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Abstract: Space-time adaptive processing (STAP) is a well-suited technique to detect 

slow-moving targets in the presence of a clutter-spreading environment. When considering the 

STAP system deployed with conformal radar array (CFA), the training data is range-dependent, 

which results in poor detection performance of traditional statistical-based algorithms. Current 

registration-based compensation (RBC) is implemented based on sub-snapshot spectrum using 

temporal smoothing. In this case, the estimation accuracy of the configuration parameters and the 

clutter power distribution is limited. In this paper, we introduce the technique of sparse 

representation into the spectral estimation and propose a new compensation method, called RBC 

with sparse representation (SR-RBC). This method first converts the clutter spectral estimation 

into an ill-posed problem with the constraint of sparsity. Then the technique of sparse 

representation like iterative reweighted least squares (IRLS) is utilized to solve this problem. 

Based on this, the transform matrix is designed so that the processed training data behaves nearly 

stationary with the test cell. Since the configuration parameters as well as the clutter spectral 

response are obtained with full-snapshot using sparse representation, SR-RBC provides more 

accurate clutter spectral estimation and the transformed training data is more stationary so that 

better signal-clutter-ratio (SCR) improvement is expected.  
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1. Introduction 

 An airborne/spaceborne space-time adaptive processing (STAP) is the technique of choice to 

detect slow-moving targets in the presence of a strong clutter background. Conventional STAP 

processors using a side-looking uniform linear array (ULA) have the desirable property that the 

relationship between the clutter spatial and Doppler frequencies is range-independent. Thus the 

training data from adjacent range cells behaves stationary and can be utilized to estimate the 

clutter covariance matrix (CCM) so that the adaptive filter can be effectively contracted to 

improve the output signal-clutter-ratio (SCR) in the test cell [1-2]. However in many radar and 

sonar applications, achieving perfectly ULA geometries may not always be practical. Besides, 

complex configuration, e.g., conformal radar array (CFA) does provide certain advantages 

including minimal payload weight, the potential for increased aperture, and increased field of view 

[3-4]. However, the relationship between the clutter spatial-Doppler frequencies becomes 

nonlinear and range-dependent at this case of CFA. Thus the sample covariance matrix computed 

from the training data set mismatches with the test cell and results in degraded performance in 

canceling clutter. 

 To deal with the range-dependent clutter, various methods have been proposed. 

Angle-Doppler compensation (ADC) and adaptive angle-Doppler compensation (A2DC) [5-6] 

attempt to align the peaks of the clutter ridge of the training data with that of the test cell. 

However, they only accomplish partial compensation, and thus are effective only for highly 

directive antenna beampatterns. Derivative-based updating (DBU) method assumes that the clutter 

central Doppler frequency is linear with range. However, this assumption is rarely satisfied at the 

short range case and thus DBU also does not work effectively with all configurations such as CFA 
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and/or bistatic radar [7]. Recently, the registration-based compensation (RBC) [8-10] method is 

proposed thorough a mathematical description of the clutter ridge in the angle-Doppler domain. 

This method estimates both the configuration parameters and the clutter power distribution. Based 

on this, the transform matrix is designed so that the training data is nearly stationary with the test 

cell. RBC can implement both the mainlobe and sidelobe clutter compensation. However, since 

the peak extraction is implemented in the sub-snapshot spectrum, the estimation accuracy of both 

the configuration parameters and clutter power distribution is limited, which results in degraded 

performance. In this paper, we introduce the technique of sparse representation into the problem of 

clutter spectral estimation and propose a novel registration-based compensation called SR-RBC to 

further improve the SCR performance. The remainder of this paper is organized as follows. 

Section 2 describes the basic signal model deployed with the CFA configuration. Section 3 

introduces the theory of the sparse representation and illustrates the details of the SR-RBC 

algorithm. Section 4 uses the simulated data to illustrate the advantages of the proposed method. 

Section 5 gives a conclusion of the proposed method and points out the future work.  

2. CFA Signal Model 

Conformal antenna assumes the shape of the radar-bearing platform and generally belongs to 

the class of nonlinear array. Specific advantages of conformal antenna include better aerodynamic 

shape compatible with the airframe, potentially greater effective apertures, less payload weight 

and so on. Thus, STAP deployed with conformal antenna has great potential in the future airborne 

radar system, especially, unmanned aerial vehicle [3-4]. In this section, we discuss the space–time 

response of the conformal array to the ground clutter scatters. Suppose the conformal antenna is 

deployed onto a particular surface of the radar platform– such as the fuselage, wing or nose cone 
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–the array response is generally non-linear from element to element comprising the multichannel 

receive array. To determine the response of a point clutter scatter, we rely on the coordinate system 

of Fig.1, with the x-axis aligned to true north, the y-axis pointing to west and the z-axis 

perpendicularly directed away from the Earth’s surface. Here we adopt the cylindrical arrays with 

M rings, each of which is composed of N isometry array elements. The parallel rings are 

perpendicular to the y-axis at a spacing of d . The array elements within each ring are isometry 

placed with a circle radius r . Although the discussion in this paper is carried out with the 

cylindrical array, our method can be effectively implemented in other CFA configurations. In this 

instance, we defines angle vector  ,
T ψ , where symbols ,   stand for the azimuth and 

elevation angles of certain clutter scatter Q , respectively. 
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Fig.1 Geometry of the CFA configuration 

The unit vector  k ψ


 points orthogonal to the propagating planar wavefront and is given as 

   cos cos cos sin sin .x y ze e e         k ψ
   

 (1) 

Additionally, the direction vector to the nth  element on the mth  ring is defined as  
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From [1], the element-level spatial response at the kth  range cell is then given as 
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where  0,1CN   (if the response is non-fluctuating, then   is a complex scalar with unity 

magnitude and uniformly distributed phase), kv  is a normalized voltage term following from the 

radar range equation. The spatial covariance matrix taper (CMT) sa  reflects the inter-array 

amplitude-phase inconsistency with H
t t tE    a a A . 1,1 1, ,, ,

T

N M Ng g g   g   is the antenna 

gain vector, and   is the Hadamard product. Thus the space steering vector is defined as  

              1,1 1, ,2 2 2, , .N M N
T

j j j
s e e e        

k ψ s k ψ s k ψ ss ψ
        (4) 

Simultaneously, the Doppler steering vector describes the pulse-to-pulse phase change due to the 

platform and target motion. Considering a stationary clutter scatter Q  at angle ψ , the 

corresponding Doppler steering vector is given as 

           2 2 2 2 2 2 2 ( 1)
, , , ,p p p

T
j k v T j k v T j k v P T

t e e e
          

ψ ψ ψ
s ψ

        (5) 

where pv
 represents the platform velocity vector and is given as  

 sin cos ,p p x p ye e     v v v
    

 (6) 

where   denotes the crab angle between the flight direction and the central axis of the 

cylindrical array. Symbol T  is the pulse repetition interval and P  is the total number of pulses 

comprising the temporal aperture. A simple modification to (5) is needed if the scatter is moving, 

i.e., the moving target. Based on this, the temporal snapshot of certain scatter Q  at the  ,m n th  

array element, the kth  range cell is given as 

     / ,, ,t k k m n t tm n v gx a s ψ  (7) 
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where ta  is a temporal CMT with H
t t tE    a a A , which is caused by the intrinsic clutter motion 

and system jitter etc. Both spatial and temporal decorrelation expands the clutter rank and spreads 

the clutter ridge in the angle-Doppler domain. Thus, the space–time response of the CFA to a 

stationary scatter at angle ψ  conveniently follows as  

       ,k k t t s sv x a s ψ a g s ψ    (8) 

where   indicates the Kronecker product. Space–time correlation taper s t s t  a a a  satisfies 

H
s t s t s t t sE      A a a A A . A realistic model for the ground clutter return results from the 

coherent summation of many clutter scatterings within the bounds of each iso-range [4]. Thus the 

clutter space–time snapshot at the kth  range cell takes the form as 
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where aN  indicates the number of ambiguous range cells, cN  is the number of statistically 

independent clutter scatters at each iso-range, ,p qψ  indicates the certain angle vector of the qth  

clutter scatter at the pth  iso-range. Moreover, by virtue of statistical independence of each 

clutter scatter, the clutter space–time covariance matrix of the kth  range cell follows as [4] 
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In this case, the clutter is substantially range-dependent so that traditional CCM estimation such as 

loaded sample matrix inversion (LSMI) tends to behave the average behavior of the training data. 

Thus the corresponding STAP filter response exhibits mismatch for the test cell, with insufficient 

null depth and excessive clutter spread, which causes performance degradation.  

A series of methods have been proposed to deal with the range-dependent clutter. Methods 



 7

such as angle-Doppler compensation and adaptive angle-Doppler compensation [5-6] accomplish 

the peak response, but the sidelobe clutter suppression is limited. RBC implements both the 

mainlobe and sidelobe compensation [8-10]. However, since the configuration parameters as well 

as the clutter power distribution are obtained using the sub-snapshot spectrum, the estimation is 

not accurate enough. Thus, the stationarity of the processed training data is destroyed and causes 

performance degradation of the STAP filter. In the following part, we propose to make 

range-dependent compensation using the technique of sparse representation, which has the 

capability of obtaining more accurate clutter response in the full-snapshot spectrum so that the 

compensation performance is further improved.  

3. Range-Dependent Compensation using Sparse Representation 

The key requirement for STAP with any geometry configuration is the accurate knowledge of 

the clutter spectral response (i.e., the shape of the clutter ridge in the angle-Doppler domain) [1-2]. 

In the common case of ULA, the training data behaves stationary and can be utilized to estimate 

the accurate clutter response (termed as CCM) of the test cell. In the non side-looking and/or CFA 

STAP cases, the clutter behaves range-dependent. To solve this problem, a series of preprocessings 

are proposed. RBC utilizes the technique of temporal smoothing to obtain sub-snapshot spectrum 

and then generates the transform matrix at each range cell so that the processed training data 

behaves nearly stationary. Thus, the sub-snapshot spectrum is the key to guarantee the desirable 

performance in the subsequent processings such as the estimation of configuration parameters and 

clutter power distribution. In this paper, we also seek to require accurate clutter spectral response, 

which is similar to that in RBC. However, the difference lies in that SR-RBC can obtain more 

accurate clutter spectrum with full-snapshot and the estimation of the configuration parameters is 
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avoided. In the following part, the technique of sparse representation is first introduced and then 

utilized into our problem of the clutter spectral estimation. Based on this, the procedures of the 

overall algorithm are elaborated.  

3.1 Clutter spectral estimation using sparse representation 

First discretize the angle and Doppler frequency axes into ,s s t tN NM N P    grids in the 

angle-Doppler domain. The parameters ,s t   are the zoom scales along the angle and Doppler 

axes, respectively. Let 
2

,1i s
s

i
i N

N

    and , ,1d j d
d

j
f j N

N
    denote the 

uniformly-discretized azimuth angles and Doppler frequencies, respectively. The corresponding 

angle vectors for the kth  range cell are given as  

  , , ,1
T

i k i k si N   ψ  (11) 

Based on this, the received data of the kth  range cell can be written in matrix form as 

 ,
1

,
s tN N

k i i k k k k k
i




   x Φ n Φ α + n  (12) 

where the s tNMP N N  matrix kΦ  is the overcomplete basis composed with all the possible 

space-time steering vectors as 

      1, ,1 , ,1 , ,, , , , , , , .
s s dk s t k d s t N k d s t N k d Nf f f  

   Φ s ψ s ψ s ψ   (13) 

The vector kα  stands for the spectral distribution of the kth  range cell in the basis kth , (i.e., 

the space-time spectrum in the angle-Doppler domain), and kn  is the observation noise. Equation 

(12) is the fundamental equation in this paper and has two characteristics that we should pay 

attention to. First, estimating the space-time spectrum kα  is equivalent to solving the linear 

equation (12) with the data kx . Second, the basis kΦ  is overcomplete and the problem is 

ill-posed because the zoom scales ,s t   are greater than one to obtain the high-resolution 

spectrum. Generally, when the positions of the actual clutter scatters are known in advance, this 
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ill-posed problem can be simplified into an overdetermined equation, which can be effectively 

solved by least squares (LS) [6]. However, this prior knowledge is hard to guarantee in the actual 

clutter scenario. On the other hand, the theory of sparse recovery has proved that: even when the 

actual positions are unknown, the ill-posed problem can be effectively solved provided that the 

actual clutter spectral distribution 0α  is sparse [11-12]. Next the sparsity of the clutter spectral 

response is first illustrated.  

 As shown in Fig.2, after the discretization, each cell in this plane corresponds to a certain 

space-time steering vector and all of these vectors comprise the overcomplete basis kΦ . Since the 

STAP clutter scenario usually has a high CNR [1-2], the distribution in the angle-Doppler plane is 

mainly determined by the clutter distribution. Due to the angle-Doppler dependence of the clutter 

scatters, the significant elements of the spectral distribution only focuses along the clutter ridge in 

the angle-Doppler domain, whose slope is determined by the radar configuration parameters and 

behaves range-dependent in the case of CFA. Thus the clutter spectrum is sparse, i.e., only a small 

amount of elements are significant and others are quite small. This statement is even valid in the 

case of omnidirectional antenna, where the clutter scatters come from all the directions but the 

cells occupied by the clutter ridge is still small compared with the whole angle-Doppler plane.  
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Fig.2 clutter spectral response of CFA STAP  

3.2 Sparse-induced Compensation for range-dependent clutter  

 According to the theory of sparse representation [11-12], when the actual distribution is 

sparse in a domain, the ill-posed problem in (12) can be efficiently solved. The basic form of 

sparse representation is defined as 

 
0 2

ˆ arg min    ,subject to   α α x Ψα  (14) 

where   is the data fitting allowance,   stands for the pL  norm and thus 
0
 denotes the 

number of the nonzero elements of a vector. However, this optimization is a combinatorial 

problem and NP-hard. To address this difficulty, a number of practical algorithms have been 

proposed to approximate this sparse solution. One way is to replace the objective function with the 

1L  norm [12]. It has been proven that this approximation can achieve quite desirable performance 

but demands a high computational effort especially for large-scale problems. Besides, a series of 

fast and greedy approximations are proposed, among which iterative reweighted least square 

(IRLS) appears to be both effective and time-saving [13-15]. IRLS uses the reweighted  2L  
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norm minimization to make recursive adjustments to the weightings until most of the elements in 

the solution are close to zero and generate a sparse solution. IRLS has been widely used in the 

applications such as source localization and neuromagnetic imaging [16-17], however, the 

potential seems to be more than current applications.  

 In this paper, we propose a novel method called SR-RBC to make registration-based 

compensation (the initial idea is developed from our earlier work [18]). This method has the 

advantage of serving two purposes simultaneously. First, the estimation of the configuration 

parameters and the clutter power distribution is integrated into the solution of ill-posed problem 

with the constraint of sparsity so that the estimation is data-based and no prior knowledge is 

needed. Second, the sparse representation such as IRLS can effectively solve the estimation 

problem and obtain more accurate clutter spectral response with full-snapshot. Thus the 

transformed training data behaves more stationary with the test cell so that the SCR performance 

is further improved. The details of the whole algorithm are given as follows.  

3.2.1 Clutter spectral estimation using IRLS  

 Since IRLS is served as an iterative algorithm, it only guarantees a local sparse solution, 

which may not coincide with the actual solution. Thus, appropriate initial value is necessary to 

assure the final convergence. Here we adopt the Fourier spectrum as  

 
 0
, , ,1 ,H

i k i k k s ti N N   Φ x  (15) 

where the initial vector  0
kα  is unbiased but low-resolution. Although current strategy is adopted 

as the Fourier spectrum, the analysis in [13-14] has illustrated that any unbiased initialization is 

also effective. Furthermore, the initialization does not have to be sparse, otherwise, some 

potentially elements may be lost and not recovered in the subsequent iterations. Additionally, the 
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initial weighting matrix and the adaptive subspace are given as 

 

     
 

0 0diag abs ,

,1  ,

k

s ti i N N

   
  

W α

Γ
 (16) 

where  diag   is the diagonalization. Then the estimation updating at the lth  iteration is given 

accordingly as 

       †

,l l l
k k kΓ Γα W Φ W x  (17) 

where   l
k Γα  stands for the Γ  subset of the vector  l

kα ,     1† H H
A A A A  denotes the 

pseudoinverse operation of matrix A . As the iterations is implemented, some of the elements in 

the estimation  l
kα  become close to zero, thus the procedure of the reweighted least square in (17) 

can be only carried on a subspace k ΓΦ . Additionally, the dimension of the subspace should also 

be adjusted during the iteration as  

   ,arg  ,  1 ,l
i k s tTh i N N   Γ  (18) 

where Th  stands for the threshold and  
,
l

i k  denotes the ith  element of the solution  l
kα . 

Based on this, the weighting matrix can be updated as 

 
     1

,diag , .l l
i k i  W Γ  (19) 

Finally, the convergence judgment is made as 

 

   

 

1

,
l l

k k
l

k





α α

α
 (20) 

where   stands for a small constant. Otherwise, repeat the recursive process as (17)-(19).  After 

obtaining the high-resolution clutter spectral estimation, the CCM estimation can be given as  

   2

, , ,
ˆ ˆ ,H

c k k i k i k L
i

i 


 
Γ

R Φ Φ I  (21) 

where  ˆk i  is the ith  element of the final spectral estimation ˆ kα  at the kth  range cell, 

L  is a small loading to match the noise level.  
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3.2.2 Range-dependent compensation using SR-RBC   

 The idea of designing the transform matrix using CCM so that the processed training data is 

stationary with the test cell is first proposed in RBC [9]. In this paper, SR-STAP follows the 

similar idea with RBC, but since the clutter spectrum and the corresponding CCM estimation is 

obtained with higher accuracy, the stationarity of the processed training data can be further 

improved. In other words, we seek to generate the matrix kT  so that the processed training data 

k k kx T x  is stationary with the test cell  ,0,t c tCNx R . Substituting the CCM of the 

processed data into the stationarity definition, we can deduce that  

 , , , .H H
c k k k k c k k c tE     R x x T R T R    (22) 

Using the eigenvalues decomposition, ,c kR  and ,c tR  can be expressed as 

   1 2 1 2
, ,

HH
c k k k k k k k k R V Λ V V Λ V Λ  (23) 

   1 2 1 2
, ,

H

c t t t t tR VΛ VΛ  (24) 

where kΛ and tΛ  are the diagonal matrixes containing the eigenvalues for the kth  training 

data and the test cell, respectively, kV and tV  are the corresponding matrixes containing the 

eigenvectors as columns. Based on this, the processed CCM at the kth  rang cell ,c kR  is 

further expressed as 

   1 2 1 2
, .

H

c k k k k k k kR T V Λ T V Λ  (25) 

Thus, to generate the stationary training data as , ,c k c tR R , we have  

 
1 2 1 2 ,k k k t tT V Λ VΛ  (26) 

then the transform matrix is correspondingly given as 

 
1 2 1 2 .H

k t t k k
T VΛ Λ V  (27) 

In this way, the processed training data kx  behaves nearly stationary with the test cell and can be 
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utilized to estimate the CCM of the test cell using statistical-based methods like LSMI.  

 To sum up, SR-RBC seeks to generate the transform matrix using the clutter spectral 

estimation, which follows the basic idea of RBC. However, there exists some critical difference 

between them, which is thought to be the reason of performance improvement. RBC generates the 

sub-snapshot spectral response in the angle-Doppler domain and selects peaks to estimate the 

configuration parameters using the curve-fitting. Based on this, the clutter power distribution and 

the CCM estimation is obtained at each range cell. On the contrary, SR-RBC combines the 

procedures of estimating both the configuration parameters and the clutter power distribution into 

the solution of ill-posed problem with the constraint of sparsity. Since the spectral estimation in 

SR-RBC is carried out with full-snapshot, no degree of freedom （DOF） loss is generated and 

more accurate spectral estimation is expected. Besides, since the prior knowledge is not required 

in the spectral estimation, SR-RBC is also an adaptive compensation method.   

4. Simulations 

 In this section, the airborne radar is deployed with cylindrical arrays. The problem of range 

ambiguity is not considered and the configuration parameters are given in Table I. The spectrum 

estimations using different methods are first given to verify the advantages of sparse 

representation. Then the performance such as SCR improvement is tested.  

Table I Configuration parameters 

Parameter Symbol Value

Number of rings  M  4 

Number of arrays on each ring N  4 

Number of pluses P  16 
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Platform velocity v  300m/s

Pulse repetition interval PRI  0.25ms

Range sample rate sf  5Mhz

Radar wavelength   0.3m 

Inter-ring spacing d  0.15m

Radius of the ring r  0.15m

Platform height H  3000m

Clutter-to-noise ratio CNR 30dB 

  

 Figs.3 (a)-(d) give the actual clutter response, Fourier, RBC and SR-RBC spectral estimations 

respectively, where the clutter scenario is side-looking CFA. Due to insufficient space-time 

samples of the STAP processor, the Fourier spectrum has a high sidelobe and the resolution is 

limited. On the other hand, both RBC and SR-RBC can achieve high-resolution estimation. 

However, since RBC requires the temporal smoothing to obtain a CCM estimate with sufficient 

rank [10], the dimension of CCM estimate is reduced so that the RBC spectrum has a limited 

accuracy, i.e., the clutter power spread and some missing of the actual scatters along the clutter 

ridge. To avoid this, RBC makes the peak extraction in this sub-snapshot spectrum and then fits it 

with the mathematical model to estimate the configuration parameters [9-10]. However, this 

extraction is partly sensitive to the spurious peaks as well as other artifacts, which appear in the 

sub-snapshot spectrum. Moreover, even if the estimation of configuration parameters is obtained 

with high accuracy, the clutter power estimation using LS might lose some actual clutter scatters 

since the estimation is only carried out in the locations of the extracted peaks. Thus, the accuracy 
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in the sub-snapshot spectrum limits the performance of RBC. On the other hand, as shown in Fig.3 

(d), since SR-RBC can obtain a desirable sparse solution at each range cell using IRLS, there is no 

sub-snapshot tradeoff and high-accurate spectrum estimation is expected. Parallel simulation is 

carried out with non side-looking CFA in Figs.4, where similar conclusion is obtained. Next the 

SCR improvement by different STAP algorithms is given to illustrate the advantage of SR-RBC.  
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Figs.3 side-looking CFA (a) actual clutter response (b) Fourier estimation (c) RBC estimation (d) 

SR-RBC estimation 
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Figs.4 non side-looking CFA (a) actual clutter response (b) Fourier estimation (c) RBC estimation 

(d) SR-RBC estimation 

 Conventionally, the efficiency of the STAP filter is evaluated by the normalized SCR 

improvement, which is defined as [1]  

 
 

2

1

ˆ
,

ˆ ˆ

H

out in
Loss H H

out in opt

SCR SCR
IF

SCR SCR  


w s

w Rw s R s
 (28) 

where the estimated adaptive filter is given as 1ˆˆ  -w R s  , R̂  is the CCM estimation using a 

given technique (such as ADC, RBC or SR-RBC), s  denotes the steering vector of the moving 

target, R  is the actual CCM, and  tr R  is the input clutter power. The slant range of the test 

cell is 1.5sR H , which is a typical short-range case. The training data is the adjacent range 

cells with the amount of 40L  . Fig.5 (a) gives the LossIF  performance of different STAP 

algorithms with side-looking CFA. Since the clutter behaves range-dependent, direct statistical 

method like LSMI has a degraded performance and the clutter notch is mismatch with the actual 
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scenario. ADC aligns the peaks of the clutter ridge of the training data with that of the test cell. 

However, it only accomplishes partial compensation and the performance is still not desirable. On 

the other hand, RBC and SR-RBC make both mainlobe and sidelobe compensation. However, 

since the estimation of both the configuration parameters and clutter power distribution is based 

on the accuracy of the clutter spectrum, the RBC performance is limited. However, since SR-RBC 

can obtain high-accurate spectral estimation with full-snapshot, the corresponding training data 

after the transforming behaves more stationary, which brings desirable SCR improvement. 

Moreover, since SR-RBC directly estimate the Doppler response in the spectral domain, the 

estimation of configuration parameters such as velocity and crab angle are both avoided. Thus, as 

shown in Fig.5 (b), SR-RBC still preserves desirable performance with the non side-looking CFA.  
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Figs.5 (a) IF Loss curves with side-looking CFA 
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Figs.5 (b) IF Loss curves with non side-looking CFA  

5. Conclusions 

 In this paper, we have analyzed the sparsity of the clutter spectral response in CFA and 

proposed a new compensation strategy called SR-RBC to deal with range-dependent clutter. The 

key advantage of SR-RBC is the capability of obtaining high-accurate spectral estimation with 

full-snapshot, which is owing to the technique of sparse representation. In this way, SR-RBC can 

acquire better transform matrix at each range cell so that the stationarity of the processed training 

data is further improved.  

 The following are some considerations for further research. First, the current overcomplete 

basis kΦ  is fixed in sparse representation. However, due to the practical nonideal factors such as 

clutter internal motion and/or channel mismatch, this predefined overcomplete basis does not 

always match with the actual data and the corresponding sparsity might decrease. Therefore, 

solving the sparse representation problem where both overcomplete basis and actual sources are 

unknown seems to be quite important. Second, since IRLS is an iterative algorithm seeking to 

approximate the actual clutter spectrum, appropriate initial value and more adaptive mechanisms 
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is necessary to approach the overall sparse solution.  
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