
FAR vs. FRR performance improves. However, when DbL,
as seen with L=31 and 63 in Fig. 12(a) and (b), the
performance starts to deteriorate. The reason is that at a
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Fig. 11. The FAR vs. FRR performances for FRGCH, with varying D (NPCA
high dimensionality after PCA/LDA transformation, the
features of the low quality data become less reliable, and
the error probabilities estimated from such features are
not accurate. Consequently, AUF-OBA no longer provides
the effective bit assignment.

We then investigate the performances at fixed D by
increasing L. All three datasets show that given D features,
the moderate length L=127 gives the best performances.
These results are consistent to the synthetic data
performances in Fig. 5. It proves that given a number of
features, a maximum number of bits can be extracted that
gives the best performances in terms of FAR vs. FRR.

To further investigate the performances at the opera-
tional points, we picked the D–L settings with the best
performances around the operational points. The FAR vs.
FRR performances for FVC2000, FRGCH and FRGCL are
listed in Table 2. Results show that regarding a compres-
sion or template protection system, the FRR performances
at FAR	 10�4 are reasonably good, especially for the high
quality data FRGCH.
5.2.2. Bit capacity of features

Since AUF-OBA enables more quantization bits for
distinctive features than for non-distinctive feature, the
bit assignment to some extent indicates the feature
distinctiveness. Therefore, we take the best D–L settings
in Table 2, and in Fig. 13 we plot the bit assignment
histogram for the features, averaged over all genuine
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=250, NLDA=D), at (a) L=31; (b) L=63; (c) L=127 and (d) L=255.
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Fig. 12. The FAR vs. FRR performances for FRGCL, with varying D (NPCA=250, NLDA=D), at (a) L=31; (b) L=63; (c) L=127 and (d) L=255.

Table 2
The FAR vs. FRR performances for (a) FVC2000, (b) FRGCH and (c) FRGCL.

FVC2000 FRR FAR FRR FAR FRR FAR

(%) (%) (%)

(a)

D=250, L=31 23.2 0.02 16.1 0.1 5.0 1.8

D=250, L=63 22.0 0.01 9.9 0.1 4.0 1.0

D=250, L=127 22.0 0.01 8.3 0.1 2.6 1.0
D=250, L=255 29.4 0.01 12.4 0.1 4.1 1.1

FRGCH FRR FAR FRR FAR FRR FAR

(%) (%) (%)

(b)

D=100, L=31 6.5 0.01 2.3 0.2 0.7 1.8

D=200, L=63 5.7 0.01 1.7 0.1 0 1.7

D=200, L=127 4.7 0.01 1.8 0.1 0 1.4
D=200, L=255 6.4 0.01 2.6 0.1 1.4 1.0

FRGCL FRR FAR FRR FAR FRR FAR

(%) (%) (%)

(c)

D=80, L=31 21 0.02 8 0.2 3 1.6

D=80, L=63 15 0.01 5 0.1 3 1.6

D=149, L=127 12 0.01 6 0.1 3 1.0
D=149, L=255 18 0.01 10 0.1 5 1.0
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Fig. 13. An example of the bit assignment histogram for the features,

averaged over all genuine users, for FVC2000, FRGCH and FRGCL.
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users. All three datasets show consistent results. A large
proportion of features are assigned with 0 bits or
discarded, which means these features are not distinctive.
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However, only few features are distinctive enough to
extract 2 or 3 bits.

5.2.3. Comparison with DROBA

In Fig. 7 we showed that theoretically AUF-OBA is
superior to DROBA concerning the performances at the
operational points. Now we further compare their
performances on the real data. In Fig. 14 we illustrate
their performances at the same D–L settings. Results show
that AUF-OBA is indeed slightly better than DROBA.

5.2.4. Considerations about the independent Gaussian

assumption

One important assumption in AUF-OBA is – for both
the imposters and the genuine user – the independency
among the features. In our experiments, we assume that
the measurements are with Gaussian density, thus after
the PCA transformation, the extracted features are
independent Gaussian density. Furthermore, in our LDA
transformation, we assume that every feature has user-
independent intra-class variance, so that the extracted
features are also independent for every genuine user. Now
we investigate whether the real data comply with these
assumptions. However, formally testing the independent
Gaussian hypothesis is not within the scope of this paper.

As in the previous experiments, computing the
{b*j}j=1

D output of AUF-OBA is based on the independent
Gaussian density pg,j, pb,j. Then, according to (10) and (11),
we can compute the theoretical FAR as well as the
theoretical averaged FRR performances over all the genuine
users. Furthermore, given the {b*j}j=1

D , we can evaluate the
FAR vs. FRR performance on both the enrollment and the
verification datasets. Thus, by comparing the real data and
the theoretical performances, we could evaluate whether
the real data comply with the independency and the
Gaussian density assumptions. In Fig. 15 we give an
example of the performances for FRGCH, at D=200,
L=127. The overall FAR performance of both the enroll-
ment and verification sets are consistent to the theo-
retical result, showing that the background PDF fits the
Gaussian density and the independency assumption. This
results further suggests that the extracted bits are i.i.d.

However, the empirical averaged FRR performance is
higher than the theoretical prediction, suggesting that the
features for the genuine user is not fully Gaussian or
independent.
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6. Discussion

An important assumption in AUF-OBA is that after
feature extraction (e.g. PCA/LDA), the features are inde-
pendent among both the entire populations and the
genuine user. In Section 5.2.4 we proved the indepen-
dency among the entire populations. Although it is not
true for the genuine user, we see that AUF-OBA still works
in such relaxed condition and provides reasonably good
FRR performances.

Although AUF-OBA provides an optimal way to extract
variable bits, the performances of a template protection
biometric system relies on the other factors as well. For
instance, aligning the query image for the specific biometric
modality, reliably extracting independent features, and
applying the error-correcting technique with higher correc-
tion capability. From the template protection system
perspective, these methods still need further investigation.

7. Conclusion

Binary biometric representations are becoming popu-
lar for its benefits in template compression and protec-
tion. Quantization and coding are the common way to
achieve the binary representation from arbitrary bio-
metric modalities. One of the problems in the quantiza-
tion is the allocation of quantization bits to the features.
In this paper, we first give a theoretical model of the HDC,
based on the bit error probability after quantization. This
model predicts the FAR and the FRR as a function of the
Hamming distance threshold. Additionally, we propose
the AUF-OBA principle. Given the features’ bit error
probabilities after quantization, AUF-OBA assigns variable
numbers of quantization bits to features, in such a way
that the analytical area under the FRR curve for the HDC is
minimized. AUF-OBA is capable of achieving low FRR at a
wide range of Hamming distances thresholds, rather than
the DROBA principle which optimizes the FRR at
Hamming distance threshold zero. Experiments of AUF-
OBA on the FVC2000 fingerprint database and the FRGC
face database yield good verification performances.

Appendix A. Derivation of the FAR

In order to prove (10), we only need to prove

fiðk; fbjg
D
j ¼ 1Þ ¼ 2�L L

k

� �
: ð26Þ

Proof. Note that for binomial coefficients ðmq Þ and ð n
p�qÞ

Vandermonde’s identity states that

Xp

q ¼ 0
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q

 !
n

p�q

 !
¼
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p

 !
: ð27Þ

Thus, for instance, by using (9) we obtain
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Expression (28) in fact computes the convolution of the bit
error probabilities of two features. In the case of D features, as
in (6), fi is the convolution from all the D features. Therefore,
we can apply (28) repetitively to all the D features. For
instance, to convolve with the third feature, we have

Xk

m ¼ 0

Xm
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Applying this convolution for all D features with
PD

j ¼ 1 bj ¼ L,
we finally leads to the desired result in (26).

This result can also be found by realizing that, for L i.i.d.

bits with error probability 2�1, the probability of a given

set of precisely k bits to be erroneous is 2�L and that there

are ðLkÞ possibilities to select k bits. &

Appendix B. Dynamic programming approach
Algorithm 1. The dynamic programming approach to
solve AUF-OBA principle.
Input:

D,L,GjðbjÞ,bj 2 f0; . . . ; bmaxg,j¼ 1, . . . ,D,

Initialize:

n¼ 0,

b0ð0Þ ¼ 0,

Gð0Þð0Þ ¼ 1,

while naD do

n¼ nþ1,

b̂ u,b̂ 00 ¼ argmaxGðn�1ÞðbuÞþGnðb
00Þ,

buþb00 ¼ l,
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bu 2 f0, . . . ,ðn�1Þ � bmaxg,

b00 2 f0, . . . ,bmaxg,

l¼ 0, . . . ,n� bmax ,

GðnÞðlÞ ¼Gðn�1Þðb̂ uÞþGnðb̂
00Þ,

bjðlÞ ¼ bjðb̂ uÞ,j¼ 1, . . . ,n�1,

bnðlÞ ¼ b̂ 00 ,

end while
Output:

fb%

j g ¼ fbjðLÞg,j¼ 1, . . . ,D:
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