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Matching Pursuit Shrinkage in Hilbert Spaces

Tieyong Zend* and Francois Malgouyrés

Abstract

In this paper, we study a variant of the Matching Pursuit réiiviatching Pursuit Shrinkage. Similarly
to the Matching Pursuit it seeks for an approximation of aidtiving in a Hilbert space by a sparse
linear expansion in an enumerable set of atoms. The differevith the usual Matching Pursuit is that,
once an atom has been selected, we do not erase all the inifmnnadong the direction of this atom.
Doing so, we can evolve slowly along that direction. The gedb attenuate the negative impact of bad

atom selections.

We analyse the link between the shrinkage function used ®éwlgporithm and the fact that the result
belongs to an? space.
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. INTRODUCTION
A. Recollection on sparse approximation

Finding a sparse approximation of a data in a Hilbert spaceréeeurent problem in applied science.
The problem is to approximate a datune H (H is a Hilbert space of finite or infinite dimension) by
a linear expansion in a dictionary of known atofas);c;:

vy A,
iel
where (\;);c; € R!. The approximation is needed becauses usually corrupted by noise. Also, it is
sometimes preferable to search for an approximation wtiatoarser than the noise requires. Doing so
we favors desired/expected properties of the coordingtgsc;.

Moreover, the dictionary is usually overcomplete. This fféghe freedom to select among all the
possible sets of coordinates one of those agreeing with gmioe knowledge or desired property of
the coordinates. The property receiving most of the attarisosparsity. Heuristically, we select the set
of coordinates offering the “simplest” explanation of thatum. Rigorously, for a given accuracy after

reconstruction, we want
def

1°((No)ier) = #{i € I, X # 0},

to be as small as possible, whefedenotes the cardinality of a set.

Unfortunately, problems similar to

minimize 1° ((\;)icr) o
under the constrainf ), ; \iv; —v|| < 7
wherer > 0 and||.|| is the norm associated with the scalar product of the coresidelilbert space, are
known to be NP-Hard in general (see [1]).
As a conclusion, solving (1) is both an open and interestimadplpm. It receives a lot of attention and
it is impossible to list all the contributions to its resatut. Before describing the most popular technics,
we give in the next section the algorithm studied in this pafiewill then be simpler to motivate our

proposal.

B. The Matching Pursuit Shrinkage

The Matching Pursuit Shrinkage (MPS) is very similar to the usuatdiing Pursuit (MP) algorithm

(see [2]). The main difference is that it uses a shrinkdgactiond : R — R . We describe the algorithm

The rigorous definition of shrinkage functions is given in Section II.
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in Table I.

o Input : A datumv, a dictionary(«);):cz, a shrinkage functio anda € [0, 1]
« Output : Coordinate$s,, vn )nen
« The algorithm

— Initialize Rv = v

— Repeat until convergence (loop ir)

1) Select a well correlated atog,,, such that

(Y, R 0)| 2 avsup [(R™v, a5 @)
2) Evolve alongy-,,
R™ = 8,1, + R" v, 3)
where
Sn = 0(M,,) with M,, = (R"v,.,,). (4)
TABLE |

THE MATCHING PURSUIT SHRINKAGE (MPS).

Several convergence criterion might be considered but, ifopliity, we always assume that the
algorithm stops whenevey, = 0.
Whenever they exist, we can construct coordinates

Ni= Y sy, Viel (5)

neNy, =i
from the result of the MPS. We also consider (when they exist)

+oo

U = Z Ay = Z Sniy,, -
el n=0

Notice that if we sum (3) forn =0... N — 1, we obtain

N-1
v=Y spthy, + R0, (6)

n=0
This explains the name “residual error” f& v.
C. Other algorithms promoting sparsity

One of the oldest and simplest algorithm for building a spagproximation is the Matching Pursuit
(MP) [2] or Projection Pursuit [3]. It corresponds to the altfom of Table | whery is the identity (i.e.
sn = My).
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In finite dimension (see [2]) and in infinite dimension but undestrictive conditions on the dictionary
and the signal (see [4]), the MP is known to converge expéagntWhen no hypotheses are made
on the dictionary, we only know that the MP converges (sep Rdme examples show that we cannot
expect a “good” converge rate in the most general setting [@. Though the MP and the bektterm
approximation have a similar convergence, when the diatipiis "quasi-orthogonal” (see [6]).

There exists “fast” variants of the MP (see [7]). Also, a riéqale implementation of the MP is available
for audio signal processing (see [8]). The improved perforwraare obtained by carefully optimizing
the structures, algorithms and their implementation. Irtipaar, the update of (R"v,1;)):cr and the
computation ofy,, satisfying (2) (in Table 1) are implemented in a very efficievaty. Each iteration of
the MP is typically of complexityO(log(#1)). These optimization are possible because one coordinate
only is updated. IfK" coordinates are modified at each iteration, we obtain a coatpl® (K +log(#1)).
This might be less favorable whéki is large. Althought its approximation performances areasogood
as most modern models/algorithms, these acceleration thakklP a usefull algorithm.

The accelerations decribed in [8] can be applied to the MPS, sarided in Table I. The potential
advantage of introducing a shrinkage functibis to attenuate the mistakes in the selection of a coordinate
vn. Let us underline that avoiding wrong selection of coordigds one of the key ingredient of modern
variants of the MP such as CoSaMP [9], Subspace Pursuit [10] tenative Hard Thresholding [11].
However, especially when the solution we are looking for isderately sparse, those algorithms are
more computationaly intensive.

Let us go back in time. The most famous variant of the MP is thédyanal Matching Pursuit (OMP)
(see [12]). In Table I, it replaces the update rule (3) by athagonal projection onto the subspace
generated by the selected atoms. It is known to provide spardutions than the regular MP. From the
computational point of view, it has two drawbacks. Firstlghaugh several attemps have been made to
optimize it (see [13], [14]), the orthogonal projection mngputationaly expensive and often requires too
much memory. Secondly, every selected coordinate is modi#ie@ consequence, the adaptation of the
optimization performed in [8] would only be efficient when tresult is very sparse. Algorithms such
as the Gradient Pursuit (see [15]) approximately solve thePCd¥la cost more similar to the cost of
the MP. However, at each iteration, they typically updatered selected coordinates. The computational
cost of the Gradient Pursuit is therefore more important ttencost of a fast implementation of the
MP, when the solution is moderetely sparse.

Finally, the!® regularization (also named Basis Pursuit and Basis PursmibiBiag, see [16] and the
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papers citing it) is a very important sparsity promoting mlodt consists in minimizing

lo = " Nwil>+ 8> Al

iel icl

and it is very efficient for providing sparse approximatiohs @ . However, its resolution remains (and
will probably remain in a near futur) a challenge for largalegroblems. A famous (and representative)
solver of thel' regularization problem is the Iterative Soft Thresholdinge($17]). It updates all the
coordinates at each iteration and often requires manytiv@sabefore it reaches a suitable convergence
level. It is interesting to notice that, in this context, tingpact of the choice of the shrinkage function
is well understood (see [18]): Every proximal threholdingdtion corresponds to a different objective
function.

Inspired by thel! regularization problem, a “coordinatewise optimizatidgoaithms” has been pro-
posed in [19]. It performs a soft thresholding, sequengiaii each coordinate. The “greedy coordinate
descent” proposed in [20] is similar but selects the coaidis according to a criteria similar to the
MP. Because they only update one coordinate at each iteratiese algorithms can benefit from the

optimization proposed in [8].

D. Notations

The following notations and hypotheses hold all along theepap

The datumv belongs to a Hilbert spack. The spacé{ might be of finite or infinite dimension. For
any two elements, andw in H, their scalar product is denoted ky, w). As usual, the norm of, € H
is defined byl|u|| &f V/(u, u). The dictionnary(y;);cs is made of atomsy; € H, such that|y;|| = 1, for
all i € 1. We sometimes denote the dictionary By For simplicity, we assume thdtis enumerable. In
particular, the supremum in (2) may not be reached. In sudsa,d¢he MPS is only defined far < 1.
For anyu € H, we denoté|u||p f sup;er |(u, ;)| We denote

& G pan (D] (7)

the closed linear span of the elementsTafWe denotel/ - the orthogonal complement &f in . We
denote the orthogonal projection ortband V- by P, and Py ..

The sequence&,, )nen, (7n)nen, (R™0),en are always defined according to Table I. The coordinates
(\i)ier are according to (5).

We also use the standard notationgn(t) = 1, if ¢t > 0 and—1, if ¢ < 0; # denotes the cardinal of

a set;|.] is the floor function.
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E. Overview

In Section II, we define shrinkage, thresholding and gap fonstiWe also illustrate these definitions by
several examples. In section Ill, we prove that as soofiiasa shrinkage function(R"v),,cn converges
and) ysnty, exists. We also prove thds,),cy is square summable. In Section IV, we prove that
whend is a thresholding function(s,,),en is absolutely summable. This implies in particular that);c
exists and is absolutely summable. In Section V, we provewlen 6 is a gap function, the sequence
(sn)nen Is finite. Again, this implies that)\;);c; exists and is finite. Finally, in Section VI, we evaluate

| > nen S0y, — Pvv|lp, whend is a shrinkage function.

II. GENERAL SHRINKAGE FUNCTIONS
A. Definitions

Definition 1: A function 6(-) : R — R is called ashrinkage function if and only if it satisfies:

1) 6(-) is nondecreasing, i.e,
Vit eR, t<t = 0(t) <O();

2) 6(-) shrinks the amplitude, i.e,
vieR, |0(t)] <[t].

Notice that this implies

and
0(—t) <0<0(t), Vt>0. (8)

Therefore, for any shrinkage functi@g-) and anyt € R, we know that:
if t>0, 0<6(t)<t and0<O(t)(t—0(t)),
if t<0, 0>0(t)>t and0 <0(t)(t—0(t)).

As a conclusion,
VteR, O(t)(t—0(t) > 0. (9)

The inequality (8) also garantees that
VteR, |t |0(t)] =tO(t). (10)
Definition 2: Let #(-) be a shrinkage function, we call
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. theinternal threshold: 7— ! infy.g (420 [t]

. the external threshold: 7+ SUPg(1)=0 |-

Moreover, we say thai(-) is athresholding function if and only if: 7= > 0, i.e.
Ir>0,Vz eR, |z|<7=6(z)=0. (11)
If 6(-) is a thresholding function, we trivially have
0<7 <7t

The internal and external thresholds are illustrated on Eidur

—Ty

Fig. 1. Example of a thresholding functigh It is non-gap. Its internal and external thresholds are not equal.

Since (9) holds for any shrinkage function, the following difaim is valid.

Definition 3: The gap of a shrinkage functiod(-) is defined by:

gap(0) ¥ inf \/02() + 20(t)(t — O(1)). (12)
t:0(t)#0
If gap(f) > 0, we call§ a gap shrinkage function and, ghp(¢) = 0, the function is called a non-gap

shrinkage function.
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The following relation exists between the gap and the intetm@&shold of a shrinkage function. It
proves in particular that any gap shrinkage function is asholding function.

Proposition 1: For any gap functiord(-), we have
gap(0) <7~

wherer~ is the internal threshold df(-).

Proof: The proof is given in Appendix.

B. Examples
Let us illustrate the above definitions through some examples.

1) Forr > 0, the soft thresholding functiop.(-) defined by
p+(t) = sgn(t) - max(|t| — 7,0).

is a thresholding function and it is a non-gap shrinkage tion¢i.e., gap(p,) = 0.
2) Fort > 0, the hard thresholding function defined by
toLif [t > T,
hT(t) -
0 , otherwise.
is a thresholding function and it is a gap shrinkage functigtin gap 7.
3) The identity function defined as:
i(t) =t,Vt € R, (13)

is not a thresholding function and it is a non-gap shrinkagetion.

4) ForTt > 0, the Non-Negative Garrote threshold function (see [21f)neel as:

6% (t) = t max <0, (1 - i)) ,Vt € R, (14)

is a thresholding function and it is non-gap.

5) For0 < 71 < 79, the firm shrinkage function (see [22]) defined as:

0, if [t] <7
57'1,7'2 (t) = sgn(t)% if < ‘t’ < T9; (15)
t, if |t| Z T2,

is a thresholding function and it is non-gap.
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6) Forp € N, 7 > 0, the generalized threshold function (see [23]) defined as:

t, if [t] <73
oo(t) = (16)
t— t:—fl(sgn(t)p), if [t| > T,

a thresholding function and it is non-gap.

[[l. CONVERGENCE OF THEMP SHRINKAGE FOR A SHRINKAGE FUNCTION

This section is devoted to prove that under mild conditior, MP shrinkage algorithm converges.
Proposition 2: Let (v;);c; be a normed dictionary; € H and{(-) be a shrinkage function. For any

M > 0 and anyv € H, the quantities defined in Table | satisfy:

M-1
||11H2 = Z (S% + 25, (M, — sn)) + ||RM’U”2. (17)
n=0
As a consequence, we have
M-1
ol > ) sp+ IR o)%, (18)
n=0
+0o0
Zsi < 400, (19)
n=0
—+00
> sl [My| < +oo, (20)
n=0
(IR Dnen is nonincreasing. (21)

Proof: We can deduce from

Rty = R™w — Snty,
and (¢, ,,) = 1 that
IRl = ||R™||? — 28, (R™v, 1., ) + 52

= HR”UH2 — 25, (M, — sp) — s%.

Summing these equalities for all=0,..., M — 1, we obtain after simplification
M-—1
IRM ][> = [R%[* = D (57 + 250(My — 50)).
n=0

We then obtain (17) fronR’v = v.
Using (9), we know that

Sn (M, — s,) = 0(M,) (M, — 0(M,)) > 0.
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10

Together with (17) this leads to (18).
Notice that this also provides (21). Moreover, (18) garasutlhat(zﬁio 52)aren is @ bounded increas-

ing sequence. It converges and (19) holds. We also have

M—1 M—-1
2 fsal [Ma] = 2 s,M, from (10)
n=0 n=0

M—-1
o] = [RM ][>+ > 52 from (17)
n=0

+00
< P+ s
n=0
This ensures that (20) holds.
Now we can prove the convergence of the MP algorithm.
Theorem 1:Let (¢;);c; be a normed dictionary, € H andé(-) be a shrinkage function. The sequences
defined in (4) satisfy:

(R"v),en CONVerges.

As a consequence,

+oo
> sty exists.

n=0

We denote the limit of R"v),,cn by RT>°v and we trivially have

+oo
v= Z Sniby, + RT0.

n=0

Proof: The proof is based on Jones’ proof for the convergence of gioje pursuit regressions (see
[24]) and the proof of Theorem 1 in [2].
First notice that the statement of the proposition is trigal v = 0. We further assume that = 0.
In order to prove the theorem, we prove that the sequéite),y is a Cauchy sequence. Before
doing so, let us start with some preliminaries.

Notice first that for allw,, ws € H, we have:

Jwy —wa|* = Jlwi|]* = [Jwa]* — 2(w2, w1 — wo)

< < gl = Jlwall? + 2| (we, wy — wa)]. (22)

Moreover, forN, > Ny > 0, from (6) we have

No—1

RNy — RN2g = Z Sy, - (23)
n=N;
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Finally, for anyn > 0 and anym > 0,

[(B™0, snhy, )| = [sn| [y, R™0)]

[sn| sup|{¢i, R™v)]
icl

IN

1
< *’3n| ’Mm’ (24)
«
Let us now consideNy > Ny > 0. Using (22), (23) and (24), we obtain

|RN v — RN2y||2
N>—1

< R0l = RN 0l* + 2/ (R0, > spthy, )|
n=N,
Ny—1

< [RMw|? — |[RN=0]* + *IMNQI > Isul- (25)
n=N,

Using (21) of Proposition 2, we know that the sequeng®&”v|),en IS non-negative and non-
increasing. Therefore, it converges to some valig and for anye > 0, there exitsK > 0 such
that for allm > K,

RZ, <||[R™|* < R, + €.

As a consequence, for any, > N7 > K,

N>
|RNw — BNof? < @+ 2 M) 3 s (26)
n=N;

Using (20), we know thad "0 |M,||s,| < +oo. Moreover,0 < |s,| < [M,]| for all n € N. So
Lemma 2 (see Appendix) can be applied with= |s,,| andy,, = |M,,|. Two situations might occur :
« The first one is thatd " |s,| < +oc. In this case, we know that there I§' > 0 such that for

any No > N; > K’
N,

[sn] < e
2, ls 2H I°

n=N;

Moreover, from (17) we know that
| M, | = (R0, 9, )| < R0 < [Jo].
So (26) becomes : for any> 0 there areX’ and K’ > 0 such that for anyV, > Ny > max(K, K')
|RM v — RM2p||2 < € 4 €2

As a conclusion R"v),en is @ Cauchy sequence.
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« The second one is thalfiminf, . |M,| > % _,|sn| = 0. In this case, let > 0 and letp > 0 be
an integer. We are going to estimgt&™v — R"™*Py||, for m > K (K is such that (26) holds).
First, there isg > m + p such that

q
Myl 3 lonl < 3¢ (27)
Moreover, we can decompose
|R™v — R™Py|| < ||R™v — RW|| + ||R™Pv — R%v||.
Applying (26) with Ny = m and N, = ¢ and using (27) we obtain
|R™ v — Rv||* < € + €2
Similarly, applying (26) forN; = m + p and N2 = ¢ and using (27) we obtain
|R™ Py — RIv||? < € + €2

Hence, we finally obtain
|R™v — R™ Py < 2v/2¢,

which proves that R"v),cn is @ Cauchy sequence.

As a conclusion{R"v),cn converges. The second statement directly follows from (6).

Proposition 2 ensures that
+oo
> sl 28)
n=0

exists.

V. /! NORM BOUNDS

In general, wher{ is an infinite dimensional space, we have no guarantee that

+oo
> Isnl (29)
n=0

exists. A simple counter example consists in considefing,c; a Riesz basis (for definition, see [25])
of H, v =3,.;si; € H such thaty,_; |s;| diverges and)(t) = t.
Below, we prove that (29) exists, whateverc H and whatever the dictionary, as soon ass a

thresholding function.
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Proposition 3: Let (¢;);c; be a normed dictionary € H andd(-) be a thresholding function. The

guantities defined in Table | satisfy:

+oo 2 +00, 112 2
S Joa] < 2 NRF2l? ol (30)
n=0

T T

whereT~ > 0 denotes the internal threshold as defined in the Definition 2.

Proof: Let M € N fixed. Using (18), we know that
M—1
D sn < ol* = [RMo]?.
n=0
Together with (17), this leads to
M—-1 1 M—-1
Z snMy, = 9 (’UHQ + Z 8721 - ‘R]\/[UH2>
n=0 n=0
< loll? = IR
Using (10) and the fact thak(-) is a thresholding function, for any € N, we have:
sp M, = ‘SnHMn’ > Tﬁ‘sn|a

where the last inequality is obtained via the discussingvam ¢asess,, = 0 or s, # 0.

As a conclusion for all/ € N we have
M—1

2 I pM,.[2
S ol < L7 = LRI, e

Letting M go to infinity, we obtain (30).

Remark 1: The above upper bound does not depend on the dictionaby-;. It holds for anyv € H.
We therefore do not expect this bound to be tight in any deelitar applicative context.

Remark 2:As a side effect, the above proposition garantees that thedicmtes)\; exist for alli €

(see (5)). We even know that

> Al < +oo.

icl
V. 19 BOUNDS

If 6(-) is a gap shrinkage function the MP shrinkage stops autoaiigtiafter a finite number of
iterations.
Proposition 4: Let (v;);c; be a normed dictionary; € H andf(-) be a gap shrinkage function (i.e.

gap(6) > 0). The sequenceés,,),en defined in Table | satisfies:

|.

lv]l®

gap(f)?

#{nlsn 70} <[
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Proof: Suppose that the sequen@s, ),y containsM non-zero terms. Observing Definition 3, for
eachs, # 0, we have:

3% + 23n(Mn - Sn) > gap(9)27
where we recall thal/,, = (R"v, 5, ), sp = 0(M,).
From (17), we know that:

o> > Z (s% + 25, (M, — sp)) > M - gap(h)>.
neN:s,, #0

Noting that)M is integer, we have:

Remark 3: An interesting consequence of the proposition is that

. lv]I?
#{Z € I7 )‘Z 7é 0} S \‘gap(e)g
flv]?

In words, v is approximated with less tha[ngapwj non-zero coordinates.

|.

VI. BOUND ON THE RESIDUAL ERROR

In this section, we are interested in the residual error ndrne result concerns shrinkage functions.
Before stating the result, let us give the following lemma:
Lemma 1:Let (¢;);c;r be a normed dictionary; € H andé(-) be a shrinkage function. The sequence

(M,,)nen defined in Eq.(4) satisfies:

limsup M,, < sup t, (32)
n—-+o0 t:0(t)=0
and
inf ¢ <liminf M,,. (33)
t:0(t)=0 n—-+400

Proof: Let us prove the first statement. dfip.g;)—o t = +oc the statement is trivial. We therefore
focus on the caseup,.g)—ot < +oo. Let us assume that (32) does not hold. Then there exists)

and an increasing sequeng@g,),cn € NV such that

My, > sup t+e VneN.
t:0(t)=0

So there exists an increasing seque(icg,.cxy € NV such that

sk, =0(My, ) >0( sup t+¢€)>0
t:0(t)=0

July 8, 2009 DRAFT



15

This means that

limsup s, > 0.
n—-+o0o

The latter statement is impossible since, from (19), we krwatlim,, ., s, = 0. This proves (32).
The proof of (33) is similar.

In particular, if the external threshold 6f-) is zero (i.e.7* = 0),

lim M, =0,

n—-+o00
Sincesupm(t)zo t = inftzg(t)zot = 0.

Recall that we have defined the semi-norm7@ras

def
\Moéwymwm Yu € H.
€

Notice that|| - ||p is a norm as soon &b generateg{. Geometrically,
{ue™, |ullp <7}

is a polyhedron, forr > 0.

Recall that in (7) we denote < Span((¢;):c;), the closure of vector space spanned by the dictionary
(¢4)icr, V- its orthogonal complement and we denote the orthogonaégiiopn ontoV andV+ by Py
and Py . respectively.

Proposition 5: Let (¢;);c; be a normed dictionary; € H andé(-) be a shrinkage function. The limits

defined in Theorem 1 satisfy

+o00o 7_+
anib% — Pyo|| = HR"’OOU — PVJ.’UH,D < —,
n=0 D @

wherer™ is the external threshold @f(-), as defined in Definition 2.
Proof: Let € > 0, from Lemma 1, we know that for anf > 0 there isn;, > k
inf t—e<M,, < sup t+e
£:0(t)=0 £:0(t)=0
Given the definition ofr*, we therefore know that

—7‘+—€§Mnk§7'++6.

We rewrite

|M,, | <77 +e
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Moreover, sincePy, is contractive and given the construction i, , we know that

| M, | > acsup [(R™v,4pi)| > asup |(Py (R™v), i)

el iel
Therefore, for alli € I,
(P (R™) )] < 4 €
V), P; — + —.
Vv s Vi)l > o o

Since (R™v)gen cOnverges taR™ v (see Theorem 1), we finally have
T+ €
[(Py(RT>0), )] < — + —,

« (07

for all i € I. Since the above inequalities hold for any- 0, we obtain
o T
[P (R0, <

Moreover, using Theorem 1, we know that

+o0o
PVL (R+OOU) = PVL (U) - PVL (Z Snw'yn> = PVL (U) .
n=0

We therefore obtain

+
50— Praof] = P <

Using Theorem 1 (again), we also know that

+o0 T
Z Sn@b%, = Py (Z Snw'yn) = PV(U) - PV(R+OOU)
n=0 n=0

Therefore,
—+oco

Z Sn@b% - PV(U)

n=0

= [P (R0 <
D

T
«

This finishes the proof of the theorem.
Remark 4: A consequence of the above proposition is that when the MPSeid with a thresholding
function, it provides a feasible point for the “Dantzig ssta” (see [26]). The “Dantzig selector” consists

in the optimization problem:

_|_
()r\n)in Z MZ‘ subject to H Z i — PVvHD < %
i)iel ZEI
From Proposition 3, we know that the MPS provides a set of coate#i););c; (see (5)) such that

min A
(Ni)ier Z ‘ ‘

is finite. Proposition 5 garantees that the constraint isfidis
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APPENDIX
Proof of Proposition 1

Proof of gap(0) < inf,.g¢)20 [t]. Le€tto € R be such thaty > inf,.q(;4 [t]. We cannot simultaneously

havef(ty) = 0 andf(—tp) = 0, sinced(-) is nondecreasing. Let us denote

to,if O(to) £0
—to i O(tg) = 0

t=

We haved(t) # 0 and given the definition of the gap, we know that
gap(0)” < 6(1)" +20(t)(t — 0(t)),
= - (t—0(1))
< t2=tl
As a conclusion, for anyy such thatty > infy.g¢)+ [t|, we havegap(f) < to. So

0) < inf |t|.
gap( )—t;al(?#o“

Lemma used in the proof of Theorem 1

This lemma is a variation on the Lemma used for the proof of Thedten [2].

Lemma 2:Let (z1)reny and (yx)ren be two sequences such that

VEEN, 0<zp<uyk (34)
and
+oo
Zﬂﬁkyk < H-00.
k=0

One of the following alternatives holds :

o either

“+o00
Zxk < 400
k=0
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Proof: First, since(yx)ren IS @ sequence of nonnegative real numbers, its inferiot kiays exists.
We
o either haveliminfy .y > 0,
e Orliminfy . yr =0
Let us first assume that

liminf y; > 0.
k—4o00

There exists > 0 andn > 0 such that for anyt > n, y, > €. Therefore, we have
“+o00 —+00
erk < Zxkyk < 400
k=n k=n
and finally
+o00
Zxk < +o00.
k=0
The first alternative holds.

Let us from now on assume that

liminfy, =0
k—4o00

and considee > 0 andm > 0. Sincezg“a TRy < +00, there isn > m such that

+o00 €
k=n
Sincelim infy . o yx = 0, there isp > 0 such that

Un4p < (36)

T—n_1 €.
2 k=0 Tk
Let j € {n,...n + p} be such that

vj <uyr, Vke{n,...n+p} (37)
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We have

n—1 7
Yid Tk = YD Tty )
k=0 k=n

IN

n—1 i
Yn+p Z g+ Yj Z x  from (37)
k=0 k=n

+oo
€
< 5+ kz_::ckyk from (36) and (34)
< € from (35).

As a conclusion, for any > 0 and anym > 0, there isj > m such that

J
Yj Z T < €.
k=0

This means that the second alternative holds.
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