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Surveying and comparing simultaneous sparse
approximation (or group-lasso) algorithms

A. Rakotomamonjy1,∗

LITIS EA4108, University of Rouen

Abstract

In this paper, we survey and compare different algorithms that, given an over-

complete dictionary of elementary functions, solve the problem of simultaneous

sparse signal approximation, with common sparsity profile induced by a ℓp− ℓq

mixed-norm. Such a problem is also known in the statistical learning community

as the group lasso problem. We have gathered and detailed different algorith-

mic results concerning these two equivalent approximation problems. We have

also enriched the discussion by providing relations between several algorithms.

Experimental comparisons of several of the detailed algorithms have also been

carried out. The main lesson learned from these experiments is that depending

on the performance measure, greedy approaches and iterative reweighted algo-

rithms are the efficient algorithms either in term of computational complexities

or in term of sparsity recovery.

Keywords: simultaneous sparse approximation, block sparse regression, group

lasso, iterative reweighted algorithms

1. Introduction

Since several years now, there has been a lot of interest about sparse signal

approximation. This large interest comes from frequent wishes of practitioners
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to represent data in the most parsimonious way.

Recently, researchers have focused their efforts on a natural extension of

sparse approximation problem which is the problem of finding jointly sparse

representations of multiple signal vectors. This problem is also known as si-

multaneous sparse approximation and it can be stated as follows. Suppose we

have several signals describing the same phenomenon, and each signal is con-

taminated by noise. We want to find the sparsest approximation of each signal

by using the same set of elementary functions. Hence, the problem consists in

finding the best approximation of each signal while controlling the number of

functions involved in all the approximations.

Such a situation arises in many different application domains such as sensor

networks signal processing [28, 11], neuroelectromagnetic imaging [21, 35, 53],

source localization [29], image restoration [17], and distributed compressed sens-

ing [25].

1.1. Problem formalization

Formally, the problem of simultaneous sparse approximation is the following.

Suppose that we have measured L signals {si}Li=1 where each signal is of the form

si = Φci + ǫ where si ∈ R
N , Φ ∈ R

N×M is a matrix of unit-norm elementary

functions, ci ∈ R
M a weighting vector and ǫ is a noise vector. Φ will be denoted

in the sequel as the dictionary matrix. Since we have several signals, the overall

measurements can be written as :

S = ΦC + E (1)

with S = [s1 s2 · · · sL] a signal matrix, C = [c1 c2 · · · cL] a coefficient matrix

and E a noise matrix. Note that in the sequel, we have adopted the following

notations : ci,· and c·,j respectively denote the ith row and jth column of matrix

C and ci,j is the ith element in the jth column of C.

For the simultaneous sparse approximation (SSA) problem, the goal is then

to recover the matrix C given the signal matrix S and the dictionary Φ under

the hypothesis that all signals si share the same sparsity profile. This latter
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hypothesis can also be translated into the coefficient matrix C having a minimal

number of non-zero rows. In order to measure the number of non-zero rows of

C, a possible criterion is the so-called row-support or row-diversity measure of

a coefficient matrix defined as

rowsupp(C) = {i ∈ [1 · · ·M ] : ci,k 6= 0 for some k}

The row-support of C tells us which atoms of the dictionary have been used for

building the signal matrix. Hence, if the cardinality of the row-support is lower

than the dictionary cardinality, it means that at least one atom of the dictionary

has not been used for synthesizing the signal matrix. Then, the row-ℓ0 pseudo-

norm of a coefficient matrix can be defined as : ‖C‖row−0 = |rowsupp(C)|.

According to this definition, the simultaneous sparse approximation problem

can be stated as

minC
1
2‖S−ΦC‖2F

st. ‖C‖row−0 ≤ T
(2)

where ‖ ·‖F is the Frobenius norm and T a user-defined parameter that controls

the sparsity of the solution. Note that the problem can also take the different

form :

minC ‖C‖row−0

st. 1
2‖S−ΦC‖F ≤ ǫ

(3)

For this latter formulation, the problem translates in minimizing the number of

non-zero rows in the coefficient matrix C while keeping control on the approx-

imation error. Both problems (2) and (3) are appealing for their formulation

clarity. However, similarly to the single signal approximation case, solving these

optimization problems are notably intractable because ‖ · ‖row−0 is a discrete-

valued function. Two ways of addressing these intractable problems (2) and (3)

are possible : relaxing the problem by replacing the ‖ · ‖row−0 function with a

more tractable row-diversity measure or by using some suboptimal algorithms.

A large class of relaxed versions of ‖ · ‖row−0 proposed in the literature are
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encompassed into the following form :

Jp,q(C) =
∑

i

‖ci,·‖
p
q with ‖ci,·‖q =





∑

j

|ci,j |
q





1/q

where typically p ≤ 1 and q ≥ 1. This penalty term can be interpreted as the

ℓp quasi-norm of the sequence {‖ci,·‖q}i. Note that as p converges to 0, Jp,q(C)

provably converges towards
∑

i log(‖ci,·‖). According to this relaxed version of

the row-diversity measure, most of the algorithms proposed in the literature try

to solve the relaxed problem :

min
C

1

2
‖S−ΦC‖2F + λJp,q(C) (4)

where λ is another user-defined parameter that balances the approximation

error and the sparsity-inducing penalty Jp,q(C). The choice of p and q results

in a compromise between the row-support sparsity and the convexity of the

optimization problem. Indeed, problem (4) is known to be convex when p, q ≥ 1

while it is known to produce a row-sparse matrix C if p ≤ 1 (due to the penalty

function singularity at C = 0 [15]).

The simultaneous sparse approximation problem as described here is equiv-

alent to several other problems studied in other research communities. Problem

(4) can be reformulated so as to make clear its relation with some other prob-

lems denoted as the ℓp − ℓq group lasso [55] or block-sparse regression [26] in

statistics or block-sparse signal recovery [13] in signal processing. Indeed, let us

define :

s̃ =











s1

...

sL











Φ̃ =











Φ (0)

. . .

(0) Φ











c̃ =











c1

...

cL











then, problem (4) can be equivalently rewritten as :

min
c̃

1

2
‖s̃− Φ̃c̃‖22 + λJ ′

p,q(c̃) (5)

where J ′
p,q(c̃) =

∑M
i=1 ‖c̃gi‖

p
q with gi being all the indices in c̃ related to the

i-th element of the dictionary matrix Φ.
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As we have already stated, simultaneous sparse approximation and equiv-

alent problems have been investigated by diverse communities and have also

been applied to various application problems. Since the literature on these top-

ics has been overwhelming since the last few years, The aim of this work is

to gather results from different communities (statistics, signal processing and

machine learning) so as to survey, analyze and compare different proposed al-

gorithms for solving optimization problem (4) for different values of p and q. In

particular, instead of merely summarizing existing results, we enrich our survey

by providing results like proof of convergence, formal relations between different

algorithms and experimental comparisons that were not available in the liter-

ature. These experimental comparisons essentially focus on the computational

complexity of the different methods, on their ability of recovering the signal

sparsity pattern and on the quality of approximation they provided evaluated

through mean-square error.

Note that recently, there has been various works which addressed the si-

multaneous sparse approximation in the noiseless case [44, 42] and many works

which aims at providing theoretical approximation guarantees in both noise-

less and noisy cases [6, 13, 31, 14, 23, 27]. Surveying these works is beyond

the scope of this paper and we suggest interested readers to follow for instance

these pointers and references therein.

The most frequent case of problem (4) encountered in the literature is the one

where p = 1 and q = 2. This case is the simpler one since it leads to a convex

problem. We discuss different algorithms for solving this problem in Section

2. Then, we survey in Section 3 generic algorithms that are able to solve our

approximation problems with different values of p and q. These algorithms are

essentially iterative reweighted ℓ1 or ℓ2 algorithms. Many works in the literature

have focused on one algorithm for solving a particular case of problem (4). These

specific algorithms are discussed in section 4. Notably, we present some greedy

algorithms and discuss a sparse bayesian learning algorithm. The experimental

comparisons we carried out aim at clarifying how each algorithm behaves in

terms of computational complexity, in sparsity recovery and in approximation
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mean-square error. These results are described in Section 5. For a sake of

reproducibility, the code used in this paper has been made freely available2.

Final discussions and conclusions are given in Section 6.

2. Solving the ℓ1 − ℓ2 optimization problem

When p = 1, q = 2, optimization problem (4) becomes a particular problem

named as M-BP for Multiple Basis Pursuit in the sequel. It is a special case that

deserves attention. Indeed, it seems to be the most natural extension of the so-

called Lasso problem [45] or Basis Pursuit Denoising [7], since for L = 1, it can

be easily shown that problem (4) reduced to these two problems. The key point

of this case is that it yields to a convex optimization problem and thus it can

benefit from all properties resulting from convexity e.g global minimum. One

of the first algorithm addressing such the M-BP problem is the one proposed

by Cotter et al. [8] known as M-FOCUSS. Such an algorithm based on factored

gradient descent works for any p ≤ 1 and has been proved to converge towards a

local or global (when p = 1) minimum of problem (4) if it does not get stuck into

a fixed point. Because, M-FOCUSS is better tailored for situations where p ≤ 1,

we post-pone its description to next section. The two algorithms on which we

focus on herein, are based on a block-coordinate descent as proposed by Yuan

et al. [55] for the group lasso and the one based on Landweber iterations of

Fornasier et al. [17]. We have biased our survey towards these two approaches

because of their efficiencies and their convergence properties.

2.1. Block Coordinate descent

The specific structure of the optimization problem (4) for p = 1 and q = 2

leads to a very simple block coordinate descent algorithm that we name as

M-BCD. Here, we provide a more detailed derivation of the algorithm and we

also give results that were not available in the Yuan et al. work [55]. We

2 http://asi.insa-rouen.fr/enseignants/~arakotom/code/SSAindex.html
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provide a proof of convergence of the M-BCD algorithm and we show that if

the dictionary is under-complete then it can be proved that the solution of the

problem is equivalent to a simple shrinkage of the coefficient matrix.

2.1.1. Deriving optimality conditions

The M-BP optimization problem is the following

min
C

W (C) =
1

2
‖S−ΦC‖2F + λ

∑

i

‖ci,·‖2 (6)

where the objective function W (C) is a non-smooth but convex function. Since

the problem is unconstrained a necessary and sufficient condition for a matrix

C⋆ to be a minimizer of (6) is that 0 ∈ ∂W (C⋆) where ∂W (C) denotes the

subdifferential of our objective value W (C) [2]. By computing the subdifferential

of W (C) with respect to each row ci,· of C, the KKT optimality condition of

problem (6) is then

−ri + λgi,· = 0 ∀i

where ri = φt
i(S−ΦC) and gi,· is the i-th row of a subdifferential matrix G of

J1,2(C) =
∑

i ‖ci,·‖2. According to the J1,2’s subdifferential definition given in

the appendix, the KKT optimality conditions can be rewritten as

− ri + λ
ci,·

‖ci,·‖2
= 0 ∀i, ci,· 6= 0 (7)

‖ri‖2 ≤ λ ∀i, ci,· = 0

A matrix C satisfying these equations can be obtained after the following alge-

bra. Let us expand each ri so that

ri = φt
i(S−ΦC−i)− φt

iφici,·

= Ti − ci,· (8)

where C−i is the matrix C with the i-th row being set to 0 and Ti = φt
i(S −

ΦC−i). The second equality is obtained by remembering that φt
iφi=1. Then,

equation (7) tells us that if ci,· is non-zero, Ti and ci,· have to be collinear.

Plugging all these points into equation (7) yields to an optimal solution that
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can be obtained as :

ci,· =

(

1−
λ

‖Ti‖

)

+

Ti ∀i (9)

where (x)+ = x if x > 0 and 0 otherwise. From this update equation, we can

derive a simple algorithm which consists in iteratively applying the update (9)

to each row of C.

2.1.2. The algorithm and its convergence

Our block-coordinate descent algorithm is detailed in Algorithm (1). It is a

simple and efficient algorithm for solving M-BP.

Basically, the idea consists in solving each row ci.· at a time. By starting

from a sparse solution like, C = 0, at each iteration, one checks for a given i

whether row ci,· is optimal or not based on conditions (7). If not, ci,· is then

updated according to equation (9).

Although, such a block-coordinate algorithm does not converge in general for

non-smooth optimization problem, Tseng [49] has shown that for an optimiza-

tion problem which objective value is the sum of a smooth and convex function

and a non-smooth but block-separable convex function, block-coordinate opti-

mization converges towards the global minimum of the problem. Our proof of

convergence is based on such properties and follows the same lines as the one

proposed by Sardy et al. [39] for a single signal approximation.

Theorem 1. The M-BCD algorithm converges to a solution of the M-Basis

Pursuit problem given in Equation (6), where convergence is understood as any

accumulation point of the M-BCD algorithm is a minimum of problem (6) and

the sequence of {Ck} generated by the algorithm is bounded.

Proof 1. Note that M-BP problem presents a particular structure with a smooth

and differentiable convex function ‖S−ΦC‖2F and a row-separable penalty func-

tion
∑

i hi(ci,·) where h(·) is a continuous and convex function with respects to

ci,·.

Also note that our algorithm considers a cyclic rule where within each loop,

for any i ∈ [1, · · · , M ], each ci,· is considered for optimization. The main partic-
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Algorithm 1 Solving M-BP through block-coordinate descent

1: t=1,C(0) = 0, Loop = 1,
2: while Loop do

3: for i = 1, 2, · · · , M do

4: Compute ‖ri‖
5: if optimality condition of ci,· according to equations (7) is not satisfied

then

6: Ti ← φt
i(S−ΦC(t−1)

i
)

7: c
(t)
i,· ←

(

1− λ
‖Ti‖

)

+
Ti

8: end if

9: t← t + 1
10: end for

11: if all optimality conditions are satisfied then

12: Loop = 0
13: end if

14: end while

ularity is that for some i, the ci,· may be left unchanged by the block-coordinate

descent if already optimal. This occurs especially for row ci,· which are equal to

0.

Then according to the special structure of the problem and the use of a cyclic

rule, the results of Tseng [49] prove that our M-BCD algorithm converges.

Another point we want to emphasize and that has not been shed to light yet

is that this algorithm should be initialized at C = 0 so as to take advantage of

the sparsity pattern of the solution. Indeed, by doing so, only few updates are

needed before convergence.

Intuitively, we can understand this algorithm as an algorithm which tends

to shrink to zero rows of the coefficient matrix that contribute poorly to the

approximation. Indeed, Ti can be interpreted as the correlation between the

residual when row i has been removed and φi. Hence the smaller the norm of

Ti is, the less φi is relevant in the approximation. And according to equation

(9), the smaller the resulting ci,· is. Insight into this block-coordinate descent

algorithm can be further obtained by supposing that M ≤ N and that Φ is

composed of orthonormal elements of R
N , hence ΦtΦ = I. In such a situation,
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we have

Ti = φt
iS and ‖Ti‖

2
2 =

L
∑

k=1

(φt
isk)2

and thus

ci,· =



1−
λ

√

∑L
k (φt

isk)2





+

φt
iS

This last equation highlights the relation between the single Basis Pursuit (when

L = 1) and the Multiple-Basis Pursuit algorithm presented here. Both algo-

rithms lead to a shrinkage of the coefficient projection when considering or-

thonormal dictionary elements. With the inclusion of multiple signals, the

shrinking factor becomes more robust to noise since it depends on the corre-

lation of the atom φi to all signals.

This M-BCD algorithm can be considered as an extension to simultaneous

signal approximations of the works of Sardy et al. [39] and Elad [12] which also

considered block coordinate descent for single signal approximation. In addition

to the works of Sardy et al. and Elad, many others authors have considered

block-coordinate descent algorithm for related sparse approximation problems.

For instance, block coordinate descent has also been used for solving the Lasso

[19], and the elastic net [56].

2.2. Landweber iterations

For recovering vector valued data with joint sparsity constraints, Fornasier et

al. [17] have proposed an extension of the Landweber iterative approach intro-

duced by Daubechies et al. [9]. In their work, Fornasier et al. used an iterative

shrinking algorithm (which has the flavor of a gradient projection approach)

which is able to solve the general problem (4) with p = 1 and q = {1, 2,∞}. We

summarize here the details of their derivations for general q.

The problem to solve is the one given in Equation (4) with p = 1 :

min
C

1

2
‖S−ΦC‖2F + λ

∑

i

‖ci,.‖q (10)
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The iterative algorithm can be derived first by supposing that the objective

function given above is strictly convex then by defining the following surrogate

objective function :

Jsur(C,A) =
1

2
‖S−ΦC‖2F + λ

∑

i

‖ci,.‖q +
1

2
‖ΦC−ΦA‖2F −

1

2
‖C−A‖2F

From this surrogate function, Fornasier et al. considers the solution of problem

(4) as the limit of the sequence C(t) :

C(t+1) = argmin
C

Jsur(C,C(t))

Note that according to the additional terms (the last two ones) in the surro-

gate function, C(t+1) is a coefficient matrix that minimizes the desired objective

function plus terms that constraints C(t+1) and the novel signal approximation

ΦC(t+1) to be “closed” respectively to C(t) and the previous signal approxima-

tion ΦC(t).

Now, the minimizer of Jsur for fixed A can be obtained by expanding Jsur

as

Jsur(C,A) =
1

2
‖(A + Φt(S−ΦA))−C‖2F + λ

∑

i

‖ci,.‖q

−
1

2
‖A + Φt(S−ΦA)‖2 +

1

2
‖S‖2F −

1

2
‖ΦA‖2F +

1

2
‖A‖2F

and noticing that the second line of this equation does not depend on C. Thus

we have

arg min
C

Jsur(C,A) = Uq(A + Φt(S−ΦA))

with Uq(X) being defined as

Uq(X) = argmin
C

1

2
‖X−C‖2F + λ

∑

i

‖ci,.‖q (11)

Thus the iterative algorithm we get simply reads, at iteration t as :

C(t+1) = Uq(C
(t) + Φt(S−Φ)C(t)) (12)

The Landweber algorithm proposed by Fornasier et al. involves two steps :

a first step which is similar to a gradient descent with fixed step and which does
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Algorithm 2 Solving M-BP through Landweber iterations

1: C(0) = 0, Loop = 1, t=0
2: while Loop do

3: C(t+ 1
2 ) ← C(t) + Φt(S−ΦC(t))

4: for i = 1, 2, · · · , M do

5: Compute ‖c
(t+1/2)
i,. ‖

6: c
(t+1)
i,· =

(

1− λ

‖c
(t+ 1

2
)

i,· ‖

)

+

c
(t+ 1

2 )
i,.

7: end for

8: t← t + 1
9: if stopping criterions are satisfied then

10: Loop = 0
11: end if

12: end while

not take into account the sparsity constraint and a thresholding step through the

operator Uq(·), which updates the solution according to the penalty
∑

i ‖ci,.‖q.

Fornasier et al. give detailed information of the Uq(·) closed form for q =

{1, 2,∞}. We can note that the problem (11) decouples with respect to the row

of C and the thresholding operator Uq(·) acts independently on each row.

According to Fornasier et al. [17], for q = 2, U2(C) writes for each row ci,·

as :

[U2(C)]i,· =

(

1−
λ

‖ci‖

)

+

ci,.

and the full algorithm is summarized in Algorithm 2. We note that block-

coordinate descent and Landweber iterations yield to algorithms that are very

similar. Two differences can be noted. The first one is that the shrinking

operation for one case is based on Ti while in the other case it directly considers

ci,·. At the moment, it is not clear what are the implications of these two

different schemes in term of convergence rate and more investigations are needed

to clarify this point. The other main difference between the two approaches is

that, by optimizing at each loop, only the ci,·’s that are not optimal yet, the

BCD algorithm is more efficient than the one of Fornasier et al.

Note that Fornasier et al. have also shown that this iterative scheme con-

verges towards the minimizer of problem (4) for 1 ≥ q ≥ ∞.
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2.3. Other works

Besides the M-FOCUSS algorithm of Cotter et al., another seminal work

which considered the SSA problem is the one of Malioutov et al. [29]. While

dealing with a source localization problem, they had to consider a sparse approx-

imation problem with joint sparsity constraints. From the block-sparse signal

approximation problem

min
c̃

1

2
‖s̃− Φ̃c̃‖2 + λ

M
∑

i

‖c̃gi‖2

they derived an equivalent problem which writes as :

minp,q,r,c̃ p + λq

st. 1
2‖s̃− Φ̃c̃‖22 ≤ p
∑M

i=1 ri ≤ q

‖cgi‖ ≤ ri ∀i = 1, · · · , M

Note that this above problem has a linear objective function and linear and

second-order cone constraints. Such a problem is known as a second-order

cone programming problem and there exists interior point method for solving

it [43]. While very attractive because of its simple formulation and the global

convergence of the algorithm, this approach suffers from a high complexity which

is of the order O(M3L3).

Very recently, two other algorithms have been proposed for addressing our

jointly sparse approximation problem. The first one, derived by van den Berg

et al. [50] is very similar to the one of Fornasier et al. although from a different

perspective. Indeed, they develop a method based on spectral gradient projec-

tion for solving the Group lasso problem which is the one given in Equation

(5) with p = 1 and q = 2. However, instead of the regularized version, they

considered the following constrained version

minc̃
1
2‖s̃− Φ̃c̃‖2

st.
∑M

i ‖c̃gi‖2 ≤ τ

13



that they iteratively solve owing to spectral gradient projection. Basically, their

solution iterates write as

c̃(t+1) = P
(

c̃(t) + αΦ̃t(s̃− Φ̃c̃(t))
)

(13)

where α is some step size to be optimized for instance by backtracking and P (·)

is the projection operator defined as :

P (z) =

{

arg min
x
‖z− x‖subject to

∑

i

‖xgi‖2 ≤ τ

}

van den Berg et al. then proposed an algorithm that computes this projection in

linear time. Note how similar the iterates given in Equation (12) and (13) are.

Actually, approaches of Fornasier et al. and van den Berg et al. are equivalent

and the only point in which they differ is the way the projection are computed.

This difference essentially comes from the problem formulation : Fornasier et

al. use a penalized problem with known λ while van den Berg consider the

constrained optimization problem. Hence, the latter can not directly use the

analytic solution of the projection P (·) but have to compute the appropriate

value of λ given their value of τ . However, the algorithm they derive for this

projection is efficient. Note that if one has some prior knowledge on the value

of τ , then this algorithm would be preferable than the one of Fornasier et al.

The other recent work that is noteworthy is the one of Obozinski et al. [33].

They address the problem of SSA within the context of multi-task classification

problem. Indeed, they want to recover a common set of covariates that are

simultaneously relevant for all classification tasks. For achieving this aim, they

propose to solve problem (4) with p = 1, q = 2 and a differentiable loss function

such as the logistic loss or the square loss function. One of their most prominent

contribution is to have proposed a path-following algorithm that is able to com-

pute the regularization path of the solution with respects to λ. Their algorithm

uses a continuation method based on prediction-correction steps. The predic-

tion step is built upon the optimality conditions given in equation (7) while the

correction step needs an algorithm which solves problem (4) but only for a small
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subset of covariates. The main advantage of such an algorithm is its efficiency

for selecting an appropriate value of λ in a model selection context.

3. Generic algorithms for large classes of p and q

In this section, we present several algorithms that are able to solve the

simultaneous sparse approximation problem for a large classes of p and q. In

the first part of the section, we review the M-FOCUSS algorithm of Cotter et

al.[8] that addresses the case where 0 < p ≤ 1 and q = 2. In a second part,

we make clear how the penalization term Jp,q(C) with p = 1 and 1 ≤ q ≤ 2, is

related to automatic relevance determination. From this novel insight, we then

propose an iterative reweighted least-square algorithm that solves this general

case. The last part of the section is devoted to the extension of reweighted ℓ1

algorithms [57, 4] to the SSA problem. We describe how algorithms tailored

for solving the SSA problem with p = 1 and any q can be re-used for solving a

problem with the same q but p < 1.

3.1. M-FOCUSS algorithm

We first detail how the M-FOCUSS algorithm proposed by Cotter et al. [8]

can be derived, then we discuss some of its properties and relation with other

works.

3.1.1. Deriving the algorithm

M-FOCUSS is, as far as we know, the first algorithm that has been in-

troduced for solving simultaneous sparse approximation problem. M-FOCUSS

addresses the general case where q = 2 and p ≤ 1. This algorithm can be under-

stood as a fixed-point algorithm which can be derived through an appropriate

factorization of problem (4) objective function gradient.

Indeed, since the partial derivative of Jp,2(C) with respects to an entry cm,n

is :

∂Jp,2(C)

∂cm,n
=

∂

∂cm,n

∑

i





∑

j

c2
i,j





p/2

(14)

= p‖cm,·‖
p−2
2 cm,n
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the gradient of the objective function writes :

−Φt(S−ΦC) + λPC

where P = diag(p‖ci,·‖
p−2
2 ). Then, we define the weighting matrix W as W =

diag(p−1/2‖ci,·‖
1−p/2
2 ). After having replaced W−2 = P in the above gradient,

and after simple algebras, we have the following necessary optimality condition

(

(ΦW)t(ΦW) + λI
)

W−1C = (ΦW)tS.

Hence, the optimum solution writes as

C⋆ = W
(

(ΦW)t(ΦW) + λI
)−1

(ΦW)tS. (15)

Note that since W also depends on C, the above closed-form expression of

the optimal matrix C can be interpreted as a fixed-point algorithm. From

this insight on C, Cotter et al. suggest the following iterates for solving the

simultaneous sparse approximation problem :

C(t+1) = W(t)
(

(ΦW(t))t(ΦW(t)) + λI
)−1

(ΦW(t))tS (16)

where W(t) = diag(p−1/2‖c
(t)
i,· ‖

1−p/2
2 ). Now, since we have :

(

(ΦW(t))t(ΦW(t)) + λI
)−1

(ΦW(t))t = (ΦW(t))t
(

(ΦW(t))(ΦW(t))t + λI
)−1

Cotter et al. actually consider the following iterative scheme

C(t+1) = W(t)(ΦW(t))t
(

(ΦW(t))(ΦW(t))t + λI
)−1

S (17)

Resulting algorithm is detailed in Algorithm 3.

3.1.2. Discussing M-FOCUSS

Rao et al [37] has provided an interesting interpretation on the FOCUSS

algorithm for a single signal approximation which can be readily extend to M-

FOCUSS. Indeed, M-FOCUSS can be viewed as an iterative reweighted least-

square algorithm. Indeed, From the updating equation of C(t) (see Equation

(16)) , we can note that C(t) = W(t)Z(t) where Z is the minimizer of

1

2
‖S−ΦW(t)Z‖2F +

λ

2
‖Z‖2F
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Algorithm 3 M-FOCUSS with Jp≤1,q=2 penalty

1: Initialize C(0) to a matrix of 1, t = 1
2: while Loop do

3: W(t) ← diag(p−1/2‖c
(t−1)
i,· ‖

1−p/2
2 )

4: A(t) ← ΦW(t)

5: C(t) ←W(t)(A(t))t
(

A(t)(A(t))t + λI)
)−1

S

6: t← t + 1
7: if stopping condition is satisfied then

8: Loop = 0
9: end if

10: end while

and thus C(t) can be understood as the minimizer of

1

2
‖S−ΦC‖2F +

λ

2
‖(W(t))−1C‖2F .

This above equation makes clear the relation between sparse approximation

problem and iterative reweighted least-square. Such an connection has already

been highlighted in other context. Indeed, while sparsity is usually induced by

using ℓ1 norm penalty, it has been proved that solving the problem in which the

ℓ1 norm has been replaced by an adaptive ℓ2 norm leads to equivalent solutions

[10, 38, 22].

Despite this nice insight, M-FOCUSS presents an important issue. Indeed,

the updates proposed by Cotter et al. are not guaranteed to converge to a

local minimum of the problem (if the problem is not convex p < 1) or to the

global minimum of the convex problem (p = 1). Their algorithm presents sev-

eral fixed-points since when a row of C is equal to 0, it stays at 0 at the next

iteration. Although such a point may be harmless if the algorithm is initialized

with a “good” starting point, it is nonetheless an undesirable point when solving

a convex problem. At the contrary, the M-BCD and the Landweber iteration

based algorithms do not suffer from the presence of such fixed points. How-

ever, in the M-FOCUSS algorithm, this pathological behavior can be handled

by introducing a smoothing term ε in the weight so that the updated weight

becomes

W(t) = diag

(

p−1/2
(

‖c
(t)
i,· ‖+ ǫ)

)1−p/2
)
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where ε > 0. The use of ε avoids a given weight to be at zero and consequently

it avoids the related ci,· to stay permanently at zero. If we furthermore note

that M-FOCUSS is not more than an iterative reweighted least-square, then

according to the very recent works of Daubechies et al. [10] and Chartrand et

al. [5], it seems justified to iterate the M-FOCUSS algorithm using decreasing

value of ε. In our numerical experimental, we will consider the M-FOCUSS

algorithm with fixed and decreasing value of ε.

3.2. Automatic relevance determination approach

In this section, we focus on the relaxed optimization problem given in (4)

with the general penalization Jp,q(C). Our objective here is to clarify the con-

nection between such a form of penalization and the automatic relevance deter-

mination of C’s rows, which has been the keystone of the Bayesian approach of

Wipf et al [54]. We will show that for some values of p and q, the mixed-norm

Jp,q(C) has an equivalent variational formulation. Then, by using this novel

formulation in problem (4), instead of Jp,q(C), we exhibit the relation between

our sparse approximation problem and ARD. We then propose an iterative

reweighted least-square approach for solving this resulting ARD problem.

3.2.1. Exhibiting the relation with ARD

For this purpose, we first consider the following formulation of the simulta-

neous sparse approximation problem:

min
C

1

2
‖S−ΦC‖2F + λ′ (Jp,q(C))

2
p . (18)

In the convex case (for p ≥ 1 and q ≥ 1), since the power function is strictly

monotonically increasing, problems (4) and (18) are equivalent, in the sense that

for a given value λ′, there exists a λ so that solutions of the two problems are

equivalent. When Jp,q is not convex, this equivalence does not strictly apply.

However, due to the nature of the problem, the problem formulation (18) is

more convenient for exhibiting the relation with ARD.

Let us introduce the key lemma that allows us to derive the ARD-based

formulation of the problem. This lemma gives a variational form of the ℓp,q

norm of a sequence {at,k}.
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Lemma 1. if s > 0 and {at,k : k ∈ Nn, t ∈ NT } ∈ R such that at least one

at,k > 0, then

min
d







∑

t,k

|at,k|2

dt,k
: dt,k ≥ 0,

∑

k

(

∑

t

d
1/s
t,k

)
s

r+s

≤ 1







=





∑

k

(

∑

t

|at,k|
q

)
p
q





2
p

(19)

where q = 2
s+1 and p = 2

s+r+1 . Furthermore, at optimality, we have:

d⋆
t,k =

|at,k|
2s

s+1

(

∑

u |au,k|
2

s+1

)
r

s+r+1

(

∑

v

(

∑

u |au,v|
2

s+1

)
s+1

s+r+1

)r+s (20)

Proof : the proof has been post-poned to the appendix.

According to this lemma, the ℓp,q norm of a sequence can be computed

through a minimization problem. Hence, applying this lemma to (Jp,q(C))
2
p by

defining at,k = ct,k, we get a variational form of the penalization term. We can

also note that the mixed-norm on the matrix coefficients has been transformed to

a mixed-norm on weight matrix d. Plugging the above variational formulation of

the penalization term in problem (18) yields to the following equivalent problem :

min
C,d

1
2‖S−ΦC‖2F + λ

∑

t,k

c2
t,k

dt,k

s.t.
∑

k

(

∑

t d
1/s
t,k

)
s

r+s

≤ 1

dt,k ≥ 0 ∀t, k

(21)

This problem is the one which makes clear the automatic relevance determina-

tion interpretation of the original formulation (4). Indeed, we have transformed

problem (4) into a problem with a smooth objective function at the expense of

some additional variables dt,k. These parameters dt,k actually aim at determin-

ing the relevance of each element of C. Indeed, in the objective function, each

squared-value ct,k is now inversely weighted by a coefficient dt,k. By taking the

convention that x
0 = ∞ if x 6= 0 and 0 otherwise, the objective value of the

optimization problem becomes finite only if dt,k = 0 for c2
t,k = 0. Then the

smaller dt,k is, the smaller the ct,k norm should be. Furthermore, optimization
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problem (21) also involves some constraints on {dt,k}. These constraints impose

the matrix d to have positive elements and to be so that its ℓ 1
r+s , 1s

mixed-norm

is smaller than 1. Note that this mixed-norm on d plays an important role since

it induces the row-norm sparsity on C. According to the relation between p, r

and s, for p < 1, we also have r + s > 1, making the ℓ 1
r+s , 1

s
non-differentiable

with respect to the first norm. Such singularities favor row-norm sparsity of

the matrix d at optimality, inducing row-norm sparsity of C. As we have noted

above, when a row-norm of d is equal to 0, the corresponding row-norm of C

should also be equal to 0 which means that the corresponding element of the

dictionary is “irrelevant” for the approximation of all signals. Problem (21)

proposes an equivalent formulation of problem (4) for which the row-diversity

measure has been transformed in another penalty function owing to an ARD

formulation. The trade-off between convexity of the problem and the sparsity

of the solution has been transferred from p and q to r and s.

From a Bayesian perspective, we can interpret the mixed-norm on d as the

diagonal term of the covariance matrix of a Gaussian prior over the row-norm

on C distribution. This is typically the classical Bayesian Automatic Relevance

Determination approach as proposed for instance by Tipping [46]. This novel

insight on the ARD interpretation of Jp,q(C) clarifies the connection between

the M-FOCUSS algorithm of Cotter et al. [8] and the Multiple Sparse Bayesian

Learning (M-SBL) algorithm of Wipf et al. [54] for any value of p < 1. In

their previous works, Wipf et al. have proved that these two algorithms were

related when p ≈ 0. Here, we refine their result by enlarging the connection to

other values of p by showing that both algorithms actually solve a problem with

automatic relevance determination on the row-norm of C.

3.3. Solving the ARD formulation for p = 1 and 1 ≤ q ≤ 2

Herein, we propose a simple iterative algorithm for solving problem (21)

for p = 1 and 1 ≤ q ≤ 2. This algorithm, named as M-EMq, is based on an

iterative-reweighted least squares where the weights are updated according to

equation (20). Thus, it can be seen as an extension of the M-FOCUSS algorithm
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Algorithm 4 Iterative Reweighted Least-Square for addressing J1,1≤q≤2

penalty

1: Initialize d(0) to a strictly positive matrix, t = 1
2: while Loop do

3: C(t) ← solution of problem (22) with fixed d = d(t−1) as given by Equa-
tion (23)

4: d(t) ← solution of problem (22) with fixed C = C(t) as given by Equation
(24)

5: t← t + 1
6: if stopping condition is satisfied then

7: Loop = 0
8: end if

9: end while

of Cotter et al. for q ≤ 2. Note that we have restricted ourselves to p = 1 since

we will show in the next section that the case p < 1 can be handled using

another reweighted scheme.

Since p = 1, thus s + r = 1, the problem we are considering is :

min
C,d

∑

k
1
2

(

‖sk −Φc·,k‖22 + λ
∑

t

c2
t,k

dt,k

)

= Jobj(C,d)

s.t.
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1

dt,k ≥ 0

(22)

Since, we consider that 1 ≤ q ≤ 2 hence 0 ≤ s ≤ 1 3, this optimization prob-

lem is convex with a smooth objective function. We propose to address this

problem through a block-coordinate algorithm which alternatively solves the

problem with respects to C with the weight d being fixed, and keeping C fixed

and computing the optimal weight d. The resulting algorithm is detailed in

Algorithm 4.

Owing to the problem structure, step 4 and 5 of this algorithm has a simple

closed form. Indeed, for fixed d, each vector c
(t)
·,k at iteration t is given by :

c
(t)
·,k =

(

ΦtΦ + 2λD
(t−1)
k

)−1

Φtsk (23)

where D
(t−1)
k is a diagonal matrix of entries 1/d

(t−1)
·,k . In a similar way, for fixed

C, step 5 boils down in solving problem (19). Hence, by defining at,k = c
(t)
t,k, we

3for s = 0, we have explicitly used the sup norm of vector d
·,k in the constraints.
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also have a closed-form for d(t) as

d
(t)
t,k =

|at,k|
2s

s+1

(

∑

u |au,k|
2

s+1

)
1−s
2

∑

v

(

∑

u |au,v|
2

s+1

)
s+1
2

(24)

Note that similarly to the M-FOCUSS algorithm, this algorithm can also

be seen as an iterative reweighted least-square approach or as an Expectation-

Minimization algorithm, where the weights are defined in equation (24). Fur-

thermore, it can be shown that if the weights d are initialized to non-zero values

then at each loop involving step 4 and 5, the objective value of problem (22)

decreases. Hence, since the problem is convex, our algorithm should converge

towards the global minimum of the problem.

Theorem 2. If the objective value of problem (22) is strictly convex (for in-

stance when Φ is full-rank), and if for the t-th loop, after the step 5, we have

d(t) 6= d(t−1), then the objective value has decreased, i.e :

Jobj(C
(t+1),d(t)) < Jobj(C

(t),d(t)) < Jobj(C
(t),d(t−1)).

Proof : The right inequality Jobj(C
(t),d(t)) < Jobj(C

(t),d(t−1)) comes from

d(t) being the optimal value of the optimization problem resulting from step 5 of

algorithm (4). The strict inequality yields from the hypothesis that d(t) 6= d(t−1)

and from the strict convexity of the objective function. A similar reasoning al-

lows us to derive the left inequality. Indeed, since C(t) is not optimal with

respects to d(t) for the problem given by step (4), invoking the strict convexity

of the associated objective function and optimality of C(t+1) concludes the proof.

As stated by the above theorem, the decrease in objective value is actually

guaranteed unless, the algorithm get stuck in some fixed points (e.g all the

elements of d being zero expect for one entry {t1, k1}). In practice, we have

experienced, by comparing for q = 2 with the M-BCD algorithm, that if d is

initialized to non-zero entries, algorithm (4) converges to the global minimum

of problem (22). Numerical experiments will illustrate this point.
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3.4. Iterative reweighted ℓ1 − ℓq algorithms for p < 1

This section introduces an iterative reweighted M-Basis Pursuit (IrM-BP)

algorithm and proposes a way for setting the weight. Through this approach, we

are able to provide an iterative algorithm which solves problem (4) with p < 1

and 1 ≤ q ≤ 2.

3.4.1. Iterative reweighted algorithm

Recently, several works have advocated that sparse approximations can be

recovered through iterative algorithms based on a reweighted ℓ1 minimization

[57, 4, 5, 52, 18]. Typically, for a single signal case, the idea consists in iteratively

solving the following problem

min
c

1

2
‖s−Φc‖22 + λ

∑

i

zi|ci|

where zi are some positive weights, and then to update the positive weights zi

according to the solution c⋆ of the above problem. Besides providing empiri-

cal evidences that reweighted ℓ1 minimization yields to sparser solutions than

a simple ℓ1 minimization, the above cited works theoretically support such a

claim. These results for the single signal approximation case suggest that in the

simultaneous sparse approximation problem, reweighted M-Basis Pursuit would

also lead to sparser solutions than the classical M-Basis Pursuit.

The iterative reweighted M-Basis Pursuit algorithm is defined as follows. We

iteratively construct a sequence C(t) defined as

C(t) = argmin
C

1

2
‖S−ΦC‖2F + λ

∑

i

z
(t)
i ‖ci,·‖q (25)

where the positive weight vector z(t) depends on the previous iterate C(t−1). For

t = 1, we typically define z(1) = 1 and for t > 1, we will consider the following

weighting scheme

z
(t)
i =

1

(‖c
(t−1)
i,· ‖q + ε)r

∀i (26)

where {c
(t−1)
i,· } is the i-th row of C(t−1), r a user-defined positive constant and ε

a small regularization term that prevents from having an infinite regularization
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term for ci,·as soon as c
(t−1)
i,· vanishes. This is a classical trick that has been

used for instance by Candès et al. [4] or Chartrand et al. [38]. Note that for

any positive weight vector z, problem (25) is a convex problem that does not

present local minima. Furthermore, for 1 ≤ q ≤ 2, it can be solved by our

block-coordinate descent algorithm or by our M-EMq given in Algorithm 4, by

simply replacing λ with λi = λ · zi. This reweighting scheme is similar to the

adaptive lasso algorithm of Zou et al. [57] but uses a larger number of iterations

and addresses the simultaneous approximation problem.

3.4.2. Connections with Majorization-Minimization algorithm

This IrM-BP algorithm can be interpreted as an algorithm for solving an

approximation of problem (4) when 0 < p < 1 and 1 ≤ q ≤ 2. Indeed, similarly

to the reweighted ℓ1 scheme of Candès et al. [4] or the one-step reweighted lasso

of Zou et al. [58], this algorithm falls into the class of majorize-minimize (MM)

algorithms [24]. MM algorithms consists in replacing a difficult optimization

problem with a easier one, for instance by linearizing the objective function, by

solving the resulting optimization problem and by iterating such a procedure.

The connection between MM algorithms and our reweighted scheme can be

made through linearization. Let us first define Jp,q,ε(C) as an approximation of

the penalty term Jp,q(C) :

Jp,q,ε(C) =
∑

i

g (‖ci,·‖q + ε)

where g(·) = | · |p. Since g(·) is concave for 0 < p < 1, a linear approximation of

Jp,q,ε(C) around C(t−1) yields to the following majorizing inequality

Jp,q,ε(C) ≤ Jp,q,ε(C
(t−1)) +

∑

i

p
(

‖c
(t−1)
i,· ‖q + ε

)1−p (‖ci,·‖q − ‖c
(t−1)
i,· ‖q)

then for the minimization step, replacing in problem (4) Jp,q with the right

part of the inequality and dropping constant terms lead to our optimization

problem (25) with appropriately chosen zi and r. Note that for the weights

given in equation (26), r = 1 corresponds to the linearization of a log penalty
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Algorithm 5 Majorization-Minimization algorithm leading to iterative
reweighted ℓ1 for addressing Jp≤1,q penalty.

1: Initialize z
(1)
i = 1, r = 1− p, t = 1

2: while Loop do

3: C(t) ← solution of problem (25)
4: t← t + 1
5: z

(t)
i ←

1

(‖c
(t−1)
i,· ‖q+ε)r

∀i

6: if stopping condition is satisfied then

7: Loop = 0
8: end if

9: end while

∑

i log(‖ci,·‖ + ε) whereas setting r = 1 − p corresponds to a ℓp penalty (0 <

p < 1).

MM algorithms have already been considered in optimization problems with

sparsity-inducing penalties. For instance, an MM approach has been used by

Figueiredo et al. [16] for solving a least-square problem with a ℓp sparsity-

inducing penalty, whereas Candès et al. [4] have addressed the problem for

exact sparse signal recovery. In a context of simultaneous approximation, Sim-

ila [40, 41] has also considered MM algorithms while approximating the non-

convex penalty with a quadratic term. In the light of all these previous works,

what we have exposed here is merely an extension of iterative reweighted ℓ1

algorithm to simultaneous sparse approximation problem. Through this itera-

tive scheme, we can solve problem (4) with p < 1 and any q provided that we

have an algorithm that is able to solve problem (4) with p = 1 and the desired q.

Analyzing the convergence of the sequence C(t) towards the global minimizer

of problem (4) is a challenging issue. Indeed, several points make a formal proof

of convergence difficult. At first, in order to avoid a row c
(t)
i,· to be permanently

at zero, we have introduced a smoothing term ε, thus we are only solving a ε-

approximation of problem (4). Furthermore, the penalty we use is non-convex,

thus using a monotonic algorithm like a MM approach which decreases the

objective value at each iteration, can not guarantee convergence to the global
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minimum of our ε-approximate problem. Hence, due to these two major obsta-

cles, we have left this convergence proof for future works. Note however that few

works have addressed the convergence issue of reweighted ℓ1 or ℓ2 algorithms

for single sparse signal recovery. Notably, we can mention the recent work of

Daubechies et al. [10] which provide a convergence proof of iterative reweighted

least square for exact sparse recovery. In the same flavor, Foucart et al. [18]

have proposed a tentative of rigorous convergence proof for reweighted ℓ1 sparse

signal recovery. Although, we do not have any rigorous proof of convergence,

in practice, we will show that the reweighted algorithm provides good sparse

approximations.

As already noted by several authors [4, 38, 10], ε plays a major role in the

quality of the solution. In the experimental results presented below, we have

investigated two methods for setting ε : the first one is to set it to a fixed

value ε = 0.001, the other one, denoted as an annealing approach, consists in

gradually decreasing ε after having solved problem (25).

3.4.3. Connection with group bridge Lasso

Recently, in a context of variable selection through Group Lasso, Huang et

al. [23] have proposed an algorithm for solving problem (5) with p < 1 and

q = 1 :

min
c̃

1

2
‖s̃− Φ̃c̃‖2 + λ

∑

i

‖c̃gi‖
p
1. (27)

Instead of directly addressing this optimization problem, they have shown that

the above problem is equivalent to the minimization problem :

minc̃,z
1
2‖s̃− Φ̃c̃‖2 +

∑

i

‖c̃gi
‖1

z
1/p−1
i

+ τ
∑

i zi

st. zi ≥ 0 ∀i.
(28)

where τ is a regularization parameter. Here equivalence is understood as fol-

lows : c̃⋆ minimizes equation (27) if and only if the pair (c̃⋆, z⋆) minimizes

Equation (27) with an appropriate value of τ . This value of τ will be made

clear in the sequel.

The connection between iterative reweighted ℓ1 approach and the algorithm

proposed by Huang et al. comes from the way problem (28) has been solved.
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Algorithm 6 Group bridge Lasso based on Iterative reweighted ℓ1 for address-
ing Jp≤1,q penalty.

1: Initialize c̃(0), τ = 1−p
p λ− 1

p−1 , t = 1
2: while Loop do

3: z
(t)
i ← τ−p‖c̃

(t−1)
gi ‖p1

(

1−p
p

)p

4: c̃(t) ← argminc̃
1
2‖s̃− Φ̃c̃‖2 +

∑

i(z
(t)
i )1−1/p‖c̃gi‖1

5: t← t + 1
6: if stopping condition is satisfied then

7: Loop = 0
8: end if

9: end while

Indeed, Huang et al. have considered a block-coordinate approach which consists

in minimizing the problem with respects to z and then, after having plugged

the optimal z in the equation (28) in minimizing the problem with respects to

c̃. For the first step, the optimal z is derived by minimizing the convex problem

minz

∑

i
‖c̃gi

‖1

z
1/p−1
i

+ τ
∑

i zi

st. zi ≥ 0 ∀i.
(29)

Using Lagrangian theory, simple algebras yield to a closed-form solution of the

optimal z :

z⋆
i = τ−p‖c̃gi‖

p
1

(

1− p

p

)p

Plugging these zi’s in Equation (28) and using τ such that λ =
(

1−p
pτ

)p−1

proves the equivalence of the problems (27) and (28). The relation with iterative

reweighted ℓ1 is made clear in the second step of the block-coordinate descent.

Indeed, in problem (28), since we only optimize with respects to c̃ with fixed

zi, this step is equivalent to

minc̃
1
2‖s̃− Φ̃c̃‖2 +

∑

i

‖c̃gi
‖1

z
1/p−1
i

(30)

which is clearly a weighted ℓ1 problem. The full iterative reweighted algorithm

is detailed in Algorithm (6). Note that although the genuine work on Group

bridge Lasso only addresses the case q = 1 (because of theoretical developments

considered in the paper), the algorithm proposed by Huang et al. can be applied
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to any choice of q provided that one is able to solve the related ℓ1− ℓq problem

(for instance using the algorithm described in Section 3).

4. Specific case algorithms

In this section, we survey some algorithms that provide solutions of the

SSA problem (4) when p = 0. These algorithms are different in nature and

provide different qualities of approximation. The first two algorithms we detail

are greedy algorithms which have the flavor of Matching Pursuit [30]. The third

one is based on a sparse bayesian learning and is related to iterative reweighted

ℓ1 algorithm.

4.1. S-OMP

Simultaneous Orthogonal Matching Pursuit (S-OMP) [48] is an extension of

the Orthogonal Matching Pursuit [34, 47] algorithm to the multiple approxima-

tion problem.

S-OMP is a greedy algorithm which is based on the idea of selecting, at each

iteration, an element of the dictionary and on building all signal approximations

as the projection of the signal matrix S on the span of these selected dictionary

elements. Since, according to problem (2), one looks for a for dictionary elements

that can simultaneously provide good approximation of all signals, Tropp et

al. have suggested to select the dictionary element that maximizes the sum of

absolute correlation between the basis element and the signal residuals. This

greedy selection criterion is formalized as follows :

max
i

L
∑

k=1

|〈sk − P (t)(sk),Φi〉|

where P (t)(·) is the projection operator on the span of the t selected dictio-

nary elements. While conceptually very simple, this algorithm which details are

given in Algorithm (7), provide theoretical guarantees about the quality of its

approximation. For instance, Tropp et al. [48] have shown that if the algorithm

is stopped when T dictionary elements have been selected then, under some mild

conditions on the matrix Φ, there exists a upper bound on ‖S−ΦC(T )‖F . This
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Algorithm 7 S-OMP algorithm. T number of dictionary elements to select

1: Initialize : t← 0,R(t) ← S, Ω← ∅, Loop← 1
2: while Loop do

3: E , ΦtR(t)

4: i← argmaxk

∑

j |ej,k|
5: Ω← Ω ∪ i
6: t← t + 1
7: C(t) ← (Φt

ΩΦΩ)−1Φt
ΩS

8: R(t) = S−ΦC(t)

9: if t= T then

10: Loop = 0
11: end if

12: end while

upper bound depends on ‖S −ΦC⋆‖F with C⋆ being the solution of problem

(2) and multiplicative constant which is a function of T, L and the coherence of

Φ [48]. In this sense, S-OMP can be understood as an algorithm that approxi-

mately solves problem (4) with p = 0.

4.2. M-CosAmp

Very recently, Needell and al. have developed a novel signal reconstruction

algorithm known as CosAmp [32]. This algorithm uses ideas from orthogonal

matching pursuit but also takes advantage of ideas from the compressive sensing

literature. This novel approach provides stronger theoretical guarantees on the

quality of signal approximation. The main particularities of CosAmp are the

following. Firstly, unlike Orthogonal matching pursuit, CosAmp selects many

elements of the dictionary at each iteration, the ones that have the largest corre-

lation with respects to the signal residual. These novel dictionary elements are

thus incorporate into the set of current dictionary elements. The other speci-

ficity of CosAmp is a pruning dictionary element step after signal estimation.

This step is justified by the fact that the signal to approximate is supposed to

be sparse.

This CosAmp algorithm have been extended so as to handle signals with

specific structures such as block sparse signal [1]. Extension to jointly sparse

approximation has also been provided by Duarte et al. [11]. Such an extension of
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Algorithm 8 M-CosAmp algorithm. T number of dictionary elements to select.

1: Initialize C(0) = 0, Loop←,R(t) = S, Ωres ← ∅
2: while Loop do

3: E , ΦtR(t)

4: ei = ‖Ei,.‖22 i = 1, · · · , M
5: Ωres ← supp(e, 2T )
6: Ω← Ω ∪ Ωres

7: Ĉ← (Φt
ΩΦΩ)−1Φt

ΩS

8: vi = ‖ci,.‖22 i = 1, · · · , M
9: Ω← supp(v, T )

10: t← t + 1
11: C(t) = 0

12: C
(t)
Ω = ĈΩ

13: R(t) = S−ΦC(t)

14: if stopping condition is satisfied then

15: Loop = 0
16: end if

17: end while

the CosAmp algorithm to simultaneous sparse approximation is detailed in Al-

gorithm 8. Note that lines 4-5 of the algorithm estimate the dictionary elements

which have the largest correlations over all the signals while lines 8-9 prune the

set of current dictionary elements so as to keep the matrix C row-sparse. This

algorithm is denoted as M-CosAmp in the experimental section.

4.3. Sparse Bayesian Learning and Reweighted algorithm

The approach proposed by Wipf et al. [54], denoted in the sequel as Multiple-

Sparse Bayesian Learning (M-SBL), for solving the sparse simultaneous approx-

imation is somewhat related to the optimization problem in equation (4) but

from a very different perspective. Indeed, if we consider that the approaches

described in Section 3 are equivalent to a Maximum a Posteriori estimation pro-

cedures, then Wipf et al. have explored a Bayesian model which prior encourages

sparsity. In this sense, their approach is related to the relevance vector machine

of Tipping et al. [46]. Algorithmically, they proposed an empirical bayesian

learning approach based on Automatic Relevance Determination (ARD). The
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ARD prior over each row they have introduced is

p(ci,·; di) = N (0, diI) ∀i

where d is a vector of non-negative hyperparameters that govern the prior vari-

ance of each coefficient matrix row. Hence, these hyperparamaters aim at catch-

ing the sparsity profile of the approximation. Mathematically, the resulting

optimization problem is to minimize according to d the following cost function :

L log |Σt|+
L
∑

j=1

st
jΣ

−1
t sj (31)

where Σt = σ2I + ΦDΦt, D = diag(d) and σ2 a parameter of the algorithm

related to the noise level presented in the signals to be approximated. The algo-

rithm is then based on a likelihood maximization which is performed through an

Expectation-Minimization approach. Very recently, a very efficient algorithm

for solving this problem has been proposed [25]. However, the main drawback of

this latter approach is that due to its greedy nature, and as any EM algorithm

where the objective function is not convex, the algorithm can be easily stuck in

local minima.

Recently, Wipf et al. [51] have proposed some new insights on Automatic

Relevance Determination and Sparse Bayesian Learning. They have shown that,

for the vector regression case, ARD can be achieved by means of iterative

reweighted ℓ1 minimization. Furthermore, in that paper, they have sketched

an extension of such results for matrix regression in which ARD is used for au-

tomatically selecting the most relevant covariance components in a dictionary of

covariance matrices. Such an extension is more related to learning with multiple

kernels in regression as introduced by Girolami et al. [20] or Rakotomamonjy

et al. [36] although some connections with simultaneous sparse approximation

can be made. Here, we build on the works on Wipf et al. [51] and give all the

details about how M-SBL and iterative reweighted M-BP are related.
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Recall that the cost function minimized by the M-SBL of Wipf et al. [54] is

L(d) = L log |Σt|+
L
∑

j=1

st
jΣ

−1
t sj (32)

where Σt = σ2I + ΦDΦt and D = diag(d), with d being a vector of hyperpa-

rameters that govern the prior variance of each coefficient matrix row. Now, let

us define g⋆(z) as the conjugate function of the concave log |Σt|. Since, that log

function is concave and continuous on R
M
+ , according to the scaling property of

conjugate functions we have [3]

L · log |Σt| = min
z∈RM

ztd− Lg⋆
( z

L

)

Thus, the cost function L(d) in equation (32) can then be upper-bounded by

L(d, z) , ztd− Lg⋆
( z

L

)

+

L
∑

j=1

st
jΣ

−1
t sj (33)

Hence when optimized over all its parameters, L(d, z) converges to a local min-

ima or a saddle point of (32). However, for any fixed d, one can optimize over z

and get the tight optimal upper bound. If we denote as z⋆ such an optimal z for

any fixed d†, since L · log |Σt| is differentiable, we have, according to conjugate

function properties, the following closed form of z⋆

z⋆ = L · ∇ log |Σt|(d
†) = diag(ΦtΣ−1

t Φ) (34)

Similarly to what proposed by Wipf et al., Equations (33) and (34) suggest an

alternate optimization scheme for minimizing L(d, z). Such a scheme would

consist, after initialization of z to some arbitrary vector, in keeping z fixed and

in computing

d† = argmin
d

Lz(d) , ztd +

L
∑

j=1

st
jΣ

−1
t sj (35)

then to minimize L(d†, z) for fixed d†, which can be analytically done according

to equation (34). This alternate scheme is then performed until convergence to

some d⋆.
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Owing to this iterative scheme proposed for solving M-SBL, we can now

make clear the connection between M-SBL and an iterative reweighted M-BP

according to the following lemma. Again this is an extension to the multiple

signals case of a Wipf’s lemma.

Lemma 2. The objective function in equation (35) is convex and can be equiv-

alently solved by computing

C⋆ = arg min
C

Lz(C) =
1

2
‖S−ΦC‖2F + σ2

∑

i

z
1/2
i ‖ci,·‖ (36)

and then by setting

di = z
−1/2
i ‖c⋆

i,·‖ ∀i

Proof 2. Convexity of the objective function in equation (35) is straightforward

since it is just a sum of convex functions [2]. The key point of the proof is based

on the equality

st
jΣ

−1
t sj =

1

σ2
min
c
·,j

‖sj −Φc·,j‖
2
2 +

∑

i

c2
i,j

di
(37)

which proof is given in the appendix. According to this equality, we can upper-

bound Lz(d) with

Lz(d,C) = ztd +
∑

j

1

σ2
‖sj −Φc·,j‖

2
2 +

∑

i,j

c2
i,j

di
(38)

The problem of minimizing Lz(d,C) is smooth and jointly convex in its pa-

rameters C and d and thus an iterative coordinate-wise optimization scheme

(iteratively optimizing over d with fixed C and then optimizing over C with

fixed d ) yields to the global minimum. It is easy to show that for any fixed C,

the minimal value of Lz(d,C) with respects to d is achieved when

di = z
−1/2
i ‖ci,·‖ ∀i

Plugging these solutions back into (38) and multiplying the the resulting objective

function with σ2/2 yields to

Lz(C) =
1

2

∑

j

‖sj −Φc·,j‖
2
2 + σ2

∑

i

z
1/2
i ‖ci,·‖ (39)
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Making the relation between ℓ2 and Frobenius norms concludes the proof.

Minimizing Lz(C) boils down to minimize the M-BP problem with an adap-

tive penalty λi = σ2 · z
1/2
i on each row-norm. This latter point makes the

alternate optimization scheme based on equation (34) and (35) equivalent to

our iterative reweighted M-BP for which weights zi would be given by equation

(34).

The impact of this relation between M-SBL and iterative reweighted M-

BP is essentially methodological. Indeed, its main advantage is that it turns

the original M-SBL optimization problem into a serie of convex optimization

problems. In this sense, the iterative reweighted algorithm described here, can

again be viewed as an application of MM approach for solving problem (32).

Indeed, we are actually iteratively minimizing a proxy function which has been

obtained by majorizing each term of equation (32). Owing to this MM point

of view, convergence of our iterative algorithm towards a local minimum of

equation (32) is guaranteed [24]. Convergence for the single signal case using

other arguments has also been shown by Wipf et al. [51]. Note that similarly

to M-FOCUSS, the original M-SBL algorithm based on EM approach suffers

from presence of fixed points (when di = 0). Hence, such an algorithm is not

guaranteed to converge towards a local minimum of (32). This is then another

argument for preferring IrM-BP.

5. Numerical experiments

Some computer simulations have been carried out in order to evaluate the

algorithms proposed in the above sections. Results that have been obtained

from these numerical studies are detailed in this section.

5.1. Experimental set-up

In order to quantify the performance of our algorithms and compare them

to other approaches, we have used simulated datasets with different redundancy

factors M
N , number k of active elements and number L of signals to approximate.

The dictionary Φ is based on M vectors sampled from the unit hypersphere
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of R
N . The true coefficient matrix C⋆ has been obtained as follows. The

positions of the k non-zero rows in the matrix are randomly drawn. The non-

zero coefficients of C⋆ are then drawn from a zero-mean unit variance Gaussian

distribution. The signal matrix S is obtained as in equation (1) with the noise

matrix being drawn i.i.d from a zero-mean Gaussian distribution and variance

so that the signal-to-noise ratio of each single signal is 10 dB. For a given

experiment, when several trials are needed, we only resample the dictionary Φ

and the additive noise E .

Each algorithm is provided with the signal matrix S and the dictionary Φ

and will output an estimate of C. The performance criterion we have considered

are the mean-square error between the true and the approximate signals and the

sparsity profile of the coefficient matrix that has been recovered. For the latter,

we use as a performance criterion the F-measure between the row-support of the

true matrix C⋆ and the estimate one Ĉ. In order to take into account numerical

precisions, we have overloaded the row support definition as :

rowsupp(C) = {i ∈ [1 · · · M ] : ‖ci,·‖ < µ}

where µ is a threshold coefficient that has been set by default to 0.01 in our

experiments. From rowsupp(Ĉ) and rowsupp(C⋆) respectively the estimated

and true sparsity profile, we define :

F-measure = 2 ·
|rowsupp(Ĉ) ∩ rowsupp(C⋆)|

|rowsupp(Ĉ)|+ |rowsupp(C⋆)|
.

Note that the F-measure is equal to 1 when the estimated sparsity profile coin-

cides exactly with the true one.

Regarding the stopping criterion, in the experiments presented below, we

have considered convergence of our M-BCD algorithm when the optimality con-

ditions given in equation (7) are satisfied up to a tolerance of 0.001 and when

all matrix coefficient ci,j variations are smaller than 0.001. This latter condition

has also been used as a stopping criterion for the Landweber iteration, M-EM,

IrM-BP, M-FOCUSS and M-SBL algorithms. When the annealing approach is
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Figure 1: Examples of objective value evolution with respects to computational time. Here
we have, M = 128, N = 64, L = 3. The number of active elements is : left) k = 5. right)
k = 32. For each curve, the large point corresponds to the objective value at convergence.

in play for IrM-BP and M-FOCUSS, the annealing loop is also stopped under

the same condition e.g maxi,j |C
(t+1)
i,j − C

(t)
i,j | < 0.001 where (t) and (t + 1)

denotes two consecutive annealing solution.

5.2. Comparing ℓ1 − ℓ2 M-BP problem solvers

In this first experiment, we have compared different algorithms which solves

the M-BP problem with p = 1 and q = 2. Besides our M-BCD and M-EM

algorithms, we have also used the M-FOCUSS of Cotter et al. [8] and the

approach of Fornasier et al. [17] based on Landweber iterations and denoted

in the sequel as M-BPLand. Note that for M-FOCUSS, we have modified the

genuine algorithm by introducing a ε parameter, set to 0.001, which helps in

avoiding a row-norm of C to be permanently at 0. For all compared problems,

regularization parameter λ has been so as to make the problem equivalent. In

this experiment, we have set λ = 1
5 maxi ‖φt

iS‖2 for problem (6).

Figure 1 shows two examples of how the objective value of the different

algorithms evolves with respects to computational time. We can note that

the two iterative reweighted least-square algorithms (M-EM and M-FOCUSS)

are the most computationally demanding. Furthermore, we also see that the

Landweber iteration approach of Fornasier et al. quickly reduces its objective

value but compared to our M-BCD method, it needs more time before properly

converging. Table 1 summarizes more accurately the difference between the
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Table 1: Summary of M-BP solvers comparison. Comparisons have been carried out for two
values of k, the number of active elements in the dictionary and have been averaged over
100 trials. Comparison measures are the time needed before convergence, the difference in
objective value and the largest coefficient matrix difference. For the two latter measure, the
baseline algorithm is considered to be the M-BCD one.

k=5

Time (ms) ∆ ObjVal (10−3) ‖∆C‖∞(10−3)

M-BCD 4.2± 2.7 - -
M-EM 57.2± 11.7 2.6± 2.2 0.8± 1.0
M-Focuss 24.1± 4.2 3.6± 1.8 16.6± 1.0
M-BPLand 7.5± 1.3 5.3± 1.1 0.04± 1.1

k=32

Time (ms) ∆ ObjVal (10−3) ‖∆C‖∞(10−3)

M-BCD 11.5± 2.87 - -
M-EM 130.9± 17.0 23.1± 5.9 15.4± 8.0
M-Focuss 60.0± 6.2 28.8± 5.8 38.8± 5.4
M-BPLand 14.1± 2.7 16.9± 3.8 0.41± 3.8

four algorithms. These results have been averaged over 100 trials and consider

two values of k. As comparison criteria, we have considered the computational

time before convergence, the difference (compared to the M-BCD algorithm) in

objective values and the maximal absolute difference in the coefficient matrix

ci,j . The table clearly shows that the M-BCD algorithm is clearly faster than

M-BPLand (especially when signals to approximate are highly sparse) and the

two iterative reweighted least-square approaches. We can also note from the

table that, although M-FOCUSS and our M-EM are not provided with a formal

convergence proof, these two algorithms seem to empirically converge to the

problem global minimum.

5.3. Computational performances

We have also empirically assessed the computational complexity of our al-

gorithms (we used s = 0.2, thus q = 5
3 for M-EM and r = 1 for IrM-BP). We

varied one of the different parameters (dictionary size M , signal dimensional-

ity N) while keeping the others fixed. All matrices Φ, C and S are created

as described above. Experiments have been run on a Pentium D-3 GHz with
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4 GB of RAM using Matlab code. The results in Figure 2, averaged over 20

trials, show the computational complexity of the different algorithms for differ-

ent experimental settings. Note that we have also experimented on the M-SBL

computational performances owing to the code of Wipf et al. [54] and have

implemented the M-FOCUSS of Cotter et al. [8], the CosAmp block-sparse ap-

proach of Baraniuk et al. [1] and the Landweber iteration method of Fornasier

et al. [17]4. All algorithms need one hyperparameter to be set, for M-SBL

and CosAmp, we were able to choose the optimal one since the hyperparame-

ter respectively depends on a known noise level and a known number of active

elements in the dictionary. For other algorithms, we have reported the com-

putational complexity for the λ that yields to the best sparsity recovery. Note

that our aim here is not give an exact comparison of computational complexity

of the algorithms but just to give an order of magnitude of these complexities.

Indeed, accurate comparisons are difficult since the different algorithms do not

solve the same problem and do not use the same stopping criterion.

We can remark in Figure 2 that with respects to the dictionary size, all al-

gorithms present an empirical exponent between 1.3 and 2.7. Interestingly, we

have theoretically evaluate the complexity of the M-BCD algorithm as quadratic

whereas we measure a sub-quadratic complexity. We suppose that this happens

because at each iteration, only the non-optimal ci,·’s are updated and thus the

number of updates drastically reduces along iterations. We can note that among

all approaches that solve the ℓ1 − ℓq problem (left plots), M-BCD, Landweber

iteration approach and M-CosAmp have similar complexity with a slight advan-

tage to M-BCD for large dictionary size. However, we have to note that the

M-CosAmp algorithm sometimes suffers from lack of convergence and thus stop

only when the maximal number of allowed iterations is reached. This is the

reason why for large dictionary size M-CosAmp is computationally expensive.

However, for small and medium dictionary size, M-CosAmp is slighly more ef-

ficient than M-BCD. When considering the algorithms that solve the ℓp − ℓ2

4All the implementations are included in the toolbox.
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problem (right plots), they all have similar complexity, with a slightly better

constant for IrM-BP while M-SBL seems to be the most demanding algorithm.

Bottom plots of Figure 2 depicts the complexity dependency of all algo-

rithms with respects to signal dimension N . Interestingly, the results show that

except for M-SBL and M-FOCUSS algorithms, all algorithms do not suffer from

the signal dimension increase. We assume that this is due to the fact that as

dimension increases, the approximation problem becomes easier and thus faster

convergence of those algorithms occurs.

5.4. Comparing performances

The objective of the next empirical study is to compare the performances

of the algorithms we surveyed : M-SBL, M-CosAmp, Landweber iterations, S-

OMP, M-FOCUSS with an annealing decreasing of ε, the M-BCD algorithm

and the IrM-BP approach with two values of p and an annealing decrease of ε.

The baseline experimental context is M = 128, N = 64, k = 10 and L =

3. For this experiment, we have considered an agnostic context with no prior

knowledge about the noise level being available. Hence, for all models, we have

performed model selection (either for selecting λ, the noise level σ for M-SBL or

the number of elements for M-CosAmp and S-OMP). Model selection procedure

is the following. Training signals S are randomly splitted in two parts of N/2

samples. Each algorithm is then trained on one part of the signal and the

mean-square error of the resulting model is evaluated on the second part. This

splitting and training is run 5 times and the hyperparameter yielding to the

minimal averaged mean-square error is considered as optimal. Each method is

then run on the full signals with that parameter. Performances, averaged over

50 trials of all methods have been evaluated according to the F-measure and a

mean-square error computed on 10000 samples.

Figure 3 shows, from top to bottom, these performances when k increases

from 2 to 40, when M goes from 64 to 256 and when L = 2, · · · , 7. When

varying k, we can note that across the range of variation, our IrM-BP method

with p = 0 is competitive compared to all other approaches both with respects to
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the F-measure and the mean-square error criterion. When k increases, IrM-BP

and M-FOCUSS with p = 0.5 perform also very good. This may be explained by

the fact that as k increases, the optimal solution becomes less and less sparse

thus the need for a less aggressive penalty. CosAmp and S-OMP are very

competitive for small k but as soon as the latter increases these two methods

are not able anymore to recover a “reasonable” sparsity pattern. Interestingly,

we remark that M-SBL yields to a poor sparsity recovery measure while the

resulting model achieves good mean-square error. A reason for this is that the

model selection procedure tends to under-estimate the noise level and thus it

leads to a model which keeps many spurious dictionary elements as illustrated in

Figure 4 and detailed in the sequel. From Figure 3, we can also notice that the

two M-BP solvers, our M-BCD and the Landweber iteration approach perform

poorly compared to other methods. However, the Fornasier’s method seems to

be less sensitive to noise and model selection since it provides a better sparsity

pattern recovery. It is worth noting that M-SBL and these two latter methods

always correctly select all the true dictionary elements but they also have the

tendency to include other spurious ones.

In the middle and bottom plots, similar behavior as above can be high-

lighted. M-CosAmp yields to very good sparsity recovery while the resulting

mean-square error is rather poor. Again our IrM-BP with p = 0 yields the best

mean-square error while providing a good sparsity pattern recovery. M-SBL

and M-BCD keeps too many spurious dictionary elements. All other methods

provide in-between performances both in term of F-measure and mean-square

error.

Figure 4 illustrates the behaviour of M-CosAmp, M-SBL and the IrM-BP

with p = 0 for two different experimental situations. On the left plot, we have a

case where on one hand, M-CosAmp misses to recover the first active dictionary

element yielding thus to high mean-square error. On the other hand, M-SBL

achieves lower mean-square error while keeping few spurious dictionary elements

in the model. In the meantime, IrM-BP recovers perfectly the sparsity pattern

and yields to low mean-square error. In the right plot, we have another case
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where M-CosAmp achieves perfect sparsity recovery but provides a model with

higher mean-square error than IrM-BP.

In most of the experimental situations presented here, M-CosAmp and the

IrM-BP seems to be the two algorithms that perform the best, with however

a slight advantage for the IrM-BP. These two methods are actually related

since both approaches solve a simultaneous sparse approximation with a J0,2(C)

penalty. The main difference lies in the algorithms since our IrM-BP owing to

the ε term provides a smooth approximation of the ℓ0 quasi-norm whereas M-

CosAmp directly solves the approximation problem with the J0,2(C) penalty.

To summarize, we suggest the following rule : in applications where com-

putational complexities are critical and where signals to be approximated are

highly sparse, M-CosAmp is to be preferred. In other situations, IrM-BP should

be used.

6. Conclusions

This paper aimed at surveying and comparing different simultaneous sparse

signal approximation algorithms available in the statistical learning and signal

processing communities.

These algorithms usually solve a relaxed version of an intractable problem

where the relaxation is based on sparsity-inducing mixed norm on the coeffi-

cient approximation. In the first part of the paper, we have described several

algorithms which addresses the most common SSA problem which is a convex

problem with a ℓ1−ℓ2 penalty function. For other choices of penalty, one usually

considers iterative reweighted algorithms. These algorithms have been detailed

in a second part of the paper. We have also brought our attention on greedy

algorithms such as S-OMP or M-CosAmp since they have both have the abilities

to be very efficient and to provide theoretical guarantees on the quality of their

solutions.

The last part of the paper is devoted to experimental comparisons of the

different algorithms we surveyed. The lesson learned from these comparisons is
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that the two algorithms that seem to be the best performing either in terms of

efficiency, sparsity recovery or low mean-square error are the M-CosAmp or an

iterative reweighted ℓ1 approach.

7. Appendix

7.1. J1,2(C) subdifferential

By definition, a matrix G lies in ∂J1,2(B) if and only if for every matrix Z,

we have

J1,2(Z) ≥ J1,2(B) + 〈Z−B,G〉F (40)

If we expand this equation we have the following equivalent expression

∑

i

‖zi,·‖2 ≥
∑

i

‖bi,·‖2 +
∑

i

〈zi,· − bi,·, gi,·〉 (41)

From this latter equation, we understand that, since both J1,2 and the Frobenius

inner product are row-separable, a matrix G ∈ ∂J1,2(B) if and only if each row

of G belongs to the subdifferential of the ℓ2 norm of the corresponding row of

B.

Indeed, suppose that G is so that any row of G belongs to the subdifferential

of the ℓ2 norm of the corresponding row of B. We thus have for any row i

∀z, ‖z‖2 ≥ ‖bi,·‖2 + 〈z − bi,·, gi,·〉 (42)

A summation over all the rows then proves that G satisfies equation (41) and

thus belongs to the subdifferential of J1,2(B).

Now, let us show that a matrix G for which there exists a row that does not

belong to the subdifferential of the ℓ2 norm of the corresponding row of B can

not belong to the subdifferential of J1,2(B). Let us consider gi,· the i-th row of

G, since we have supposed that gi,· /∈ ∂‖bi,·‖2, the following equation holds

∃z0 st. ‖z0‖2 < ‖bi,·‖2 + 〈z − bi,·, gi〉

Now let us construct Z so that Z = B except for the i-th row where zi,· = z0.

Then it is easy to show that this matrix Z does not satisfy equation (41), which
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means that G does not belong to ∂J1,2(B). In conclusion, we get ∂J1,2(B) by

applying the ℓ2 norm subdifferential to each row of B. And it is well known [2]

that

∂‖b‖2 =







{g ∈ R
L : ‖g‖2 ≤ 1} if b = 0

b

‖b‖2
otherwise

(43)

7.2. Proof of Lemma 2

We aim at proving that

min
d







∑

t,k

|at,k|2

dt,k
: dt,k ≥ 0,

∑

k

(

∑

t

d
1/s
t,k

)
s

r+s

≤ 1







=





∑

k

(

∑

t

|at,k|
q

)
p
q





2
p

where q = 2
s+1 and p = 2

s+r+1 . The proof proceeds by writing the Lagrangian

of the optimization problem :

L =
∑

t,k

|at,k|
2

dt,k
+ λ





∑

k

(

∑

t

d
1/s
t,k

)
s

r+s

− 1



−
∑

t,k

νt,kdt,k

where λ and {νt,k} are the Lagrangian multipliers associated to the inequality

constraint and the positivity constraints on dt,k. By deriving the first-order

optimality conditions, we get :

∂L

∂dm,n
= −

|am,n|2

d2
m,n

− νm,n +
λs

r + s

(

∑

t

d
1/s
t,n

)
−r
r+s

·
1

s
· d

1−s
s

m,n

According to these optimality conditions, at a stationary point, we have either

dm,n = 0 or

dm,n =

(

λ

r + s

)−s/(s+1)

|am,n|
2s/(s+1)

(

∑

t

d
1/s
t,n

)rs/[(r+s)(s+1)]

(44)

Then, we can derive

(

∑

m

d1/s
m,n)

)(s+1)

=

(

r + s

λ

)

(

∑

m

|am,n|
2/(s+1)

)s+1(
∑

m

d1/s
m,n

)r/(r+s)

(45)
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and thus

(

∑

m

d1/s
m,n)

)s

=





r + s

λ

(

∑

m

|am,n|
2/(s+1)

)s+1




(r+s)/(r+s+1)

(46)

As λ 6= 0, the inequality on the mixed-norm on dt,k becomes an equality. Hence,

after powering each side of Equation (46) to 1/(r + s) and summing each side

over n, we have :

λ

r + s
=

(

∑

n

g(s+1)/(r+s+1)
n

)r+s+1

(47)

where gn =
∑

m |am,n|
2/(s+1). Then, plugging equations (47) and (46) into (44)

gives the desired result :

dm,n =
|am,n|

2s
s+1 g

r
s+r+1
n

(

∑

n g
s+1

s+r+1
n

)r+s (48)

7.3. Proof of equation (37)

We want to show that at optimality which occurs at C⋆, we have

st
jΣ

−1
t sj =

1

σ2
st
j(sj −ΦC⋆)

which is equivalent, after factorizing with st, to show that

σ2sj = Σtsj − ΣtΦC⋆

This last equation can be proved using simple algebra

Σtsj − ΣtΦC = σ2sj + ΦDΦts− (σ2I + ΦDΦt)ΦC⋆

= σ2sj + ΦDΦts−Φ(σ2I + DΦtΦ)C⋆

= σ2sj + ΦDΦts−ΦDΦts

= σ2sj
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Figure 2: Estimating the empirical exponent, given in parenthesis, of the computational com-
plexity of different algorithms (M-BCD, IrM-BP, M-SBL, M-FOCUSS, CosAmp, Landweber
iterations). The top plots give the computation time of the algorithms with respects to the
dictionary size. The bottom plots respectively depict the computational complexity with
respects to the signal dimensionality. For a sake of readability, we have separated the algo-
rithms in two groups :(left) the ones that solve ℓ1 − ℓq problem. (right) the ones that solve
ℓp − ℓ2 problem (M-BCD result provided for baseline comparison). The “IrM-BP Ann” and
“M-FOC Ann” refers to the Ir-MBP and M-FOCUSS algorithm using an annealing approach
for iteratively decreasing ε as described in Algorithm (??).
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Figure 3: Results comparing performances of different simultaneous sparse algorithms. We
have varied (top) the number k of active elements in the dictionary. (middle) the dictionary
size M and (bottom) the number of signal to approximate L. On the left columns are given
the F-measure of all methods while the average mean-square errors are on the right column.
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Figure 4: Examples of estimated row-norm using 3 different algorithms. left) M = 128,
N = 64, k = 10 and L = 3. right) M = 64, N = 64, k = 10 and L = 3. Here, we want to
illustrate cases where a “good” sparsity recovery does not necessary lead to low mean-square
error.
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