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Abstract

Smoothing causal linear time-invariant filters are studiedfor continuous time processes.

The paper suggests a family of causal filters with almost exponential damping of the energy on

the higher frequencies. These filters are sub-ideal meaningthat a faster decay of the frequency

response would lead to the loss of causality.
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1 Introduction

The paper studies smoothing filters for continuous time processes. The consideration is restricted

by the causal continuous time linear time-invariant filters(LTI filters), i.e. linear filters represented

as convolution integrals over the historical data. These filters are used in dynamic smoothing, when

the future values of the process are not available.
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In the frequency domain, smoothing means reduction of the energy on the higher frequencies.

In particular, an ideal low-pass filter is a smoothing filter.However, this filter is not causal, i.e., it

requires the future value of the process. Moreover, a filter with exponential decay of the frequency

response also cannot be causal [6]. It follows from the fact that a sufficient rate of decay of

energy on higher frequencies implies some predictability of the processes; on the other hand, a

causal filter cannot transform a general kind of a process into a predictable process. The classical

result is Nyquist-Shannon-Kotelnikov interpolation theorem that implies that if a process is band-

limited then it is predictable (see, e.g., [1]-[3],[5], [8]-[12], [15]-[18]). Recently, it was found that

processes with exponential decay of energy on the higher frequencies are weakly predictable on a

finite time horizon [6].

We suggest a family of causal smoothing filters with ”almost”exponential rate of damping

the energy on the higher frequencies and with the frequency response that can be selected to

approximate the real unity uniformly on an arbitrarily large interval. These filters are sub-ideal in

the sense that their effectiveness in the damping of higher frequencies cannot be exceeded; a faster

decay of the frequency response is not possible for causal filters. This is because this family of

causal filters approximates the exponential decay rate of a reference set of non-causal filters (1).

2 Problem setting

Let x(t) be a continuous-time process,t ∈ R. The output of a linear filter is the process

y(t) =

∫ ∞

−∞
h(t− τ)x(τ)dτ,

whereh : R → R is a given impulse response function.

If h(t) = 0 for t < 0, then the output of the corresponding filter is

y(t) =

∫ t

−∞
h(t− τ)x(τ)dτ.
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In this case, the filter and the impulse response function aresaid to be causal. The output of a

causal filter at timet can be calculated using only past historical valuesx(τ)|τ≤t of the currently

observable continuous-time input process.

The goal is to approximatex(t) by a smooth filtered processy(t) via selection of an appropri-

ate causal impulse response functionh(·).

We are looking for families of the causal smoothing impulse response functionsh(·) satisfying

the following conditions.

(A) The outputsy(·) approximate processesx(·); the arbitrarily close approximation can be

achieved by selection of an appropriate impulse response from the family.

(B) For processesx(·) ∈ L2(R), the outputsy(·) are infinitely differentiable functions. On the

higher frequencies, the frequency response of the filter is as small as possible, to achieve the

most effective damping of the energy on the higher frequencies ofx.

(C) The effectiveness of this family in the damping of the higher frequencies cannot be ex-

ceeded; any faster decay of the frequency response would lead to the loss of causality.

(D) The effectiveness of this family in the damping of the higher frequencies approximates the

effectiveness of some reference family of non-causal smoothing filters with a reasonably

fast decay of the frequency response.

Note that it is not a trivial task to satisfy Conditions (C)-(D). For instance, consider a family of

low-pass filters with increasing pass interval[−∆,∆], where∆ > 1. Clearly, the corresponding

smoothed processes approximate the original process as∆ → +∞, i.e., Condition (A) is satisfied.

However, the distance of the set of these ideal low-pass filters from the set of all causal filters is

positive [1].
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Forx(·) ∈ L2(R), we denote byX = Fx the function defined oniR as the Fourier transform

of x(·);

X(iω) = (Fx)(iω) =

∫ ∞

−∞
e−iωtx(t)dt, ω ∈ R.

Herei =
√
−1. Forx(·) ∈ L2(R), the Fourier transformX is defined as an element ofL2(R)

(more precisely,X(i·) ∈ L2(R)).

Consider a reference family of ”ideal” smoothing filters with the frequency response

Mµ(iω) = e−µ|ω|, µ > 0. (1)

For these filters, Condition (A) is satisfied asµ → 0, and Conditions (B) is satisfied for allµ > 0.

However, these filters are non-causal: for anyx(·) ∈ L2(R), the output processes of these filters

are weakly predictable at timet on a finite horizon[t, t+ µ) [6].

To satisfy Conditions (A)–(D), we consider a family of causal filters with impulse responses

{hν(·)}∞ν=1 ⊂ L2(R) and with the corresponding Fourier transformsHν(iω), such that the fol-

lowing more special Conditions (a)-(d) are satisfied.

(a) Approximation of identity operator:

(a1) For anyΩ > 0, Hν(iω) → 1 asν → +∞ uniformly in ω ∈ [−Ω,Ω].

(a2) For anyx(·) ∈ L2(R),

‖yν(·)− x(·)‖L2(R) → 0 as ν → ∞,

whereyν is the output process

yν(t) =

∫ t

−∞
hν(t− τ)x(τ)dτ.

(b) Smoothing property:For everyν > 0, there existsρ > 0 such that for anyn ≥ 1,

∫ ∞

−∞
e|ω|

ρ |Hν(iω)|ndω < +∞.
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(c) Sub-ideal smoothing:For anyδ > 1, there existsν > 0 such that for anyΩ > 0

∫

{ω: |ω|≥Ω}

| log |Hν(iω)||δ
1 + ω2

dω = +∞. (2)

(d) Approximation of non-causal filters (1) with respect to the effectiveness in damping:For any

ε > 0 andµ > 0, there existsν = ν(µ) > 0 such that

∥∥|Hν(iω)| − |Mµ(iω)|
∥∥
L2(R)

≤ ε.

Let us show that Conditions (a)-(d) ensure that Conditions (A)-(D) are satisfied, in a certain

sense. Clearly, Condition (a) ensures that Condition (A) issatisfied.

Further, by Condition (b), for anyk > 0 andν > 0,

∫ ∞

−∞
(1 + |ω|k)4|Hν(iω)|4dω < +∞.

Let x(·) ∈ L2(R), X = FX, andYν(iω) = Hν(iω)X(iω). By Hölder inequality, it follows that

∫ ∞

−∞
(1 + |ω|k)2|Yν(iω)|2dω ≤

(∫ ∞

−∞
(1 + |ω|k)4|Hν(iω)|4dω

)1/2

‖X‖1/2L2(R) < +∞.

Henceyν(t) has derivatives inL2(R) of any order, and, therefore, is infinitely differentiable in the

classical sense. Therefore, Condition (b) ensures that Condition (B) is satisfied.

Let us show that Condition (c) ensures that Condition (C) is satisfied. Letδ > 1 be fixed,

and letν = ν(δ) be such that (2) holds. Let us show that the filter with the frequency response

h̃ = F−1H̃ cannot be causal for some ”better” frequency responseH̃(iω) such that

|H̃(iω)| = o(|Hν(iω)|) as |ω| → +∞. (3)

More precisely, we will show that̃h cannot be causal with a stronger condition that there exists

Ω > 0 such that

| log |H̃(iω)|| ≥ | log |Hν(iω)||δ , |ω| ≥ Ω. (4)
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In particular, this condition implies thatlog |Hν(iω)|/ log |H̃(iω)| → 0 as|ω| → +∞.

The desired fact that̃h cannot be causal can be seen from the following. By Paley and Wiener

Theorem [14], the Fourier transformH(iω) of a causal impulse responseh(·) ∈ L2(R) has to be

such that

∫ ∞

−∞

| log |H(iω)||
1 + ω2

dω < +∞

(see, e.g., [13], p.35). Sinceν = ν(δ) is such that (2) holds, it follows from (4) thath̃ cannot be

causal. Therefore, Condition (c) ensures that Condition (C) is satisfied.

Finally, Condition (d) ensures that Condition (D) is satisfied, since the effectiveness of smooth-

ing is defined by the rate of damping of the higher frequencies.

3 A family of sub-ideal smoothing filters

LetC+ ∆

= {z ∈ C : Re z > 0}. Let us consider a set of transfer functions

Ha,b,q(s)
∆

= e−a(s+b)q , s ∈ C
+. (5)

Herea > 0, b > 0, andq ∈ [q̄, 1), are rational numbers,̄q ∈ (0, 1) is a given number. We mean

the branch of(s+ b)q such that its argument isqArg (s+ b), whereArg z ∈ (−π, π] denotes the

principal value of the argument ofz ∈ C. This set was introduced in [4] as an auxiliary tool for

solution of a parabolic equation in the frequency domain.

Let us consider the set of all transfer functions (5) with rational numbersa > 0, b > 0, and

q ∈ [1/2, 1). We assume that this countable set is counted as a sequence{Hν}∞ν=1 such that

a → 0, b → 0, q → 1 asν → +∞.

Theorem 1 Conditions (a)-(d) are satisfied for the family of filters defined by the transfer func-

tions{Hν}∞ν=1. (Therefore, Conditions (A)-(D) are satisfied for this family).
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Proof of Theorem 1.Let Hr be the Hardy space of holomorphic onC+ functionsh(p) with

finite norm‖h‖Hr = supρ>0 ‖h(ρ+ iω)‖Lr(R), r ∈ [1,+∞] (see, e.g., [7]).

Clearly, the functionsHν(p) are holomorphic inC+, and

ln |Hν(s)| = −Re (a(s + b)q) = −a|s+ b|q cos[qArg (s+ b)]. (6)

In addition, there existsM = M(b, q) > 0 such thatcos[qArg (p + b)] > M for all s ∈ C
+. It

follows that

|Hν(s)| ≤ e−aM |s+b|q < 1, s ∈ C
+. (7)

HenceHν ∈ Hr for all r ∈ [1,+∞]. By Paley-Wiener Theorem, the inverse Fourier transforms

hν = F−1Hν(iω) are causal impulse responses, i.e.,hν(t) = 0 for t < 0 (see, e.g., [19], p.163).

Let x ∈ L2(R), X = Fx, andYν = HνX.

Let us show that Condition (a) holds. Sincea → 0 asν → +∞, it follows thatHν(iω) → 1

asν → +∞ for anyω and that Condition (a1) holds. By Condition (a1),Yν(iω) → X(iω) as

ν → +∞ for all ω ∈ R. In addition,|Hν(iω)| ≤ 1. Hence|Yν(iω) −X(iω)| ≤ 2|X(iω)|. We

have that‖X(iω)‖L2(R) = ‖x‖L2(R) < +∞. By Lebesgue Dominance Theorem, it follows that

‖Yν(iω)−X(iω)‖L2(R) → 0 as ν → +∞.

Therefore, Condition (a) holds.

Let us show that Condition (b) holds. By (7), it follows that

|Hν(iω)| ≤ e−aM |ω|q , ω ∈ R. (8)

Therefore, Condition (b) holds with anyρ < q.

To see that Condition (c) holds, it suffices to observe that (2) holds if δq ≥ 1, i.e.,q ≥ 1/δ.

Let us show that Condition (d) holds. We assume that the family of transfer functionsHa,b,q(·)

is counted as a sequence{Hλ}∞λ=1 such thatb → 0, q → 1 asλ → +∞, with a = µ/ cos(qπ/2).
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We have thatcos[qArg (iω + b)] ≥ cos(qπ/2) for all b > 0, ω ∈ R andcos[qArg (iω + b)] →

cos(qπ/2) asb → 0 for all q ≤ 1, ω ∈ R.

By (6), |Hλ(iω)| → |Mµ(iω)| asλ → +∞ for all ω ∈ R. Further, we have that

− ln |Hλ(iω)| = aRe [(iω + b)q] = a|iω + b|q cos[qArg (iω + b)]

≥ a|iω + b|q cos(qπ/2) ≥ a|ω|q cos(qπ/2). (9)

Hence− ln |Hλ(iω)| ≥ µ|ω|q and|Hλ(iω)| ≤ e−µ|ω|q . Sinceq ≥ q̄ > 0, we have from (8) that,

for some constantsc1 > 0 andc2 > 0, |Hλ(iω)| + |Ma(iω)| ≤ c1 exp (−c2(|ω|q̄ + |ω|)) for all

ω. By Lebesgue Dominance Theorem, it follows that

∥∥|Hλ(iω)| − |Mµ(iω)|
∥∥
L2(R)

→ 0 as λ → +∞. (10)

Hence Condition (d) holds. This completes the proof of Theorem 1.�

Note that the sequenceHλ(s) introduced above does not ensure approximation described by

Condition (a1), sincea → +∞ andHλ(0) → 0 asλ → +∞. On the other hand, the sequence

Hν(s) does not ensure approximation (10). The following corollary shows a way toward the

combination of these approximation properties.

Corollary 1 Letq ∈ [q̄, 1) andb > 0 be given. Let a sequence{Hn(·)} = {Ha,b,q(·)} be selected

such thata → 0. Then Condition (a1) holds for this sequence, and|Hn(iω)| ≤ e−c|ω|q for all ω,

wherec = a cos(qπ/2).

Proof of Corollary 1 follows from (9).

4 Illustrative examples

The sequence{Hλ(·)} introduced in the proof above is such that‖|Hλ(iω)| −

exp(−µ|ω|)‖L2(R) → 0 asλ → +∞, i.e., it approximates the gain of the non-causal smooth-

ing filter with the frequency responseMµ(iω) = exp(−µ|ω|). This sequence corresponds to a
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sequence{Ha,b,q(·)} such thatq → 1, b → 0, a = µ/ cos(qπ/2). Figure 1 shows the shapes

of gain curves|Mµ(iω)| = exp(−µ|ω|) for the reference non-causal filter withµ = 0.1 and

|Ha,b,q(iω)| for sub-ideal causal filters (5) withq = 0.99 andb = 1 − q = 0.01 andq = 0.9,

b = 1 − q = 0.1 respectively. In both cases,a = µ/ cos(qπ/2) was used. As expected, damping

on higher frequencies is more effective for the non-causal filter than for causal ones, and is more

effective forq = 0.99 than forq = 0.9. It can be illustrated as the following: forω = 1000, the

ratio |Ha,b,q(iω)|
|Mµ(iω)|

is found to be 1.47 and 38.65 forq = 0.99 andq = 0.9 respectively.

Figure 2 illustrates Corollary 1 and shows the shapes of error curves for approximation of

identity operator on low frequencies. More precisely, it shows |Mµ(iω) − 1| =
∣∣e−µ|ω| − 1

∣∣ for

the reference non-causal filter withµ = 0.05 and|Ha,b,q(iω) − 1| for sub-ideal causal filters (5)

with a = b = 0.1 anda = b = 0.05 respectively, withq = 0.5.

Figure 3 shows an example of impulse responseha,b,q(t) = (F−1Ha,b,q)(t) calculated as the

inverse Fourier transform for causal filter (5) withq = 0.9, b = 0.1, a = 1/ cos(qπ/2) = 6.3925.

It can be seen that the impulse response function almost vanishes on some interval near zero, i.e.,

it is close to a causal impulse response with delay. (However, it does not become a response with

delay). There is a reason for this: ifq → 1 andb → 0 then, for a givena, c > 0, Ha,b,q(p) → eap

uniformly in the domain{p ∈ C
+ : |p| ≤ c}.

It can be noted that the phase shift for the frequency response function is large for large|ω|,

and it is increasing whenq → 1. This does not affect much the performance of the filter sincethe

gain is small for these large|ω| and Condition (a1) is ensured.

5 Conclusion

The paper proposes a family of causal smoothing filters with almost exponential damping of the

energy on the higher frequencies and with the frequency response that can be selected to be arbi-
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trarily close to the real unity uniformly on an arbitrarily large interval. These filters are sub-ideal

meaning that a faster decay of the frequency response would lead to the loss of causality; this is

because they approximate non-causal filters with exponential rate of decay. A possible application

is in interpolation and forecast algorithms. The transfer functions obtained are not rational func-

tions; it would be interesting to consider their approximation by the rational functions. Another

problem is the transition to discrete time processes. We leave it for future research.
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Figure 1:Gain decay: shapes of |Mµ(iω)| = exp(−µ|ω|) for non-causal filter with µ = 0.1 and

|Ha,b,q(iω)| for causal filters (5) with q = 0.99, b = 0.01 and q = 0.9, b = 0.1 respectively, with

a = µ/ cos(qπ/2).
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Figure 2: Approximation of identity operator: shapes of error curves |Mµ(iω) − 1| and

|Ha,b,q(iω) − 1| respectively for non-causal filter with µ = 0.05 and for causal filters (5) with

a = b = 0.1 and a = b = 0.05, with q = 0.5.
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Figure 3:Impulse response ha,b,q(t) = (F−1Ha,b,q)(t) for causal filter (5) with q = 0.9, b = 0.1,

a = 1/ cos(qπ/2) = 6.3925.
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