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We propose a new framework to extract the activity-related component in the BOLD

functional magnetic resonance imaging (fMRI) signal. As opposed to traditional fMRI

signal analysis techniques, we do not impose any prior knowledge of the event timing.

Instead, our basic assumption is that the activation pattern is a sequence of short and

sparsely distributed stimuli, as is the case in slow event-related fMRI.

We introduce new wavelet bases, termed ‘‘activelets’’, which sparsify the activity-

related BOLD signal. These wavelets mimic the behavior of the differential operator

underlying the hemodynamic system. To recover the sparse representation, we deploy a

sparse-solution search algorithm.

The feasibility of the method is evaluated using both synthetic and experimental

fMRI data. The importance of the activelet basis and the non-linear sparse recovery

algorithm is demonstrated by comparison against classical B-spline wavelets and linear

regularization, respectively.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

1.1. fMRI and time-course analysis

Functional magnetic resonance imaging (fMRI) is being
used increasingly in modern neuroscience. It allows non-
invasive measurements of the evoked neural activity
through neurovascular coupling and the blood-oxygena-
tion-level-dependent (BOLD) effect, first observed by
Ogawa et al. [1]. Few seconds after the stimulation, a
decrease in deoxyhemoglobin (dHb) level in the impli-
cated brain regions occurs, making the so-called local T2*
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MR signal stronger. The typical spatio-temporal resolu-
tion of fast fMRI echo-planar imaging (EPI) techniques
varies between 1–50 mm3/voxel and 0.5–5 s/volume.

In traditional fMRI, the subject’s brain is scanned while
performing a task or being exposed to stimuli that are
relevant to some cognitive function [2]. There are two
general types of experimental design. Within the block-
based paradigm, each stimulus lasts for a non-negligible
period of time (several scans) and is modeled as a boxcar
function. In the event-based framework, a stimulus is
short in time and can be mathematically represented with
a Dirac delta-function. Event-related fMRI activations are
weaker and more variable than block-based responses,
which makes them harder to detect.

Modeling the hemodynamic system has been (and still
is) a subject of active research [3]. One popular framework
to link neural activation and BOLD response makes use of
the so-called balloon model by Buxton and Frank [4].
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Essential components of their system include regional
blood flow, vessel volume, dHb extraction fraction and the
perfusion-inducing signal by the neuronal response to
stimulus. Although the underlying differential equations
are non-linear, it is common to assume that the hemody-
namic system is linear and time-invariant. In this setting,
a model for the task-related BOLD response can be
obtained as a convolution between the stimulus pattern,
describing the task, and the hemodynamic response func-

tion (HRF). This is the type of model that is used in all
standard fMRI analysis packages.

The measured functional MR signal is degraded due to
various sources: physiological factors such as respiratory
and (aliased) cardiac components, subject’s movements,
scanning artifacts due to field inhomogeneity, image
reconstruction and post-processing. Given the noisy mea-
surements, traditional fMRI data analysis tries to find
evidence for the presence of a hypothetical task-related
BOLD response [2]. If such evidence is found (on statistical
grounds), voxels are declared as ‘‘active’’. The most
popular framework proposes a general linear model
(GLM) that contains regressors of interest (e.g., task
responses for various conditions) and other variates
(baseline, low-frequency drifts, and so on). Given the
noise statistics, the parameters (weights of each regres-
sor) are then fitted to the data. The parameters’ strength
(or their statistical significance) is then evaluated by
taking into account the residual error.

In addition to confirmatory analyses, researchers have
also proposed data-driven exploratory methods that do
not (or only partially) rely on the prior knowledge. The
most popular ones are subspace methods, such as princi-
pal components analysis (PCA) [5] and independent
component analysis (ICA) [6,7]. These methods have
the capability to reveal unmodeled trends in the data.
However, manual intervention is often needed to distin-
guish noise-related from neurophysiological-relevant
components. Semi-blind approaches use the knowledge
of the stimulus timings. Glover et al. include a calibration
trial from which they estimate the HRF [8]. This provides
them with a Wiener filter that they apply to subsequent
measurements to estimate the neural activity pattern
through a deconvolution process. Makni et al. proposed
a Bayesian framework for a joint HRF estimation-detec-
tion task [9]. Other studies have also investigated in detail
the trial-by-trial variability of event-related BOLD
responses [10–12] or have used sparsity to constrain the
fitting of a GLM with many regressors [13,14].

In slow event-related fMRI experiments, the activity-
inducing events are well separated in time from each
other. This means that the corresponding BOLD responses
do not overlap and that the deconvolved stimulus pattern
is sparse in time. In this paper, we assume that the
activations are distributed sparsely and develop a new
wavelet-based framework that is able to find the activity-
related signal component in an fMRI time-course, without
prior knowledge on the positions of the activity-inducing
time onsets. While conventional fMRI experiments heav-
ily rely on the knowledge of the timing of the events
(typically, a stimulus or a recorded feedback), it should be
noted that in some cases this information is imprecise or
even unavailable. Possible reasons for this could be
related to the type of subject (e.g., feedback in a deci-
sion-making task with small children) or because the
‘‘task’’ is implicit (e.g., epileptic patients with sparsely
distributed interictal epileptic discharges [15]). Our aim is
to extract the activity-related signal component from
time-courses, which can then be further analyzed
depending on the neurological question at hand.

1.2. Wavelets and fMRI

Over the last decade, wavelets have become an essen-
tial tool in mathematics, engineering, and physics [16].
The wavelet function, when applied to the data, behaves
as a multiscale derivative operator. The order of the
derivative operator is directly linked to the wavelet’s
number of vanishing moments. Therefore, singularities,
such as edges, only have a local influence in the decom-
position and are well approximated by a few (large)
coefficients. This property has been the driving force
behind many applications, such as coding [17] and
denoising [18]. More recently, this feature is exploited in
more general applications (e.g., reconstruction and decon-
volution) by optimizing a sparsity-promoting penalty on
the wavelet coefficients, typically via ‘1 regularization
[19,20]. This principle has also been extended to a wider
range of (non-orthogonal) dictionaries such as (redun-
dant) wavelet frames or combined transformations, see
[21,22] for an overview.

The wavelet transform has also been applied to fMRI
time-series processing. In the spatial domain, the activity
maps can be compactly represented by the wavelet
decomposition; for an overview, see [23,24]. In the
temporal domain, the transform’s decorrelating property
can be used advantageously to fit the GLM’s parameters in
the presence of colored noise, which is the case in fMRI
with fast repetition timing [25]. Also, the Hurst
exponent—the characterizing parameter of a self-similar
process—can be efficiently estimated in the wavelet
domain and used to distinguish between healthy subjects
and patients suffering from Alzheimer disease [26].
Wavelet-based characterization of multi-fractal behavior
for fMRI has been proposed [27]. Finally, estimation with
the use of penalized partial linear models and classical
wavelets has been investigated in [28].

1.3. Contributions of this paper

While traditional wavelets, with their derivative-like
behavior, offer good energy compaction, we believe that
they are not well suited for the activation-related signal in
fMRI. In this paper, we design a new type of wavelets,
named ‘‘activelets’’, driven by a characterization of the
hemodynamic system. Basically, we (still) consider the
hemodynamic system as linear and stationary and derive
the differential operator L that links the hemodynamic
response with the stimulus. To that end, we make use of a
linearized set of differential equations that model the
hemodynamic system [29]. Embarking from there, we
design the exponential-spline wavelets that essentially
invert the system’s response. Therefore, these wavelets,
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coined activelets, will form a dictionary in which the
hemodynamic response is sparsely represented. The
essential feature that characterizes activelets from tradi-
tional wavelets is that they have a number of (well-
chosen) exponential vanishing moments. Short activations
then induce a cone of influence in the activelet decom-
position of the BOLD signal, the same way as singularities
do in the classical wavelet representation. Consequently,
the use of a pursuit algorithm in the activelet dictionary
will help in finding the fMRI ‘‘activations’’, without prior
knowledge of onset timings nor activity strengths. To get
the sparsest representation, we formulate the problem as
an ‘1-regularized optimization problem and we deploy
iterative-thresholding algorithms to solve it. To satisfy the
sparsity hypothesis, we only focus on activity that is
sparsely distributed in time; e.g., such as in slow event-
related designs.

1.4. Organization of the paper

After a brief preliminary on our fMRI time-course
model in Section 2, we fully detail the activelets method
in Section 3. Then, in Section 4, we derive an alternative
linear approach—the minimum mean-squared error
(MMSE) estimator that uses the same operator L as a
whitening operator—that will then be used as reference
method in the experimental section. In Section 5.1, we
compare the techniques on the simulated fMRI data. In
Section 5.2, we show how the method can be applied to
real data. Finally, in Section 6, we discuss the main
aspects of our method, as well as its potential for
neuroscience.

2. fMRI time-course modeling

In this paper, we consider a Dirac spike train s(t) as the
source of activity in the brain. It should be noted that each
impulse represents an event (spike) at the fMRI timescale
(i.e., resolution of seconds) and is not be confused with
the underlying neuronal spiking at the millisecond reso-
lution. Mathematically, we can write the activity-indu-
cing signal

sðtÞ ¼
X

l

cldðt�tlÞ, ð1Þ
Fig. 1. The hemodynamic system links neuronal activity to fMRI BOLD respo

between various physiological parameters.
where cl and tl denote the activity strengths and activity
onsets, respectively; dðtÞ denotes the Dirac impulse. Due
to neurovascular coupling and a subtle interplay of blood
flow, blood volume, and overcompensation of oxygenated
hemoglobin, the BOLD response can be measured in fMRI
time-series. We represent the hemodynamic system that
links activity to BOLD signal as

xðtÞ ¼HfsgðtÞ, ð2Þ

where operator H is usually modeled as a system of
differential [30,29].

We assume the hemodynamic system to be linear and
shift-invariant—an approximation that is common in
literature and very reasonable when the events are
sufficiently spaced in time. In that case, the activity-
related BOLD signal can be modeled as a weighted sum
of shifted hemodynamic response functions

xðtÞ ¼
X

l

clhðt�tlÞ: ð3Þ

The problem that we face is to estimate the presence of
activity-related signal x(t) in the noisy fMRI measurements:

y½k� ¼ xðkÞþn½k�, ð4Þ

where we assume a uniform sampling step without loss of
generality, and n[k] is the disturbance term that includes
noise, baseline, drifts, aliased cardiac and respiratory
contributions (cf. Fig. 1).

Our problem setting is different from a classical ‘‘linear
model’’ analysis, which looks for the presence of a fixed

regressor; i.e., a linear combination of a few known
elementary signals. In our case, we just assume that the
response will be of the form of (3), without fixing the
weights or onset times.
3. The activelets framework

3.1. From hemodynamic system to operator

As we assume that the hemodynamic response func-
tion h(t) originates from an underlying linear shift-invar-
iant system, we can write the differential equation

LfhgðtÞ ¼ dðtÞ, ð5Þ
nse, which is due to neurovascular coupling and a complex interplay
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where the differential operator L is also linear, time-invar-
iant. Mathematically, hðtÞ is a Green function of L and the
impulse response of the causal inverse operator L�1.

In general, the operator L can be characterized by its
Fourier transform

L̂ðoÞ ¼
QN

n ¼ 1ðjo�anÞQM
m ¼ 1ðjo�gmÞ

: ð6Þ

For notational simplicity, we group the parameters in
~a ¼ ða1, . . . ,aNÞ and ~g ¼ ðg1, . . . ,gMÞ.

Most authors assume a linear, shift-invariant model of
the hemodynamic system, which can be justified even
when the underlying set of coupled partial differential
equations (PDEs) are non-linear. In the latter case, we
identify the operator L that is linked to the hemodynamic
system by linearizing the system of non-linear differential
equations. This procedure is equivalent to considering the
first-order Volterra series approximation [29]. From the
derivation that can be found in the Appendix, we obtained
the following parameters:

~a ¼ �
1

t0
,�

1

at0
,�

1

2ts
17 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2
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�1

s ! !
,

~g ¼ �

ðk1þk2Þ
1�a
at0
�

c

a

� �
�ðk3�k2Þ

1

t0

�ðk1þk2Þct0�k3þk2

0
BB@

1
CCA: ð7Þ

There is an additional scaling factor ðV0e=t0Þð�ðk1þk2Þ

ct0�k3þk2Þ. An overview of the numerous constants with
their meanings and typical values can be found in Table 2.
3.2. Wavelet representations

In our model, the activity-inducing signal is a Dirac
impulse train that passes through a system characterized
by the operator L�1. If we applied L to the ideal contin-
uous BOLD signal, we would recover a sparse representa-
tion. In practice, given the noisy samples, we would like to
have a transform that compacts the activation energy on a
few large coefficients. We would then estimate activa-
tions by identifying the most significant coefficients with
the help of sparsity-pursuit algorithms.

The classical wavelet transform is known to provide a
sparse representation of piecewise-smooth functions with
a finite number of singularities. Traditional wavelets act
as N th-order derivatives. Whenever the number N of
vanishing moments is greater than the smoothness of the
function, such a wavelet would, at each point, annihilate
the first N terms of the Taylor series expansion, essentially
leaving significant coefficients only close to the disconti-
nuity points.

In our case, from (3) and (5), the activity-related signal
x(t) satisfies LfxgðtÞ ¼ 0 on the intervals tlototlþ1; i.e.,
the operator L annihilates x(t) at all points except the
activation points tl. For a sparse representation, we would
like the wavelet to ‘‘behave like L’’, thus leaving non-zero
coefficients only around tl. We now provide an explicit
construction of such wavelets.
3.3. Operator-like wavelet basis

As we saw in Section 3.1, the operator L in our problem
can be defined by a linear time-invariant differential
equation. For this class of operators, the corresponding
family of wavelets C¼ fci,kgi,k2Z has been defined in [31],
where ci is the scale-dependent mother wavelet and
ci,kðtÞ ¼ciðt�2ikÞ. The key to the construction of these
wavelets is the operator’s Green function rLðtÞ for which
LfrLgðtÞ ¼ dðtÞ holds. In particular, the multiresolution
analysis fVig

1
i ¼ �1 of L2ðRÞ can be obtained by (concep-

tually) deploying these functions at the locations t¼2ik,
k 2 Z. In general, the Green function is not a Riesz basis
generator and therefore we need to introduce B-spline-
like scaling functions jiðtÞ, which are shortest localized
versions of rLðtÞ, to form a Riesz basis of L2ðRÞ. For
example, in case of a regular derivative L¼D, rD would
be the Heaviside function and ji the zeroth-degree B-
spline dilated with a factor 2i; for a general differential
operator L, however, the localization will be scale-depen-
dent and so will be ji. Once the multiresolution analysis
has been defined, the wavelets can be derived as the
generators of the orthogonal complement between two
subsequent spaces. These wavelets will be of the form
ciðtÞ ¼ L�ffig, where fi is a low-pass smoothing function
at scale i. Consequently, the operator-like wavelets anni-
hilate the null space components of L:

Property 1 (Vanishing exponential moments). For each

scale i 2 Z, shift t0 2 R, a 2 ~a of multiplicity mZk:Z 1
�1

tkeatc�i ðt�t0Þ dt¼ 0:

(For proof, see [31].)

For our purpose, this multiscale operator-like behavior
of the wavelets is most important; i.e., for an input
function f(t), the dyadic wavelet transform results into
wavelet coefficients

di½k� ¼/f ,ci,kS¼ ðLff g�f
�

i Þð2
ikÞ:

Given the linearized model for the BOLD signal, x(t) in (3)
satisfies LfxgðtÞ ¼

P
kckdðt�tkÞ. The properties of the corre-

sponding activelet basis C guarantee that the wavelet
coefficients for x(t) decay rapidly, eventually turning to 0
as the support of the wavelet does not cover tk. By setting
the operator L parameters to 0, we get back the traditional
B-spline wavelets and pure (or classical) derivatives. In
Fig. 2, we show the evolution of the wavelet at scale 0 as
the parameters of L evolve linearly from 0 to the values in
the balloon model.

Given the embedding of the approximation spaces,
Viþ1 2 Vi, we can derive the scaling relation

jiþ1ðtÞ ¼
X

k

hi½k�jiðt�2ikÞ,

where hi is the scaling filter. Similarly, due to
Vi�?Wi ¼ Vi�1, the wavelet filter can be derived:

ciþ1ðtÞ ¼
X

k

gi½k�jiðt�2ikÞ:



Fig. 2. From classical B-spline wavelets (thick gray) to activelets (thick

black).

Hi (z
−1)

2
↓ ci+1

Gi (z
−1)

2
↓ di+1

ci

2
↑ H̃i (z)

2
↑ G̃i (z)

ci

Fig. 3. Filterbank implementation of the activelet basis decomposition

for a single decomposition level. Notice that the scaling and wavelet

filters are scale-dependent. The reconstruction is performed using the

dual filters.

1 There is a bijection between e and l such that ðPe,‘1
Þ and ðQl,‘1

Þ

share the same solution set.

I. Khalidov et al. / Signal Processing 91 (2011) 2810–28212814
Explicit forms of the scaling and wavelet filters can be
found in [31], including the dual filters for the synthesis
side. Given these filters, we can adapt Mallat’s fast
decomposition-reconstruction filterbank algorithm with
scale-dependent filters as shown for one decomposition
level in Fig. 3. Our implementation performs filtering in
the FFT domain since closed-form expressions of the
filters are known in the Fourier domain, similar to [32].
We can also obtain the undecimated activelet transform
by using the ‘‘�a trous’’ algorithm; i.e., the filters Gi and Hi

are upsampled with a factor 2i instead of downsampling
the signal.

3.4. Algorithms for the sparse recovery problem

The activelet transform guarantees a sparse represen-
tation for the activity-related signal. The activelet basis
can easily be extended to an activelet frame by perform-
ing the undecimated activelet transform (UDAT). The
frame expansion being overcomplete, it brings shift-
invariance and can lead to even sparser representations.
Given the noisy data y[k], k¼1,y,T in (4), we would like
to identify (to a good approximation because of noise) the
signal x that has a representation as sparse as possible
(ideally the sparsest one) in the undecimated activelet
dictionary.

Let F be the T�K overcomplete dictionary matrix
whose columns include the UDAT basis functions, nor-
malized to a unit ‘2 norm. x¼Fw0 is the ideal noiseless
fMRI signal in (4) assumed to have a sparse representation
vector w0 in F (synthesis-type prior), but we observe a
noisy version of it y. We seek to identify the components
of w0 by solving the convex ‘1 optimization problem

ðP1,eÞ : min
w

JwJ1 subject to JWðy�FwÞJ2re, ð8Þ

where W is a linear weighting operator, and e40. The
weighting operator is problem-dependent and may
account for our prior statistical knowledge on the noise.
Problem ðP1,eÞ is equivalent1 to the Lagrangian form

ðQl,‘1
Þ : min

w
Jy�FwJ2

2þlJwJ1: ð9Þ

ðQl,‘1
Þ is the well-known BPDN, or the popular Lasso in the

statistical literature.
Problems ðP1,eÞ and ðQl,‘1

Þ have been extensively stu-
died in the recent years both in terms of their theoretical
guarantees and convergent algorithms to solve them. We
will not delve into these details here and the interested
reader may refer to e.g., [33,22].

Among the algorithms to solve ðQl,‘1
Þ, in the statistical

literature, the Lasso, LARS and homotopy methods were
proposed to track its regularization path by solving it for
all l 2 ½0,JFTyJ1� [34–36] (in fact in the overdetermined
case). These methods associate to each problem ðQl,‘1

Þ,
l 2 ½0,JFTyJ1�, a solution w%

l , and follow the entire solu-
tion path fw%

lg starting at w%

l ¼ 0 when l¼ JFTyJ1 [36].
The key observation is that the solution subset is piece-
wise-constant as a function of l, changing only at critical
values of l; i.e., the solution path is polygonal.

The LARS method computes the solution by consider-
ing one coordinate at a time as a candidate to enter the
active set. Inspired by the notion of path-following, an
accelerated algorithm (IT-LARS) was proposed [37]. The
IT-LARS follows the solution path approximately by suc-
cessively selecting groups of atoms at each iteration using
a stagewise iterative-thresholding (IT) variant of LARS.
Now, the sequence fl‘g‘Z0 is not data-adapted as in LARS,
but allowed to be strictly decreasing. Let Aþ be the
Moore–Penrose pseudo-inverse of a matrix A. For a subset
I � f1, . . . ,Tg, I is its complement. AI is the restriction of A

to the columns indexed by I. For a vector d, d[I] is the sub-
vector indexed by I. With these notations, the main steps
of IT-LARS are summarized in Algorithm 1.

Algorithm 1. IT-LARS algorithm.

Initialization: Iteration counter ‘¼ 0, wð0Þ ¼ 0, rð0Þ ¼ y, l‘ ¼ JFTyJ1 .

Choose t, e.g., t¼
ffiffiffi
T
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2
ffiffiffiffiffiffiffiffiffi
2=T

pq
Þ (see the text).

for Jrð‘ÞJ2 4tsn do

� Residual : rð‘Þ ¼ y�Fwð‘Þ ,

� Correlation : cð‘Þ ¼FTrð‘Þ ,

� Hard Thresholding : Ið‘Þ ¼ fi : jcð‘Þ½i�j4l‘g,
� Update direction : dð‘Þ½Ið‘Þ� ¼FþIð‘Þ r

ð‘Þ ,

and dð‘Þ½?I ð‘Þ� ¼ 0,

� Update the solution : wð‘þ1Þ ¼wð‘Þ þgdð‘Þ ,0ogr1,

� l‘þ1 ¼ gðl‘Þ,
� Next iteration : ‘’‘þ1:

666666666666666664
Output : Reconstruct x from wð‘Þ .
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In case of noisy data, the LARS iterations are applied

until the residual rð‘Þ at iteration ‘ satisfies Jr‘J2rtsn,
where t41. The noise standard deviation sn is either
known in advance or can be estimated from the data, e.g.,
from the resting periods in the fMRI setting. For additive
white Gaussian noise, by standard concentration inequal-

ities on w2
T variables, the just-mentioned inequality on the

residual norm holds with probability higher than

1�e�n
ffiffiffiffiffiffi
T=8
p

if t¼
ffiffiffi
T
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þn
ffiffiffiffiffiffiffiffiffi
2=T

pq
.

The strictly decreasing function gð	Þ reflects the update

schedule of lk, typically exponential or linear. The computa-
tion bottleneck of IT-LARS lies in solving the least-squares
projection step to get dk which can be done efficiently using
a conjugate gradient (CG) solver involving multiplications

by F or FT. It can be shown that the computational
complexity of IT-LARS is O(S(lþ2)V), where l is the number
of CG iterations (10 were sufficient in our experiments), S is
the number of IT-LARS iterations and V is the computational

complexity of an application of the linear operator FT or its
adjoint.

3.5. Implementation

The analysis and synthesis operators FT and F are
never constructed explicitly. Rather, their application to a
vector is implemented with fast implicit algorithms using
the activelet filters at either the analysis or synthesis side
of the efficient filterbank implementation as explained in
Section 3.3, see also Fig. 3. Moreover, the scale-dependent
filters of the activelet transform can be precomputed and
stored. During this preliminary step, it is also easy to
normalize the rows of the decomposition (analysis)
matrix to have their ‘2-norm equal to 1, as required by
the IT-LARS.

4. An alternative (linear) method

To establish a point of comparison, we propose in this
section the best linear estimator that optimizes the
minimum mean-squared error (MMSE). To that aim, we
start by presenting an appropriate stochastic formulation
for our problem. The optimal (linear) solution can then be
found as the L�L smoothing spline.

4.1. Stochastic formulation

Suppose that the inter-event timings tl–tl�1 are inde-
pendently and identically distributed (i.i.d.) random vari-
ables that follow an exponential distribution with
parameter s040. Let the stimulus amplitudes cl be i.i.d.
random variables with known first- and second-order
moments Efclg ¼ m1 and Efc2

l g ¼ m2. We assume that cl

are independent of tl. The random Dirac spike train process

sðtÞ ¼
X

l

cldðt�tlÞ ð10Þ

is wide-sense stationary with mean m1s0 and autocorrelation
function CssðtÞ ¼ EfsðtÞsðtþtÞg ¼ m2

1s2
0þm2s0 	 dðtÞ. The

power spectrum is then given by PssðoÞ ¼F fCssgðoÞ ¼
m2

1s2
0dðoÞþm2s0. By subtracting the mean from (10), we
get a zero-mean, white innovation signal iðtÞ ¼ sðtÞ�m1s0,
with CiiðtÞ ¼ m2s0 	 dðtÞ.

If the random Dirac impulse train process drives the
(linear, shift-invariant) hemodynamic system, we can
rewrite the activity-related BOLD response as

xðtÞ ¼ ðs�hÞðtÞ ð11Þ

xðtÞ ¼
X

l

clhðt�tlÞ ð12Þ

xðtÞ ¼ ði�hÞðtÞþm1s0

Z 1
�1

hðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
h0

: ð13Þ

The key observation to make is that the re-centered
process x(t)�h0 is regular; i.e., it admits a whitening
operator that turns it into an uncorrelated, zero-mean
process. Indeed, using the operator L associated
with the hemodynamic system, we have Lfi�hgðtÞ ¼
ði�LfhgÞðtÞ ¼ ði�dÞðtÞ ¼ iðtÞ, which is white and zero-mean.
Equivalently, we can also say L�LfCðx�h0Þðx�h0Þ

ðtÞg ¼ m2s0	

dðtÞ, where L� is the adjoint of the operator L.

4.2. L�L smoothing spline solution

We measure the noisy samples y[k]¼x(k)þn[k], where
the fMRI noise n[k] follows ARðrÞ—a first-order auto-
regressive model with autoregressive parameter r and
associated power spectrum PnnðoÞ ¼ s2=j1�re�joj2,
r¼ 0:2. We can define the re-centered measurements as
y0½k� ¼ y½k��h0. The best linear estimator ~xðt0Þ ¼

P
kbt0

½k�y0½k� of xðt0Þ, given the samples fy0½k�gk, will then be
the one that minimizes the mean-squared error

min
~xðt0 Þ

E½jxðt0Þ� ~xðt0Þj2�: ð14Þ

We can make use of the generalized smoothing spline
theory [38] to solve (14). All operators of the form (6)
with N4M are spline-admissible [39], hence the operator
L is associated to the hemodynamic system. Conse-
quently, according to [38], the best linear MMSE estima-
tor ~xðtÞ of (14) given the noisy and re-centered
measurements y0[k] of the underlying continuous-time
stationary process x(t)�h0 with whitening operator L is
obtained by the L�L smoothing spline, corresponding to
[38, Theorem 5]

~xðtÞ ¼
X
k2Z

ðbg,s�y0Þ½k�jðt�kÞ: ð15Þ

Here, jðtÞ is the L�L exponential B-spline with parameters
f~a,�~a�g, f~g,�~g�g, and the digital filter bg,s is given by its
z-transform

Bg,sðzÞ ¼
1P

k2ZjðkÞz�kþ
s2

m2s0j1�rz�1j2
DLðzÞDLðz�1Þ

, ð16Þ

where we used the exponential B-spline localization filter
DLðzÞ ¼

QN
k ¼ 1ð1�eak z�1Þ. In other words, the smoothing

spline solution that solves (14) reverts to linear filtering of
the re-centered measurements. We implemented the
digital filters in (15) using the causal–anticausal decom-
position, as described in [38, Appendix II].
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Fig. 4. A sample synthetic time-course.
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The smoothing spline solution is the best linear MMSE
estimator, and it would even be the best possible esti-
mator if the underlying process were Gaussian. As this is
not the case, we can expect non-linear estimator to do
better. Nevertheless, the linear solution can be considered
as a gold standard for signal processing problems, and
thus it is a worthful point of comparison. Notice that the
linear solution can be applied both to traditional B-splines
(only zeros at the origin) or the exponential splines
associated to the activelet operator.

5. Results

5.1. Synthetic data

We first evaluated the performance of our method on
synthetic fMRI data set, consisting of 100 sequences
generated according to the model (3). Five short events
of length 0.8 s were modeled with inter-event delays
tlþ1–tl following an exponential distribution with mean
interstimulus delay of 40 s. Each event was convolved
with a hemodynamic response (HRF), for which the
parameters of the underlying balloon model were ran-
domly generated following Gaussian distributions; the
mean and standard deviation were taken from the experi-
mentally measured histograms in [29], and are listed in
Table 2 in the Appendix. Correlated noise following the
model AR(0.2), with sn ¼ 0:3, leading to an average SNR of
�7 dB, and a baseline consisting of a constant and a
slowly varying sinusoid of random amplitude (frequency
around 0.01 Hz) were added to the data.

We compared the activelet-domain non-linear sparse
recovery algorithm with two linear techniques: one
corresponds to the linear MMSE signal estimation as
described in Section 4, another is the ‘‘wavelet Wiener’’
solution which is the unique minimizer of

~x ¼ argmin
x

Jy�xJ2
2þ
X

i

giJTixJ
2
2,

where Ti computes the i-th scale of the wavelet transform
coefficients and the scale-dependent regularization coef-
ficients gi are chosen by an Oracle:

fg1, . . . ,gJg ¼ argmin
fg1 ,...,gJg

Jx� ~xJ2:

MMSE and wavelet Wiener techniques also use an Oracle
to remove the baseline. Additionally we compared each
method with its traditional B-spline counterpart.

In the activelet non-linear sparse recovery method, we
propose to use prior information on the second-order
statistics of the signal and the noise to select an appro-
priate weighting operator W in (8). As a first approach, W

may be taken as the inverse of the square-root of the
noise covariance matrix resulting in a Mahalanobis-like
data fidelity term in (8). As the noise here is wide-sense
stationary, this is equivalent to taking F ðWÞðoÞ ¼
P�1=2

nn ðoÞ. Another idea is to minimize the residual in the
Wiener domain, where the SNR of the measurements is
maximized. Specifically, we have

F ðWÞðoÞ ¼ PhhðoÞ
PhhðoÞþPnnðoÞ

,

where PhhðoÞ and PnnðoÞ correspond to the power spectra
of the HRF and the AR noise model, respectively. We use
the activelets dictionary with three decomposition levels.
Additionally, we add low-scale B-splines to the dictionary
to capture the baseline.

The computations were done on a 2 GHz Intel Core
Duo MacBook Pro computer using Matlab 7 of Math-
Works, WaveLab 802 [40] and SparseLab 100 [41]. In
Fig. 4, we show a sample synthetic time-course. The
results of the applied methods are shown in Fig. 5. The
corresponding SNR levels are given in Table 1.

Interestingly, the sparse recovery with the non-linear
method performs the best when the basis functions are
well-tuned to the system response, as is the case with the
activelets dictionary. However, it strongly degrades other-
wise. The single-trial variability that was introduced in
the synthetic data is dealt with in a satisfactory way by
our approach. Apparently, the sparsifying properties of
the operator are not too much affected by these devia-
tions. Among the linear methods, the MMSE estimator
performs the best when the model is well chosen. The
performance of the Oracle-driven wavelet Wiener is the
worst even when using the activelets, and gets worse
with standard wavelets.

5.2. fMRI experimental data

We have applied our method to the dataset from a
traditional fMRI experiment. The subject was scanned in a
Siemens Magnetom 3T Scanner. The visual stimulation
consisted of 10 flashing checkerboard excitations
(duration¼500 ms) with varying interstimulus timings,
followed by a resting period, during which the subject
closed the eyes. Two hundred and fifty six scans were
performed with TE¼30 ms, TR¼1 s and voxel size
2.6�1.8�5 mm. We used the Statistical Parameter Map-
ping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) Matlab
package to do standard pre-processing of the dataset.
This operation included realignment, co-registration and
spatial Gaussian smoothing (FWHM¼8 mm) of the data.

We computed the SPM parameter map for the F-test of
the effects-of-interest (see Fig. 6, right column) and
picked three time-courses that corresponded to a strongly

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 5. Example of synthetic data: activelets versus B-spline wavelets; sparse recovery with wavelets, linear wavelet and linear MMSE solutions. Thin line:

original signal, dotted line: noisy measurements, bold line: estimation. (a) Activelets with non-linear sparse recovery. (b) B-spline wavelets with non-linear

sparse recovery. (c) Activelet Wiener solution. (d) B-spline wavelet Wiener solution. (e) Activelet-spline MMSE solution. (f) B-spline MMSE solution.

Table 1
SNR values (mean7standard deviation over several realizations of

noise, measured in dB) for different estimation methods.

MMSE Wavelet Wiener Sparse recovery

wavelet

Activelets 40670.78 3.7670.89 6.6271.66

B-spline wavelets 3.5670.77 1.0870.81 2.27 71.24
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active voxel, a weakly active voxel (around 5% familywise
error threshold) and a non-active voxel.

Finally, we have computed the energy of the detected
activity signal for the three most active slices. To this end,
the activelet algorithm was optimized for real-data pro-
cessing—the estimated baseline was updated at each
iteration by projecting the residue on a set of low-scale
B-splines. The signal from the resting period was used to
estimate the noise level. The results are shown in Fig. 6.
Note that the activelets are able to identify the spatial
location of the active voxels from the data itself, while
SPM uses the knowledge of the event timing.

6. Discussion

The problem of ‘‘blind’’ activity detection in fMRI is
difficult due to the presence of strong disturbance



Fig. 6. Activation maps for the three most active slices superposed on

the corresponding anatomical T1 images. Left column: energy of the

activity signal as detected by activelets. Right column: corresponding

contrast obtained by standard regression analysis in SPM2 with known

onset times, threshold ¼ 20%.
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components. Even in traditional fMRI data analysis, where
the onset times are known, an important compromise on
the flexibility of the model has to be made. As an extreme
option, one could test the measurement for the presence
of activity-related signal of the form (3) with fixed
weights and onsets. Obviously, this approach is robust
against false positive (FP) detections, but it loses all
temporal resolution. At the same time, the variability of
the HRF (which is known not only to vary over space and
time for the same subject, but also between subjects)
might lead to failures in detecting the activity that is
actually present but different from the model; this situa-
tion is known as a false negative (FN) response. State-of-
art fMRI analysis software (e.g., SPM toolbox for Matlab)
employ additional regressors, such as derivatives of the
model with respect to its parameters, to account for the
BOLD variability and shift invariance [42]. More regres-
sors in the GLM decreases the degrees of freedom and
thus boils down to trading some of the FP rate for the
improved FN rate. Friman et al. use the ‘‘optimal’’ FN/FP
trade-off as a criterion to choose appropriate regressors
[43].
To validate the proposed paradigm, we did compare
the signal recovery capability of the activelets, the wave-
let Wiener and MMSE algorithms. The latter was applied
with a wide range of regularization parameter g, which
can be linked to the specificity level of GLM methods.
Large values of g force the solution to zero, resulting in no
sensitivity but high specificity. As g decreases, the algo-
rithm eventually fits the measurements. The MMSE
approach for the activelets or B-spline wavelet bases
shows low specificity. Nevertheless, the activelets basis
maintains some advantage compared to traditional wave-
lets (cf. Table 1, MMSE results), while, as we see in Fig. 5,
there is no visual improvement in the recovered signal.

One of the key results of our paper is that we improve
the FN/FP trade-off by employing the non-linear sparse
recovery technique. Comparing Fig. 5(a) to Fig. 5(b), we
note that, in this case, the use of the proper (activelets)
basis becomes crucial; the B-spline wavelets cannot fit
the signal well, and consequently show a very low SNR.
Importantly, the non-linear activelet-based sparse recov-
ery reveals no activity-related signal in the areas that
contain pure noise. This is not the case for the linear
methods, meaning that they suffer from a high FP rate.

The improvement in the FN/FP trade-off is best seen on
the ROC curve that is plotted in Fig. 8. Given the ground
truth, we divide the signal into active and non-active
intervals. The performance of the result is then measured
by the mean-squared error (ek) for each interval k with
respect to the ground truth. After normalization with the
true mean signal m during activation, we obtain the values
1�ek=m, which can be related to the sensitivity (for active
intervals) and the specificity (for non-active intervals)
within the framework of a statistical decision taken for
each interval. The two markers show the Oracle-driven
wavelet Wiener results. All MMSE estimators use an Oracle
to remove the baseline. Despite this non-negligible advan-
tage, the results from the proposed activelets method with
non-linear optimization-based sparse recovery are superior.
Moreover, the parameters of the HRFs varied randomly
while the activelets operator L remained fixed. The perfor-
mance achieved by the sparse recovery algorithm with the
activelet dictionary clearly demonstrates the versatility of
our approach with respect to the shape of the HRF.

The results for fMRI experiments in Fig. 7 further
demonstrate the suitability of our approach for the
analysis of real-world data. For the most active voxel in
Fig. 7(a) and (b), nine activations were detected out of 10;
the undetected activation coincides with a sudden drop in
the baseline BOLD signal. The additional detection (last
peak of the thin line) happened right after the subject had
closed the eyes. The activity-related signal in the weakly
active voxel in Fig. 7(c) and (d) is almost entirely masked
by noise; however, the algorithm still detects six activa-
tions. Importantly, the detection in the non-active voxel is
zero. By comparing the spatial distribution of detected
activity to the SPM contrast in Fig. 6, we see that our
method is able to correctly identify the most active spots.
In the areas where the SPM correlation is weaker, the
maps are not necessarily identical: activelets ‘‘react’’ to
individual activations separately, while regression analy-
sis looks for voxels that respond at all onset times.
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Fig. 7. FMRI experimental data and the activity-related signal extracted by the activelet method. The vertical lines correspond to onsets times. (a) Most

active voxel: time-course. (b) Most active voxel: estimated activity-related signal. (c) Weakly active voxel: time-course. (d) Weakly active voxel:

estimated activity-related signal. (e) Non-active voxel: time-course. (f) Non-active voxel: estimated activity-related signal.
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The ‘1 minimization pursuit used here is an exploratory
estimation approach. We deployed it to demonstrate the
appropriateness of the activelets dictionary for hemody-
namic signals. One future research direction is to develop a
statistical detection step that would produce activation
maps based on the activity-related signal estimated by the
activelet framework. This would entail to elaborate a
hypothesis testing step based on some score derived from
the (asymptotic) statistical properties of the estimates
provided by the non-linear method. In this respect, the
work of Knight and Fu [44] gives some interesting indica-
tions. Another approach may be to combine estimation and
inference (by traditional stochastic samples) in a Bayesian
framework that explicitly uses the prior distribution of the
discrete time input signal [45–47].

7. Conclusions

We proposed a framework for the recovery of activity-
related signals in the fMRI measurements without knowledge
of the actual onset times by exploiting their sparsity in time.
The two key components of our method are: (1) specially
tailored wavelet basis that allows sparse approximation of
the activity-related signal and (2) a signal recovery procedure
that is based on the optimizes the ‘1 of the expansion
coefficients. We have demonstrated that both components
are beneficial, and they should be combined for best results.
The underlying assumption for the framework to be valid is
that the events are sparsely distributed over time which is
appropriate for slow event-related design. We have found the
method to be robust to modeling errors; i.e., deviations from
the idealized HRF response did not strongly affect the
sparsifying properties of the differential operator L.

The next practical step is to apply the method to the
elucidation of specific neurological questions. There is
also room for improvement for making the algorithm
faster so that it can be applied to large-scale data on a
routine basis. It should be noted that the interest from the
neuroimaging for paradigm-free mapping is increasing;
e.g., in recent work [48] a dictionary of hemodynamic



Fig. 8. ROC curves for the different methods. The importance of both the

activelets dictionary and the non-linear sparse recovery are demon-

strated; i.e., their combination leads to the best results that outperform

the others.
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response functions was proposed in combination with
ridge regression.
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Table 2
List of the variables and constants involved in the hemodynamic model

with their typical values.

Symbol Meaning Typical

value

Standard

deviation

u Stimulus – –

s Flow inducing signal – –

fin Blood flow – –

v Normalized venous volume – –

q Normalized

deoxyhemoglobine content

– –

e Neuronal efficacy 0.54 0.085

ts Signal decay 1.54 0.169

tf Autoregulation 2.46 0.212

t0 Transit time 098 0.169

a Balloon stiffness 0.33 0034

E0 Oxygen extraction fraction 0.34 0.043

V0 Resting blood volume fraction 1 –

k1 BOLD constant 1 7E0 –

k2 BOLD constant 2 2 –

k3 BOLD constant 3 2E0�0.2 –
Appendix A. BOLD response and hemodynamic system

The hemodynamic model that we use has been
described by Friston et al. [29]. It is a combination of
the balloon/windkessel model [30,49] with a model that
links synaptic activity and changes in regional blood flow.
Mathematically, this model corresponds to the non-linear
state-space definition of a system with four state vari-
ables fs,fin,v,qg

_s ¼ eu� s

ts
�

fin�1

tf
,

_f in ¼ s,

_v ¼
1

t0
ðfin�v1=aÞ,

_q ¼
1

t0
fin

1�ð1�E0Þ
1=fin

E0
�v1=ða�1Þq

 !
,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð17Þ

and one observed quantity (the BOLD signal)

BOLDnon-linear ¼ V0ðk1ð1�qÞþk2 1�
q

v

� �
þk3ð1�vÞÞ: ð18Þ

The meaning of the various variables and parameters are
summarized in Table 2. Note that all variables are
expressed in normalized form; i.e., relative to resting
values. Full details can be found in [29].

We define the variables fx1,x2,x3,x4g ¼ fs,1�fin,1�v,
1�qg. Linearization of (17) around the resting point {x1,
x2, x3, x4}¼(0,0,0,0) gives

_x1 ¼ eu�
x1

ts
þ

x2

tf
,

_x2 ¼�x1,

_x3 ¼
1

t0
x2�

x3

a

� �
,

_x4 ¼ cx2�
1�a
at0

x3�
1

t0
x4,

8>>>>>>>>><
>>>>>>>>>:

ð19Þ

with c¼ ð1þð1�E0Þlnð1�E0Þ=E0Þ=t0. We diagonalize the
system by making use of the Gauss method:

D2
þ

1

ts
Dþ

1

tf
I
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fx2g ¼�eu,

D2
þ

1
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1
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Additionally, the linearized equation for the BOLD signal
is

BOLDlinearðtÞ ¼ V0ððk1þk2Þx4ðtÞþðk3�k2Þx3ðtÞÞ:

Finally, the HRF h(t) is obtained by setting uðtÞ ¼ dðtÞ. It
satisfies the differential equation

Dþ
1

t0
I

� �
Dþ

1

at0
I

� �
D2
þ

1

ts
Dþ

1

tf
I

� �
fhg
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1�a
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0
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c
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eu
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The right-hand side can be further developed as

V0e
ð�ðk þk Þct �k þk ÞDuþ ðk þk Þ

1�a
�

c
� �

�ðk �k Þ
1

� �
u

� �
,
t0

1 2 0 3 2 1 2 at0 a 3 2 t0

yielding the linear differential operator L of the form (6)
with parameters (7).
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