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Abstract

In traditional framework of Compressive Sensing (CS), only sparse prior on

the property of signals in time or frequency domain is adopted to guarantee

the exact inverse recovery. Other than sparse prior, structures on the sparse

pattern of the signal have also been used as an additional prior, called model-

based compressive sensing, such as clustered structure and tree structure on

wavelet coefficients. In this paper, the cluster structured sparse signals are

investigated. Under the framework of Bayesian Compressive Sensing, a hi-

erarchical Bayesian model is employed to model both the sparse prior and

cluster prior, then Markov Chain Monte Carlo (MCMC) sampling is imple-

mented for the inference. Unlike the state-of-the-art algorithms which are

also taking into account the cluster prior, the proposed algorithm solves the

inverse problem automatically - prior information on the number of clusters

and the size of each cluster is unknown. The experimental results show that

the proposed algorithm outperforms many state-of-the-art algorithms.
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1. Introduction

Compressive Sensing (CS) provides an alternative to Shannon/Nyquist

sampling when signal under acquisition is known to be sparse or compressible

[1, 2, 3, 4]. In the framework of CS, signals are measured through inner

products with random vectors, and thus fewer measurements than periodic

samples are needed: for any N dimensional signal x, its measurements v are

taken as follows:

v = Ax+ ϵ = AΨθ + ϵ (1)

where A ∈ RM×N is the sensing matrix, Ψ ∈ RN×N is the sparse representa-

tion matrix with θ the sparse coefficients and ϵ is the noise item comprised of

possible measurement noise and sparse representation errors. Without loss

of generality, we denote the matrix multiplication AΨ a single matrix1 Φ,

then (1) could be rewritten as:

v = Φθ + ϵ (2)

where the matrix Φ is rank deficient with M < N , and hence loses infor-

mation in general. However, it can be shown to preserve the information in

sparse or compressible signals if it satisfies the so-called Restricted Isometry

Property (RIP) [5]. To inverse the process (2), i.e., reconstruction of the

1Hereafter, Φ is called sensing matrix instead of A.
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original sparse signal, a sparse promoting scheme is often exploited, such as

θ̂ = arg min
θ∈RN

1

2
∥v −Φθ∥22 + λ∥θ∥p (3)

where ∥ ·∥p represents the ℓp norm with p ∈ [0, 1], and if p = 0 it corresponds

to IHT [6] algorithm, if p ∈ (0, 1) it corresponds to the Iterative Reweighted

algorithm [7], if p = 1 it corresponds to the typical formula of LASSO (also

for BPDN, IST [8] ...) problem. Moreover, the parameter λ is to balance the

observation fitness and the sparse prior.

Besides the sparse property of nature signals (through sparse representa-

tion), the coefficients of sparse representation often exhibit as special struc-

tures, which can be exploited as the known information, and heuristically

promote the performance of the reconstruction. Consider the N dimension-

al S-sparse signal x with Ω the set of locations of its nonzero entries, i.e.

Ω = supp(x), then one can define a subspace χ(Ω) = {x : xΩ ∈ RS,xΩ̄ =

0} ⊂ RN with xΩ the vector composed by the entries in Ω and xΩ̄ the vector

composed by the entries not in Ω. Hence one can define a union of subspace

A = ∪mS
i=1χ(Ωi) with mS =

(
N
S

)
such that all S-sparse signals x ∈ A. Define

δA the constant of RIP for a sub-Gaussian sensing matrix Φ ∈ RM×N , if [9]

M ≥ 2

cδ2A

(
ln(2mS) + S ln

12

δA
+ t

)
(4)

then its RIP is held for all elements in A with the probability 1−e−t, in other

words, the exact recovery is guaranteed with probability 1−e−t. From [9], the

bound for the number of measurements can be easily extended to the struc-

tured sparse signals with the same configuration except that the subspaces

are limited to typical structures, and hence the number of subspaces will be

largely decreased, i.e. mS ≪
(
N
S

)
. In other words, the required number of
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measurements for structured sparse signals is much less than unstructured

sparse signals.

The above analysis is heuristical and has been discussed in lots of litera-

tures [9, 10, 11, 12, 13, 14]. Meanwhile, algorithms exploiting the structures

as well as the sparsity have been exhaustively investigated in the aforemen-

tioned literatures. In this paper, we focus on clustered sparsity model2, which

is used in some applications where the significant coefficients of a sparse sig-

nal appear in clustered blocks. This kind of sparse pattern is often exploited

in many concrete applications, such as multi-band signals, gene expression

levels, source localization in sensor networks, MIMO channel equalization,

magnetoencephalography [10, 9, 13].

The existing recovery algorithms for clustered sparsity model could be

categorized into the following classes: 1) Block Greedy Algorithms [10, 13];

2) Dynamic Programming Method [12]; 3) Block Greedy with Statistical Mod-

el [11]. To the best of the authors’ knowledge, although all three classes of

algorithms have taken into account the cluster prior, they also bring some

new unknown parameters, such as the size and the number of the clusters,

which, practically, are not easily obtained. For Class 1, Block-CoSaMP [10]

and Block-OMP [13], the location of the clusters are fixed and the size (also

the number) of clusters are required in the recovery procedure; for Class 2,

the proposed algorithm in [12] does not require any information about the

cluster prior except for the number of clusters; for Class 3, LaMP [11] mod-

els clustered sparse model with Markov Random Fields (MRF) and exploits

2It is also called block sparsity model in some other literatures.

4



the Matching Pursuit (MP) [15] procedure to carry out the sparse promot-

ing. Additionally, it is worth noting that besides the cluster prior, sparsity

information is necessary for all of the aforementioned algorithms.

In a probabilistic, Bayesian approach, through Graphical Models (GM-

s) [16], latent variables are often exploited to describe the dependencies (or

joint probability distributions) between observations and parameters. It is

usually called Latent Variable Analysis (LVA) [17], and possibly, results in

some non-parametric approaches to Bayesian estimators. Exploiting sparsi-

ty probabilistic model [18], many algorithms based on the LVA are proposed

to solve the sparse decomposition problems [19, 11, 20, 21, 22, 14]. More-

over, the structures of the sparse coefficients can be conveniently introduced

into the LVA framework using Graphical Models [18, 11, 14]. Particularly,

[18] has made a review on sparse signal recovery with GMs and introduced

a GMs-based algorithm, exploiting cluster structure through the so-called

Ising model [11], called LaMP. However, LaMP is actually following a greedy

procedure constrained by the latent support variables, which are optimized

through the graph cut algorithm at every iteration. Consequently, LaMP is

not a systematic Bayesian approach.

In this paper, we employ a hierarchical Bayesian framework to model the

sparse prior and the cluster prior simultaneously. The posterior distributions

of the proposed prior model can be calculated. Nevertheless, no closed-form

expressions of the Bayesian estimators can be derived and thus an MCMC-

simulation scheme is required to implement the inference. It is different

from any of the existing algorithms for clustered sparsity model. Since that

the hierarchical Bayesian model allows the hyperparameters to be estimated
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in an unsupervised manner, the proposed algorithm does not require any

information for both the sparse prior and the cluster prior. Moreover, unlike

LaMP which exploits the MP procedure, the proposed algorithm is based

on the Bayesian CS framework, where “deleting” process is also carried out

during basis selecting iterations (MP does not have) and thus will not suffer

worse case when selecting a wrong basis [21].

The paper is organized as below. In section 2, a hierarchical Bayesian

generative model is proposed to take into account both the sparse prior and

the cluster prior. In section 3, the posterior of the proposed Bayesian model

is calculated and then an MCMC sampling is adopted for Bayesian inference.

The experiments are carried out to illustrate the efficiency of the proposed

recovery algorithm in section 4 and the paper ends up with a conclusion.

2. Bayesian CS for Cluster Structured Sparse Signals

2.1. Observation Likelihood

First, assume noises are white, i.e. obeys Gaussian distribution with zero

mean and variance σ0, and set α0 = σ−1
0 , then it has

v|θ,α0
∼ N (Φθ, α−1

0 I) (5)

where the notation v|θ,α0
means that the random variable v depends on θ

and α0.

After that, considering the conjugate prior to Gaussian distribution, a

Gamma hyper prior is assigned on the hyperparameter α0, which is α0|c,d ∼

Gamma(c, d).
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2.2. A Priori Model on Sparsity and Cluster

The unknown coefficients θ are assigned a prior distribution p(θ), which

models our knowledge on the nature of θ, i.e. sparse and clustered. In

this subsection, both sparsity and cluster prior are simultaneously modeled

through a “spike-and-slab” prior model, also called Bernoulli-Gaussian pro-

cess [23, 24, 25], which has been widely used as a sparse promoting prior

[26, 27, 28, 29].

2.2.1. Sparsity Prior

To model the sparseness of the coefficients θ, a “spike-and-slab” prior

model is employed for each of the element θi, with πi a mixing weight and δ0

a point mass concentrated at zero.

θi|αi,πi
∼ (1− πi)δ0 + πiN (0, α−1

i ) (6)

with αi the precision (inverse-variance) of a Gaussian density function. Im-

plicitly, the mixing weight πi is the prior probability of a non-zero element,

namely, the large mixing weight πi corresponds to a nonzero entry with large

probability, while the small πi tends to generate a zero entry. Further, in

order to obtain an explicit posterior density function, a conjugate prior for

the parameters are defined: a Gamma prior is considered for variable αi, i.e.

αi|a,b ∼ Gamma(a, b) (7)

Implicitly, the pair of prior model (6) and (7) results in a sparse prior.

Specifically, if πi = 0, the only functional part is the point mass distribution

concentrated at zero, hence all components of θ equal zero. If πi = 1, by

marginalize over the hyperparameters α , {αi}1:N , the overall prior on θ
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with respect to a, b can be evaluated analytically through the integration

over αi,

p(θ|a, b) =
∫

p(θ|α)p(α|a, b)dα ∝
N∏
i=1

(
b+

θ2i
2

)−(a+ 1
2)

which corresponds to the Student-t distribution [19]. And by setting a, b → 0,

the Student-t distribution can be reformulated as

p(θ) ∝
N∏
i=1

1

|θi|

which is strongly peaked about θi = 0. Consequently, the overall prior p(θ)

favors sparseness.

2.2.2. Cluster Prior

To model the cluster prior of the coefficients θ, we must consider relations

between the current element θi and its neighbors, called the cluster pattern

of θi.

Definition 1 (k-th neighborhood). Define the k-th neighborhood of loca-

tion i over the coefficients θ, U (k)
i = {j|D(i, j) ≤ k, j ̸= i} where D(i, j) is

the Euclidean distance between i and j with i and j the position on the vector

θ.

Denote VN the set of all locations over the coefficients θ, i.e. VN = {1, ..., N},

then define Ji,k,⊗ , U (k)
i ∩ VN and Ji,k,⊙ , U (k)

i ∩ VN ∪ {i}. Hence we can

denote θJi,k,⊗ the set of components located in the neighbor of the ith coeffi-

cient θi, while denote θJi,k,⊙ the set of components including both neighbors

and the current component.
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Then we categorize the relations into 3 different cluster patterns as shown

in Fig. 1, where Pattern (a) denotes “all neighbors are zero” for θi, i.e.

∥θJi,k,⊗∥0 = 0, which corresponds to the isolated points, Pattern (b) de-

notes “part of neighbors are nonzero”, i.e. 0 < ∥θJi,k,⊗∥0 < |Ji,k,⊗|, which

corresponds to the points located on the margin and Pattern (c) denotes “all

neighbors are nonzero”, i.e. ∥θJi,k,⊗∥0 = |Ji,k,⊗|, which corresponds to the

clusters. In this place, |J | represents the cardinality of the set J . Then

according to the cluster patterns, the mixing weight πi is chosen by the fol-

lowing pattern selection procedure:

πi = π
⟨q⟩
i (8)

where π
⟨q⟩
i is drawn from different Beta distribution3: π

⟨q⟩
i ∼ Beta(e⟨q⟩, f ⟨q⟩),

with q ∈ {0, 1, 2} corresponding respectively to pattern a, b and c.

In order to clarify the dependence within the random variables, the dis-

tributions for π could be rewritten as follows:

πi|e,f ,θJi,k,⊗
∼ p(πi|e,f , θJi,k,⊗) (9)

where e , {e⟨q⟩}q=0,1,2,f , {f ⟨q⟩}q=0,1,2.

By considering the appropriate choice of parameters e,f , the cluster pat-

tern selection procedure could promote the clusters and restrain the isolates.

However, one may still be puzzled on the remained problems:

1). Neighborhood and cluster pattern: As shown in Fig. 1, only 1st

neighborhood has been considered. Certainly, higher order neighborhood

3Since Beta distribution is a conjugate prior to Bernoulli likelihood with p the model

parameters.
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could be chosen, which, however, will result in lots of cluster patterns and

thus make the pattern selection procedure more complicated. On the other

hand, 1st neighborhood is enough, since relations between components and

their neighbors can be spread around point by point.

2). Model parameters: The Beta(e, f) distribution tends to draw a small

sample when e < f and a big sample when e > f , while has no trends to only

the big (or small) sample when e = f . Consequently, in order to promote

clusters and restrain isolates, parameters (e⟨0⟩, f ⟨0⟩), (e⟨1⟩, f ⟨1⟩) and (e⟨2⟩, f ⟨2⟩)

must be chosen to drive the components with Pattern (a) to zero, which re-

quests selecting a small πi, and thus e⟨0⟩ < f ⟨0⟩. In opposite, e⟨2⟩ > f ⟨2⟩

for Pattern (c). While for Pattern (b), it can’t be determined whether the

current component tends to nonzero or not, and thus e⟨1⟩ = f ⟨1⟩. Further,

empirically, the upper bound of these parameters must be small enough.

2.3. The Complete Generative Bayesian Model

Like the other generative model in Bayesian framework, the proposed

model can be illustrated as well in a hierarchical structure, as shown in Fig. 2.

Given the basic parameters on the top level, hyperparameters π
⟨0⟩
i , π

⟨1⟩
i , π

⟨2⟩
i

are drawn from Beta distribution with e and f , then with the knowledge

of cluster pattern of each components, the mixing weight πi can be chosen

by (8). Meanwhile, hyperparameters αi are drawn from Gamma distribution

with (a0, b0), and afterwards θi can be drawn through the “spike-and-slab”

prior with πi and αi.

Unlike the model expressed in [21], the cluster prior is considered in

the proposed model via the pattern selection procedure. Meanwhile, it is

different from the Ising model expressed in [11], where Markov Random Field
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is considered and there is no explicit overall prior on sparse coefficients.

3. Bayesian Inference

In this section, we will adopt the Markov Chain Monte Carlo (MCMC)

[30] to carry out the Bayesian inference of the proposed model. At first,

denote the unknown parameters as X , {θ, α0,α,π} and the model param-

eter as M , {a, b, c, d, e,f}. Then the posterior distribution of X could be

computed

p(X|v,M) ∝ p(v|X )p(X|M)

In addition, according to the hierarchical model described in Fig. 2, the

conditional joint distribution p(X|v,M) could be written as

p(X|v,M) = p(θ|α, α0,π,v)p(α|θ, a, b)p(π|θ, e,f)p(α0|θ,v, c, d) (10)

3.1. Posterior Distributions

3.1.1. Sparse signal θ

Assume that the components θi of the sparse signal θ are a priori inde-

pendent, namely, the full prior distribution of θ can be rewritten as

p(θ|π,α) =
N∏
i

[
(1− πi)δ0 + πiN (θi|0, α−1

i )
]

Combining the observation likelihood p(v|θ, α0), one can compute the

posterior distribution of θ as follows

p(θ|α,π, α0,v) ∝ p(θ|π,α)p(v|θ, α0)

=

{
N∏
i

[
(1− πi)δ0 + πiN (θi|0, α−1

i )
]}

N (v|Φθ, α−1
0 I)

(11)
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Denoting that Φ−i the sub matrix of Φ excluding the ith column and

θ−i the vector consisting of all but the ith component, one can design a

Gibbs sampler for each component θi according to the following posterior

distribution

p(θi|θ−i,α,π, α0,v) ∝ (1− π̃i)δ0 + π̃iN (θi|µ̃i, α̃
−1
i ) (12)

with the parameters π̃i, µ̃i and α̃i defined as follows

α̃i = αi + α0ϕ
T
i ϕi

µ̃i = α̃−1
i α0ϕ

T
i (v −Φ−iθ−i)

π̃i

1− π̃i

=
πi

1− πi

· N (0|0, α−1
i )

N (0|µ̃i, α̃
−1
i )

3.1.2. Inverse variance α of sparse model

Thanks to the conjugacy, the Gamma distribution on the inverse variance

α of sparse model leads to a straightforward posterior distribution for each

element of α, written as

p(αi|θJi,k,⊙) = Gamma(a+
∥θJi,k,⊙∥0

2
, b+

∥θJi,k,⊙∥22
2

) (13)

3.1.3. Mixing weight π

As depicted in Section 2, each element πi of the mixing weight π is gener-

ated by selecting from three different parameters according to its correspond-

ing sparsity pattern, i.e. for sparsity pattern q ∈ {0, 1, 2}, select πi = π
⟨q⟩
i .

On the other hand, for each sparsity pattern, the hyperparameter π
⟨q⟩
i

obeys the Beta prior, which is conjugate to the Bernoulli distribution. Thus

for sparsity pattern q, the posterior distribution of π
⟨q⟩
i can be easily calcu-

lated

p(π
⟨q⟩
i |θJi,k,⊙) = Beta(e⟨q⟩ + ∥θJi,k,⊙∥0, f ⟨q⟩ + |Ji,k,⊙| − ∥θJi,k,⊙∥0) (14)
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3.1.4. Noise variance α−1
0

Similarly, α0 is with Gamma distribution which is conjugate to the Gaus-

sian distribution and thus one can easily compute the posterior distribution

for α0, written as

p(α0|θ,v) = Gamma(c+
M

2
, d+

1

2
∥v −Φθ∥22) (15)

3.2. Gibbs Sampler and MAP Estimation

Then, one can easily exploit the standard Gibbs sampler to generate the

samples, and at each iterations, the detailed sampling steps can be expressed

as Algorithm 1.

Algorithm 1 Standard Gibbs Sampler
1: For i = 1, ..., N

2: sample θi from p(θi|θ−i,α, α0,π,v);

3: sample αi from p(αi|θ, a, b);

4: sample πi from p(πi|θ, e,f);

5: End

6: sample α0 from p(α0|θ,v, c, d).

The purpose of the proposed Gibbs sampler in Algorithm 1 is to carry

out the Bayesian inference of θ and some other auxiliary hyperparameters

α,π and α0, namely, X . Through this Gibbs sampler, it will generate a set

of collection of X asymptotically distributed according to the joint posterior

of (10). Denote the set of this collection as follows.

X = {X (j)}j=1,...,tNi,...,tMC
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with j the MCMC sampling steps, tNi the number of burn-in iterations of

the sampler and tMC the total number of MCMC iterations.

In order to infer the estimation for θ, the maximum a posteriori (MAP)

estimator is adopted4. Considering the full posterior (10), one can obtain the

marginal distribution p(θ|v) by integrating out the hyperparameters π,α

and α0.

p(θ|v) ∝
∫

p(θ|α,π, α0,v)dαdπdα0

∝
(
d+

1

2
∥v −Φθ∥22

)−c−M
2

N∏
i=1

Γ(a+ ∥θi∥0
2

)B(ẽi, f̃i)(
b+

θ2i
2

)a+
∥θi∥0

2

(16)

where ẽi = e⟨q⟩ + ∥θJi,k,⊙∥0 and f̃i = f ⟨q⟩ + |Ji,k,⊙| − ∥θJi,k,⊙∥0.

Therefore, the MAP estimator of θ can be computed by retaining the

sample maximize the posterior distribution (16)

θ̂ ≈ argmax
θ∈Θ

p(θ|v) (17)

where Θ = {θ(j)}j=tNi,...,tMC
.

Apparently, calculating the posteriors of each parameters, respectively,

(12), (13), (14) and (15), only requires O(N) multiplications. Therefore, the

complete complexity for the Algorithm 1 can be easily calculated, which is

O(N2).

4The minimum mean square estimator (MMSE) is not appropriate in this case, since

averaging the simulated sparse samples may lead to non-sparse MMSE estimation.
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4. Experiments

Conveniently, we denote the proposed algorithm CluSS, abbreviation of

Clustered Sparse Solver. Then the following experiments are using the same

settings, where the model hyperparameters for the priors in CluSS are set as

follows: a = b = c = d = 10−6, (e⟨0⟩, f ⟨0⟩) = ( 1
M
, 1− 1

M
)×|Ji,k,⊙|, (e⟨1⟩, f ⟨1⟩) =

( 1
M
, 1
M
)× |Ji,k,⊙|, (e⟨2⟩, f ⟨2⟩) = (1− 1

M
, 1
M
)× |Ji,k,⊙|, where k = 1, the initial

conditions are set to αi(0) = 1, πi(0) = 0, and α0(0) = 1/var(v)× 102 for all

i ∈ VN .

Then several experiments considered widely in CS literatures are imple-

mented via CluSS, and comparisons are made to the state-of-the-art CS algo-

rithms, respectively, Basis Pursuit (BP) [31], CoSaMP [32], Block-CoSaMP

[10], (K, S)-sparse recovery algorithm via Dynamic Programming (Block-

DP) [12] and Bayesian Compressive Sensing (BCS) [21]. Without special

explanation, the sensing matrix Φ is constructed randomly as in the seminal

work [2], i.e., entries are drawn independently from Gaussian distribution

N (0, 1/
√
M).

4.1. General View

The objective of this subsection is to give an overall viewpoint for the pro-

posed CluSS. Firstly, synthetic cluster structured sparse signals with length

N = 100 are randomly generated. The sparsity S is set to 30 and the nonzero

entries are set to ±1 uniformly distributed (or values drawn from a Gaussian

distribution N (0, 1)) and clustered into K = 2 blocks, see Fig. 3.

We first implement reconstruction via the aforementioned algorithms with

noise free measurements on both ±1 spikes and Gaussian distributed spikes,
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where only M = 50 measurements are available. And the signal model

parameters, such as sparsity and clusters, are optimally given: sparsity Ŝ =

S = 30, number of cluster K̂ = K = 2 and size of cluster Ĵ = 15. Fig. 3

demonstrates the reconstruction results via BP (c), CoSaMP (d), Block-

CoSaMP (e), BCS (f), CluSS (g) and Block-DP (h). The relative error of

reconstruction is calculated by e = ∥θ̂ − θ∥2/∥θ∥2, where θ̂ and θ are the

estimated and the true coefficient vectors, respectively. It is shown that only

CluSS can well recover the original cluster structured sparse signal and as an

auxiliary, the evolution of the mixing weight π is given in Fig. 4.

4.2. Convergence diagnostic

When using the MCMC technique, the convergence diagnostic should be

carried out to well determine the burn-in period. In this place, we use the

Potential Scale Reduction Factor (PSRF) [33] (Multivariate PSRF, MPSRF

[34] for multiple variables) to monitor the convergence of iterative simula-

tions. The evolution of the PSRF can be shown in Fig. 5. Experimentally,

the PSRF converges less than 1.5 when the sparse signal can be correctly

reconstructed. Therefore, during the Gibbs sampling procedure of the fol-

lowing sections, the burn-in period is set to 250 iterations and then followed

by a 50-sample-collection period.

4.3. Successful reconstruction rate versus sparsity

In this subsection, the objective is to compare the recovery abilities of the

aforementioned algorithms for different oversampling rate (related to sparsity

and measurements), denoting ρ = S
M
. The size of CS problem is fixed with

signal length N = 100 and measurement number M = 50, and the sensing
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matrix Φ is generated as described at the beginning of this section. In the

simulation, vary sparsity S from 1 to M with step 1, and then for each spar-

sity level, randomly generate 100 trials of cluster structured sparse signals

with length N and blocks K = 2 (or K = 4). After that, the CS measure-

ments are captured (noise free) through projecting the randomly generated

sparse signal θ on sensing matrix Φ. BP, Block-CoSaMP, CoSaMP, BC-

S and CluSS are respectively exploited to carry out the CS reconstruction,

where the required parameters for some of the algorithms are optimally set

to Ŝ = S, K̂ = K and the size of clusters Ĵ = ⌊S/K⌋. The successful recon-

struction is determined by the relative error between the true signal and its

estimation, saying success if e < 10−2 and fail for else. At last, the successful

rate can be calculated through the ratio of total number of success events

over the total number of trials, and the results are depicted in Fig. 7.

It is shown in Fig. 7 that CluSS has the highest rate when oversampling

rate is approximately larger than 0.3. Moreover, CluSS has a satisfactory

successful rate when ρ ∈ [0.45, 0.5] while BP, Block-CoSaMP, CoSaMP and

BCS has no hope to solve the CS problem successfully. On the other hand,

compare the successful rate curve between K = 4 and K = 2, it is also shown

that the fewer the clusters, the higher the successful rate for CluSS 5.

5It is worth noting that the reason of the unsatisfactory performance for Block-CoSaMP

is that the blocks in the cluster structured sparse signals are not with identical size

and fixed location. While the Block-DP is not compared here since it is very inefficient

(O(N3S2K2)).
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4.4. Robustness to noise

In this subsection, we will evaluate the robustness of the proposed algo-

rithm. For a sparse signal with length N = 100, sparsity S = 25 and cluster

K = 2, only M = 50 measurements are captured and then contaminated by

Gaussian noises with variance σ0 ranging from 0.01 to 0.1, namely, the SNR

(signal to noise ratio) approximately ranging from 34dB to 12dB (see Fig. 6).

The proposed algorithm CluSS and the other state-of-the-art algorithms can

be used to recovery the original sparse signal. Run this experiment 100 times,

then we can obtain the mean and the variance of the recovery SNR for each

noise level, as shown in Fig. 6. The result shows that only CluSS can recover

the sparse signal with acceptable error, which is in accordance with the result

shown in Fig. 7.

4.5. Reconstruction with mismatch sparsity model

The state-of-the-art CS algorithms, such as Block-CoSaMP, Block-DP,

etc. are designated to cope with the CS recovery problem with cluster prior.

Nevertheless, they are only implementable for special cases, for instance,

with fixed cluster locations or known number of clusters. In other words, a

mismatch model (or unknown model parameters) will ruin the reconstruction

performance for them. Oppositely, CluSS is nonparametric and hence more

robust to mismatch sparsity model than the state-of-the-art CS algorithms

specific for clustered sparse signals.

In this experiment, we generate a length N = 100 synthetic sparse sig-

nal with sparsity S = 13 and clusters K = 2, see Fig. 8(a). Only M = 50

measurements are obtained without noise. The comparisons are made to
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CoSaMP, Block-CoSaMP and Block-DP, and the experiments are imple-

mented with both the correct clustered sparsity model, where the model

parameters are set to Ŝ = 13, K̂ = 2 and the size of clusters Ĵ = 7, and

the incorrect clustered sparsity model, where Ŝ = 11, K̂ = 1 and the size of

clusters Ĵ = 11. As shown in Fig. 8(c)(e)(g), with correct model parameters,

all algorithms are capable to obtain the exact reconstruction, however, as

shown in Fig. 8(d)(f)(h), with incorrect model parameters, only CluSS can

reconstruct the true signal (see Fig. 8(b)).

4.6. Real Musical Signals

The above experiments are oriented to synthetic cluster structured sparse

signals, where it is shown that CluSS can well preserve the cluster structures.

In order to carry out the experiments in realistic applications, the object

signals should exhibit as clustered blocks or possess the cluster structured

sparse representations. In this place, we exploit soft musical signals which

are not with complicated harmonics, and hence this kind of signals possess

the cluster sparse representations in frequency domain [35, 27]. Fig. 9 gives

a clip of this kind of musical signal (Mozart) played by the flute and its

spectrum.

Setting frame size N = 128 and the number of measurements per frame

M = 60 (or 80, 100), one can construct a sensing matrix Φ following the

method described at the beginning of this section. Then the measurements

are captured by projecting each frame of the musical signal on the sensing

matrix Φ. Then CluSS and the aforementioned algorithms are exploited to
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implement the reconstruction procedure 6. The average means (Mean) of

Relative Reconstruction Error (RRE) over all frames for each of algorithms

are given in Tab. 1, as well as the corresponding standard variances (Std).

The best recovery results are highlighted in bold type. It is shown that for

different number of measurements M , the proposed CluSS is always with the

best performance over the competitors.

On the other hand, in order to depict the property of CluSS in preserving

cluster property, the zoom in of the spectrums of the reconstructions for each

of algorithms are given in Fig. 11. In Fig. 11(a) and (b), only M = 80 (or

M = 100 for (b)) measurements per frame are captured, and the spectrum-

s of the reconstructions for each of algorithms apparently show the cluster

preserving property for CluSS, while the competitors give worse results. Al-

though Block-CoSaMP also has the property of preserving cluster structures,

the optimal parameter for Block-CoSaMP cannot be well given, which results

in unsatisfactory reconstructions for Block-CoSaMP.

4.7. An example of 2 dimensional cluster structured sparse signals

In this section, we extend CluSS to the 2 dimensional case, where only

1st-neighborhood is considered for the sparsity pattern, i.e., 4 neighbors for

each pixel. The experiment is carried out with some patches of letters “M”,

“B”,“C” and “S” (16 × 16) with black background, thus it is with a lot of

zero pixels in each patch and the nonzero pixels are clustered in blocks, as

shown in Fig. 10. Then, only M = 100 noisy measurements (SNR≈ 20dB)

are obtained. The comparisons of performance are made to BP, CoSaMP

6The Fourier transform is employed to obtain the sparse representation.
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and BCS. The results are shown in Fig. 10, where we can find that only

CluSS gives cognizable reconstructions.

5. Conclusion

In this paper, we propose a new algorithm to recover the cluster structured

sparse signals. Particularly, both sparse prior and cluster prior are taken into

account via a hierarchical Bayesian model. MCMC sampling is proposed to

implement the Bayesian inference. Unlike the existing recovery algorithms for

clustered sparsity model, the proposed algorithm needs none of the parameters

tuned manually, i.e. it is completely automatic. The experimental results

show that the proposed algorithm is outstanding the state-of-the-art recovery

algorithms for the recovery of cluster structured sparse signals.
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Figure 1: Three different cluster pattern for 1D signals.

Figure 2: Hierarchical Bayesian Generative Model for Sparse Signal.

Table 1: Relative Reconstruction Error (RRE) of Musical Signals

Meas. RRE BP CoSaMP Block-CoSaMP BCS CluSS

M = 100
Mean

Std

0.0076

0.0073

0.0330

0.0237

0.0564

0.0337

0.0068

0.0195

0.0022

0.0021

M = 80
Mean

Std

0.0523

0.0397

0.0728

0.0685

0.0993

0.0623

0.0552

0.0527

0.0195

0.0191

M = 60
Mean

Std

0.1690

0.1051

0.2548

0.1384

0.2489

0.1702

0.2126

0.1929

0.1050

0.0904
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Figure 3: Reconstruction of (1) clustered ±1 spikes and (2) clustered Gaussian spikes for

N = 100,M = 50, S = 30,K = 2 with noise free measurements.

27



10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100

−1

0

1

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100

−1

0

1

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

Figure 4: Evolution of the mixing weight π (left row) and sparse signal θ (right row),

respectively at 1, 10, 40 and 100 iteration(s).
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spikes ±1, where N = 100,M = 50, S = 13,K = 2.
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Figure 9: The original musical signal and

its spectrum.

Figure 10: An example of 2 dimensional

cluster structured sparse signals.
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Figure 11: The spectrum of reconstructions via different algorithms.
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